Combinatorial circuits - arithmetics

Lecturer: Guillaume Beslon (Lecture adapted from Lionel Morel)

Computer Science and Information Technologies - INSA Lyon

Fall 2024

Blackboard: How to add two integers?

Half-Adder

The simplest one-bit operation used is called a *half adder*:

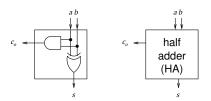
- ▶ inputs: two bits a and b that we want to add;
- outputs : a sum bit s and an output carry c_o .

а	b	s	Co
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

We see that:

$$s = a \oplus b$$
, et $c_o = a \cdot b$.

We build the corresponding circuit:



Ah! But we also need to take the input carry into account.

Blackboard

Full-Adder

The full adder has:

- ▶ inputs: 2 bits a and b, and one bit for the incoming carry c_i ;
- outputs: one bit for the sum s and one bit for the output carry co.

а	b	Ci	s	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

We see that:

$$s=\overline{a}(b\oplus c_i)+a(\overline{b\oplus c_i}).$$

Since
$$x \oplus y = \overline{x}y + x\overline{y}$$
, we get

$$s = a \oplus (b \oplus c_i) = a \oplus b \oplus c_i.$$

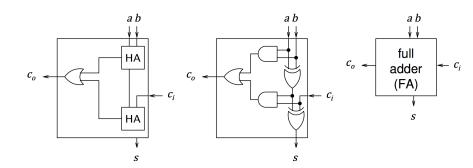
For the carry:

$$c_o = \overline{a}bc_i + a\overline{b}c_i + ab\overline{c_i} + abc_i$$

= $(\overline{a}b + a\overline{b})c_i + ab(\overline{c_i} + c_i)$
= $(a \oplus b)c_i + ab$.

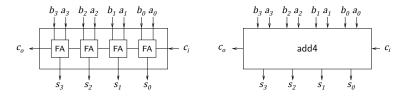
Full-Adder (contd)

We get the circuit for a 1-bit full adder:



n-bits Adder

We can now cascade k *full adders* to build a circuit that adds up 2 k-bits natural numbers.



NB: The carry is propagated exactly as we do in the hand-written operation.

Blackboard: From addition to substraction

Optimization criteria

A boolean function f can be implemented by many $(\to \infty)$ circuits.

What choice criteria can we use?

- ► number of logical gates → circuit (die) area
- ▶ delay → circuit frequency
- power consumption

Optimization algorithms are exponential (in the number of input variables) \rightarrow an optimal circuit might not be found in a practible time.

Example: Let's see how we can reduce a circuit's **delay** by parallelizing it.

Propagation Delay

Any circuit has a certain **Propagation delay** τ , defined as the time between a change on the circuit's inputs (at t) and the stabilization of the circuit's outputs (at $t + \tau$).

During $[t, t + \tau]$, outputs can be in **unpredictable transient** states.

Propagation Delay and Critical Path

Each logical gate has a given (physically-fixed) delay.

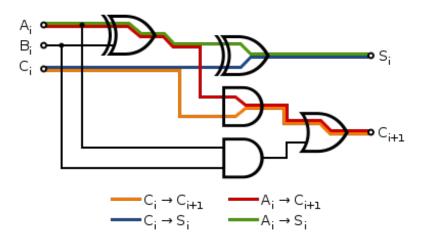
To determine a circuit's propagation delay, we need:

- compute the propagation delay associated to each path that connect one input to one output of the circuit;
- identify a path whose delay is maximal. This is called a critical path

A circuit's propagation delay = delay of one of its critical paths.

NB: There may be several critical paths.

Example¹



https://en.wikipedia.org/wiki/Propagation_delay

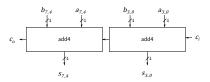
Carry Lookahead

With a hypothetical 1 t propag. delay for all logical gates, the *full adder*'s delay is 3 t. And the delay from c_i à c_o is 2 t.

 $c_{o} \xrightarrow{ab} c_{i}$ $c_{i} \xrightarrow{b_{3} a_{3} \ b_{2} a_{2} \ b_{1} \ b_{0} a_{0}} c_{i}$ $add4 \xrightarrow{c_{i} \ c_{i} \$

For a 4-bits adder, the critical path is the one from c_i to c_o : delay = **8 t**.

For a 8-bits adder, delay is 16 t.

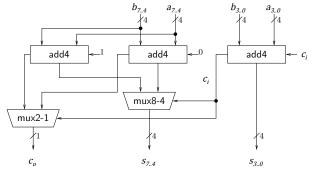


⇒ Delay is proportional to the length of the carry propagation path.

Carry Lookahead

Speculate possible results:

- ► Compute the 4 LSbits of the result s, together with c_i
- ▶ In parallel, compute two versions of the 4 MSbits of s
 - ▶ One assuming that $c_i = 0$
 - ▶ One assuming that c_i = 1
- Choose s_{7..4} according to c_i



Optimizing the (8-bits) adder

If mux have a 2t delay. After 8t,

- ▶ c_i is known,
- ▶ the two versions (one for $c_i = 0$, one for $c_i = 1$)
- ► The selection can now occur, based on c_i.

Delay from c_i to c_o falls to c_i à c_o 10t.

- We have just introduced parallelism.
- This reduces delay
- but it increases surface
- aka space-time tradeoff²....

²classic in CS, check out: