Combinatorial circuits - arithmetics

Lecturer: Guillaume Beslon (Lecture adapted from Lionel Morel)

Computer Science and Information Technologies - INSA Lyon

Fall 2023

Blackboard: How to add two integers?

Half-Adder

The simplest one-bit operation used is called a half adder :

- inputs : two bits a and b that we want to add;
- outputs : a sum bit s and an output carry co.

We see that:

$$s = a \oplus b$$
, et $c_o = a \cdot b$.

We build the corresponding circuit:

Ah! But we also need to take the input carry into account.

Blackboard

Full-Adder

The *full adder* has:

- ▶ inputs: 2 bits *a* and *b*, and one bit for the incoming carry *c_i*;
- ► outputs: one bit for the sum *s* and one bit for the output carry *c*_o.

We see that:

$$s = \overline{a}(b \oplus c_i) + a(\overline{b \oplus c_i}).$$

Since $x \oplus y = \overline{x}y + x\overline{y}$, we get

$$s = a \oplus (b \oplus c_i) = a \oplus b \oplus c_i.$$

For the carry:

$$c_o = \overline{a}bc_i + \overline{ab}c_i + a\overline{b}\overline{c_i} + abc_i$$

= $(\overline{a}b + \overline{ab})c_i + ab(\overline{c_i} + c_i)$
= $(a \oplus b)c_i + ab.$

Full-Adder (contd)

We get the circuit for a 1-bit full adder :

n-bits Adder

We can now cascade *k* full adders to build a circuit that adds up 2 *k*-bits natural numbers.

NB: The carry is propagated exactly as we do in the hand-written operation.

Blackboard: From addition to substraction

Optimization criteria

A boolean function *f* can be implemented by many $(\rightarrow \infty)$ circuits.

What choice criteria can we use?

- number of logical gates \rightarrow circuit (die) area
- ► **delay** → circuit frequency
- power consumption

Optimization algorithms are exponential (in the number of input variables) \rightarrow an optimal circuit might not be found in a practible time.

Example: Let's see how we can reduce a circuit's **delay** by parallelizing it.

Propagation Delay

Any circuit has a certain **Propagation delay** τ , defined as the time between a change on the circuit's inputs (at *t*) and the stabilization of the circuit's outputs (at *t* + τ).

During $[t, t + \tau]$, outputs can be in **unpredictable transient** states.

Propagation Delay and Critical Path

Each logical gate has a given (physically-fixed) delay.

To determine a circuit's propagation delay, we need:

- compute the propagation delay associated to each path that connect one input to one output of the circuit;
- identify a path whose delay is maximal. This is called a critical path

A circuit's propagation delay = delay of one of its critical paths.

NB: There may be several critical paths.

¹https://en.wikipedia.org/wiki/Propagation_delay

Carry Lookahead

With a hypothetical 1 t propag. delay for all logical gates, the *full adder*'s delay is 3 t. And the delay from c_i **à** c_o **is 2 t**.

For a 4-bits adder, the critical path is the one from c_i to c_o : delay = **8 t**.

For a 8-bits adder, delay is 16 t.

 \Rightarrow Delay is proportional to the length of the carry propagation path.

Carry Lookahead

Speculate possible results:

- ► Compute the 4 LSbits of the result *s*, together with *c_i*
- In parallel, compute two versions of the 4 MSbits of s
 - One assuming that $c_i = 0$
 - One assuming that $c_i = 1$
- Choose s_{7..4} according to c_i

Optimizing the (8-bits) adder

If mux have a 2t delay. After 8t,

- ► c_i is known,
- the two versions (one for $c_i = 0$, one for $c_i = 1$)
- The selection can now occur, based on c_i .

Delay from c_i to c_o falls to c_i à c_o 10t.

- We have just introduced **parallelism**.
- This reduces delay
- but it increases surface
- aka space-time tradeoff²....

²classic in CS, check out:

https://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff