Finite State Machines (FSM)

Lecturer: Guillaume Beslon
Original Author: Lionel Morel

Computer Science and Information Technologies - INSA Lyon

Fall 2019
Previously, on AC ...

Two ways of representing a sequential behavior:

- time-diagrams, called **chronogrammes**

 Describe a specific sequence of input/output values graphically

- **State machines:**

 Describe the full system’s behavior **formally**

 see lecture on **FSMs**
Sequential behavior: Example

Input: w

Output: z

Behavior: z is true whenever w has been true for at least 4 clock cycles in a row.
Sequential behavior: Example
A finite state machine ("Machine a États Finis") is a tuple \((Q, q_0, I, T)\) with:

- \(Q\) is the set of states ("États")
- \(q_0 \in Q\) is the initial state ("État initial")
- \(I\) is the input alphabet ("Alphabet d’entrée")
- \(T \subseteq Q \times I \times Q\) is a transition function ("Fonction de transition").
FSM: graphical representation

- $Q = \{q_0, q_1, q_2\}$
- $I = \{a, b, c\}$
Acceptors ("Accepteurs" ou ‘Reconnaisseurs’)

- Special form of FSM
- Have at least one accepting state
- (Regular languages) recognizers
Acceptors — Example

\[Q = \{ q_0, q_1, q_2 \} \]

\[I = \{ a, b \} \]
Let’s construct an acceptor for a coffee machine coin system (with 1 and 0.5 coins and an – expensive – coffee: 1.5 euros!).
By the way ... why are we here?

We want to describe systems that produce certain output sequences based on input sequences...

But our FSMs don’t have outputs (yet).

Two steps at which outputs can be introduced:

- when the system is transitioning from one state to another ⇒ **Mealy Machine**
- when the system lies in one state ⇒ **Moore Machine**
A Mealy machine is a tuple \((Q, q_0, I, O, T)\) with:

- \(Q\) is the set of states
- \(q_0 \in Q\) is the initial state
- \(I\) is the input alphabet
- \(O\) is the output alphabet
- \(T \subseteq Q \times I \times O \times Q\) is a transition function.

On every transition, we read one input symbol/event and produce one output symbol/event (at least)
Mealy — Graphical Example

I = \{a, b\}

O = \{c\}

"emit c every time you see an 'a' followed by a 'b'"
A Moore machine is a tuple \((Q, q_0, I, O, T, F)\) with:
- \(Q\) is the set of states
- \(q_0 \in Q\) is the initial state
- \(I\) is the input alphabet
- \(O\) is the output alphabet
- \(T \subseteq Q \times I \times Q\) is a transition function.
- \(F \subseteq Q \rightarrow O\) is an output function.
Moore — Graphical Example
Mealy or Moore?

- Equivalent in expressiveness
- Translation from one to the other is always possible (at some costs)
- Mealy describes a very “event-driven” vision of the world
- In Computer Architecture, we will use Moore machines: Events (i.e. rising or falling edges) trigger state changes in registers and output are maintained for certain time.
Synchronous Moore Machine

We want to described **Synchronous Circuits**

Our automata should ultimately be driven by a clock
Synchronous Moore Machine

Most of the time, however, we will **not include clock** in description

⇒ Diagrams are more readable.

But **CLK** is always here, IMPLICITELY!!!
Running Example - specification (again!?)

Remember...

Input: w

Output: z

Behavior: z is true whenever w has been true for at least 4 clock cycles in a row.
Running Example

Blackboard
Reactivity and Determinism

In Hardware
our FSMs need to be reactive and deterministic:

Let’s note c_{ij} the condition triggering transition between state s_i and s_j.
Let $Succ_i \in Q$ the set of all successors of state $s_i \in Q$.

Reactive: $\sum_{s_j \in Succ_i} c_{ij} = 1$

ie, in any given state, for any input value, the next state is known
ie, the component is never blocked.

Deterministic: $\forall (s_j, s_k) \in Succ_i \times Succ_i, \text{ with } j \neq k, c_{ij} . c_{ik} = 0$

ie, in any given state, for any input value, there exist only one next possible state
Blackboard