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Chapitre 1

Introduction

L'informatique c’est la science du traitement de 1'information.

Un ordinateur est une machine universelle de traitement de I'information. Universelle veut dire : qui peut
réaliser toute transformation d’information réalisable[l

Ce cours va vous apprendre ce qu’est un ordinateur et comment on le construit.

1.1 Des livres sérieux, parce que ce poly, bon.

Le bouquin de référence de support de ce cours est Computer Organization & Design, the hardware/-
software interface, de Patterson et Hennessy (qui ont eu le prix Turing en 2017). Aux derniéres nouvelles
ils en sont a la 5eme édition, et derriere il y a des éditions pour différents processeurs. Celui a la mode
c’est la version RISC-V (sorti en 2018).

Des mémes auteurs mais dans le désordre, Computer Architecture : A Quantitative Approach, 6eme
édition (pour une certaine valeur de 6) est plus avancé : il parle de I'optimisation des parametres d'un
processeur. Il y a eu des traductions en francais de vieilles éditions. Attention, ce livre était bien dans ses
premieres éditions, puis il a grossi, est devenu illisible, enfin il s’est allégé du précédent et est redevenu
lisible — mais pointu.

Plus vieux, mais tres bien, il y a aussi Structured Computer Organization, par Andrew Tanenbaum,
qui je crois s’est arrété en 2005 a la 5éme édition. Il existe en francais aussi sous le titre Architecture de
I'Ordinateur.

Il'y a aussi Computer Architecture and Organisation de Murdocca et Heuring, ainsi que Computer
Organization and Architecture de William Stallings (11éme édition en 2019, notre record), tous deux
trés bien, d’ailleurs ils ont le méme titre.

Parentheése culturelle Le mot “Organisation” dans les titres de bouquins ci-dessus décrit le comment de
la construction d’un ordi. Le mot “Architecture” décrit le quoi, sauf chez Hennessy et Patterson qui utilisent
le mot “Design”. Page[77]|on retrouvera le mot Architecture avec ce sens précis dans le terme Instruction Set
Architecture.

Cette nuance est lourdement expliquée dans les premiéres pages des 3 bouquins ci-dessus qui ont comme titre
“Computer X and Y”. Malheureusement, votre prof a tendance a utiliser le terme “Architecture” a la fois pour
Computer Architecture et Computer Organization. Il n’est pas le seul.

1. Il existe des calculs non réalisables, et des calculs non réalisables en temps raisonnable. C’est pas que ce n’est pas important,
mais on ne s’y intéresse pas dans ce cours.
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1.2 Historique du calcul mécanique

néolithique Invention du systéeme de numération unaire, de I'addition et de la soustraction (des
moutons). Car en latin, calculus c’est un petit caillou.

antiquité Systémes de numération plus évolués :
systemes alphabétiques (Egypte, Gréce, Chine) :

chaque symbole a une valeur numérique fixe et indépendante de sa position. Des pieces de
monnaie, quoi. Les chiffres romains sont un mélange de unaire et d’alphabétique.

systémes a position (Babylone, Inde, Mayas) :
c’est la position du chiffre dans le nombre qui donne sa puissance de la base.

Les bases utilisées sont la base 10 (Egypte, Inde, Chine), la base 20 (Mayas), la base 60 (Sumer,
Babylone), ...

Ces inventions sont guidées par la nécessité de faire des calculs
Essayez donc de décrire 1'algo de multiplication en chiffres romains...Par contre la base 60 c’est
bien pratique, pourquoi?
~-1000 Invention du calculateur de poche (I’abaque ou boulier) en Chine.
+1202 Le génial systeme de numération indo-arabe arrive en Europe par I’Espagne.

1623 Sir Francis Bacon (Angleterre) décrit le codage des nombres dans le systéme binaire qu’il a
inventé dans sa jeunesse.

1623 Wilhelm Schickard (Tiibingen) invente la roue a chiffres qui permet de propager les retenues.
1624 11 construit la premiere calculette “occidentale”

1645 Blaise Pascal en fabrique une mieux qui peut propager les retenues sur les grands nombres.
1672 Gottfried Wilhelm Leibniz construit une machine a calculer 4 opérations

1679 Leibniz encore développe I'arithmétique binaire (De Progressione Dyadica) mais sans I'idée que
cela pourrait servir a quelque chose.

1728 Premiére utilisation connue des cartes perforées (Falcon?)

1741 Jacques de Vaucanson invente la mémoire de programme dans le contexte des métiers a tisser. Il
utilise des rouleaux de fer-blanc perforés.

1792 Claude Chappe est le précurseur de la couverture 5G en tapissant la France d’antennes-relais
utilisées pour les télécommunications sans fil.

1808 Joseph Marie Jacquard utilise du carton perforé, c’est moins cher que le fer-blanc.
Surtout, il est Lyonnais.

1822 Charles Babbage se lance dans sa difference engine, qui sert a calculer des polynémes.

1833 Karl Friedrich Gauf3 et Wilhelm Weber, a Géttingen, sont les précurseurs de l'internet en
s’envoyant a distance sur un fil électrique du texte codé par un genre de code Morse.

1833 Babbage laisse tomber car il a une meilleur idée, I'analytical engine, programmable par cartes
perforées, inconstruisible avec les moyens de 1'époque.

1843 Ada Lovelace invente (pour la machine de Babbage) le langage de programmation. Par ailleurs
elle suggére que de telles machines peuvent étre utilisées aussi pour manipuler du texte ou
composer de la musique. On peut donc affirmer qu’elle est la précurseuse a la fois de Word et de
la musique techno.

1854 Georges Boole (Angleterre) met en place la logique mathématique désormais dite booléenne.
1854 Christopher L. Sholes (USA) : premiére machine a écrire utilisable.

1914 Leonardo Torres y Quevedo construit le premier automate qui joue aux échecs et, bien avant
Deep Blue, gagne a tous les coups (dans un cas légérement simplifié : la finale roi et tour contre roi
seul).

1915 Le méme Leonardo décrit la construction d’automates (électromécaniques) a nombre d’états
arbitraires dans Ensayos sobre Automdtica (Essais sur ’automatique. Sa définition. Etendue théorique
de ses applications.)

1920 II construit les premiers calculateurs dont 1’entrée est un clavier et la sortie une imprimante.

1928 Ackermann montre qu’il y a des fonctions entiéres qui ne peuvent étre calculées par un nombre
fini de boucles (alors qu’on n’a pas encore inventé la boucle).
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1900-1935 Développements en électronique : tube cathodique, tube a vide 3 électrodes, enregistrement
sur support magnétique.

1936 These d’Alan M. Turing sur une machine abstraite universelle. Début de la théorie de la calcula-
bilité.

1936 Konrad Zuse (Allemagne) construit le premier calculateur binaire (Z1 : mécanique, Z2 : a relais).

1937 John V. Atanasoff (USA) a I'idée d’utiliser le binaire pour des calculateurs.

1941 Le Z3 de Zuse est le premier calculateur (presque) universel programmable
— 1400 relais pour la mémoire, 600 pour le calcul
— 64 mots de mémoire
— arithmétique binaire en virgule flottante sur 22 bits
— programmation par ruban perforé de 8 bits
— une seule boucle (d’ot1 le “presque” universel)

1943 Tommy Flowers, a Bletchley Park (1a ot1 bosse aussi Turing) construit le premier calculateur
a tubes électroniques. Il n’est pas universel, il ne sait que déchiffrer des messages secrets. On
n’apprendra son existence que dans les années 1970.

1946 L'ENIAC est le premier calculateur électronique plus ou moins programmable. Comparé au Z3
c’est un boulier (en moins pratique), mais il va bien plus vite.

1949 Turing et von Neumann, ensemble, construisent le premier ordinateur universel électronique, le
Manchester Mark I. L'innovation c’est la mémoire partagée programme et donnée.

1969 Grace Hopper congoit le premier compilateur. Jusque 1& on programmait uniquement dans le
langage de la machine.

1969 1’Apollo Guidance Computer pose deux hommes sur la Lune. C’est un ordinateur embarqué a base
de circuits intégrés, muni d’un clavier, d"un écran et méme d’un joystick, et d'une interface réseau
sans fil. Il posséde aussi un systeme d’exploitation multi-taches temps réel (congu sous la direction
de Margaret Hamilton). Comparé a votre smartphone, il ne manque donc que le haut-parleur,
avantageusement remplacé par une vingtaine de moteurs fusées.

1982 Bien sfir, ce ne sont ni Ada ni Margaret ni Grace, mais deux barbus, Ken et Dennis, qui auront le
prix Turing pour cette sale blague que sont le langage C et UNIX.

Depuis on n’a pas fait tellement mieux. Enfin si, mais les innovations sont difficiles a expliquer avant
le cours d”ASR...
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1.3 Objectifs du cours

Notre but est de construire un ordinateur moderne, superbement représenté sur la figure

adresses

Processeur Mémoire

données

FIGURE 1.1 - S'il te plait, dessine-moi un ordinateur

Et il y a une idée capitale cachée dans ce dessin, et que personne n’avait eu avant la bande a von
Neumann : C’est la méme mémoire qui contient le programme et les données.
C’est génial car cela permet par exemple
— le systeme d’exploitation : un programme qui prend un paquet de données sur un disque dur, les met
en mémoire, et ensuite décide que ces données forment un programme, et exécute ce programme.
— le compilateur qui prend un texte (des données) et le transforme en un programme...

La mémoire est un ensemble de cases mémoires numérotées par leur adresse. Dans une case on peut
avoir une quantité fixe, finie d’information — par exemple un nombre fixe de bits. A part cela, le contenu
d’une case mémoire n’est pas typé a priori : I'information contenue dans une case peut étre interprétée
n’importe comment

FIGURE 1.2 — Vue logique de la mémoire

Le processeur réalise le cycle de von Neumann :

1. Lire une case mémoire d’adresse PC (envoyer 1’adresse a la mémoire, et
recevoir en retour la donnée a cette adresse)

2. Interpréter cette donnée comme une instruction, et I'exécuter
3. Augmenter PC pour passer a la case suivante

4. Recommencer

PC c’est pour program counter, bande de gauchistes. La fréquence de votre ordinateur favori, c’est la
fréquence a laquelle il exécute ce cycle.

On détaillera plus tard la notion d’instruction. Certaines des instructions que peut interpréter le
processeur font des calculs, d’autres vont interagir avec la mémoire (lecture ou écriture), d’autre enfin
vont modifier le PC lui-méme : ainsi le programme peut sauter des paquets d’instructions, ce qui permet
I’exécution conditionnelle if-then-else, ou bien revenir en arriere, ce qui permet les boucles.

Dans ce cours, on va essayer de se concentrer sur les techniques qui sont indépendantes de la
technologie. En principe on pourra construire notre ordinateur en utilisant 1'électronique actuelle, mais
aussi en Lego, ou bien avec des composants moléculaires opto-quantiques a nanotubes de carbone.

2. La citation d’Ada Lovelace, qui montre que c’est elle qui a inventé I'iPod : [The Analytical Engine] might act upon other things
besides number, were objects found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and
which should be also susceptible of adaptations to the action of the operating notation and mechanism of the engine...Supposing, for instance,
that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and
adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.
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Parentheése : une perspective historique sur les machines programmables Dans un orque de barbarie,
il y a un programme qui produit des données (de la musique) mais il est linéaire : il n'y a pas besoin d’adresse du
coté du programme, on se contente d’avancer le ruban perforé. A Lyon on construisait des métiers a tisser qui
assemblaient des centaines de fils en un tissu avec un dessin, selon un programme également stocké sur ruban
perforé. Conceptuellement c’est le méme dessin :

Mémoire
de programme
(ruban
perfore)

instructions

Processeur ——> données

11 était donc naturel de séparer la mémoire de programme et la mémoire de donnée dans les premiers ordinateurs.
On appelle cela une architecture de Harvard, a cause du Harvard Mark 1, un ordinateur électromécanique
opérationnel en 1944 dont la mémoire de programme était un ruban perforé. Chez la concurrence, le Zuse Z3
(opérationnel en 1942) était également programmé par ruban perforé. En plus de cette mémoire de programme, les
deux possédaient une mémoire de données contenant essentiellement des nombres. Voici donc le dessin qui décrit
ces protoypes héroiques :

adresses

Mémoire

instructions

de programme

Processeur

Mémaoire
de données

données

(il parait que le Zuse pouvait faire des boucles mais je ne sais pas comment. Pour I'Eniac, vous remplacez la
mémoire de programme par un gros tableau plein d’interrupteurs.)

Dans ce qu’on appelle architecture de Harvard, la mémoire de programme est également adressable, ce qui permet
boucles et sauts. C’est le dessin ci-dessous, une évolution naturelle des calculateurs précédents.

adresses

Mémoire
de programme

instructions

adresses

Processeur

données

Mémaoire
de données

1l faut comprendre que c’est par contraste avec I'architecture de Harvard que I'architecture de von Neumann
marque une rupture.

(La suite de cet encadré n’est pas supposée compréhensible a premiere lecture : essayez de la comprendre en
phase de révision.) On continue de fabriquer des architectures de Harvard pour des raisons pratiques : bien que
le dessin ci-dessus semble plus compliqué que la figure il est plutot plus simple a construire. Surtout, il
permet de dimensionner séparément la mémoire de programme et la mémoire de données, c’est a dire le nombre
de bits que porte chacun des 4 fils du dessin ci-dessus. Cette architecture est donc utilisée dans des processeurs
limités/embarqués/spécialisés :
— processeurs de traitement de signal (petite mémoire de programme et instructions sur peu de bits, grosse
mémoire de donnée avec des nombres de 24 ou 48 bits)
— microcontréleurs concus pour étre programmés “de 'extérieur”, donc on s’en fiche des avantages du
modele de von Neumann. Exemples bien connus des bricoleurs/hackers : les microcontroleurs PIC, les
AVR utilisés par les Arduino.
Enfin, bien que les processeurs modernes soient des machines de von Neumann, leur micro-architecture (leur
organisation) a tendance a séparer le cache de programme du cache de données, essentiellement pour des raisons
de performance (ainsi on peut accéder aux deux en méme temps). Il y a toutefois des mécanismes qui maintiennent
Uillusion d"une machine de von Neumann.
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1.4 La conception d’ASR est hiérarchique

Selon le bon vieux paradigme diviser pour régner, on est capable de construire 1’objet trés complexe
qu’est votre PC par assemblage d’objets plus simples. Au passage, on utilise différents formalismes (ou
différentes abstractions) pour le calcul (arithmétique binaire, fonctions booléennes, etc), pour la maitrise
des aspects temporels (mémoires, automates, etc), pour les communications (protocoles)... La figure
décrit partiellement cet empilement.

Eprogrammes utiIisateurs}

el

[systéme d’exploitation]

compilateur

[Iangage assembleur]

software

hardware

machine de von Neumann

registres

[mémoire addressable

[fonctions booléennes]

portes logiques

[technologie (actuellement : fils, transistors, capacités)}

FIGURE 1.3 — En gros, le plan du cours (il faut partir du bas)

Dans ce cours on va remonter cette figure de base en haut (construction bottom-up), mais avec des
détours et des zig-zags.

Maintenant qu’on a une recette pour faire des systéemes complexes, voyons les limites pratiques a
cette complexité.

1.5 Quelques ordres de grandeur

1.5.1 L'univers est notre terrain de jeu

II'y a quelques limites aux ordinateurs qu’on saura construire, par exemple :
Masse de l'univers ~ 1078
Masse du proton
(ce qui limite le nombre de transistors sur une puce. Actuellement on est a 10'?, il y a de la marge).
— Vitesse de la lumiére : 3.103m/s
— Distance entre deux atomes : ~ 10719 m
Taille de la maille du cristal de silicium : ~ 5- 1071 m
(Actuellement, un fil ou un transistor font quelques dizaines d’atomes de large : en 2018, on vend
de processeurs “en technologie 7 nm”, donc une quinzaine de mailles de cristal... Le probléeme c’est
surtout les couche d’isolant utilisées, actuellement entre 2 et 3 atomes d’épaisseur, elles isolent de
moins en moins)
— Par conséquent, le temps minimum physiquement envisageable pour communiquer une informa-
tion est de l'ordre de ~ 10~ 18s.
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— On a fait plus de la moitié du chemin, puisque nos transistors commutent a des fréquences de
l'ordre de 102 Hz.

— Actuellement, un signal n’a pas le temps de traverser toute la puce en un cycle d’horloge.

— Actuellement, on manipule des charges avec une résolution correspondant a une centaine d’élec-
trons. Cela permet a votre téléphone portable de gérer des fréquences au Hz pres dans les 600MHz

1.5.2 La technologie en 2018

Les ordinateurs actuels sont construits en assemblant des transistors (pleinE[). La figure|1.4/montre les
progres de l'intégration des circuits électroniques. Il y a une loi empirique, formulée par un dénommsé
Moore chez Fairchild dans les années 60 (apres il a rejoint Intel) et jamais démentie depuis, qui décrit
I'augmentation exponentielle de la quantité de transistors par puce (la taille de la puce restant a peu pres
constante, de ’ordre de 1cm?).

La formulation correcte de la loi de Moore est : le nombre de transistors qu’on sait intégrer sur une
puce économiquement viable double tous les deux ans.

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.

FIGURE 1.4 — La “loi” de Moore (OWikipedia/creative commons), d’ailleurs vous trouvez une version plus récente sur Wikipedia

Pour illustrer le chemin accompli : le premier processeur (I'intel 4004, en bas a gauche de la figure
[L.4) comptait 2300 transistors. De nos jours on pourrait mettre 2300 processeurs 32-bit complets dans le
budget de transistors d"un processeur de téléphone portable.

Ce doublement tous les deux ans se traduit par exemple directement par un doublement de la
mémoire qu’on peut mettre dans une puce. Mais ce n’est pas tout : les transistors étant plus petits, ils sont
aussi plus rapides (j'expliquerai peut-étre avec les mains pourquoi, admettez en attendant). La puissance
de calcul des processeurs peut donc augmenter donc plus vite que ce facteur deux tous les deux ans (les
processeurs sont aussi de plus en plus complexes, ce qui tire dans 'autre sens).

Enfin, c’était vrai jusqu’aux années 2000 : en réduisant la taille du transistor, on en mettait plus
sur la puce, ils étaient plus rapides, et ils consommaient moins. Avec les derniéres générations (dites
sub-microniques, c’est-a-dire en gros que le transistor fait moins d’un micron), cela se passe moins bien :

3. A partir de 2004 on a produit plus de transistors par an dans le monde que de grains de riz. Je ne sais pas si c’est une bonne
nouvelle.
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on réduit toujours le transistor, cela permet toujours d’en mettre plus par puce, mais ils sont de moins en
moins plus rapidesE] et consomment de plus en plus (en 2007, sur les 150W que consommait le processeur
d’un PC de gamerz, il y en avait déja 50 qui partaient en courants de fuite). Une raison facile a comprendre
est qu’on arrive a des couches d’isolant tellement fines et & des fils tellement proches que les électrons
passent par effet tunnel d’un fil a l'autre. Il y a d’autres raisons.

En pratique, les experts ne donnent pas 10 ans de plus a la loi de Moore pour le siliciumlﬂ Heu-
reusement il y a de la marge de progression apres la fin de la loi de Moore, et c’est par de meilleures
architectures|’| (le sujet de ce cours).

Autre évolution de la technologie : I'investissement (en terme de megadollars) pour passer d'une
génération technologique a la suivante double aussi avec chaque génération... Cela se traduit par des
regroupement de firmes pour partager ces cofits, et a ce train, il n'y aura plus qu'un seul fabricant de
circuits intégrés dans dix ans.

Tout ceci pour dire que d’ici a ce que les plus brillants d’entre vous fassent & leur tour un cours
d’architecture, la technologie sera sans doute en train de changer profondément. Vers quoi, personne ne
sait Vraimentlz] En tout cas je vais essayer de ne pas trop perdre du temps sur la technologie actuelle. Par
contre je la connais assez pour répondre a vos questions.

Un dernier aspect technologique : les transistors de plus en plus petits sont de moins en moins fiables,
et il faut le prévoir quand on fait des circuits. Par exemple, on évaluait en 2007 que les rayons cosmiques
font statistiquement changer un bit par puce et par mois... Et cela ne s’arrange pas : plus on integre, moins
il faut d’énergie pour faire changer un bit. Ce sont des “soft errors”, la puce n’est pas endommagée. Les
mémoires actuelles sont munies de dispositifs d’autocorrections.

1.5.3 Calcul contre stockage et déplacement de données

D’abord, la consommation électrique est un probléme, et pas que pour les téléphones portables. Le
supercomputing center de 1’'UCSD consomme 1/4 de I'électricité du campus. Allez chercher sur internet
combien il faut d’énergie pour faire une addition avec une calculette, et avec la barre Google, et jurez
qu’on ne vous y reprendra plus.

En vieille techno 45 nm, il fallait

— 0.05 pJ pour faire une addition 32 bits

— 8 pJ pour bouger une donnée de 32 bits d"Imm sur la puce

— 320 pJ pour sortir le méme mot de la puce.

Pour 50W, on peut

— faire 10'® additions 32 bits par seconde

— lire de la DRAM a 160Go/s, soit “seulement” 4.101° mots 32bits par seconde...

Tous ces chiffres ne seront pas demandés a I’exam, par contre retenez que le calcul n’est pas forcément
ce qui est cotiteux, surtout s'il reste localisé sur un coin microscopique de puce. Balader les données de
droite a gauche, sur des distances macroscopiquesﬂ demande une énergie macroscopique. Bref, évaluer
un ordinateur en ne comptant que les opérations qu’il fait, c’est un peu a coté de la plaque.

1.5.4 Ya pas que les PC dans la vie

Juste trois exemples :

Bien qu’on vous fasse surtout programmer sur des PC, les processeurs les plus vendu au monde
ne sont pas de la famille Intel, ce sont les membres de la famille ARM, congue pour cofiter pas cher et
consommer peu d’énergie, et qui équipe la plupart des téléphones portables (sans compter les GameBoy,
les oreillettes blutooth, les machines a laver, etc). Il se vend en 2021 plus d"un coeur ARM par humain et
par mois. I y a des processeurs ARM peu puissants qui consomment quelques miliwatts, et des plus gros
dont la performance est comparable a celle du x86 quelques années auparavantﬂ (voir la figure|1.4, mais
avec une consommation électrique bin plus faible.

4. En fait on saurait les faire fonctionner plus vite, mais on ne sait pas comment évacuer la chaleur produite dans ce cas...

5. Cela fait presque 15 ans que cette phrase est dans le poly et qu’elle reste vraie. Cela dit, le consortium chargé de 1’autoréalisation
de cette prophétie autoréalisatrice, 1’association ITRS pour International Technology Roadmap for Semiconductors, a baissé les bras en
2015...

6. http://www.theregister.co.uk/2016/09/22/the_evolution_of_moores_law_suggests_hardware_is_
eating_software/

7. https://www.theregister.com/2021/08/05/moores_law_what_next/

8. Notez au passage que si on mettait bout a bout tous les fils qui relient les différents transistors de votre téléphone portable, on
arriverait a quelques centaines de km.

9. Les Macophiles vous diront méme que le processur Apple M1 sorti en 2020 surpasse les processeurs intel, mais méfiez-vous
de ces gens-la.


http://www.theregister.co.uk/2016/09/22/the_evolution_of_moores_law_suggests_hardware_is_eating_software/
http://www.theregister.co.uk/2016/09/22/the_evolution_of_moores_law_suggests_hardware_is_eating_software/
https://www.theregister.com/2021/08/05/moores_law_what_next/
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Une vieille té1é Philips de 2002 contenait une puce (Viper2) devant traiter 100 GOps (10!! opérations
par seconde). Cette puce incluait 4 microprocesseurs programmables, 250 RAMs, 60 autres blocs de
calculs divers, 100 domaines d’horloge différents, et en tout 50Mtransistors tournant a 250 MHz (source :
M. Duranton, Philips, Euromicro DSD 2006).

Un mobile 3G doit calculer entre 35 et 40 Gops (milliards d’opérations par seconde) pour traiter un
canal de 14.4 Mbps, en mangeant moins d’1W. Rajoutez au moins un zéro par génération (4G, 5G).

Avec tout cela, votre Core i7 tout neuf est ridicule, avec ses 90W il atteint a peine le TOps (téra-
opérations par seconde). Bien siir, on ne parle pas des mémes opérations : le téléphone portable mouline
de petits nombres de quelques bits, alors que le PC travaille sur de gros nombres de 32 ou 64 bits. De
plus, le PC est généraliste. Cela se traduit par le fait qu’il dépense 6% de son énergie a calculer, et le reste
a déplacer les données et les instructions a traiter (source : Dally et al dans IEEE Computer de juillet 2008,
et cela n’a fait qu'empirer depuis).

Cela dit, il parait qu’en 2025, la consommation de veille des objets internet sera la consommation du
Portugal en 2012. Je ne suis pas certain que ce soit une bonne nouvelle.
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Premiere partie

L’'information et comment on la traite
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Chapitre 2

Coder lI'information

2.1 Généralités

2.1.1 Information et medium

La notion d’information est une notion abstraite. On appelle medium un support physique de
I'information, que se soit pour la stocker (CD, journal) ou la transmettre (fil, onde radio, écran télé).

Le medium a un cofit, I'information aussi, il faut bien distinguer les deux. Quand on achete un
CDE on paye 1 euro le medium, et 10 euros I'information. Quand on le pirate, on économise le cotit de
I'information, mais si on le grave on n’économise pas le cotit du medium. Quand on convertit un CD
légalement acheté en mp3 sur son disque dur, on a dupliqué 'information, et on n’est pas deux fois plus
riche pour autant. C’est une notion que l'industrie du disque a du mal a intégrer.

Formellement, I'information est un bien non rival. Les économistes définissent un bien rival comme
un bien dont la jouissance par I'un exclut la jouissance par un autre (une baguette de pain, une fois qu’lle
est mangée par 1'un, ben y en a plus pour 'autre). Toute I'économie s’étant construite sur des biens rivaux,
y intégrer une économie de I'information n’est pas évident, et a ce jour cette question n’est pas réglée.

2.1.2 Information analogique

L'information peut étre discrete ou continue. La nature est pleine d’informations continues, que 1’'on
sait enregistrer sur des supports analogiques (disque vinyle, photo argentique, etc), et transmettre par fil,
par radio, etc. Les machines qui traitent ce genre d’information sont dites analogiques. Les traitements
les plus courants sont amplification et filtrage.

Quelques exemples de calculateurs analogiques plus généraux :

— les horloges astronomiques;

— Mr Thompson/Lord Kelvin a construit a base de roues dentées une machine a prédire les marées

dans chsais plus quel port;

— dans les années 50, il y avait a Supelec une “salle de calcul analogique” ot1 I'on pouvait brancher
des amplis ops entre eux pour simuler, plus vite, des phénomeénes physiques. Par exemple, on a
pu ainsi simuler tout le systeme de suspension de la Citroen DS avant de fabriquer les prototypes.

Ces derniers tempsﬂ on s’est rendu compte que c’est plus propre et plus facile de discrétiser I'informa-
tion d’abord et de la traiter ensuite avec un calculateur numérique.

Jusqu’aux années 90, il ne restait d’analogique dans les circuits intégrés que les partie qui devaient
produire des ondes a hautes fréquence : les téléphones mobiles de la premiére génération se composaient
d’une puce numérique, et d'une puce analogique branchée sur ’antenne. De nos jours on peut faire
un téléphone en une seule puce : les transistors actuels commutent tellement vite qu’on peut tout faire
en numérique. Un avantage supplémentaire est que les composants analogiques ne peuvent pas étre
miniutarisés autant qu’on veut : dans la surface typique d’une inductance, on peut mettre 4 processeurs
ARM complets en techno de 2013.

2.1.3 Information numérique

Si elle est discrete, 'unité minimale d’information est le bit (contraction de binary digit), qui peut
prendre juste deux valeurs, notées 0 ou 1 (mais vous pouvez les appeler vrai et faux, ou @ et {@}, ou yin

1. Oui, cette phrase a été écrite a une époque ol1 on achetait des CD pour écouter de la musique.
2. Lire : un peu avant votre naissance

21
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et yang si cela vous chante)ﬂ

Pour coder de I'information utile on assemble les bits en vecteurs de bits. Sur n bits on peut coder 2"
informations différentes.

Une information complexe sera toujours un vecteur de bits. Le code est une relation entre un tel
vecteur et une grandeur dans un autre domaine.

Le précepte central du codage est : un bon code est un code qui permet de faire facilement les
traitements utiles.

2.14 Coder le temps

Le temps physique est continu, on peut le discrétiser. Parmi les instruments de mesure du temps, les
plus anciens utilisent une approche analogique du temps continu (clepsydre, sablier). Les plus récents
utilisent une approche numérique/discrete : horloge a balancier, a quartz... Ici aussi, le passage au monde
discret (par le balancier) permet ensuite de transformer cette information sans perte : les roues dentées
de I’horloge ont un rapport qui est une pure constante mathématique, ce qui permet de construire un
dispositif dans lequel une heure fait toujours exactement 3600 secondes. Il ne reste dans une telle horloge
qu’un seul point de contact avec le monde analogique : le balancier, qui donne la seconde.

Et tout vachté de chouette idée qu’elle est, une montre & quartz numérique c’est juste pareil. Il y a
entre le sablier et '’horloge normande la méme différence révolutionnaire qu’entre le vinyle et le CD
(passage du traitement analogique au traitement numérique de 'information). Par contre, la montre a
quartz n’est pas fondamentalement différente de 'horloge normande.

Plus pratiquement, on codera toujours un instant par un changement d’information. C’est vite dit mais
il faudra s’y arréter longtemps... en temps utile.

2.2 Coder des nombres entiers

Il y a plein de manieres de coder les entiers en binaire. Toute bijection de {0,1}" dans un ensemble
d’entiers fait 1’affaire.

Suivons le précepte ci-dessus. Quels sont les traitements utiles qu’on peut vouloir faire sur les entiers?
On aime par exemple avoir la relation d’ordre, et faire des opérations comme addition, multiplication...

Le codage en unaire fut sans doute le premier. On y représente un nombre 7 par un tas de n cailloux
(ou batons, ou “1”). Le gros avantage de ce codage est que I'addition de deux nombres est réalisable par
une machinerie simple qui consiste a mélanger les deux tas de cailloux. La comparaison peut se faire par
une balance si les cailloux sont suffisamment identiques, sinon vous trouverez bien quelque chose. Plus
pres de nous, j’ai lu récemment un papier sérieux proposant des circuits single electron counting : il s’agit
de coder n par n électrons dans un condensateur. La motivation est la méme : I'addition de deux nombres
consiste a vider un condensateur dans l'autre. La comparaison se rameéne a une différence de potentiel.

Le gros probléeme du codage unaire est la représentation des grands nombres. Dans 1'exemple du
single electron counting, compte tenu des imperfections des composants utilisés, les nombres ne doivent
pas dépasser la douzaine si on veut étre capable de les discriminer. Notre précepte nous dit que ce codage
n’est pas bon pour coder les grands nombres.

On a inventé les codages de position comme par exemple celui que vous avez appris en maternelle.
La version la plus simple est le codage binaire : un tuple (xg, x1, ...x,;) représente par exemple un entier
X = Z?:_Ol 2'x;. Commencons par ceux-ci.

2.2.1 Numération de position pour les entiers naturels

Soit B € N, B > 1, une base. Tout n € N peut étre représenté de maniere unique par sa représentation
positionnelle en base 5 :

p—1 .
(xp_lxp,2 - 'X1X())I3 = Z Xiﬁl.
i=0
Les x; € {0,1,...,B8 — 1} sont les chiffres de I'écriture de n en base p, p est le nombre de chiffres
nécessaires pour écrire de I’entier naturel n. On attribue un symbole a chaque chiffre : chiffres O et 1 en
binaire, chiffres de 0 a 9 en décimal, chiffres de 0 a F en hexadécimal.

3. En francais, “bit” est un peu un gros mot, c’est facheux. J’ai donc proposé a 1’Académie Francaise de le remplacer par la
contraction équivalente de chiffre binaire, ce qui donne chibre. Bizarrement, I’adoption officielle de ce terme traine un peu.
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Changement de base par sommation des puissances

La définition permet directement d’effectuer des changements de base : si on connait 1'écriture
(xp—1...%0)p de n, et qu'on veut connaitre cette écriture en base 7, il suffit de convertir les chiffres x; en

base vy, puis de calculer Zf:ol x;B' en base 7.

Changement de base par divisions euclidiennes

Une autre technique de changement de base est celle des divisions euclidiennes successives. Rappelez
et justifiez cette méthode

Le reste dans la division euclidienne d'un entier naturel n par § donne le chiffre de poids faible dans
la représentation de n en base f. En effet,

n = xpfl',Bpil+xp—2',Bp72+"‘+X2'ﬁ2+xl~ﬁl+x0,
— x*'p_2+x7'p_3+"’+X'1+X~+x’
(xp-1-B p—2P 2B +x1) B+ X0
quotient reste

avec 0 < xp < B.
En d’autres termes, n mod 8 = xp. On peut donc obtenir tous les chiffres de I’écriture d’un entier

naturel n par des divisions euclidiennes successives, en s’arrétant au premier quotient nul : on obtient les
chiffres de poids faibles d’abord.

2.2.2 Ordres de grandeurs en puissances de 2

200 — 1024 =~ 10°

d’ou les Ki=210 (se lit kibi mais I’abus de langage kilo est courant et accepté), Mi=220, Gi=230 etc.

Il y a méme depuis 1999 une norme internationale qui définit tout cela : https://en.wikipedia,
org/wiki/Binary_prefix

Il faut savoir faire de téte les conversions a la louche (c’est-a-dire aux 2% de différence entre 1000
et 1024 pres). Exemple d’exercice d’une grande utilité pratique : une mole d’atomes de carbone c’est
6.02 x 1023 atomes et cela pese 12 gramme. En supposant qu’on trouve une technologie qui stocke un bit
par atome de carbone, est-ce que 2%* bits de mémoire péseront plus ou moins d’un gramme?

2.2.3 Parentheése pratique : superposition des codages

Lorsqu’on construit un calculateur, on est souvent appelé a superposer des codages. Pas de grande
théorie ici, mais une application du précepte (le bon codage c’est celui qui permet le bon traitement) a
plusieurs niveaux de granularité. Quelques exemples :

— le boulier code des grands nombres en base 10, et chaque chiffre est représenté en unaire. C’est un
codage tres bien adapté a la technologie d’il y a 2000 ans : on peut reconnaitre les chiffres d'un
coup d’ceil; on peut les additionner d’'un mouvement du doigt; etc.

— Les calculettes bon marché fonctionnent également en base 10, avec chaque chiffre codé en binaire.

— Mon papier sur single electron counting reconnait que cela ne fonctionne que pour un nombre
limité d’électrons dans un condensateur, et utilise ces condensateurs comme chiffres dans une
représentation de position classique.

2.24 Codage des entiers relatifs

Si on veut gérer des entiers relatifs, on peut ajouter un bit qui contient 'information de signe. C’est
ce que vous avez appris en 6eme. Un défaut de cette technique est que vous avez du apprendre deux
algorithmes completement différents pour ’addition et la soustraction.

Nous introduisons ici un codage un peu plus zarbi, mais qui permet une implémentation tres simple
de la soustraction des lors qu’on a I’addition. Je commence par le présenter en décimal pour vous en
convaincre.


https://en.wikipedia.org/wiki/Binary_prefix
https://en.wikipedia.org/wiki/Binary_prefix
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En décimal : complément a 10 sur trois chiffres

On va travailler en base 10 avec des nombres a 3 chiffres. N’avoir que trois chiffres signifie qu’on doit
ignorer tous les chiffres qui sortent de ce cadre. Mathématiquement, cela s’appelle travailler modulo 1000
(0111000 = 103). Par exemple 999+3 = 1002 mais on on n’a pas la place pour le 1 de gauche donc sur trois
chiffres 999+3=002.

Pour coder -1, demandons nous ce que vaut 000-001 modulo 1000. Eh bien c’est aussi 1000-1=999. Le
code naturel de -1 sur trois chiffres est donc 999.

Plus généralement, on va dire que

— les codes 000 a 499 représentent les entiers positifs habituels

— 999 représente -1. Remarque : c’est 1000-1.

— 998 représente -2. Remarque : c’est 1000-2.

— 501 représente -499. Remarque : c’est 1000-499.

— 500 représente -500 (vous avez compris)

Et maintenant, pourquoi c’est un bon codage (on répete en choeur le précepte) :

— Le signe n’est plus explicite, mais il suffit de regarder le chiffre de gauche pour le connaitre : de 0 a
4, on a affaire a un positif, de 5 a 9 c’est un négatif. Quand on transposera tout cela en binaire, le
bit de gauche sera directement le bit de signe.

— Notre algo d’addition du CE1 marche pour les négatifs comme pour les positifs, a condition
d’ignorer la retenue qui sort. Illustration : calculons 17 + (-2). On envoie un étudiant au tableau
pour qu’il pose 017 + 998. Apres un laps de temps plus ou moins long, il trouve 1015. On ignore la
retenue sortante, c’est-a-dire qu’on reste sur 3 chiffres, et on a bien calculé 15.

— Pour calculer abc-xyz on calcule abc+(1000-xyz). Comme 1000-xyz c’est encore compliqué, on
calcule en fait abc+(999-xyz)+1. Et 1a tout devient simple :

— La soustraction 999-xyz se fait chiffre a chiffre (pas de propagation de retenue). On obtient le
code pqr.

— Le calcul abc+pqr+1, c’est I’algo d’addition du CE1, le +1 consistant juste a ajouter systémati-
quement une retenue a la colonne de droite, qui n’en avait pas.

Et donc on a bien ramené la soustraction a ’addition a peine modifiée. Et elle marche pour les

positifs comme pour les négatifs (illustration en envoyant un autre étudiant d’excellence calculer

17-42 puis -17 - 42).

En binaire : complément a 2 sur p chiffres

Transposons tout ceci en binaire sur 4 bits (Figure[2.1) :

— Les codes 0000 a 0111 représentent les entiers 0 a 7 comme si de rien n’était

— Le code 1111 représente -1 (remarque : ¢’est 10000, -1)

Remarque : ignorer la retenue sortante c’est travailler modulo 10000,, c’est pourquoi la figure est un
disque.

Et en binaire tout est plus simple :

— Le signe est directement donné par le bit de gauche.

— pour calculer abed-xyzt on calcule abed+(1111-xyzt)+1.

— la soustraction chiffre a chiffre est un non logique.

— etl’algo d’addition du CE1 marche tres bien.

Remarque Un autre point de vue est de dire que le bit le plus a gauche a le poids qu’il aurait en
binaire classique, mais avec un signe négatif. Par exemple 1111 représente (-8)+4+2+1=-1. Ceci s’explique,
encore une fois, par le modulo.

Généralisation : en complément a 2 sur p bits, le vecteur de bits (cp_lcp,z ...C1¢0) représente la
valeur —c,!,_12”_1 + Zf:oz ;2.

Autrement dit, le bit le plus & gauche a un poids négatif (—2P~1). Vérifiez que n > 0 ssi cp-1=0, et
n<0ssic,_1=1

Important Comme le bit de gauche est différent des autres, il ne faut jamais parler juste de complément
a 2, mais toujours préciser lourdement “sur p bits”. C’est différent du binaire non signé, ot la taille
importe peu.

Conséquences pratiques Avec un type entier signé dans votre langage favori, si ce type est implémenté
par du complément a 2 (typiquement sur 16, 32 ou 64 bits) 'addition de deux positifs peut vous donner
un résultat négatif... Si vous n'y prenez pas garde, votre boucle for risque de devenir une boucle infinie.
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0

1 1
2 1111 990 5991 2
1110 0 4 0010 5 111y, 5
3 14 2 3 SO e 1
1101 0011 50 ~.10
13 3 3 -
-4 1100 12 4 0100 4 45 X =15
10110t > o101 40/// \\\20
-5 10 6 5 7, VI ™
1010 -2 8 7 0110 35 ”/3‘0\“ 25
6 1001 500 0111 < 6
7 7
-8

FIGURE 2.1 — [llustration du complément a 2 sur 4 bits (complément a 2*). Pour chaque code, on donne son interprétation non
signée (cercle intérieur) et son interprétation en complément a 2 (cercle extérieur). Remarquez I'analogie avec I'horloge : on peut
dire “sept heures moins dix” ou “six heures cinquante” parce que 50=-10 modulo 60.

Détection des dépassement de capacité dans 'addition en complément a 2 L’idée est en gros la
suivante :
— Si les deux entrées ont des signes différents, il ne peut y avoir de dépassement de capacité.
— Si elles ont le méme signe, il y aura un dépassement si et seulement si le signe du résultat n’est pas
le signe des entrées.

Et pourquoi cela s’appelle complément a 2? Une hypothese a la fois plausible et morale est que cela
aurait du s’appeler complément a 27, et que quelqu’un a été négligent. Ce serait moral parce que, encore
une fois, la mention de p est indispensable quand on parle de complément & 2.

2.2.5 Et pour aller plus loin

... On peut utiliser une représentation de position avec des chiffres négatifs. Par exemple, du décimal
avec les chiffres { -5, —4, —3,—-2,—1,0,1,2,3,4,5}. En notant plutdt le chiffre —5 par 5, on compte comme
ceci: 1,2,3,4,5,14,13,12,11,10,11,12...

Vos algorithmes d’addition et de multiplication marchent toujours, ils sont basés sur la formule
Py xi10".

Gros avantage : fini les tables de 6, 7, 8 et 9! C’est une idée de Cauchy, dans une note publiée dans
les Comptes-Rendus de I’Académie des Sciences intitulée Sur les moyens d’éviter les erreurs de calculs
numérigues. On remarque que, pour la beauté de la symétrie, on a 11 chifres, plus 10. Du coup, le code est
devenu redondant : 5 peut aussi s’écrire 15. Comme chaque fois qu’on a plus de liberté, cela peut étre un
avantage ou un inconvénient.

Plus pres de nous, le diviseur des processeurs intel modernes utilisent en interne une représentation
de position en base 16 avec bien plus que 16 chiffres, signés. La motivation est que cela permet de calculer
la division plus vite (toujours le précepte). Mais c’est un peu trop pointu pour étre détaillé ici.

2.3 Coder du texte

Second exemple : le texte. On a un alphabet de 26 lettres, plus les chiffres, plus les majuscules et la
ponctuation. Tout cela tient en moins de 128 = 27 caracteres, donc on peut coder chaque caractere sur 7
bits. C’est ce que fait le code ASCII.

On I'a déja dit : un bon code est un code qui permet de faire facilement les traitements utiles. Par
exemple, pour le texte,

— il faut que I'ordre alphabétique se retrouve dans les codes, considérés comme des entiers;

— idem pour les chiffres;

— il faut qu’on puisse passer de la majuscule a la minuscule en ne changeant qu’un bit;

ASCII a été inventé par des Américains. Il a été étendu de diverses maniéres pour d’autres langues,
en passant a 8 bits, ce qui permet 128 caracteres supplémentaires. Par exemple, il existe deux codes 8 bits
populaires pour le Russe, chacun cohabitant avec les caractéres de I'anglais :
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— un code qui, lorsqu’on annule le bit SH projette chaque lettre russe sur la lettre anglolatine qui lui

correspond le mieux phonétiquement;

— un code qui est dans 'ordre alphabétique de l'alphabet cyrillique.

La norme Unicode a tenté d’unifier dans un seul code, sur 16 bits, I’ensemble des écritures de la
planete. En pratique, certains caractéres nécessitent deux codes de 16 bits, et on peut l'utiliser a travers
un encodage sur 8 bits (appelé UTE8) compatible avec le bon vieil ASCII. Bref, c’est une usine a gaz, a
I'image de la complexité des écritures des langages de 'humanité. Vous en verrez peut-étre des morceaux
en TD.

2.4 Coder les images et les sons

On décompose une image en pixels, et on code pour chaque pixel sa couleur. Une couleur est la
somme de trois composantes, par exemple vert, bleu, rouge. En codant chaque composante sur 8 bits, on
peut déja coder plus de couleurs que ce que I'ceil humain peut distinguer.

Cela donne des quantités d’information astronomiques pour chaque image. On verra comment on
peut compresser cette information.

Pour le son, on peut le regarder a 1’oscilloscope et discrétiser la courbe obtenue. La nouveauté est qu’il
faut discrétiser dans le temps (on dit échantillonner, en yaourt sample), et dans I’amplitude.

Avec tout cela, on sait méme coder des vidéos.

Remarque : dans un fichier de dessin vectoriel (CorelDraw, SVG (scalable vector graphics) — un standard
du web), on ne code pas des images, mais des figures construites & partir de primitives telles que point,
droite, cercle... C’est en général plus compact, et on peut zoomer a volonté sans voir apparaitre de vilains
gros pixels.

Exercice : sur votre linux, ouvrez /usr/share/icons (cela dépend des distributions) et promenez
vous dedans. Vous trouverez des icones de différentes tailles, et des icones en SVG (dans des répertoires
appelés scalable ou symbolic). Ouvrez les (par exemple dans un navigateur web) et zoomez dessus.
Comparez les tailles des fichiers avec les icones définies par des pixels.

A ma connaissance il n'y a pas de format de fichier vectoriel pour les dessins animés. Il y a des
startups qui se perdent.

2.5 Codes détecteurs d’erreur

On peut ajouter a chaque octet un bit de parité qui vaut 1 s’il y a un nombre impair de 1 dans 1’octet,
et 0 sinon. A la réception d'un tel paquet de 9 bits, on peut vérifier cette parité. Cela permet de détecter
une erreur de transmission d’un bitﬂ mais cela ne permet pas de le corriger.

2.6 Codes correcteurs d’erreur

Le code auto-correcteur de Hamming permet de corriger un bit erroné dans une information de 4 bits
(i3, ip,11,1p). On code cette information au moyen de 3 bits supplémentaires py, p1 et po : le codage est
(i3, iz, il, P2, io, P, p()), ol :

— po est le bit de parité paire du sous-mot (i3, i, io, po),

— pj est celui du sous-mot (i3, ip, ip, p1), et

— po estcelui de (i3, iy, 11, p2)-

Ala réception de (i3, ip, i1, P2, 10, P1, Po), on vérifie ces trois parités, et on définit t; par : t; = 0 si py est
correct et t, = 1 sinon.

Par magie, (t2, t1,t9) est alors le rang dans (i3, iz, i1, P2, io, P1, Po) du bit erroné, écrit en binaire : 000 si
I'information est correcte, 001 si pg est erroné, 010 si p; est erroné, 011 si i est erroné, 100 si p est erroné,
101 si iy est erroné, 110 si iy est erroné ou 111 si i3 est erroné.

On parle ici du code (7,4) : 7 bits transmis pour 4 bits d'information effective. On peut généraliser ces
idées.

Il y a bien stir des limitations : le code de Hamming ne permet de corriger qu'un bit d’erreur, pas deux
bits simultanés. Et cela cofite presque autant que ce qu’on veut corriger.

Les codes correcteurs d’erreur sont utilisés en particulier dans

4. Cela arrivait aux temps héroiques de l'internet : votre message pouvait passer par un ordinateur anglo-saxon ou configuré
comme tel, qui ne ressentait pas le besoin de transmettre plus de 7 bits par octet. On en trouve par exemple des traces dans le
protocole £tp file transfer protocol qui offre toujours deux modes, “ASCII” et “binary”.

5. ... ou d’ajouter une erreur : jadis les anglo-saxons utilisaient volontiers le bit 7 des octets, qui ne leur sert a rien, pour y mettre
un bit de parité. Forcément, nos accents se perdaient.
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— Les barrettes de mémoire avec ECC (error correcting code) dans le nom, ce qui explique qu’elles
cotitent plus cher.
— La transmission de données, autrefois sur fil, actuellement par radio.

2.7 Compression d’information

Notions : compression avec perte ou sans perte.
Algos : on espere que vous en verrez quelques uns en cours d’algo.

2.8 Les QR-codes

Ah mais c’est que c’est trés compliqué.
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Chapitre 3

Transformer l'information : circuits
combinatoires

On a déja mentionné la préhistoire analogique. Remarquez que le calcul analogique a Supelec utilisait

déja I'approche hiérarchique : il fallait se ramener a des amplis ops.

Mais désormais on manipule de I'information sous sa plus simple expression : codée en binaire.

Et pour transformer de 'information binaire, on va utiliser les outils offerts par I'algeébre booléenne.

Vérifiez que vous comprenez la différence entre algebre, calcul, expression et circuit booléens.

— L'algebre booléenne va définir un certain nombre d’opérations et de propriétés.

— On utilisera les opérations de ’algeébre pour construire des expressions booléennes, et on utilisera les
propriétés de 1'algebre pour manipuler ces expressions.

— La définition la plus simple d’une fonction booléenne sa table de vérité. Elle donne, pour chaque
valeur possible des entrées, les valeurs de sortie correspondantes.

— Mais on peut également définir une fonction booléenne par une expression booléenne. Pour une
fonction donnée, il existe une infinité d’expressions booléennes : on passe de 'une a I'autre par
des identités de I'algébre, comme a V b = @ A b.

— Dans une technologie donnée, on sait implémenter certaines opérations de 1’algébre par des
opérateurs, qu’on appelle alors volontiers des portes logiques.

— En assemblant ces portes, on peut construire des circuits logiques qui implémentent une expression,
donc une fonction booléenne donnée. C’est ce qu’on fera en en se posant notamment des
questions de cofit et de performance.

3.1 Algebre booléenne

3.1.1 Définitions et notations

L’algébre booléenne définit

— un ensemble B a deux éléments, muni de

— une opération unaire involutive (la négation ou complément)

— et deuxE] opérations binaires de base (ET et OU, aka conjonction et disjonction, aka inf et sup)
commutatives, associatives, ayant chacun un élément neutre et 'autre élément absorbant, et
distributives 1'une par rapport a 1’autre .

On utilise des mélanges variables des notations suivantes :

— Les valeurs sont notées (vrai, faux) — ou une traduction dans la langue de votre choix —, ou (0,1),
ou (@,{@}),ou (T, L).

— L’opération unaire est notée NON — ou une traduction dans la langue de votre choix —, ou =, ou C
(complément ensembliste), ou toto.

— Les opérations binaires sont notées (OU, ET) — ou une traduction dans la langue de votre choix —,
ou (+,.),ou (V,A),ou (U,N).

Exercice : écrivez vous-méme les trois tables de vérité avec des 0 et des 1, puis avec des yin et des

yang.

En principe 'algébre booléenne est completement définie par les trois tables de vérité de ET, OU et

NON. Toutes les propriétés qu’on va lister puis utiliser en découlent. Je soupgonne que de ce point de
vue l'algebre booléenne est plus simple que l'algebre des réels...

1. Un peu plus loin, on voit qu'une seule opération suffirait, mais c’est tout de méme plus confortable avec ces trois-la.

29
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3.1.2 Expression booléenne

Lorsqu’on écrit des expressions booléennes, on peut utiliser des variables booléennes, les deux
constantes, et des parentheses. L'opérateur unaire est prioritaire sur les deux opérateurs binaires, qui ont
une priorité équivalente : ma Vb == (—a) V b.

Je déconseille la notation utilisant (+,.). Elle présente I'intérét d’économiser des parentheses, puisqu’on
adopte alors la priorité usuelle de . sur 4. En revanche, I'arithmétique entiére ou réelle a cablé dans votre
cerveau des intuitions avec ces opérateurs qui seront fausses en booléen. Par exemple, les deux opérateurs
booléens distribuent 1'un sur 1’autre. Vous serez familier de (a + b).c = ac + bc, mais vous oublierez
que ab+c = (a+c).(b+ c) (démonstration : comme toujours pour prouver des identités booléennes,
considérer ¢ = 0 puis ¢ = 1). D’autres pieges vous attendent si vous utilisez cette notation. Vous voila
prévenus.

La notation a base de surlignage pour la négation est pratique, car elle permet d’économiser la plupart
des parentheses sans ambiguité. Exemple :

XANYy=xV

<

3.1.3 Dualité

L’algébre booléenne est parfaitement symétrique : pour toute propriété, il existe une autre propriété
déduite en échangeant 1 avec 0 et VV avec A. Cette idée pourra souvent vous simplifier la vie. Encore
une fois, elle est particulierement contre-intuitive avec la notation (+,.) a cause des priorités héritées de
l'algebre sur les réels.

3.1.4 Quelques propriétés

0Ax=0 1vx=1 (élément absorbant)
INx=x OVx=ux (élément neutre)
xXANy=xVy | xVy=xAYy | (loisde De Morgan)

3.1.5 Universalité

On peut ramener nos trois opérations booléennes a une seule, le non-et, par application des regles
suivantes :

— Négation: x = x A x

— Ou:xVy=XAY=xAXAYAY

— EBt:xAy=xAy=xAyAxAy

On dira que l'opération non-et est universelle. Par dualité, non-ou aussi. Cela n’est pas sans nous
interpeler profondément dans notre relation a la transcendance de 1'Univers, croyez-vous ? Eh bien figurez
vous que les portes de base de notre technologie CMOS seront justement NON-ET et NON-OU. Nous
voila convaincus qu’elles ne sont pas plus mauvaises que ET et OU. Plus précisément, non seulement
elles forment un ensemble universel, mais en plus, pour implémenter une fonction donnée, il faudra un
nombre équivalent de portes, qu’'on se ramene a des NON-ET/NON-OU ou bien a des ET/OU.

3.1.6 Fonctions booléennes
Une fonction booléenne est une fonction d’un vecteur de bits vers un vecteur de bits :
f:B" — B"

En général (pas toujours) on considérera une telle fonction comme un vecteur de fonctions simples
fi : B" — B, et on étudiera séparément chaque f;.

On peut définir une fonction booléenne de diverses manieres :

— par extension (en donnant sa table de vérité) — exemple une table de sinus,

— par intention (en donnant des propriétés qu’elle doit vérifier, I'unicité n’est alors pas garantie) —

exemple la somme de deux chiffres BCD, voir ci-dessous,

— par une expression algébrique — exemple, la fonction NON-ET.

On peut donner une définition d’une fonction par sa table, mais avec des “don’t care” pour les sorties.
Exemple : la fonction d’addition de deux chiffres BCD (pour binary-coded decimal). 11 s’agit des chiffres
décimaux de 0 & 9 codés en binaire sur 4 bits. Les codes entre 10 et 15 n’étant jamais utilisés, on se fiche
(don’t care) de ce que fait la fonction dans ce cas. Formellement, cela revient a donner une définition
intentionnelle de la fonction en question, et plusieurs fonctions booléennes différentes feront l'affaire.
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circuits logiques

circuits séquentiels synchrones

. . circuits combinatoires
(impl. des automates finis)

(impl. des fonctions booléennes)

registres pories

circuits potentiellemet foireux
FIGURE 3.1 — Les principales classes de circuits

3.2 Circuits logiques et circuits combinatoires

Nous allons a présent formaliser la construction de circuits implémentant les fonctions booléennes.
De tels circuits s’appellent des circuits combinatoires. C’est un cas particulier de la classe plus générale
des circuits, dont une taxonomie est donnée sur la figure

La classe des circuits combinatoires, comme la classe des circuits séquentiels synchrones que nous
verrons dans les chapitres suivants, sont bien fondées sur de jolis formalismes (respectivement les
fonctions booléennes, et les automates finis). En dehors de ces classes, on a essentiellement des circuits
foireux, mais on verra aussi de petits objets pas trés propres, mais fort utiles, comme les portes de
transmission, les verrous... avec lesquels on saura construire (avec précaution) des objets tout a fait
propres (en particulier des circuits combinatoires et séquentiels synchrones). Mais n’anticipons pas.

3.2.1 Signaux logique

Définition : un signal logique, c’est un dispositif physique pouvant transmettre une information binaire
d’un endroit a un autre.

C’est le cas particulier le plus simple : on peut considérer des signaux qui transmettent des informa-
tions non binaires. Pour construire des circuits potentiellement foireux, on définira par exemple plus tard
des signaux “trois états”, les trois états étant 0, 1, et “débranché”.

On dessinera un signal par un trait. Cela colle avec la technologie la plus courante, dans laquelle un
signal est I'abstraction d'un fil métallique. La valeur 0 est 1’abstraction d"une tension nulle, et la valeur 1
est I'abstraction d"une tension égale a la tension d’alimentation. Dans ce cas, la transmission du signal se
fera par un courant électrique.

La notion de signal est toutefois plus générale que 1’électronique, et fait 'objet d"un énorme domaine
des sciences appelé traitement du signal, coincé entre informatique, physique et mathématiques, et dont je
me garderai de parler.

Et pour revenir au signal logique, il est I'abstraction d"une valeur booléenne indépendamment de la
technologie utilisée pour la réaliser. Vous pourrez a la fin de ce cours réaliser un ordinateur complet en
legoﬂ dans lequel un signal binaire sera implémenté par une tige pouvant prendre deux positions.

3.2.2 Circuits logiques

Définition : un circuit logique, c’est un dispositif physique destiné a manipuler des informations
binaires.

Un circuit logique se présente, vu de 'extérieur, comme une boite noire avec des signaux d’entrée
et des signaux de sortie. Rappelons que le signal sert a transmettre l'information, donc les traits sont
orientés. Parfois cette orientation est implicite, comme dans le cas des portes de bases que nous voyons
maintenant.

3.2.3 DPortes de base

Définition : une porte logique est un circuit logique implémentant une opération booléenne élémentaire.
Les figures[3.2]et B.3lmontrent les dessins standardisés pour les principales portes de base.
Exercice : construisez-les en Lego.

2. En googlant un peu vous trouverez des tentatives dans ce sens
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1 O 9D

FIGURE 3.2 — Les dessins des portes ET, OU, NON et XOR (ou exclusif) en notation ANSI
NAND NOR ?7?7?

4

FIGURE 3.3 — En général, on peut mettre des petits ronds sur les entrées et les sorties pour dire qu’on les inverse.

Tout ensemble universel (au sens du[3.1.5) de portes de base fera en pratique 1’affaire. Les bibliotheques
de composants ne se privent pas d’offrir des portes plus complexes que les portes binaires (par exemple
celle de la figure3.4) si cela permet de gagner en performance ou en cott.

s

FIGURE 3.4 — Si l'opération booléenne est associative et commutative, la porte peut avoir plein d’entrée.

Tous mes dessins sont orientés de la gauche vers la droite : la porte ressemble a une fleche et induit
I'orientation de ses signaux d’entrée et sortie. On peut aussi dessiner les portes a I'envers.

3.2.4 Circuits combinatoires

Définition : un circuit combinatoire, c’est un circuit logique implémentant une expression booléenne.

Le circuit combinatoire est un cas particulier de circuit logique avec une grosse restriction : il ne posseéde
pas de mémoire du passé. La sortie d"un circuit combinatoire est fonction uniquement de 1’entrée, pas des
entrées qu’il a pu avoir dans le passé. Par exemple, une GameBoy n’est pas un circuit combinatoire.

3.2.5 Construction bottom-up de circuits combinatoires

Si vous considérez une expression booléenne comme un arbre (ce qu’elle est en fait, tout ce cirque
avec les priorités et les parentheses c’est pour écrire un arbre dans un langage qui se lit de gauche a
droite), vous en déduisez immédiatement un circuit logique qui 'implémente, et qui est par définition un
circuit combinatoire.

s= (VB Ac W
c

FIGURE 3.5 — Une expression donne trivialement un circuit combinatoire, si on sait la lire comme 'arbre qu’elle est.

La classe des circuits combinatoires est légerement plus vaste que ceci, puisqu’elle permet les DAG
(directed acyclic graph). Etant donné un ensemble de portes de bases (qui sont toutes des circuits
combinatoires), on peut donner une définition récursive des circuits combinatoires bien formés (CCBF)
comme suit :

In CCBF est

— une porte de base

— ou un signal

— ou la juxtaposition de deux CCBFs posés l'un a coté de I'autre

— ou un circuit obtenu en connectant les sorties d'un CCBF aux entrées d’un autre CCBF

— ou un circuit obtenu en connectant entre elles deux entrées d"un CCBF.

On peut montrer qu’on obtient un graphe sans cycle de portes de bases.

Ce qu’on s’interdit :
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— faire des cycles, car cela permettrait des situations mal définies comme le circuit instable de la
figure[3.6} ou le circuit & deux états stables de la figure3.7)(dans quel état va-t-il étre?) Les circuits
sur ces deux figures appartiennent a la classe des “circuits potentiellemet foireux” de la figure 3.1}

— connecter des sorties entre elles (que se passera-t-il si une sortie est 1 et 1’autre 0 ?Eb

FIGURE 3.6 — Un exemple simple de circuit pas combinatoire : le pas-stable

FIGURE 3.7 — Un autre exemple simple de circuit pas combinatoire : le bistable

Au chapitre suivant, on lévera ces deux interdictions dans des circonstances bien maitrisées, et on
sortira du domaine des circuits combinatoires : avec des circuits a cycles, on pourra construire des
oscillateurs (en mettant des retards dans notre pas-stable) et des mémoires (le bistable en est une, mais
dans laquelle on ne peut pas entrer d’information a cause de la seconde interdiction, donc il faudra le
bricoler un peu).

3.2.6 Construction top-down de circuits combinatoires

On va voir bient6t (en comment construire un circuit combinatoire correspondant a une fonction
booléenne donnée.

En gros on passe par un stade intermédiaire : on commence par déterminer une expression algébrique
de la fonction, et comme illustré par la figure 3.5} il est ensuite facile de traduire cette expression sous
forme de portes.

Malheureusement cette belle idée se heurte a un petit souci : il y a une infinité d’expressions booléennes
correspondant a un une fonction booléenne donnée, donc il faudra faire un choix. Commengons donc par
nous donner les outils pour faire le bon choix.

3.2.7 Métriques d'un circuit combinatoire

Pour une fonction booléenne donnée, il y a une infinité dénombrable de manieres de I'implémenter.
Ce qui est intéressant, en architecture des ordinateurs, c’est de trouver la meilleure. Exemple : construire
un ET a quatre entrées a partir de NON-OU.

Meilleure selon quel critere? La technologie ameéne avec elle ses métriques de qualité : taille, vitesse,
consommation d’énergie, niveau d’émission électromagnétique... Voyons les plus basiques.

Surface d’un circuit combinatoire

Le cotit unitaireff] d"un circuit VLSI en silicium est une fonction de sa surfacePl La surface est elle-méme
en premieére approximation la somme des surfaces de chaque porte logique (I’approximation étant qu’on
ignore la surface des fils). Bref, le nombre total de porte est une bonne mesure du cofit unitaire d'un
circuit.

Parenthese technologique contingente : en technologie CMOS, si 1'unité de cout est le transistor, alors
I'inverseur cofite 2, les portes non-ET et non-OU a k entrées cofitent 2k, et ce sont les principales portes
logiques de base : un ET logique a 2 entrées est construit en assemblant un non-ET et un inverseur, pour
un co(it de 6 transistors. Si cela vous amuse ce sera détaillé Section3.7]

3. L'état est logiquement indéfini, et si cela vous arrive avec de l'électronique, il se passera un joli court-circuit, car rappelons
que le zéro c’est la masse et le 1 c’est ’alimentation positive. Adieu les portes.

4. Le vrai coit d’un circuit est composé d"un cott fixe ¢y (essentiellement le cotit de conception) et d’un cott unitaire par piece
cu @ pour fabriquer # circuits il vous en cofitera ¢y + 1 X ¢y. Pour des petites séries cf est le cotit prédominant, pour les grandes
séries c’est ¢,,. La valeur de n pour laquelle le cotit unitaire commence a dominer est de plus en plus grande avec les années.

5. Le cofit unitaire est proportionnel a la surface pour les petits circuits. Pour les plus gros c’est plus compliqué : on imprime les
circuits sur des galettes (wafer) de silicium d’environ 30cm de diamétre, 900cm?qu’on va découper en N circuits. Malgré tous les
efforts de la communauté de recherche sur les aspirateurs de pointe, il tombe sur chaque galette statistiquement k poussieéres (k est
petit, de I'ordre de la dizaine). Chaque poussieére va ruiner le circuit sur lequel elle tombe. Si on met un énorme circuit par galette, il
sera ruiné presque a coup sfir. Si par contre on met N >>> k petits circuits, alors seuls k seront ruinés et on pourra vendre presque
toute la galette. C'est cette équation qui est cachée derriere la formulation “une puce économiquement viable” dans ma définition
de la loi de Moore.
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Délai d’un circuit combinatoire

Dans la notion la plus abstraite de circuit combinatoire, il n’y a pas plus de notion de temps que dans
la notion d’expression booléenne. Par contre, toute réalisation physique d’un circuit combinatoire aura
un certain délai de fonctionnement, noté 7, et défini comme le temps maximum entre un changement des
entrées (a l'instant t) et la stabilisation des sorties dans I'état correspondant (a I'instant ¢ + 7). Les sorties
du CC physique peuvent passer par des états dits transitoires pendant l'intervalle de temps [t,t + T].
C’est le cas du circuit de la figure On apprendra au chapitre[5|a construire des circuits dans lesquels
on garantit que ces états transitoires sont sans conséquence.

l=‘0
t
\

FIGURE 3.8 — Un circuit pas compliqué qui nous fait des miséres transitoires

On peut définir (ou mesurer) le délai de chaque porte de base. Une fois ceci fait, on peut ramener
le calcul du délai dans un CCBF a un probleme de plus long chemin dans le graphe du CCBE. Ce plus
long chemin est appelé chemin critique (en Australien : critical path). On aura une tendance malheureuse a
identifier le chemin critique et le délai du chemin critique.

Dans la vraie vie, le délai d'une porte de base peut étre différent suivant 1’entrée et la sortie considérée.
Dans le cas général, pour une porte de base a n entrées et m sorties, on aura une matrice n x m de délais.
Chaque entrée de la matrice est elle-méme le max des délais pour toutes les configurations des autres
entrées. De plus, le délai pourra étre différent sur front montant et sur front descendant, on aura alors
une matrice 21 x m. Naturellement le calcul du délai d'un CCBF devient un peu plus compliqué, mais
cela reste parfaitement automatisable, et méme vous sauriez faire.

Enfin, les authentiques gourous du circuit sauront retailler les transistors pour obtenir les délais qu’ils
veulent. Ce sera survolé superficiellement a la section

Consommation d’un circuit logique

Il est clair que la consommation d’énergie sera proportionnelle au nombre de portes.

En électronique, pour chaque porte, il y a

— une consommation statique (elle chauffe un peu juste en étant alimentée)

— et une consommation dynamique : a chaque passage de 0 a 1 puis de 1 a 0 un peu d’énergie est

dissipée (un peu de courant passe de l’alimentation positive a la masse).

La consommation dynamique dépend de l'activité de la porte, qui est une mesure du nombre de cycles de
0a1a0 qu’elle fait par secondes. Pour les circuits synchrones (qu’on verra plus tard) on rameéne 'activité
a un nombre entre 0 et 1 qui donne la probabilité que la sortie de la porte réalise une transition dans un
cycle d’horloge.

3.3 Quelques constructions algorithmiques de circuits combinatoires

3.3.1 Les portes de base a deux entrées

Exercice : énumérons toutes les fonctions logiques a 2 entrées et une sortie, et donnons leur a chacune
un petit nom.

3.3.2 Le multiplexeur, abstraction du si-alors-sinon

Dans un train électrique, on a une brique de base appelée aiguillage, qui en fonction d’une information
binaire de direction (entrée du bas sur la figure), transmet l'information (le train) soit selon un chemin,
soit selon l’autre. Cette brique (non orientée dans le cas de l'aiguillage) est représentée figure
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Direction

FIGURE 3.9 — L'aiguillage

3.3.3 Le multiplexeur d’ordre k

Enassemblant 1 +2 +4 +...+2F1 = 2k 1 ajguillage, on sait construire une gare de triage compléte
(Figure[3.10). Observez que l’adresse de la case d’arrivée est donnée en binaire sur les fils de direction.

~
S

e

-~

L
1< o
— ~ |
-

L

0 1 0

FIGURE 3.10 — Une gare de triage permet de construire une mémoire adressable

OO0

L'aiguillage, en technologie train électrique, marche dans les deux sens.

Si on parle de circuits logiques, on distinguera deux familles de circuit qui ont la méme construction
sous forme d’abre binaire : le multiplexeur (2" en 1) et le démultiplexeur (1 vers 2").

Chacun a une entrée de sélection d’adresse (en général appelée select ou sel) de n bits. De plus,

— le multiplexeur (ou MUX) a aussi 2" entrées, et une sortie. Il transmet vers sa sortie celle des 2"

entrées dont le numéro est donné en binaire sur I'entrée sel.

— le démultiplexeur (ou DEMUX) a aussi une entrée et 2" sorties. Il transmet son entrée vers celle

des 2" sorties dont le numéro est donné en binaire sur 1’entrée sel. Les autres sorties valent 0.

La figure 3.1T) vous donne le dessin standard d’un multiplexeur 2 vers 1, & partir duquel vous saurez
construire tous les autres (en suivant la construction de la figure Le démultiplexeur, c’est le méme
dessin en retournant certaines fleches.

Exercices :

— Dessinez le DEMUX 1 vers 2 & coté de la figure[3.11}

— Construisez le MUX avec des portes ET, OU et NON.

— Construisez dans la figure[8.12]le MUX 8 vers 1 a partir du MUX 2 vers 1.

sel

FIGURE 3.11 — Le multiplexeur 2 vers 1, une porte logique a 3 entrées et une sortie. Dessinez a coté le démultiplexeur 1 vers 2.

Avec des multiplexeurs on fabrique aussi le décaleur (barrel shifter).

La figure propose une autre construction du démultiplexeur, plus naive. Peste, mais ce n’est
pas du tout la construction récursive précédente?!? C’est une illustration que pour chaque fonction
booléenne, il existe une infinité d’expressions, donc une infinité de circuits, I'implémentant.

Demandons-nous si cette construction a base de portes AND est moins chere.
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FIGURE 3.12 — Dessinez vous-méme un multiplexeur 8 vers 1. Indice : la structure générale est celle de la figure

ina#f [ a )—Q outs

FIGURE 3.13 — Une autre architecture de démultiplexeur 1 vers 2K,

— Combien de portes AND? 2F. L’arbre binaire de MUX compte au total 25 — 1 MUX2 : il gagne.
— Oui mais un AND a k + 1 entrées est moins cher qu'un MUX2, pensez-vous ? Eh bien cela dépend
sans doute de k : Si k est grand on va devoir I'implémenter lui-méme comme un arbre binaire.
Mais c’est bien d’avoir le choix entre plusieurs architectures pour pouvoir se poser ces questions.

3.3.4 Pour le calcul sur les entiers

La base du calcul sur les entiers c’est ’addition : construisons un additionneur.
On part de I'algo d’addition en décimal, qu’on généralise un peu, et on le formalise mathématique-

ment :
Soit B un entier (la base, qui vaut 10 pour votre petite sceur mais vaudra 2 en binaire). Soit la fonction

table d’addition TA :
{0,1} x {0.p—1} x {0.8—1} — {0.1} x {0.8—1}

(r,x,y) + (¥,s)
tq Br'+s =r+x+y

— cette fonction prend une “retenue entrante” (0 ou 1) et deux chiffres, et retourne leur somme;

— Cette somme est comprise entre 0 et 28 — 1 (par exemple en décimal entre 0 et 9+ 9 +1 = 19).
Elle s’écrit donc en base f sur deux chiffres :
— Le chiffre de poids faible de la somme est appelé somme modulo la base ou juste somme
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— Le chiffre de poids fort de la somme est appelé refenue et vaut 0 ou 1 quelle que soit la base.
L’algorithme d’addition de deux nombres de 7 chiffres est alors
C1= 0
: fori =0tondo
(ci,si) = TA(¢i-1, i, Yi)
end for

LA

On peut le dérouler de plusieurs maniére en matériel : algo séquentiel (utilisation du temps) ou
parallele (utilisation de I'espace). Cela aussi est une idée générale.

X7 Y7 X6 Y6 X5Ys5 X4 Y4 X3Y3 X2 Yo X1Y1 X0 Yo
(2 (] A} \2 ] \2R ] (R A} \2 ]
rTA%TA%TAHTA%TA%TA%TAHTA<— Cin = C—1

v v v v v v v v

Cout = 58 Sy S6 S5 S4 S3 S2 $1 So

FIGURE 3.14 — L'algo d’addition déroulé dans l'espace. TA c’est "table d’addition”.

Pour construire 1’additionneur binaire il suffit de considérer f = 2. Mais alors les trois entrées
deviennent symmeétriques (toutes entre 0 et 1). La porte obtenue s’appelle le full adderlﬂ et sa table de
vérité est donnée figure La fonction booléenne correspondante a 3 entrées et deux sorties : elle écrit
en binaire sur 2 bits la somme de ses trois entrées (qui vaut donc entre 0 et 3).

Xi Yi Si | Ciy1  Si

X s 0 0 0 0 0

f yj 0o 0 1] 0 1

0 1 0 0 1

Cit1 < FA [ Ci 0 1 1 1 0
l 1 0 0 0 1

1 0 1 1 0

Sj 1 1 0 1 0

1 1 1 1 1

FIGURE 3.15 — Le “Full Adder” . Exercice : construisez-le a partir de portes logiques.

X7Y7  XeYe  XsYs  XalY4  X3Y3  X2lY2 X171 Xo Yo
v v V1 I v v V1 I
l—FAHFAHFA%FAHFAHFAHFA%FA%%

! ) ) ! ! ) ) !

Cout = S8 57 56 S5 54 53 52 51 50

FIGURE 3.16 — Additionneur binaire i propagation de retenue.

Complément a 2

Pour calculer une soustraction, on peut contruire un soustracteur. Mais il ressemble a un additionneur :
il propage des retenues, etc. On aimerait bien partager le méme matériel entre addition et soustraction.

Pour cela, on utilise la notation en complément a 2, introduite a la sectionm

Rappels : Pour calculer 745-169, on peut calculer 745+1000-169 -1000. Le -1000 final, c’est juste d'ignorer
la retenue sortante. Quant au +1000, on 1"écrit +999+1, et notre soustraction devient :

745 + (999-169) +1. La soustraction 999-169 se fait chiffre a chiffre, sans propagation de retenue. Quant
au 1 qu’on ajoute en plus de I'addition normale, c’est juste une retenue sur la premiére colonne, qui
justement boudait de ne point en avoir.

Tout cela se transpose en binaire (en remplagant 999 par 111, bien stir), et I’on obtient ’architecture
d’additionneur/soustracteur de la figure Le complément, en binaire, est juste la négation (pour un
booléen x, ¥ = 1 — x).

Re-rappel : par la magie du modulo, cet additionneur/soustracteur fonctionne pour des entiers
positifs comme pour des entiers négatifs.

6. C’est idiot comme nom pour un bit d’additionneur, il est pas complet du tout comparé a un additionneur 64 bits, mais c’est
comme ¢a. Le nom est pas opposition a une autre fonction appellée half adder qui fait la moitié du boulot puisqu’elle n’a que deux
bits d’entrée.
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X7Y7 XelYo X5Ys XalYs X3Y3 XoY2 X1Y1 X0 Yo sub

i e et e 4 P

v ¥y Yy Y Y Y

Cout <— FA |~ FA |~ FA || FA |~ FA |~ FA |—{ FA | FA

) ) ! ! ) ) ! !

S7 56 S5 54 53 52 51 50

FIGURE 3.17 — Additionneur/soustracteur en complément i 2.

Dépassement de capacité en complément a 2

Soient m = (cp )5 et n = (cu)3 en complément a 2 sur p bits.

On dit qu’il y a dépassement de capacité dans une opération en complément a 2 sur p bits lorsque le
résultat de 'opération ne peut pas étre représenté sous cette méme forme (il est soit trop petit, soit trop
grand).

— Enl’absence de dépassement de capacité, le codage de m + n en complément a 2 sur p bits est le
codage de I’entier naturel (c,;, + ;) mod 2. Si m et n sont de méme signe, il y dépassement ssi
le signe du résultat calculé differe du signe des opérandes; s’ils sont de signes opposés, aucun
dépassement n’est possible.

— En l’absence de dépassement de capacité, le codage de —n en complément a 2 sur p bits est le
méme que celui de I'entier naturel (¢, 1, 2...€1¢0)2 +1 mod 2F. 1l y dépassement ssi le signe
du résultat calculé est le méme que celui de I'opérande.

3.3.5 Conclusion

Les gares de triage et les additionneurs sont des circuits construits par une approche algorithmique.
Pour les gros circuits, c’est 'approche a privilégier : il est toujours mieux de faire marcher son intelligence,
de diviser pour régner, etc.

Mais il existe aussi une approche automatique que nous allons voir maintenant. Vous pouvez l'ap-
pliquer a la main, ou la programmer. On verra qu’elle ne s’applique en pratique que pour de “petites”
fonctions booléennes (par exemple pour construire un full adder ou un multiplexeur) a partir de portes
logiques.

3.4 D’une fonction booléenne a un circuit combinatoire

3.4.1 Parles formes canoniques

Expansion de Boole : soit f une fonction booléenne a n entrées, alors

fxy,x2,..xn) = x1.f(1,x2, ., Xn) +X1.£(0, X2, ..Xp)

Démonstration : considérer x; = 0 puis x; = 1.

Exercice : donner 1’expansion de Boole duale de celle-ci. J’ai perfidement utilisé la notation que j’ai dit
que je n’aimais pas.

On appelle parfois un mondme canonique un ET de toutes les variables apparaissant chacune soit sous
forme directe soit sous forme complémentée. On peut appeler monal canonique le dual du précédent.

Les deux variantes de I'expansion de Boole, appliquées récursivement, permettent d’obtenir automa-
tiquement, a partir d'une fonction booléenne donnée par sa table de vérité, une expression booléenne de
cette fonction sous forme dite canonique.

— Forme canonique disjonctive : OU (ou disjonction, ou somme mais je vous ai dit que je n’aimais

pas) de monomes

— Forme canonique conjonctive : ET (ou conjonction) de monals (monaux ?)lz]

Exemple : fonction majorité a trois entrées.

Quelle forme préférer ? Considérons la forme conjonctive. Naturellement, on simplifie tous les mo-
noémes correspondant a une valeur 0 de la fonction. Donc cette forme sera préférée pour une fonction
ayant une majorité de 0 dans sa table de vérité. Inversement, s’il y a une majorité de 1, la forme disjonctive
aura moins de monaux rescapés que la forme conjonctive de mondmes.

7. C’est sans doute pour cela qu’on préfere habituellement la disjonctive...
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Exemple : la fonction majorité a 3 entrées, qui renvoie 1 si au moins deux des trois entrées sonta 1 et 0
sinon.

Simplification des formes canoniques Supposons pour anticiper qu’on veut se ramener a un nombre
le plus petit possible de NON-ET et de NON-OU a moins de 4 entrées.

II faut parenthéser notre forme canonique. Il y a un trés grand nombre de parenthésages possibles (un
amateur de combinatoire me dira combien ?).

Ensuite on peut appliquer des regles de réécriture. Lesquelles, et dans quel ordre?

On peut privilégier la minimisation du nombre de portes (surface) ou la minimisation de la profondeur
de l’arbre (délai). Dans les deux cas on sait comparer deux expressions pour choisir la meilleure. Par
contre, pour obtenir la meilleure expression pour une fonction booléenne donnée, on ne sait pas faire
tellement mieux que toutes les essayer (en commengant par essayer tous les parenthésages) : le probleme
est NP-facheux.

Heureusement il y a de bonnes heuristiques. Voyons maintenant 1'une d’elles.

3.4.2 Par les arbres de décision binaire

Un arbre de décision binaire (en néozélandais BDD pour binary decision diagram) est simplement un arbre
d’évaluation de la fonction en considérant la valeur de chacune de ses variables 1'une apres 'autre. Un
exemple est donné par la figure Pour connaitre la valeur de f(x1xx3), on part de la racine, et a
chaque nceud de profondeur i on part dans le sous-arbre gauche si x; = 0, et dans le sous-arbre droite si
x; = 1. Arrivé a une feuille, I'étiquette de la feuille donne la valeur de la fonction.

Si vous voulez, c’est comme un arbre de détermination pour reconnaitre les papillons ou les fleurs
des champs, si vous avez pratiqué ces choses-la.

X

0 00 1T 1 1 1 1 valeurdelafonction

FIGURE 3.18 — Un arbre de décision binaire

La construction du BDD est triviale en partant de la table de vérité de la fonction. Faisons le au
tableau.

Attention, I’arbre obtenu dépend de l'ordre des variables, c¢’est pourquoi on utilise souvent le terme
OBDD (pour ordered).

L’OBDD a autant de feuilles que la table avait d’entrée, donc c’est une structure plutot plus lourde
que la table de départ. Son intérét est de pouvoir ensuite étre réduite pour obtenir une représentation
plus compacte de la fonction. On applique pour cela les transformations suivantes :

— Si deux sous-arbres sont identiques, on les fusionne

— Siun neeud a deux fils identiques, on le court-circuite et on le supprime.

On obtient un arbre réduit (ROBDD), comme sur la figure qu’il est ensuite facile de traduire en
un circuit (exercice).

FIGURE 3.19 — Un arbre de décision binaire réduit

Tout ce processus est déterministe, et requiert au plus O(2") en temps et en espace, donc pas plus que
ce que demande la construction de la table de vérité. Donc il est tractable pour des 1 assez grand (pour
des fonctions jusqu’a 20 bits sans probleme). C’est trop beau. Cela ne va pas durer.

En effet, il reste un probleme : le facteur de réduction final dépend de I'ordre des variables choisi pour
la construction de I’arbre. Or il y a pour n variables n! permutations de ces variables. Laquelle d’entre
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elle va donner les simplifications les plus avantageuses ? Eh bien avant d’essayer, on ne sait pas. Nous
voila a nouveau contraints de bricoler des heuristiques, et tous les ans il y a des articles sur le sujet.

Remarque : I’'OBDD, et méme le ROBDD sont, pour un ordre des variables donné, des représentations
canoniques. Elle sont aussi utilisées pour prouver I'équivalence de circuits (par exemple développé sur
FPGA puis “recompilé” vers un ASIC).

3.5 Application : construction des circuits arithmétiques de base

3.5.1 Addition/soustraction binaire

Ah ben on a déja tout vu en[3.3.4

3.5.2 Multiplication binaire

En TD peut-étre. Montrons juste qu’on sait poser la multiplication en binaire : cela suffit a définir les
différentes fonctions booléennes nécessaires.
Evidemment c’est encore une construction algorithmique de circuit.

3.5.3 Division binaire

Méme texte que pour la multiplication

3.6 Conclusion

On a une technique universelle pour transformer n'importe quelle fonction booléenne, donnée par sa
table de vérité, en un circuit qui 'implémente. Cette technique s’adaptera facilement a une bibliothéque de
portes de base pour une technologie donnée.

Toutefois, on se trouve confronté a des questions d’optimisation. La complexité des algorithmes
d’optimisation, dans le cas général, est exponentielle en le nombre d’entrées de la fonction.

Pour cette raison, faire de I’algorithmique intelligemment donne en général de meilleurs résultats
que la technique universelle. C’est ce que I'on a vu pour construire les multiplexeurs et les opérateurs de
calcul.

3.7 Annexe technologique contingente : les circuits CMOS

On représente le 1 logique par une tension proche de la tension d’alimentation (ou Vdd, ou la borne +
de la pile), et le 0 logique par une tension proche de la masse (ou Vss, ou la borne - de la pile). Dans la
phrase précédente, “proche de” vous inquiete car ce n’est pas tres précis. Il ne faut pas, on va utiliser une
électronique construite pour travailler en mode “saturé”, c’est a dire non-linéaire dans le sens qui pousse
soit vers la masse, soit vers Vdd. Si vous étes toujours inquiet, il y a un exemple ci-dessous, cf figure

3.7.1 Transistors et processus de fabrication

Regles du jeu du CMOS :

— Un transistor est, en gros, un interrupteur, commandé par un fil de commande qui arrive sur sa
“grille” (gate en Texan) : voir la figure ci-dessous.

— On a deux types de transistor : le transistor normal (qui s’appelle NMOS pour N-type Metal Oxide
Silicium), qui est passant quand on met la grille a 1 et ouvert sinon, et le transistor-dessiné-avec-
un-rond-sur-la-grille (qu’on appelle PMOS mais je refuse de m’en souvenir), que c’est le contraire.

— Pour de sordides raisons électroniques (qui en plus font I'apologie du dopage alors je les traite par
le mépris), le NMOS marche bien (i.e. conduit bien le courant) quand il est relié & la masse (ou
a un autre NMOS relié a la masse), alors que le PMOS c’est le contraire : il aime bien étre relié a
’alimentation positive.

— du coup il faut les assembler de telle maniere que les 1 logique produits par un circuit viennent a
travers des PMOS, alors que les 0 logiques doivent étre produits par des NMOS.

Voyons quelques exemples de cette derniére regle.
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n-mos p-mos

D
G°—| (n) G=oI G

S S S

o

T

n
-

G°—4 () G=0) G=1

o
o
o

Illustrations : Transistor MOS - efreidoc.fr

FIGURE 3.20 — Description fonctionnelle des transistors MOS sous forme d’interrupteurs

3.7.2 Portes de base

vdd vdd

Vss

Va

FIGURE 3.21 — A gauche un dessin d’inverseur pompé sur Wikipedia, et a droite sa caractéristique. Vdd cela veut dire +5V
(pour une certaine valeur de 5) et V'ss cela veut dire la masse.

La figure montre comment on construit un inverseur CMOS avec deux transistors. La caractéris-
tique de transfert en tension de l'inverseur montre qu’il “nettoie” un zéro de mauvaise qualité (loin de
0V) en un 1 de bonne qualité (proche de Vdd). C’est cela qui rend 1'électronique numérique si confortable.

Sur la figure on a une porte de base du CMOS, laquelle? Observez le C pour “complémentaire”
de CMOS : il y a autant de transistors P que de transistors N. Lorsque les P sont en série, les N sont en
parallele (et inversement). C’est beau comme du booléen, d’ailleurs la loi de De Morgan se cache dans
cette construction.

vdd vdd

- A

Out

s
.

Vss

FIGURE 3.22 — A votre avis, c’est quoi comme porte ?

Et au passage, dans cette technologie, brancher deux sorties ensembles, c’est non seulement indéfini,
c’est mal. En effet si les deux sorties branchées ensembles ne sont pas d’accord sur la valeur logique, on
obtient un joli court-circuit de I’alimentation a la masse, qui fait assez vite fondre les transistors sur le
chemin...

On peut réaliser directement en CMOS n’importe quelle négation de fonction croissante des entrées.
Démonstration : on relie la sortie a la masse par un assemblage arbitraire série/parallele de transistors.
On lit la fonction en question comme la négation d"une formule & base de AND et OR des entrées. Ensuite
on construit I'assemblage complémentaire pour relier la sortie a Vdd dans les autres cas.
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Exemple de porte qui n’est pas une fonction croissante des entrées : le XOR.

3.7.3 Vitesse, surface et consommation

Sans entrer dans les détails, voici ce qui se passe dans un circuit composé de transistors branchés

entre eux :

— La grille d’un transistor (gate) se comporte comme un condensateur : il faut charger et décharger
ce condensateur pour le faire commuter. Les entrées d'une porte CMOS de base (inverseur, nand
ou nor) sont toutes connectées a des grilles : pour faire basculer ces portes, il faut charger ces
condensateurs.

— Par conséquent, lorsqu’on connecte une sortie a n entrées (fan-out de 1), on divise le courant qu’est
capable de produire la sortie entre les n entrées, et on multiplie donc par 7 le temps qu’il faut
pour charger ces n entrées (donc faire basculer les transistors correspondants, donc faire passer
I'information). Typiquement, dans un circuit, on accepte un fanout de 4 maximum, au-dela c’est
mal.

— La connexion entre la source et le drain du transitor se comporte comme une résistance, assez
faible quand le transistor est passant, et élevée quand il est bloqué.

— Plus la grille est large, plus elle présente une capacité en entrée élevée, c’est-a-dire plus il faut du
courant pour la faire basculer, mais plus elle peut laisser passer de courant entre la source et le
drain.

— Autrement dit, un transistor plus large est plus rapide du point de vue de sa sortie (il peut passer
plus de courant pour charger plus vite les transistors suivants) mais plus lent du point de vue de
son entrée (il faut plus de temps pour le charger pour le faire basculer).

Tout cela se mord la queue. Heureusement, une chouette technique (Logical Effort) permet de

modéliser la vitesse d"un circuit CMOS en fonction de la taille des transistors, et ensuite d’optimiser cette
vitesse en dérivant ce qu'il faut pour chercher quand la dérivée s’annule.



Chapitre 4

Memoriser I’'information

On peut dérouler la somme de # nombres dans l’espace (arbre binaire d’additionneurs) ou dans le
temps, mais alors il faut une mémoire de la somme courante (“accumulateur”).

Cela vaut a toutes les échelles, par exemple dans une addition on a des “retenues” : ce qu’on retient.
On peut en principe construire un additionneur 7 bits a partir d"un seul full adder, a condition

— de savoir mémoriser la retenue entre deux calculs, et

— de lui présenter dans le bon ordre les bits des nombres a additionner.

Ces deux exemples nous donnent l'intuition que, au dela de la mémorisation a long terme, la capacité
de mémoriser des bits est fondamentale pour construire des circuits fonctionnant dans le temps (1’objet
des deux chapitres suivants).

4,1 Mémoriser un bit

L'archétype de 1’élément de mémorisation est le bistable que nous avons déja vu :

Q .0

Il possede deux états stables, mais... comment le faire passer d’un état a 'autre? La solution la plus
simple est de remplacer les deux inverseurs par des portes non-ou :

Q
S — Q
R

Si on étudie son fonctionnement,

— (R,S) = (0,0) : on retombe bien sur le bistable;

— (R,S) = (0,1) impose I'état stable dans lequel Q = 1. Si ensuite S redescend a 0 c’est cet état qui
restera dans le bistable;

— (R,S) = (1,0) impose I'état stable dans lequel Q = 0. Si ensuite R redescend a 0 c’est cet état qui
restera dans le bistable;

— (R,S) = (1,1) impose un état (Q,Q) = (0,0) qui n’est pas un des deux états stables puisque

Q = Q. Si on passe directement de cette entrée a ’entrée (0,0) 1’état du bistable sera indéterminé.
A éviter donc.

Nous venons d’inventer la bascule RS (R pour reset, S pour set), qu’on trouve souvent sous la forme
suivante : vérifiez que c’est bien une version plus jolie de la méme chose. Au fait, il y a une variante avec

deux portes non-et.

R s|Q @ R

1 0|0 1 Q
0 11 o0 _
1 1/ 0 0 (aéviter) S Q

43
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On va se dépécher de 'oublier, parce qu’a 1'usage cette interface set/reset n’est pas pratique du tout.
Commengons par définir une interface plus simple.

4.1.1 Le registre 1-bit, ou flip-flop

L’interface minimale a un élément de mémorisation est le registre sur front, ou Flip—FlopE] dessiné
Figurel4.1] On verra I'explication de ce nom rigolo un peu plus bas (et aucun rapport avec les sandales de

plage).

d—— | F——a

|

ck

FIGURE 4.1 — Symbole pour un registre sur front montant

Il y a mémorisation de 1’entrée d (pour donnée) au front montant (changement de valeur de 0 a 1) de
I'entrée ck (pour clock). La derniére valeur mémorisée reste présentée sur la sortie q jusqu’au prochain
front montant.

L’entrée ck sert a indiquer un instant, celui auquel on veut mémoriser. Toute mémorisation nécessite
une telle entrée spécifiant un instant. Le triangle sur 'entrée ck indique que ce signal porte une information
temporelle (un instant), pas une donnée.

Une information d’instant sera toujours donnée par un changement de valeur, qu’on appelle un front (soit
montant, soit descendant).

C’est pour cela que j’ai dessiné le front sur le registre. On peut évidemment aussi construire des
registres sur front descendant.

Et 13, la question que tout le monde se pose : pourquoi la sortie s’appelle q? C’est une tradition établie
dans les années 50, et reliée au fait que les états dans les automates s’appellent aussi q (la sortie du registre
donne son état). Les internets offrent trois réponses plausibles :

— Le registre stocke un quantum d’information, et déja dans les années 50 c’était chic de mentionner

le mot “Quantum”.

— On voulait écrire O pour Output, mais on risquait de confondre avec 0 (zéro), donc on a pris un O

avec une petite queue, donc Q.
— Les premiers registres étaient des bascules avec Set et Reset (S et R), donc en cherchant dans les
lettres voisines quelqu’un a hésité entre Q et T.

4.1.2 Construction : du verrou (latch) au registre (Flip-Flop)

La figure [£.2) montre un petit circuit, construit a partir d'un multiplexeur, qui n’est absolument pas un
circuit combinatoire bien formé (pourquoi?).

On I'appelle ZJET’VOMH Il recopie d (data) sur q lorsque keep vaut 0, et garde 1'état précédent lorsque
keep vaut 1. Remarquez que ce n’est pas encore mon registre : il ne mémorise que la moitié du temps.

d——0o

keep

FIGURE 4.2 — Un verrou. Exercice : mettez des fleches sur les fils.

1. Dans la vraie vie (c’est-a-dire sur Wikipedia) vous trouverez parfois ce registre nommé “bascule D”. Je n’aime pas parce que
ce n’est pas terrible de nommer un objet a partir du nom donné a une des entrée, surtout quand tous les éléments de mémorisation
sans exception ont une entrée qui s’appelle D. Et aussi parce que le mot “bascule” recouvre un peu n’importe quoi.

2. Dans la vraie vie, c’est a dire dans les vieux bouquins recopiés sur Wikipedia, vous trouverez des circuits qui sont des verrous
mais qui sont appelés bascule RS et bascule JK, et des variantes de flip-flop qui sont appelés bascule D. C’est historique mais c’est
confus. Pour les 0.5% d’entre vous qui auront besoin de se frotter a la vraie vie, comprenez bien la différence entre un verrou et un
flip-flop, et tout ira bien.
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Sur la figure on colle I'un derriére ’autre deux verrous fonctionnant sur les états différents de
keep. Sauf que du coup keep est renommé horloge (clock ou ck).

1
d—— | }——a do\‘ 1 B
0
| e
ck
ck

FIGURE 4.3 — Construction du flip-flop. Exercice : mettez des fleches sur les fils.

Convaincons-nous qu’on obtient le registre (ou Flip Flop) de la figure .1 p[44}

Le premier verrou est passant sur I’horloge basse, le second sur I'horloge haute. Ainsi, lorsque
I'horloge vaut 0, la valeur de e est placée a 1’entrée du second verrou (flip). Mais le second verrou ne la
laisse pas passer. Jusqu’a ce que ’horloge passe de 0 a 1 (flop) : alors la valeur de d est mémorisée dans le
premier verrou (et transférée a la sortie par le second verrou, qui est devenu passant). Lorsque 'horloge
repasse a 0, c’est le second verrou qui mémorise a son tour la valeur (qui est toujours la valeur qu’avait d
au front montant précédent). Le premier redevient passant mais on s’en fiche : on est revenu au début du
paragraphe.

4.1.3 Variantes : registre avec reset et / ou write enable

L’utilité des deux variantes exposées ici n’et pas claire a premiere lecture. Promis, elles s’avéreront indispensables
dans les chapitres qui suivent.

On aura souvent besoin d’ajouter au registre une entrée reset qui définit son état initial. Ce sera un
multiplexeur sur I’entrée d, comme dessiné sur la figure On a ici un reset (remise a 0), synchrone
car la remise a zéro attendra le prochain front d’horloge. Pour le méme prix vous pouvez construire un
registre avec “set”, qui initialise a 1.

I1 est possible aussi de construire un flip-flop avec reset asychrone (qui n’attend pas le front montant)
en ajoutant des portes sur les entrées 0 et 1 des mux de la figure[4.3]- je vous le laisse en exercice.

0—1
e LI I I H—a
rst ¢k
T |
rst ck

FIGURE 4.4 — Un registre avec reset (souvent abbrévié rst) synchrone

On aura aussi souvent besoin d’y ajouter une entrée parfois nommée write enable (we), parfois load. 11
arrive méme qu’elle soit nommée clock enable mais c’est trées maladroit : on verra au chapitre suivant qu’il
est essentiel de s’interdire de mettre de la logique sur I'horloge. La raison principale est qu’on veut éviter
le risque de fransitoires sur 1’horloge, qui ajouteraient des fronts montant, et donc des mémorisations non
voulues. Donc on va juste ajouter un multiplexeur sur ’entrée d, comme sur la figure .5 qui soit choisit
d, soit choisit de recycler la valeur précédement stockée (et donc disponible en sortie).

4.1.4 Le registre n-bit

Mettons 8 registres en parallele, avec la méme entrée d’horloge : on obtient un registre 8 bits :

d n I n q
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——ld | 99— d j [ q

we ¢k

we ck

FIGURE 4.5 — Un registre avec “write enable” qui ne rajoute pas de logique sur l'entrée d’horloge

we rst €k

T T

FIGURE 4.6 — Un registre avec “write enable” et reset. Exercice : construisez-le vous-méme.

Par extension, les mémoires de travail dans les processeurs sont appelées des registres. Exemples de
phrases utilisant cette acceptation du mot “registre” : le PC (programme counter) est un registre a l'intérieur
du processeur. Quand j'étais petit, les processeurs avaient 4 registres entiers et 8 registres flottants. On les a étendu
au cours des années avec des registres plus grand, de nos jours ils ont plein de registres 512 bits.

4.2 Mémoire adressable

Une mémoire adressable, c’est essentiellement plein de registres juxtaposés. Chaque registre a une
adresse, et on peut sélectionner un registre particulier par son adresse. Cette sélection se fera par un genre
de multiplexeur.

L'interface la plus simple d’une mémoire adressable est la figure [£.7]

k
Address —>
Dataln —>
DataOut <—

RAM

write —

FIGURE 4.7 — Interface d'une mémoire adressable ou mémoire a acces aléatoire ou RAM de 2X x m bits

Les opérations de base qu’on peut faire avec une mémoire adressable sont

— lire la donnée a ’adresse a. Dans ce cas il faut donner l'information d’adresse a la mémoire, et elle

répond par l'information contenue dans la cellule visée.

— écrire une donnée d a 1’adresse a. Dans ce cas on doit donner a la mémoire les informations

d’adresse et de donnée, et un instant a partir duquel le contenu de la mémoire est changg.

Ici, la lecture d"une mémoire est une fonction combinatoire des entrées, alors que 1’écriture demande
un fil d’horloge (qui porte une information de temps : & quel moment précis le contenu de la mémoire va
changer). C’est donc tres différent.

On appelle aussi la mémoire adressable RAM (random access memory), parce que c’est plus court.
Parenthese culturelle : random veut dire aléatoire, ce qui parfois veut dire “au hasard”, mais pas ici. Ici
random veut dire “au choix”. Pour comprendre ce terme il faut se souvenir qu'il est arrivé par opposition
aux mémoires d’avant les RAM, qui étaient toutes des variantes de la bande magnétique ou du carton
perforé : pour récupérer une donnée a 'autre bout de la bande, il fallait souvent attendre longtemps.
Quand les RAM sont arrivées, cet acces aléatoire, ¢’était la féte.

4.2.1 Construction d’une mémoire adressable

Elle repose sur 2 registres/flip-flops de m bits (figure .
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Coté lecture, c’est facile : un multiplexeur 2F-vers-1 contrdlé par I’adresse sélectionne la sortie de
registre qui sera transmise sur DataOut.

Dataln »—— Dataln »——
— —

L~ > DataOut L~ > DataOut

write —>

DR

—_
H H H H H H H H
8 8 8 8 8 8 8 8

!

Address k\r T Address k\r T

write

FIGURE 4.8 — Construction d'une RAM 2 x m (ici k = 3) : version douteuse a gauche, version correcte a droite.

Coté écriture, on présente Dataln en entrée de chacun des registres, et yaka avoir un démultiplexeur
1-vers-2F qui transmet le signal write sur toutes les entrées d’horloge des registres (ﬁgure gauche).

Toutefois cette architecture pose un probléme : si on fait changer 1’adresse pendant que write vaut 1,
cela peut créer des transitions de 0 a 1 sur les entrées d’horloge de plusieurs registres, donc plusieurs
mémorisations...

Une solution est de relier write directement a I'entrée d’horloge de tous les registres. Pour choisir
dans lequel on écrit, on utilise des registres avec write enable, et le démultiplexeur contrélé par 1’adresse
va positionner a 1 une seule de ces entrées we. Convainquez-vous que cela résout le probleme précédent :

— onn’écrit dans une cellule qu’a un front montant de write,

— et le démultiplexeur assure qu'une seule cellule est alors écrite.

Les sections et[d.2.4sont contingentes a la technologie CMOS : considérez-les comme hors progranme, ou
moins fondamentales que tout ce qui précéde. Vous pouvez sauter directement a la section Ou pas, car ces
trois sections sont fort intéressantes.

4.2.2 Construction des mémoires utilisant des porte de transmission

Le multiplexeur de la figure [4.8|est m fois plus cotiteux que le démultiplexeur puisqu’il aiguille des
paquets de m bits. De plus, on a déja I'information de la case a envoyer vers la sortie fournie par le
démultiplexeur. N’est-il pas possible de I'exploiter? La réponse est oui, mais cela demande de sortir de la
stricte logique booléenne.

Porte de transmission La brique de base pour cela est la porte trois-états (aussi appelée porte de
transmission). Elle agit comme un interrupteur : un fil peut désormais étre dans trois états qui sont 0, 1, ou
“débranché” (parfois noté Z pour “haute impédance”). La figure [4.9|donne son schéma et sa réalisation
a l'aide d’un inverseurf)|et de deux transistors CMOS. Si In est relié a une valeur booléenne, alors Out
est soit porté a la méme valeur (0 ou 1) lorsque Ctrl=1 (les deux transistors sont passant), soit isolé de In
lorsque Ctrl=0 (les deux transistors sont isolant).

Remarquez que cette “porte” est en fait bidirectionnelle. L'information peut la traverser dans les deux
sens. Par contre elle n’amplifie pas (ne regéneére pas) le signal qui la traverse.

3. Souvent l'inverseur est amorti car il est partagé par plein plein de portes... vérifiez sur les dessins qui suivent.
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Ctrl Ctrl

In Out

ce symbole est obsolete In Out
(chercher le symbole

officiel sur internet)

FIGURE 4.9 — La “porte de transmission”.

Remplacement du multiplexeur de sortie par un bus trois états Un petit dessin vaudrait mieux que ce
long discours, il viendra un jour. En attendant je renvoie a la figure qui vous donnera l'intuition.

Sur cette figure, vous reconnaissez des petits bistables qui constituent chaque bit de mémoire. A
gauche de chaque bistable, on a une porte de transmission qui permet de le brancher sur un fil commun
vertical qui I'envoie sur DO. Ces portes de transmission sont controlées par les sorties ENi (comme
Enable) du démultiplexeur d’adresse. Ceci assure mécaniquement qu’un seul bit de registre est connecté
a DataOut. Et bien sfir, cette solution est moins chere que de mettre un multiplexeur par bit de DO.

Une architecture mémoire statique utilisant des portes de transmission

La figure [£.10|montre aussi une solution bien plus crade, mais en bien moins de transistors que le
flip-flop pour faire entrer une valeur dans un bistable.

Pour écrire une valeur, on la force dans le bistable au moyen des “gros” inverseurs/buffers du haut et
des deux portes de transmission entourant chaque bistable. On va techniquement provoquer un petit
court-circuit transitoire lorsque le bistable contenait un 0 et qu’on veut y écrire un 1. Mais cela ne dure
pas assez longtemps pour abimer quoi que ce soit, le bistable prend vite la nouvelle valeur.

Cecis permet de passer de 18 transistors (un flip-flop avec write enable) a 8 (2 par inverseur, 2 par
porte de transmission) par bit de mémoire statique. Mais c’est navrant, on s’éloigne de plus en plus de la
belle logique booléenne.

A W:
DI/ —
: DI, DI, DL DI DI, ;| DI,
WE = ---- -

| 0N D 01 0 010
: v e

N @{“%@
| Q%Q Q%Q Q%Q
ENq

ENo>— ] |

o o o

FIGURE 4.10 — Mémoire statique utilisant des portes de transmission

Mémoire adressable a bus de donnée bidirectionnel

La porte de transmission nous permet aussi de faire passer Dataln et DataOut sur le méme paquet
de fils, qu’on va alors appeler bus de donnée, ou Data. Les données peuvent aller dans un sens ou dans
l'autre sur ce bus (bus bidirectionnel). Pour cela, on définit (figure 4.11) un signal r/w qui donne la
direction de l'information.



4.2. MEMOIRE ADRESSABLE 49

Au front montant de I'horloge,
— en cas de lecture (si r/w = 1) le contenu de la case adressée est transféré sur le bus de données,
— en cas d’écriture (si r/w = 0) le contenu du bus de données est transféré dans la case adressée.

Address SN
Data <> RAM
/W —>

ck —

FIGURE 4.11 — Interface d'une RAM de 2% x m bits qui nécessite un bus 3-états

Le processeur qui est relié a cette mémoire produit le signal r/w, donc le connait : a I'intérieur de ce
processeur, on trouve également des portes de transmission qui relient le bus a des entrées de portes
quand r/W = 1, et a des sorties de portes lorsque r/w = 0.

Bref, on peut faire du travail propre avec des portes de transmission a condition d’avoir mis en place
un protocole qui garantit mécaniquement 1’absence de court-circuit.

4.2.3 Et pour des puces plus carrées

Nos dessins vont s’étirer lorsque k devient grand. Pour obtenir un circuit plus carré et néanmoins
régulier, on peut organiser nos 2¢ cellules mémoires en 2k1 lignes de 2%2 colonnes, avec k = k; + k,. Pour
retrouver une cellule, on découpe l'adresse en deux paquets de bits : les k; bits de poids fort donnent
I'adresse de la ligne, et les ky bits de poids faible donnent 1’adresse de la colonne dans la ligne. Le
décodage se fait alors avec un démux vertical de 1 vers 21, et un démux horizontal de 1 vers 2%2.

424 Mémoire dynamique

Notre Flip-Flop est assez cotiteux (une vingtaine de transistors dans la version propre, 8 transistors
dans la figure [4.10).

Un bit de mémoire dynamique est une simple capacité isolée du reste du monde par une porte de
transmission. Le controle de cette porte de transmission sera un unique démultiplexeur (celui de gauche
de la figure [4.8). Tous les bits de mémoire peuvent alors étre reliés a un bus partagé en lecture et en
écriture.

Avantage : c’est plus petit.

Inconvénient : la lecture est destructrice (elle vide la capacité donc met le bit a 0 s’il était a 1) : il faut
réécrire chaque bit juste apres 1’avoir lu.

De plus la capacité se décharge toute seule, lentement. Il faut donc la regénérer périodiquement en la
lisant puis en la réécrivant a la méme place. Pour ces deux raisons, une mémoire basée sur des capacités
est traditionnellement nommée dynamique.

Par comparaison, tous les flip-flops dérivés du bistable sont de la mémoire statique : on a beau les lire,
la valeur du bit est conservée. Et elle ne s’évapore pas avec le temps.

Les puces sur les barettes de RAM DDREI contiennent un tableau de bits extremement dense puisqu’il
n’y a plus qu'une capacité et une porte de transmission (voire une capacité et un transistor) par bit.
Et autour on y trouve la mécanique qui rafraichit périodiquement chaque ligne de mémoire (ne me
demandez pas a quelle fréquence). C’est rentable puisque le bouzin qui assure le rafraichissement
périodique d’"une ligne de mémoire a un cotit proportionnel a la taille d'une ligne (22 dans la notation
précédente), et donc reste petit devant la taille de la mémoire (2F1+%2),

4.2,5 Mémoire volatile ou non volatile

Les technos vues jusqu’ici (le flip-flop, et la capacité isolée par une porte de transmission) sont des
mémoires volatiles : quand on coupe 'alimentation, on perd 1'info.

On sait aussi faire des mémoires non volatiles : par exemple la surface d’'un disque dur, avec des
particules qui peuvent étre aimantées dans un sens ou dans 1'autre. Dans le CDRW on avait deux états
stables d'un alliage (amorphe ou cristallin).

4. Cherchez sur wikipedia lequel des D veut dire Dynamic.
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Dans un SSD (solid-state diskﬁ), on est en train de remplacer ces technologies par de la mémoire flash :
on isole la grille d’un transistor, et on y piege des électrons par claquage. C’est une mémoire statique
et non volatile, haute densité, a lecture non destructrice (puisque le transistor reste bloqué ou passant).
Inconvénient : ’écriture est relativement lente (haute tension), et use la cellule (seulement de 1’ordre de
100 000 cycles d’écriture).

Actuellement, il y a pas mal d’agitation pour trouver la mémoire “idéale” :

— petit point mémoire

— rapide

— non volatile, 10 ans de rétention d’information

— résistante a 10'° cycles de lecture/écritures

— pas chere a construire
Aucune des solutions existantes (googlez MRAM, FeRAM, RRAM, etc.) ne réunit toutes ces qualités...
mais il y a un gros gros marché pour le premier qui y arrive.

4.3 Mémoires a accés séquentiel : piles et files

4.3.1 File ou FIFO (first in, first out)

On appele aussi la file : tampon ou buffer, parfois queue (qui marche dans les deux langues). C’est
une primitive extrémement importante dans un systéme informatique complexe : chaque fois que
deux composants interagissent selon des rythmes différents, on met de I’huile dans leurs relations en
introduisant un tampon qui introduit 1’élasticité nécessaire.

Par exemple, lorsque votre carte réseau recoit un paquet de données, elle les entasse dans un tampon
en attendant que le bus vers la mémoire du PC se libére (tout en signalant qu’elle a besoin du bus). Quand
le bus se libérera, elle pourra vider le tampon sur ce bus beaucoup plus vite qu'il se remplit. Il y a toute
une branche de recherche sur le dimensionnement des files d’attentes.

En matériel un exemple d’interface de buffer est la figure Notez les deux horloges, qui illustrent
bien que le producteur et le consommateur ne vivent pas au méme rythme. On peut imaginer que la
lecture est combinatoire (on trouve sur DataOut la téte de file) et que CkOut se lit “Donnée suivante,
SVP”. C’est bien une horloge car elle change l'état interne du buffer. Cela dit on peut aussi avoir une
seule horloge et deux enable.

4.3.2 Pile ou LIFO (last in, first out)

... ou stack en Australien.

L’interface est vraiment identique, comme quoi l'interface ne suffit pas a décrire le comportement
d’un composant.

Cette primitive est trés importante en programmation, mais on a en fait rarement besoin du composant
matériel illustré par la figure[4.13]

4.3.3 Construction de piles et files

La construction de ces primitives est laissée comme un exercice pour le lecteur... mais quand il aura lu
les deux chapitres suivants.

En effet on ne sait pas faire tellement plus intelligent que les construire autour d’une mémoire
adressable.

Pour une pile, on ajoute un registre pointeur de pile, et un additionneur qui ajoute 1 (pour un push)
ou -1 (pour un pop).

5. Bof. Les disques durs étaient déja essentiellement composés de solides. Ici la notion importante est qu’il n’y a plus de piece
mobile.

full ~— —> empty
Dataln —~ Buffer —> DataOut
CkIn — [«~— CkOut

FIGURE 4.12 — Exemple d’interface d’'un buffer
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full <— - empty
Dataln —~ Stack —~> DataOut
push —| l«— pop

FIGURE 4.13 — Exemple d’interface d’une pile

Pour une file on a deux registres (un pointeur vers 1’entrée et un vers la sortie) et deux additionneurs
qui ajoutent 1 a I'un ou l’autre de ces registres. Les pointeurs se courent apres modulo 2" (ot  est le
nombre de bits d’adresse de la mémoire). On détecte les situations full et empty par des comparaisons
des deux registres.

4.4 Meémoires adressables par le contenu

En anglois, Content Addressable Memory ou CAM.

Analogie avec le dictionnaire. On ne veut pas retrouver I'information qu’on connait déja (la clé, ici un
mot) mais une autre information qui y est associée (la définition). En général, on a dans une mémoire
adressable par le contenu des couples (clé, valeur).

Primitives :

— rechercher(clé)

— insérer(clé, valeur)

arbitrage si clé est déja présent

— supprimer(clé)

Il'y a des variations suivant les stratégies de remplacement, et en général en fonction de la maniére
dont on les construit.

Normalement vous verrez I'implémentation de ces choses la en logiciel.

On discutera I'implémentations matérielle des CAM quand on en aura besoin (dans le chapitre sur la
hiérarchie mémoire).

4.5 Disques (*)

Cette section sera bientdt obsolete.

Piste, secteur.

Temps d’acces (qq ms), débit (qq Mo/s).

Les disques sont de petits objets sensibles plein de pieces mouvantes et fragiles. Solution : disques
RAID (redundant array of inexpensive disks). Pour vous faire utiliser des codages redondants.

4.6 Une loi fondamentale de conservation des emmerdements

Comme l'illustre la table une mémoire de grande capacité est lente; une mémoire rapide est
limitée en taille, et cheére.
Ce n’est pas juste une question de compromis technologique (par exemple statique contre dynamique), c’est
aussi une question de complexité algorithmique :
— plus votre mémoire a une grande capacité, plus elle est étendue dans I'espace, et donc plus déplacer certains
de ses bits vers la sortie (méme a la vitesse de la lumiere) prendra du temps;
— pour une mémoire de capacité n, le décodage d’adresse utilise log, n étages d’aiguillages : plus votre mémoire
a une grande capacité, plus I'acces sera lent.

Type temps d’acces capacité typique
Registre 0.1ns 1 a 128 mots (de 1 a 8 octets)
Mémoire vive 10-100 ns 4 Goctets
Disque dur 10ms 100Goctets
Archivage 1mn (illimité)

TABLE 4.1 — Hiérarchie mémoire simplifiée d'un ordinateur de 2010. Voir la table pagepour la version complete.



52 CHAPITRE 4. MEMORISER L'INFORMATION

Remarques :
— Cette tablel4.1]est tout entiere victime de la loi de Moore.
— Le cotit de chaque étage est grosso modo équivalent. Le cotit par octet est donc exponentiel par
rapport a la vitesse d’acces.
On verra plus tard (au chapitre [13) comment construire des mécanismes qui donnent l'illusion que
que toute la mémoire vive est aussi rapide que les registres (mémoire cache) et aussi grande que son
disque (mémoire d’échange ou swap).



Chapitre 5

Circuits séquentiels synchrones

On a vu au chapitre B comment implémenter des fonctions booléennes sous forme de circuits combina-
toires. Je ré-insiste lourdement sur le fait que ce sont des fonctions au sens mathématique (f : x — f(x)),
c’est-a-dire sans mémoire. Leur sortie ne dépend que de l’entrée, pas de ce qui s’est passé avant.

On a vu au chapitre 4| comment construire des mémoires.

Dans ce chapitre, nous allons fusionner tout cela pour construire des circuits plus généraux, mélant
calcul (combinatoire) et mémorisation. On appellera de tels circuits des circuits séquentiels.

5.1 Quelques exemples de circuits séquentiels

Voici des exemples de circuits qui sont séquentiels et non pas uniquement combinatoires :
— Un compteur, obtenu en reliant un additionneur et un registre de n bits, comme illustré sur la
Figure[5.1] Dans le cycle de von Neumann, le PC avance grace a un circuit similaire.

1
Additionneur
X+ 1 n bits
ck —p> Registre
rst x

FIGURE 5.1 — Compteur automatique de moutons pour s’endormir plus vite (patent pending). Il a déja compté jusqu’a x
moutons et s’appréte a compter le x + 1-iéme.

— Votre montre a quartz numériqueﬂ est pleine de compteurs : un pour les secondes, un pour les
minutes, etc. C'est un circuit séquentiel.

— Le circuit caché derriere votre digicode. Il doit se souvenir des chiffres déja tapés; il a une mémoire,
c’est un circuit séquentiel.

— la mémoire adressable du chapitre précédent a évidemment une mémoire

— Votre téléphone, votre console de jeux, votre PC sont des circuits séquentiels.

Bref, la classe des circuits séquentiels est la plus générale.

5.2 Restriction aux circuits séquentiels synchrones

Dans tout ce cours, on va faire une grosse restriction sur les circuits séquentiels : ils ne devront avoir
qu'une seule horloge. Plus précisément, les entrées d’horloge de tous les registres binaires devront
utiliser le méme signal d’horloge. La classe de circuits obéissant a cette restriction est la classe des circuits
séquentiels synchrones.

Remarque : il y a n registres binaires cachés dans la Figure|5.1} et ils utilisent bien tous le méme signal
d’horloge.

La raison de cette restriction est qu’elle rend les circuits infiniment plus facile a concevoir, comprendre,
vérifier et fabriquer. La preuve : vous allez apprendre a faire tout cela dans les pages qui suivent.

1. Une vachté de chouette idée...

53
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Ce n’est pas une restriction pédagogique : I’écrasante majorité des circuits manipulés dans l'industrie
sont des circuits synchrones. En effet, 'industrie aussi veut comprendre les circuits qu’elle fabrique,
pour fabriquer des circuits qui marchent. Sans cette restriction, on arrive vite a des circuits séquentiels
indébuggables, illisibles, imprévisibles, et en général mal élevés. La raison principale en est qu’on ne
peut se permettre d’avoir des transitoires qui ajoutent des fronts sur I’horloge (on a parlé des transitoires
p-B4).

On observe au passage que les circuits séquentiels contiennent des parties qui sont des circuits
combinatoires (par exemple I'additionneur sur la Figure[5.1). On continue  s’interdire, dans ces parties
combinatoires, ce qui était interdit jusque la (brancher deux sorties ensembles, faire un cycle). Par contre,
on se permet des cycles dans les circuits séquentiels, a condition qu’il y ait au moins un registre sur
chaque cycle. Remarquez que c’est le cas de la la Figure 5.1}

Un circuit séquentiel qui n’est pas synchrone On peut construire un compteur uniquement en branchant
entre eux n flip-flops. Je le dessinerai au tableau uniquement, pour étre siir que vous ne le retenez pas. Il n’est
pas synchrone bien qu’il n’ait qu'une seule horloge en entrée, parce que les entrées d’horloge de certains registres
n’utilisent pas cette horloge. Il est plus économique que le compteur de la Figure[5.1, mais il a aussi des défauts :
— Il n’est pas du tout évident que c’est un compteur en le regardant (alors que la Figure[5.1]se comprend
vite).
— Comment le transformer en un compteur qui revient a 0 quand il atteint 60 (pour votre montre a quartz
numérique) ? Sur la Figure on ajoute un comparateur a 60 et un multiplexeur et c’est dans la poche.

Désormais, on se permettra de dire “circuit synchrone” au lieu de “circuit séquentiel synchrone” qui
est, du reste, redondant.

5.3 Correction et performance

Observons ce qui se passe lors d'une transition sur 1’horloge dans un circuit synchrone, par exemple
notre compteur.

Partons d"un front montant de I’horloge unique. Comme tous les registres utilisent ce signal d’horloge,
toutes les sorties de registres basculent en méme temps. Ces sorties de registres sont les entrées de la
logique combinatoire qu'il y a entre les registres. A partir de cet instant, les informations font la course en
se propageant dans ces parties combinatoires. Le chronogramme de la figure [5.3|décrit le déroulement de
cette course. Pour la comprendre, il faut regarder la figure[5.2} copiée de la page 37, qui montre comment
est construit ’additionneur.

Toutes les entrées de cet additionneur basculent au méme instant (par exemple au premier front
montant de clk sur la figure[5.3). Un peu plus tard, le bit s se stabilise, puis le bit s; et ainsi de suite.
En effet, chaque FA doit attendre que son entrée de retenue (c;) soit stabilisée, donc que le FA a droite
soit stabilisé. On a donc une propagation de la retenue dans I'additionneur, avec des transitoires sur les
sorties. Ces transitoires sont difficile & prévoir, et comme elles ne nous intéressent pas, on les dessine juste
comme du gris sur la figure[5.3).

Mais au bout d’un certain temps, les sorties de ’additionneur sont toutes stabilisées. On est alors
dans la situation décrite sur la figure [5.1]: il y a une valeur x en sortie des registres, et une valeur x + 1
en entrée des registres. Au front suivant de ’horloge, tous les registres basculeront en méme temps. La
valeur x + 1 sera alors stockée dans les registres, donc présentée a leur sortie, et un nouveau cycle pourra
commencer.

X7 Y7 X6 Yo X5 Y5 X4Y4 X3Y3 X2 Y2 X1Y1 X0 Yo
v P V | v P V |
rFAHFAHFA&FA%FAHFAHFA&FA%%

! ) ) ! ! ) ) !

Cout = S8 57 S6 S5 54 53 52 51 50

FIGURE 5.2 — Rappel : I'intérieur de la boite “Additionneur” de la ﬁgure

Il'y a deux conditions pour que ce compteur fonctionne comme décrit.

— 1l faut que tous les registres basculent en méme temps.

— Il faut que le délai entre deux fronts montants de I'horloge soit plus grand que le temps de calcul
au pire cas de notre additionneur.
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FIGURE 5.3 — Chronogramme détaillé de de qui se passe dans le compteur. Le gris signifie “inconnu” ou encore “transitoires
possibles”.

On a déja parlé p.[34/du chemin critique dans un circuit combinatoire : ¢’était le chemin (a travers
des portes et des fils) le plus long, c’est-a-dire qui va propager l'information le plus lentement. On
généralise cela aux circuits synchrones : on appelle chemin critique d’un circuit synchrone le plus long
chemin combinatoire, autrement dit le plus long chemin (toujours en terme de temps de propagation de
I'information) entre une sortie de registre et une entrée de registre. Sur 'exemple du compteur, c’est le
temps d’une propagation de retenue au pire cas, illustrée sur le chronogramme.

Le délai entre deux fronts montant d’horloge, c’est I'inverse de la fréquence d’horloge (le fameux
3GHz de votre PC). Au bout du compte, c’est donc le chemin critique qui définit la fréquence maximale a
laquelle fonctionnera correctement le circuit.

Oui mais la perfection n’existe pas Bien sur, en pratique on ne peut pas physiquement garantir que tous les
registres basculent en méme temps : on aura toujours un 6t d'incertitude, due a des différence entre les longueurs
des fils, la variabilité du processus de fabrication du circuit, etc. Qu’a cela ne tienne, on va borner cette incertitude,
et il suffira d’ajouter ce ot au chemin critique : la condition pour que le circuit fonctionne devient “chemin critique
+ 0t < période d’horloge”.

Maintenant, considérons un circuit séquentiel synchrone compliqué, par exemple la puce de votre
pléstation dualscrine. Il a des entrées (les boutons de la console entre autres), des sorties (les pixels de
I’écran entre autres), et plein de registres a I'intérieur. Et entre les registres, plein de portes branchées les
unes aux autres. Eh bien le fonctionnement est similaire : tous les registres basculent en méme temps.
L'information fait la course dans les portes entre les registres. Au bout d'un certain temps elle est stabilisée.
Ce temps s’appelle le délai du chemin critique. Alors on peut basculer I'horloge pour attaquer un nouveau
cycle.

Si on prend un peu de recul, les conditions que nous avons imposées sur les circuits séquentiels
synchrones permettent de cacher toutes les transitoires. Si on n’observe que les valeurs stockées dans
les registres, ce qu’on voit est le résultat des fonctions booléennes, on a completement caché leur
implémentation. On peut ainsi raisonner sur un circuit, y compris séquentiel, en terme de fonctions
booléennes. C’est bien, parce que c’est abstrait et que cela cache tous les sordides détails d'implémentation.

C’est comme cela qu’on arrive & construire des circuits séquentiels comportant des milliards de portes,
et qui marchent quand méme.

Pourquoi on impose que tous les registres ont la méme horloge Si on commence a se permettre de
mettre des portes sur une entrée d’horloge d'un registre, on va devoir tenir compte de leur délai. On peut essayer
de faire comme pour notre 6t : calculer le chemin critique des portes qui sont sur I'entrée d’horloge, et 'ajouter
séparément aux délai des chemins qui partent de ce registre, mais pas aux autres... C'est faisable mais vous voyez
que cela devient vraiment compliqué. Et surtout, si on veut appliquer une certaine fonction booléenne sur un
signal d’horloge, il faut absolument éviter la moindre possibilité de transitoire dans I'implémentaiton de cette
fonction : une transitoire sur une horloge, en ajoutant un front, ruine tout. Il faudra étre trés convaincant qu’il y a
quelquechose a gagner. Dans le doute, je vous invite i n’envisager que des circuits dans lesquels tous les registres
ont la méme horloge.

On assure le synchronisme par la construction d"un arbre d’horloge équilibré : des qu’on a de nombreuses
entrées d’horloge a alimenter avec le méme signal, il faut I'amplifier, par un arbre d’inverseurs. Un
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inverseur typique est capable d’alimenter 4 entrées rapidement, au dela de 4 sa performance chfite : on
dit qu'un tel inverseur a un fan out de 4. Pour obtenir un arbre de distribution d’horloge équilibré a
I’échelle d"une puce rectangulaire, on le construit en arbre quaternaire, comme sur le dessin ci-dessous.

FIGURE 5.4 — Arbre d’horloge équilibré. Les ronds noirs sont des inverseurs

Révision : constatez qu’au chapitre précédent, la construction des registres avec reset et write enable
respecte la regle : pas de logique sur I’horloge.



Chapitre 6

Automates

On avait le formalisme de la logique booléenne pour construire les fonctions combinatoires.

Nous allons présenter dans ce chapitre un formalisme, les automatesﬂ, qui permet de décrire, vérifier,
et méme construire automatiquement des circuits séquentiels.

Les automates sont une abstraction facile a dessiner du comportement attendu d’un circuit. Le compor-
tement, c’est ce qu’on peut décrire de plus abstrait! De ce point de vue, ’automate est le pendant d"une
fonction booléenne, qui décrit le comportement d’un circuit logique combinatoire.

6.1 Un exemple

Essayons de spécifier le comportement d'un circuit de commande d’un passage a niveau en Russie,
entre les villages de Krasniy Kirpitchnik et Kamenki (emplacement choisi parce que c’est une voie unique
ol peuvent passer des trains dans les deux sensﬂ on n’a plus cela chez nous). On place des capteurs CG
et CD assez loin a gauche et a droite du passage a niveau. Ce sont de simples interrupteurs déclenchés
par le poids d’un train : ils renvoient un signal logique 0 quand la voie est libre, et 1 lorsqu’il y a un train
dessus. On a par ailleurs un feu rouge, également abstrait par un booléen A (comme ampoule) : A =0
éteint; A = 1 : allumé.

€. 2

Kp. Kupnu4Humk g

KamMeHKkun

FIGURE 6.1 — Le communisme, c’est les soviets plus I'électrification des passages a niveaux.

1. Le vrai nom est automate a nombre fini d’états, parfois mal traduit en automate d’états fini, de I'anglais finite state automaton (c’est
I'automaton qui est fini, pas le state), ou encore finite state machine. Tout ceci pour dire que vous verrez parfois les acronymes FSM ou
FSA.

2. C’est la : https://www.google.com/maps/dir/56.0402444,43.8462165/@56.039808,43.8463786, 720m/.
data=!3ml!le3
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On aimerait que le feu s’allume lorsque le train s’approche, et s’éteigne lorsque le train est passé.
Convainquons nous qu’on ne s’en tirera pas par une simple fonction combinatoire des capteurs. Par
exemple, parfois il passe de simples locomotives : il faut que notre circuit se souvienne de garder le feu
allumé tant que la locomotive n’a pas quitté le second capteur.

La figure[6.2|décrit I’automate correspondant (seule une moitié a été complétement spécifiée, car c’est
un poly interactif : vous devez gribouiller I’autre moitié pour vérifier que vous avez compris).

start

CG=1

CG=0 cG=1

FIGURE 6.2 — Mon premier automate. CG et CD sont les Capteurs Gauche et Droite. TVAG est I'abréviation de Train Vient
de Gauche. Completez vous-méme I'autre coté.

Les patates sont des états. Un état a un nom, par exemple PdT pour Pas de Train. Il spécifie également
les valeurs des sorties (ici on n’en a qu'une, A), par exemple A = 0 dans I'état PdT.

Entre les états, on a des fleches qui indiquent un changement d’état. On appelle ces fleches des
transitions. Une transition est étiquetée par I'événement qui déclenche le changement. Par exemple, on
reste dans 1'état Pas de Train tant que CG = CD = 0, et on passe dans l'état Train Vient de Gauche lorsque
le capteur gauche passe a 1.

Par convention, une fleche sur laquelle une entrée n’apparait pas signifie que la transition est prise
quelle que soit la valeur de cette entrée.

Attention, il y a désormais dans ce poly deux sens techniques du mot transition : on connaissait une
transition entre deux valeurs d’un signal (un front montant ou descendant), on a désormais aussi la
notion de transition d"un état a un autre.

Notez au passage que, comme pour les variables dans un programme, cela ne fait pas de mal de
donner des noms expressifs aux états, aux entrées et aux sorties.

Au tableau je montre I'automate du digicode, qui reconnait un code.

6.2 Définition formelle d’un systéme de transitions

6.2.1 Etats, transitions

Allons-y donc pour le formalisme. Un automate de Moore, ou systéme de transition (c’est-a-dire tels
qu’on les manipule en architecture) est un sextuplet (I,0,S, T, F, sp) ou

— [ est un ensemble fini des valeurs des entrées possibles,

— O est un ensemble fini des valeurs des sorties possibles,

— S est un ensemble fini d’états

— T est une fonction de transition de S x I — S,

— F est une fonction de sortiede S — O,

— sp € S est un état spécial appelé état initial, car il en faut bien un.

Attention, I et O ne sont pas les ensembles des entrées/sorties du circuit, mais I'ensemble des
combinaisons de valeurs qu’elles peuvent prendre. Par exemple si le circuit a n entrées binaires, alors
I={0,1}"

On fait des dessins (dont la figure[6.2|est un glorieux exemple) avec

— des patates pour les états, qu’on étiquette avec le nom de 1’état, et dessous la valeur de F corres-

pondante
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— des fleches d’un état s & un état s’, qu’on étiquette avec une valeur x des entrées, chaque fois que
T(s,x) =5
Ces dessins s’appellent chez les gens sérieux des diagrammes états/transition, ou des diagrammes
d’états.

6.2.2 Définition en extension des fonctions de transition et de sortie

Les deux fonctions sont des fonctions discrétes, c’est-a-dire avec un nombre fini d’entrées et de sorties
possibles. On pourra donc les définir en extension, en listant leurs valeurs dans une table. C’est pourquoi
on parle toujours d’automate fini. Par exemple :

| s [ x=(CG,CD) [ s’=T(s,¥) |

PdT 00 PdT
pPdT 01 TVdD ’ S H y=F(s) ‘
PdT 10 TVdG PdT 0
PdT 11 XXX TVdD 1
TVdD 0X TVdD TVdD2 i
TVdD 1X TVdD2
TVdD2 1X TVdD2
TVdD2 0X PdT

Que signifie le X dans ces tables ? 1l signifie don’t care, ce qui peut se traduire par “on s’en fout”.
Mais attention, cela ne veut pas tout-a fait dire la méme chose quand le X est en sortie de la table, et
quand il est en entrée.

En entrée, on metun “X” sur une valeur d’entrée pour dire “quelle que soit la valeur de cette entrée”.
Dans notre exemple, pour chaque état, on devrait considérer les 4 combinaisons de valeurs possibles de
nos deux capteurs. Mais dans I'état TVdD, le dessin a patates n’a que deux fleches. Il est donc incomplet.
Dans la table de transition, on a précisé, par exemple qu’on prend la transition qui boucle de TVdD a
lui-méme tant que CG vaut 0, quelque soit la valeur de CD. En effet c’est bien ce qu’on veut : a partir du
moment ou un train vient de la droite, le feu est allumé, et ce qui nous intéresse est de savoir quand on
I'éteindra. Et ce ne sera pas lorsque CD passe a 0, mais lorsque CG passera a 0. Mais avant CG doit passer
al:c’est cet évenement qui déclenchera la seule transition sortant de TVdD. Peut-étre qu’a ce moment
CD sera déja repassé a 0 (train court) ou pas encore (train long), mais on s’en fout.

En pratique, un don't care en entrée peut étre remplacé par une énumération des transitions qu’il élide.

s TvdD | 00 || TVdD
TVdD | 0X || TVdD |signifie exactement TvaD To1 T TVdD

Par exemple,

En sortie (des fonctions T ou F), le “don’t care” est plus fort... et plus dangereux. Il signifie “cette
situation n’arrivera jamais, donc n’importe quelle valeur fera l'affaire”. Par exemple, considérons la
quatrieme ligne de la table de T ci-dessus. On est dans 1’état “pas de train” avec les deux capteurs a 0, et
voila que tout a coup, les deux capteurs passent a 1 en méme temps. Cela signifie sans doute que deux
trains sont en train de se précipiter 1'un sur I'autre : il va bientdt avoir une épouvantable catastrophe
ferroviaire. Et donc, on s’en fout. En effet, ce cas ne doit jamais arriver. Autre point de vue : I’automate
peut bien se retrouver dans l’état qu’il veut, on aura d’autres chats a fouetter si deux trains se rentrent
dedans.

En sortie, le don’t care se lit donc plutdt “ce n’est pas mon probleme”, et vous voyez que pour
I'ingénieur que vous étes, cela peut étre dangereux. Dans 'exemple du feu rouge, il y a peut-étre plus
intelligent a faire. Par exemple, aller dans un état ot le feu est allumé, pour ne pas ajouter un petit
accident au gros. Ou bien aller dans un état “erreur” qui va faire venir un technicien. Parce que 1’allumage
des deux capteurs vient peut-étre aussi d’un faux contact quelquepart. Etc.

6.2.3 Correction et complétude d’un systeme de transitions

Revenons aux patates. On ne peut pas vérifier que votre automate répond bien aux spécifications
fonctionnelles de votre circuit. Par contre, on peut vérifier un certain nombre de propriétés sans lesquelles
il est forcément incorrect :

déterminisme : partant du méme état, il n’y a pas deux transitions qui arrivent dans des états
différents pour une méme valeur des entrées.
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complétude : dans chaque état,
— la valeur des sorties est définie.
— il y a une transition prévue pour chaque valeur des entrées (ftit-ce a I'aide de don’t care).

Ces deux propriétés sont vérifiables mécaniquement : il suffit d’essayer de construire complétement
la table de transition et la table de sorties.

Des que I grossit un peu (mettons I = {0,1}"™ pour fixer les idées) on doit obligatoirement avoir
|I| = 2™ transitions qui partent de chaque état pour que 1’automate soit complet. Bonjour le plat de
nouilles. Sur le dessin, il est alors naturel de regrouper ces transitions sur une seule fleche, étiquetée par
un sous-ensemble de I qu’on va (tout aussi naturellement) exprimer par une expression booléenne des
entrées du circuit qui capture ce sous-ensemble. C’est ce qu’on a fait implicitement sur la figure[6.2]: par
exemple I'étiquette CG = 1 capture 2 valeur de ’'ensemble I des entrées possibles (lesquelles?).

Mais attention, complétude et déterminisme ne seront pas triviales a vérifier sur le dessin si les fleches
sont étiquetées par des fonctions compliquées. Ce n’est vraiment pas grave : dés qu’on se lance dans
I'implémentation, toute incomplétude ou indéterminisme va nous sauter a la figure lors du remplissage
de la table de vérité de T et F.

6.3 Syntheése d’un automate synchrone

Il ne reste plus qu’a coder les états par des bits. C’est toujours possible puisqu’ils sont en nombre fini.
Par exemple, on peut numéroter les états, puis coder chaque état par la représentation binaire de son
numeéro. Alors, on peut remplacer s et s’ par des vecteurs de bits dans les tables ci-dessus. Ainsi, T et F
deviennent des fonctions booléennes. On sait donc les implémenter grace au chapitre

Et alors, on sait implémenter un automate par le circuit générique décrit par la figure

Qd»b Registre d’état |

FIGURE 6.3 — Implantation d'un automate synchrone. Notations : s est I'état courant, s’ est le prochain état, x est I'ensemble
des entrées, y est I'ensemble des sorties. Notez que le reset n’est pas considéré comme une entrée de I'automate : il
n’apparait pas sur les transitions, il est la traduction en matériel de I'état initial s.

Explication de ce circuit : au front montant de 1’horloge, I’ancien état s est remplacé par le nouvel
état s’. Lequel s’ est calculé par la fonction de transition T a partir de I’ancien état s et des entrées x. Par
ailleurs, les sorties sont calculées a partir de I'état s par la fonction F. C’est bien ce qu’on a dessiné avec
des patates.

Et on se rameéne a des choses qu’on connait bien : des flip-flops pour construire le registre d’état, et
des fonctions combinatoiresf]

Concretement et bétement, a partir d'un dessin de patates correct et complet,

— on choisit un codage des états sur k bits.

— on fait le dessin correspondant a la figure en nommant les bits d’entrée, les bits de sortie, et les

bits d’état.

— on trace le squelette de la table de vérité de T a partir de cela, en énumérant ses entrées possibles.

— on remplit les valeurs de T en suivant les patates du dessin de I’automate.

En fait il y a des tas d’outils automatiques qui feront cela pour vous.

3. Il nous faut des flip-flop avec reset pour pouvoir définir 1'état initial de 'automate. C’est facile a construire, il suffit de mettre
les portes qui vont bien devant 'entrée du flip-flop (reset synchrone).
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6.3.1 L’approximation temporelle réalisée par I’automate synchrone

Oui mais on a décrit 'automate comme si il changeait d’état dés qu'un capteur passe de 1 a 0.
Maintenant qu’on 1’a construit, on constate que ce n’est pas tout-a-fait le cas. Il change d’état au front
montant d’horloge suivant une transition des entrées. Ce n’est en général pas grave, il suffit d’avoir une
fréquence d’horloge assez grande pour que ce petit délai soit négligeable. Par exemple, les trains russes
roulant a 50km/h, notre circuit pourrait tourner a 100 Hz et ce serait bien assez. Or on sait le faire tourner
a 1GHz.

Par contre, on comprend a présent l'intérét de bien spécifier les transitions d’un état vers lui-méme :
dans notre exemple, ce seront les plus utilisées...

En pratique, il est souvent méme utile d’ajouter des registres sur les entrées et sur les sorties. Cela
permet de bien inclure tout F et tout T dans le calcul du chemin critique.

Pour avoir un circuit qui réagit vraiment instantanément a une transition sur une entrée, il faudrait
envoyer cette entrée sur 1’'entrée d’horloge d’un registre d’état. Mais si on permet cela, ce n’est plus
un circuit synchrone, et tout devient tout de suite beaucoup plus compliqué, comme vu au chapitre
précédent. Donc je persiste a vous l'interdire.

Les automates en UML  Vous avez peut-étre déja vu des diagrammes état-transition en UML — sinon cela vous
pend au nez. Dans ces diagrammes, les transitions sont déclenchées par des événements de maniere asynchrone.
Elles peuvent étre étiquetées par des actions, réalisées lors de la transition. Bref, c’est bien les méme concepts, mais
les automates UML sont plus généraux et ne sont pas tous traduisibles mécaniquement en la figure[6.3] Donc ne
pas mélanger.

Et pour finir, il subsiste un tout petit risque de metastabilité : si on a une transition d’une entrée trop
pres d’une transition d’horloge, certains registres peuvent se retrouver coincés entre le 0 et le 1. Cela passe
tout seul, mais parfois en plusieurs cycles d’horloge.. Ce risque est bien isolé, et peut étre minimisé par
des solutions technologiques dans le détail desquelles je ne me risquerai pas.

6.3.2 Optimisation d’un automate synchrone

La question de la minimisation de la fonction combinatoire, qui était déja un probleme difficile, I'est
encore plus ici, puisqu’on a un degré de liberté de plus : on peut choisir arbitrairement le codage des
états de I'automate par des vecteurs de bits.

Toutefois, ici encore, la connaissance du probleme permet souvent d’imposer un codage des états
qui va minimiser la complexité de la fonction de transition. Typiquement, il s’agit de remplacer le gros
automate par plein de petits sous-automates relativement indépendants (c’est a dire avec relativement
peu de transitions entre eux).

Exemple : une montre a quartz, d'un point de vue formel, est un automate & autant d’états qu’elle
peut afficher d’heures différentes (dans les 24 x 602, sans compter les jours et les mois). En pratique, il est
construit algorithmiquement par composition de petits automates a moins d’états, de taille totale en gros
24 + 60 + 60.

Chacun des sous-automates ayant moins d’états et moins d’entrées, la fonction de transition a moins
d’entrées, et est donc plus facile a minimiser.

Pour finir, on peut envisager deux extrémes pour le codage des états :

— les codage minimaux en termes de bits : on code n états par un vecteur de log, n bits.

— le codage a jeton (one-hot encoding) : on code n états par un vecteur de n bits.

Le second peut aboutir a un circuit plus petit si la fonction de transition s’en trouve tres simplifiée.

6.4 Comprendre les circuits séquentiels comme des automates

Nous sommes partis de I’automate-patates pour le construire sous forme de circuit synchrone. Mais
on peut aussi faire le contraire. ’exemple de la montre a quartz vu comme un automate a 24 x 60> états
peut étre généralisé : tout circuit séquentiel synchrone peut étre vu comme un gros automate. Remarquez
que notre compteur du chapitre précédent était un cas particulier de la figure

Par contre le nombre d’états possible devient vite astronomique (et indessinable) : si vous avez n
registres binaires dans votre circuit, alors vous avez 2" états possibles de ce circuit. Par exemple, votre
Pentium contient des dizaines de milliers de registres binaires. Tournez les pages vers I'introduction de

4. Amis gamerz, désormais, quand votre petite sceur vous met une péatée a KickFighter XVII, vous pourrez accuser la metastabilité
dans votre manette de jeu chaque fois que vous serez en retard sur une action...



62 CHAPITRE 6. AUTOMATES

ce poly : tous les atomes de 'univers ne suffiraient pas a faire une feuille de papier assez grande pour
dessiner 210900 patates.
Cette vue est cependant parfois utile, par exemple pour tester les circuits.

6.41 Lanorme JTAG

Comment teste-t-on un Pentium a 219 0% gtats avant de le mettre en boite?

Bien stir, on pourrait lui faire booter Linux puis Windows et jouer un peu a Quake dessus, et on se
dirait qu’on a tout testé. Mais cela prendrait de longues minutes par puce, et le temps c’est de 'argent.
Voici une technique qui permet de tester toute la puce en quelque centaines de milliers de cycles seulement
(exercice si vous trouvez que c’est beaucoup : comptez combien de cycles a 4GHz il faut pour booter
Linux en 20s).

On consideére 'ensemble du Pentium comme un gros automate selon la figure Dans cette figure,
le registre d’état contient tous les registres de la boite a registres, tous les registres de pipeline, et méme
tous les registres de I’automate qui controle le Pentium. L'état du processeur, quoi.

On ajoute un tout petit peu de circuiterie pour faire de I'ensemble des 10 000 registres binaires un
unique immense registre a décalage. C’est une transformation automatique qui est décrite par la figure
ci-dessous :

Le registre d’état de la figure avant... ... et apres sa transformation en JTAG
B
R R
s
test
1
R R
— 0
test
{
| !
!
!
!
!
!
1
R R
— 0

TestDataln test TestDataOut

Avec tout cela, on peut, en 10 000 cycles, mettre le circuit dans un état quelconque. On peut également,

toujours en 10 000 cycles, lire I'état complet du processeur.

Une fois ceci en place, on teste le circuit comme ceci :

— On met fest a 1, puis on pousse un état connu, pas forcément utile, dans le processeur.

— Puis on met test a 0, et on fait tourner le processeur pendant quelques centaines de cycles.

— 1l fait sans doute n'importe quoi, mais ce n’est pas grave.

— On remet fest a 1, et on sort 1’état complet du processeur (tout en poussant un nouvel état a sa
place).

— On compare I’état obtenu avec I’état dans lequel doit étre le processeur si chacune de ses portes
fonctionne correctement (obtenu par simulation).

— Et on recommence plusieurs fois, avec des états construits pour faire fonctionner tous les transistors
de I'énorme fonction T — pas forcément des états dans lequel le processeur peut se trouver en
fonctionnement normal.

Tout ceci est méme normalisé par le Joint Test Action Group que vous avez peut-étre croisé sous le

nom de JTAG.
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start — Decode

FIGURE 6.4 — Tiens, au fait, voici un automate simplifié pour le cycle de von Neumann. On le complexifiera dans la suite, par
exemple parce que I'état “execute” sera décomposé en plusieurs sous-états, et le chemin pris dépendra de I'instruction a exécuter.

Mais ce n’est pas tout : une fois le circuit construit et emballé, on peut toujours utiliser ces nouvelles
broches. En utilisant ce mécanisme, on peut observer ou changer la valeur de n’'importe quel registre
du processeur en quelque dizaines de milliers de cycle : on lit I’état, on change les bits qu’on veut, et on
réécrit 1’état modifié.

C’est comme cela que vous pouvez, en TP, observer dans un debugger ce qui se passe a l'intérieur
d’un processeur ou d'un FPGA, a condition d’y avoir branché une “sonde JTAG”.

6.4.2 Equivalence de circuits

Un autre probleme, plus ou moins théorique, qui bénéficie de la vue d"un circuit comme un automate
est ’équivalence de circuits. On dit que deux automates sont équivalents si, vu comme des boites noires,
ils sont indiscernables. Formellement, pour toute suite de transitions sur les entrées, les deux automates
donnent la méme suite de transition sur les sorties.

6.5 Conclusion :1l'ingéniérie des automates

En résumé, tout automate peut étre traduit en un circuit synchrone d’une infinité de maniere. Tout
circuit synchrone peut aussi étre vu comme un automate d’une infinité de maniere.

Etant donnée la spécification d’un fonctionnement, il y a de bonnes et de mauvaises maniéres de
dessiner un automate qui I'implémente. Un bon automate aura le moins d’états possibles, ou bien une
fonction de transition simple. Il faut commencer par décomposer un fonctionnement compliqué en plein
de petits automates simples, les entrées des uns étant les sorties des autres. Voir la montre a quartz.

L’encodage des états est important, et il faut y penser dés avant les patates. Par exemple on ne
dessinera pas les 2" patates pour le compteur, on dessinera directement la boite noire parce qu’on sait
I'implémenter intelligemment.. Pour un automate plus aléatoire, on pourra chercher les encodages des
états qui rendent la fonction de sortie F triviale.

Bien qu’on ait des outils presse-bouton qui transforment les patates en circuit, il faut donc quand
méme de bons ingénieurs pour bien les utiliser.

Parenthese culturelle : il n’y a pas des automates qu’en circuit et en UML Les grands théoriciens des
automates n’ont pas été les architectes mais les théoriciens du langage. En effet, dans vos compilateurs, c’est un
automate qui reconnait un mot clé (il ressemble vraiment au digicode). C’est aussi un automate qui reconnait
un nombre entier, un nombre en virgule flottante, un nom de variable. C’est méme un automate (d’un type un
peu plus compliqué) qui valide la syntaxe de tout votre programme. En théorie des langages, les automates n’ont
pas vraiment d’action a réaliser, mais ils ont des états finaux (ou acceptants) et leur seule entrée est le prochain
caractere du langage a reconnaitre. De plus ils ne sont pas synchrones : ils réagissent au caractére suivant de la
séquence d’entrée, sans attendre un front d’horloge. En fait ils n’ont pas d’horloge.

Nos automates en archi sont différents surtout en ce qu’ils auront des actions a faire (des sorties), et qu’on ne
distingue pas certains états comme étant finaux/acceptants : ils tournent a l'infini.

Vous verrez tout cela dans le cours “Grammaires et langages” en 4IF.
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Chapitre 7

Transmettre

7.1 Medium

Fil electrique, fréquence radio, fréquence lumineuse, rail avec des billes.

Notion de canal : vision logique du medium.

Notion de multiplexage : on envoie plusieurs canaux logiques sur un canal physique. Multiplexage
temporel, multiplexage en fréquence...

Notion de débit (quantité d’information par unité de temps) et de bande passante d’un canal (quantité
d’information pouvant passer en méme temps dans le canal).

7.2 Liaison point a point

7.2.1 Série ou parallele

Utilisation du temps, ou utilisation de I'espace. En général on combine intelligemment les deux : sur
une liaison parallele on envoie tout de méme les données en série!

Exemples : RS232, 12C, USB pour le pur série.

Jadis il y avait un “port centronics” a I’arriére des ordinateurs, il avait plein de broches parce que
c’était un port parallele qui transmettait 8 bits par cycle. De nos jours, on n’a plus que des bus série
(universal serial bus) pour deux raisons toutes bétes : 1/ il y qu’un fil de donnée, c’est moins cher et 2/ il
n’y a pas a synchroniser plusieurs fils, c’est moins chiant.

Il reste des liasons paralleles en fond de panier de votre PC (entre le processeur et la mémoire). La
synchronisation de tous ces fils est toute une poésie.

7.2.2 Protocoles

Sionn’a qu'un seul canal binaire pour transmettre des données entre un émetteur et un récepteur, tout
ce qu’on sait faire c’est faire passer ce canal de 1 & 0 puis de 0 a 1. Si on enléve l'information temporelle,
on n’observe que 1010101010101010101...

Une communication suppose donc une synchronisation (partage du temps en grec dans le texte).

Une solution est qu’émetteur et récepteur aient chacun une horloge suffisamment précise, et se soient
mis d’accord a l’avance sur les instants auxquels telle et telle donnée sont transmises. Ceci s’appelle un
protocole de communication.

Une solution plus simple est d’avoir deux canaux binaires (au moins) entre émetteur et récepteur.
L'un pourra faire passer le tic-tac d"une horloge, par exemple. Avec un seul canal mais au moins ternaire,
c’est aussi possible. Mais dans tous les cas il faudra un protocole qui définit comment les données sont
emballées, comment commence un paquet de donnée, etc.

Maitre et esclave

Notion de maitre (celui qui donne les ordres) et d’esclave (celui qui obéit). En vrai, les deux sont
1. totalement esclaves du protocole (sinon la communication ne se fait pas), et
2. pour certains protocoles qu’on va voir, totalement libres de trainer aussi longtemps qu’ils veulent

Bref, le maitre est juste celui qui est a I'initiative de la communication.
Le maitre peut tourner, mais a un instant donné il vaut mieux qu’il n’y ait qu'un seul maitre.
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Data

Y

Request

Emetteur = Recepteur

Acknowledge

FIGURE 7.1 — Deux entités papotent en utilisant un protocole handshake. La donnée est une information d’état, alors que R et
A portent des informations temporelles (changement d’état). Les fleches indiquent une causalité : elles sont fatalement de gauche
a droite. En termes d'implémentations, Récepteur et Emetteur sont des automates : amusez vous a les dessiner.

Remarque du 21éme siécle Les protocoles maitres / esclaves c’est super alors que l'esclavage c’est
nul. Pour ne pas faire d’association positive a 1’esclavage, ces derniers temps on essaye de remplacer les
termes de maitre et esclave par d’autres termes : il y a toute une poésie que vous irez lire sur wikipedia.

Et en attendant le poly reste sur une terminologie qui ne fait I’apologie de 'esclavage que lorsque ce
sont des circuits logiques qui sont esclaves. Car rappellons-le, I'esclavage c’est mal.

Protocoles synchrones

Utilisation du temps.

Exemple 1 : envoi d'une donnée de maitre a esclave, au moyen de deux canaux. Le mafitre positionne
la donnée sur 1'un, puis positionne 1’autre canal, que nous appelerons “donnée préte” et qui valait 0, a 1
pendant 1 pataseconde, et puis de nouveau a zéro. 1l sait que 1'esclave lui obéira et aura lu la donnée au
bout d’une pataseconde : c’est son esclave.

Exemple 2 : réception d’une donnée par le maitre. Le maitre positionne un signal “demande de
donnée”. Au bout de 1 pataseconde, il lit la donnée sur I'autre canal. Il sait que 1’esclave aura obéi dans
ce laps de temps.

Exemple 3 : deux fils dont un est un tic tac, envoi d’octets commengant par 10 (pour marquer le début
d’un octet) puis 8 bits, puis parité pour la détection d’erreur.

Exemple 4 : Manchester encoding (ethernet) : 0 est codé par 0 pendant une pataseconde puis 1 pendant
une pataseconde, 1 codé par 1 puis 0. Ainsi le recalibrage de I’horloge est inclus.

Ce type de protocole ne marche pas avec les circuits Insaliens. D’une part ils sont toujours en retard
quand ils sont esclaves, d’autre part ils veulent tous étre maitre en méme temps. C’est pourquoi on a mis
au point des protocoles asynchrones.

Protocoles asynchrones

Protocoles qui ne font pas d’hypothese sur les durées de transmission des signaux.

Archétype : protocole handshake pour “secouons nous les mains” en Breton. Il faut trois canaux : un
de données (D), un de demande (R comme request), un d’acquittement (A comme acknowledge) (voir
figure [7.1).

Au repos, tout le monde est a 0.

Scénario 1 : une transmission pilotée par 'émetteur (c’est-a dire que 1’émetteur est le maitre). L'émet-
teur écrit sur R et D et lit sur A, le récepteur c’est le contraire.

— émetteur : “Voici une donnée” (positionne D, puis léve R, et le laisse & 1 jusqu’a nouvel ordre).

— récepteur : voit R levé, range la donnée ou il faut, puis dit “Bien recu Chef” (leve A, et le laisse

levé jusqu’a nouvel ordre).

— émetteur : voit A se lever, dit “Brave petit” (baisse R, puis attend la baisse de A avant de recom-

mencer).

— récepteur : voit R se baisser, dit “ce fut un plaisir Chef” (baisse A et attend un nouvel ordre).
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Attention, ici '’émetteur a l'initiative de la transmission, mais n’est pas maitre de tout. Par exemple, il
ne peut pas baisser R tant que le récepteur ne lui autorise pas en levant A.

On peut faire un handshake a l'initiative du récepteur (c’est-a dire que c’est le récepteur le maitre) : R
signifie & présent “envoie une donnée SVP”. C’est le récepteur qui écrit sur R et lit sur A (et toujours sur
D), et I'émetteur écrit toujours sur D mais lit sur R et écrit sur A.

Au repos tout le monde est a zéro.

— Récepteur leve R.

— Emetteur positionne la donnée, puis leve A.

— Récepteur traite ou range la donnée, puis baisse R.

— Emetteur baisse A.

— Récepteur voit A descendre, et sait qu’il peut demander une nouvelle donnée.

Il'y a quand méme une hypothese temporelle derriére ce protocole, c’est que quand on écrit “émetteur
positionne la donnée puis léve A”, cet ordre temporel sera respecté & 1’arrivée au récepteur. Si le systéme
physique respecte cette hypotheése, on peut d’ailleurs aussi bien envoyer les données par paquets en
parallele, ce qui réduit le cotit de I'asynchronisme. C’est comme cela que le processeur parle avec la
mémoire dans votre PC (Ila mémoire peut avoir des tas de bonnes raisons de ne pas répondre tout de
suite quand le processeur lui demande une donnée, on verra lesquelles).

Voyons maintenant un protocole vraiment insensible au délai. L'idée est d'utiliser un code dit double-
rail pour la donnée : un bit est transmis sur deux canaux, avec la signification suivante : 1 est codé par
01, 0 par 10, la situation de repos est codé par 00. Ainsi mettre une donnée sur le double-rail change
obligatoirement au moins un bit, ce qui est détecté par le récepteur, et tient donc lieu soit de R (dans le
protocole piloté par I'émetteur) soit d’A (dans le protocole piloté par le récepteur).

Loi de conservation des emmerdements : il faut dans ce cas vraiment deux canaux pour transmettre
un seul bit.

Tout se complique si on suppose des erreurs possibles sur la ligne. Solution : encore plus de protocole.
Vous avez déja vu ce qu’il faut mettre dedans.

7.3 Bus trois états

On a déja vu page[d§|la porte 3 états pour construire des registres. Elle est en général utilisée pour
partager un canal entre plusieurs émetteurs.

FIGURE 7.2 — Porte de transmission, ou porte “trois états”

11 faut alors un arbitrage qui garantit qu’a un instant donné un seul émetteur écrit sur le canal (sinon :
situation logique indéterminée, qui se traduit souvent par une forte odeur de silicium fondu).
Prenons I’exemple de notre machine de von Neumann avec son bus de donnée bidirectionnel.

adresses

/W

Processeur Mémoire

données

ck T T

FIGURE 7.3 — On nous ment depuis le début, sans le fil r /W et sans horloge cela ne pouvait pas marcher

En pratique ce n’est pas difficile d’assurer mécaniquement que lorsque P émet, M recoit, et inverse-
ment : il suffit que leurs portes trois états respectives soient commandées par le méme signal (enfin, des
signaux complémentaires). Par exemple le signal r/w de la figure[4.7)p.[46] (a droite) est certe utilisé par
la RAM pour savoir si le bus Data va dans un sens ou dans 'autre, mais il est aussi utilisé en interne
par le composant branché a I’autre bout de ce bus Data (au hasard, un processeur), composant qui est a
I'origine de ce signal r/w.
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On en revient a cette subtilité psychologique dans la notion de maitre/esclave : le maitre est certes
a l'origine du signal r/w, mais il ne fait pas n'importe quoi ensuite, il reste compléetement esclave du
protocole.

En général, un bus est un moyen de transport partagé... ici c’est un fil. Exercice : dessinez un processeur
relié a deux mémoires par un bus de données, et construisez la logique qui va arbitrer entre ces deux
mémoires.

7.4 Réseaux en graphes (*)

En supposant réglée la question de transmettre des données sur un canal, on veut a présent relier
entre eux n circuits (ou ordinateurs) par des canaux. Pour simplifier, disons que tous ces canaux sont
bidirectionnels et identiques (méme débit etc). Le réseau a alors une structure de graphe, les canaux étant
le arétes et les circuits étant les noeuds.

7.4.1 Les topologies et leurs métriques

Considérons deux topologies possibles de réseaux pour relier n ordinateurs : I’anneau, représenté fi-
gure[7.4] et le tore bidimensionnel, représenté figure[7.6/qui est une extension de la grille bidimensionnelle
(représentée figure|7.5) dans laquelle tous les nceuds ont le méme nombre de canaux.

FIGURE 7.4 — Graphe anneau

O O

O O

FIGURE 7.5 — Graphe grille 2D

On peut définir sur ces deux exemples les notions suivantes :

Degré Le degré d'un nceud est le nombre d’arétes reliées a ce nceud. Par extension, le degré d'un
graphe est le degré maximum des nceuds du graphe. Par exemple le degré est de 2 pour 'anneau,
et de 4 pour la grille et le tore. A priori, plus le degré sera élevé, plus le nceud sera cher. Plus le
degré est petit mieux c’est.

Diameétre Le diametre d’un graphe est le maximum de la longueur du plus court chemin entre deux
neceuds. Dans nos réseaux a n = 16 nceuds, le diametre de ’anneau est 8 , le diametre de la grille
est 6, le diametre du tore est 4. Le diametre mesure la distance maximum a parcourir pour une
information dans le réseau. Plus il est petit mieux c’est.
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FIGURE 7.6 — Graphe tore 2D

Bissection La bissection est une mesure de la quantité d’information qui peut passer a travers le
réseau a un instant donné : Plus elle est élevée, mieux c’est. Techniquement, on appelle bissection-
arétes (resp. bissection-sommets) le nombre minimum de liens (resp. de sommets) dont la destruc-
tion entraine la déconnexion en deux moitiés de méme taille (a un pres).

Tore et anneau ont tous deux des degrés constants, mais le tore a une bissection et un diametre en
/1, ce qui semble mieux que I'anneau (bissection de 2 et diametre en 1/2. On peut définir un tore
tridimensionnel et plus (et au fait ’anneau est un tore unidimensionnel). Mais d’autres topologies offrent
des compromis encore plus intéressants :

L’hypercube de degré d a 2% nceuds, un diametre de d, un bissection de 2¢~1. Son seul défaut est un
degré qui peut devenir relativement élevé.

C’est pourquoi on a inventé le Cube Connectant des Cycles ou CCC, représenté figure en
dimension 3. On place des anneaux de taille d & chaque sommet d"un hypercube de degré d, et
chaque noeud d’un anneau possede en plus un canal selon une des dimensions de ’hypercube.
Le degré est 3 quelle que soit la dimension, et le diametre est passé de d a d? : c’est toujours
logarithmique en le nombre de nceuds.

O O—0O

FIGURE 7.7 — Graphes hypercubes

7.4.2 Routage

Le routage c’est le choix du chemin que va suivre 'information dans le graphe.



70 CHAPITRE 7. TRANSMETTRE

FIGURE 7.8 — Graphe cube-connected cycles

Dans un circuit intégré le routage est surtout statique : on a tiré des fils d'un bloc logique A a un autre
bloc logique B, et une transmission d’info de A & B passera par ces filsm

Dans un grand réseau (téléphonique ou internet), par mesure d’économie, on n’a pas un fil par
communication possible. On a tout de méme plusieurs chemins possibles. Le routage d"une transmission
d’information est calculé lorsqu’on en a besoin. On parle de routage dynamique. Bref, un routage
dynamique, c’est trouver un chemin dans un graphe. Alors que les algos qui calculent le routage d'un
circuit intégré peuvent se permettre de tourner des heures, pour un routage dynamique il faut un algo
assez rapide.

C’est assez facile dés qu’on a un seul émetteur et un seul destinataire, on trouve alors toujours un
algorithme glouton (exo : donnez le sur la grille, sur I'hypercube, sur le CCC).

Quand on a plein de paires (émetteur, destinataire) en méme temps, le probléme du routage devient
difficile. Pourquoi? Pourquoi c’est dur?

— 1l faut éviter que deux données se battent pour le méme fil en méme temps.

— Idéalement, chaque info va suivre le plus court chemin. Mais déja, trouver le plus court chemin de

A a B dans un graphe est cotiteux.

— Quand le plus court chemin est impraticable (un lien est déja occupé), il faut faire un détour. A
force de détours on n’a plus un plus court chemin. Il faut alors montrer que 1’on reste dans un
facteur raisonnable du plus court chemin (ou du diametre du graphe), sinon non seulement la
communication est plus lente, mais en plus elle consomme encore plus de fils, ce qui aggrave le
probléme pour les suivants.

Dans ces domaines il est facile de bricoler des heuristiques qui ont l'air de marcher bien, mais il est tres
dur de montrer qu’elles offrent certaines garanties.

Les métriques du graphe deviennent importantes.

Il y a deux grandes familles de techniques de routage : la commutation de ligne (pensez au téléphone de
I'URSS) et la commutation de paquet qui est ce qui se fait sur internet.

— Pour la commutation de ligne, il faut a priori un central qui supervise le réseau et réserve la ligne.

— Dans la commutation de paquet, un message est coupé en paquets de taille plus ou moins fixe, et
ces derniers sont lancés dans le graphes et doivent y trouver de proche en proche leur chemin. Le
gros avantage est que les algorithmes de routage deviennent décentralisés.

Remarque : on peut faire de la commutation de ligne virtuelle par dessus de la communication de
paquets. Par exemple, on veut pouvoir réserver un canal virtuel de A a B, avec un certain débit garanti
pour y faire passer de la video en temps réel.

Deux techniques de commutation de paquets : store and forward, et wormhole qui est un genre de
réservation de ligne. Les anneaux du corps du vers s’appellent des flit. Vous avez intérét a avoir noté mes
explications au tableau.

11 faut éviter les situations d’interblocage : la communication de A vers B attend pour se terminer que
la communication de C vers D libére un certain fil. Mais la communication de C vers D attend elle-méme
pour libérer ce fil que la communication de A vers B libére un autre fil. Montrer qu'un algorithme de
routage ne menera jamais a un interblocage est en général tres difficile.

Dans IP (internet protocol), technique sommaire qui garantit I’absence d’interblocage, et aussi évite
qu’un paquet tourne a l'infini dans le réseau sans jamais arriver : chaque paquet part avec une durée de
vie, qui est décrémentée a chaque passage dans un noeud. Quand la durée de vie arrive a zéro, le paquet

1. C’est vrai pour les petits circuits : un multiplieur, un processeur. De nos jours on est capable de concevoir des circuits
intégrants des dizaines de processeurs, de mémoires et d'unités de calcul. Si I’on relie tous ces blocs par du routage statique, on
constate que la plupart de ces fils sont inactifs la plupart du temps, c’est du gachis de surface. Il y a donc beaucoup de recherche
actuellement sur les Networks on Chip, ou NoC, dans lesquels les fils seront partagés et le routage dynamique.
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est détruit sans autre forme de proces. Eh, oh, et mes données ? Ben, tu les renverras... si le paquet qui te
prévient de 'exécution de ton paquet t'arrive... Oui, les protocoles deviennent compliqués. On parlera
des protocoles de l'internet quand on aura construit notre ordinateur.

En attendant, exemples de preuve que pas d’interblocage et pas de famine :

— anneau (protocole Token Ring). Par exemple, au fond de la PléStation3, il y a deux anneaux

tournant en sens inverse.
— routage 2D Manhattan,
— routage hypercube.

7.4.3 Types de communication : point a point, diffusion, multicast
7.5 Exemples de topologies de réseau (*)

7.5.1 Le téléphone a Papa

Commutation de ligne, protocole tres centralisé (“central téléphonique™).

7.5.2 L’internet

Couche physique : ethernet.

Architecture en graphe sans vraiment de structure. Hiérarchie a deux niveaux : local area network ou
LAN, wide area network ou WAN.

Couches logiques : commutation de paquets, routage par store and forward, protocole décentralisé.

7.5.3 FPGAs

Grille 2D, commutation de ligne par crossbar, routage statique.

7.5.4 Le bus hypertransport

Allez lire la page Wikipedia, c’est votre collegue Nicolas Brunie qui 1’a écrite, je me demande s’il me
le pardonnera un jour.

7.5.5 Machines paralleles

On ne dit plus machines paralléles, on dit Ze Grid. Pardon, je me reprends. On ne dit plus Ze Grid,
on dit cloud computing. Bref. On assemble actuellement les coeurs sur la puce par un bus, les puces sur
une carte par un autre bus, les cartes entre elles par des réseaux simples (la derniere fois que j’ai regardé
c’était des anneaux), et les armoires ainsi obtenues par I'Internet anarchique.

Pour les détails j’ai demandé a Loris Marchal qui a demandé a Jean-Yves 1’Excellent : La réponse plus
complete, c’est que sur des machines paralléles du genre silicon graphics, il y a encore des topologies marrantes
(hypercubes ? fat-tree,...). Sur des clusters, en général il y plutdt des crossbar quand c’est pas trop gros (par exemple :
earth simulator : cross bar entre 640 noeuds) et quelque chose de hierarchique pour les trucs plus récents et plus
gros. D’autre part, il y a parfois plusieurs types de réseaux disponibles. Pour Blue Gene, il y a 3 réseaux : un pour
les communications collectives synchrones (barrieres et reductions), un pour les communication point a point et
asynchrone, et un pour le monitoring et le systéme. Chacun utilise une topologie (et une technologie) différente.

Si vous n’avez pas tout compris dans cette section c’est normal et c’est pas grave.
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Chapitre 8

Jeux d’instruction

8.1 Rappels

Une machine de von Neumann c’est un processeur relié a une mémoire.

adresses

Processeur Mémaoire

données

FIGURE 8.1 — Mon premier ordinateur

La mémoire est adressable par mot (de 8, 16, 32 ou 64 bits de nos jours), et grande (de nos jours, de
l'ordre de 10%, ou 23 mots). La mémoire est non typée : chaque mot peut étre interprété de multiples
manieres.

Le processeur exécute le cycle de von Neumann. Pour cela, il garde dans un coin une adresse qu’il
appelle PC (program counter). Le cycle, réalisé de nos jours dans les 10” fois par seconde, est le suivant :

1. lire le contenu de la cellule & ’adresse PC
2. l'interpréter comme une instruction, et I'exécuter
3. Augmenter PC pour passer a l'instruction suivante, et recommencer

Une instruction est donc l'unité de travail que peut réaliser un processeur.

Définir un jeu d’instruction c’est définir la maniére dont le processeur interprete n bits comme une
instruction. C’est le travail du constructeur du processeur, et la courte histoire de I'informatique est pleine
d’idées rigolotes dans ce domaine, pour 7 allant de 4 & 256.

Un bon jeu d’instruction est un jeu d’instruction

1. universel (ou Turing-complet, ou qui permet d’exprimer tout programme exprimable),
2. pour lequel il sera facile de construire le processeur qui I'exécute, et
3. avec lequel il sera facile d’écrire des programmes.

Le point 1 est facile a assurer, il suffit d’exhiber un programme qui simule la machine de Turing qui
vous arrange. Par contre, il y a une Loi de Conservation des Emmerdements qui dit que les points 2 et 3
sont antagonistes.

8.2 Vocabulaire

Dans la suite on appelle les instructions du processeur instruction machines. Une instruction sera
codée par un paquet de bits. Dans les processeurs RISC (reduced instruction set computers), toutes les
instructions sont de la méme taille, correspondant a un mot mémoire, ce qui simplifie leur décodage.
Nous allons construire un tel processeur.

Dans certains processeurs dits CISC (complex instruction set computers), il peut y avoir des instructions
de tailles (en bits) différentes. Le cycle de von Neumann est identique sur le fond. Nous allons observer
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un tel processeur, le Pentium de mon portable. Je changerai de police pour évoquer les processeurs CISC, pour
ne pas que leur complexité ne pollue trop mon propos.

Pour les besoins de 'interface avec les humains, chaque instruction (jusque la le contenu d’une case
mémoire, donc un vecteur de bits) aura également une représentation textuelle non ambigué, que 1’'on
appelle mnémonique. L'ensemble des mnémoniques forme le langage assembleur. Le programme qui
convertit le langage assembleur en séquence d’instructions binaires s’appelle aussi un assembleur.

8.3 Travaux pratiques

Les TP MSP430 sont la pour vous montrer tout cela pour un processeur RISC moderne (bien que
petit). Voici deux autres exemples.

8.3.1 Lejeud’instruction de votre PC

Tout ce qui suit est a essayer sur un PC sous Linuxm Prenez un programme C quelconque toto.c
par exemple celui-ci :

main () {
int i=17; /* une constante facile a retrouver dans 1l’assembleur =*/
i=1+42; /* une autre =*/
printf ("$d\n", 1);

}

Compilez-le avec
gcc —-S toto.c

Vous obtiendrez un fichier toto. s en langage assembleur (il ne contient que des mnémoniques). Ici il
s’agit de 'assembleur du Pentium. Voici les extraits de ce fichier qui sont lisibles a ce stade du cours.

(... de la paperasse administrative ...)
movl $17, -4 (%rbp)
addl $42, -4 (%rbp)

(... des instructions pour passer les parametres a printf )
call printf

(... encore de la paperasse )

La premiére ligne met (move) la constante 17, considérée comme un entier long (suffixe 1), quelquepart
en mémoire. La seconde ligne ajoute 42 a la méme case mémoire.

11 existe en fait un assembleur dans la suite gcc : vous pouvez donc vous amuser a modifier le fichier
toto.s puis le transformer en un exécutable (un fichier dans lequel chaque instruction est codée en
binaire) par gcc toto.s.

On a observé de l’'assembleur dans toto. s. Le binaire correspondant c’est a . out. On peut tenter
de 'ouvrir dans un éditeur de texte : il est illisible (sauf si vous utilisez un éditeur de texte de hackerz).
Une maniere de 'observer est la commande objdump -d a.out (le —-d signifie disassemble, donc faire
le travail inverse de 1’assembleur). Vous obtenez des mnémoniques, et également le code binaire (enfin,
hexadécimal) de chaque instruction.

Voici les lignes correspondant au code assembleur précédent :

Adresses Instructions binaires Assembleur

(...)

40052c: 55 push Srbp

40052d: 48 89 e5 mov Srsp, $rbp
400530: 48 83 ec 10 sub $0x10, %rsp
400534: c7 45 fc 11 00 00 0O movl $0x11,-0x4 (%rbp)
40053b: 83 45 fc 2a addl $0x2a,-0x4 (%$rbp)
40053f: 8b 45 fc mov -0x4 ($rbp) , $eax
400542: 89 cb6 mov %eax, $esi

S (...)

On a des instructions de toutes les tailles. C’est vraiment n'importe quoi ce processeur, ils ne vont pas en
vendre beaucoup.

1. Par la magie du Net on peut aussi désormais utiliser http://gcc.godbolt.org/|qui permet de choisir le compilateur et
le processeur. Pour observer le travail du compilateur ¢’est mieux (enfin a condition de fermer les yeux sur la gabegie énergétique
d’envoyer la compilation au diable dans un nuage). Pour jouer directement avec ’assembleur c’est moins bien.


http://gcc.godbolt.org/
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8.3.2 Lejeu d’instruction de votre téléphone portable

Pour le méme programme, en utilisant des outils de cross-compilation vers ARM (par exemple le paquet
gcc-arm-linux—gnueabihf sous Debian/Ubuntu). On tape a présent arm-1linux-gnueabihf-gcc
-marm —-S toto.c. Vous obtiendrez un fichier toto.s contenant entre autres les mnémoniques sui-

vantes :
(... de la paperasse administrative ...)
mov r3, #17
add r3, r3, #42
(... des instructions pour passer les parametres a printf )
bl printf

(...

Et voidi les résultat de

encore de la paperasse )

arm-linux-gnueabihf-gcc -marm toto.c;
arm-linux—-gnueabihf-objdump -d a.out

000083fc <main>:

83fc: e92d4800 push {fp, 1lr}

8400: e28db004 add fp, sp, #4

8404: e24dd008 sub sp, sp, #8

8408: e3a03011 mov r3, #17

840c: e50b3008 str r3, [fp, #-8]
8410: e51b3008 1dr r3, [fp, #-8]
8414: e283302a add r3, r3, #42 ; O0x2a
8418: 503008 str r3, [fp, #-8]
841c: 3080488 movw r0, #33928 ; 0x8488
8420: 3400000 movt r0, #0

8424: e51b1008 1dr rl, [fp, #-8]
8428: ebffffae Dbl 82e8 <_init+0x20>
842c: 1a00003 mov r0, r3

8430: e24bd004 sub sp, fp, #4

8434: e8bd8800 pop {fp, pc}

Vous observez que chaque instruction est encodée sur 32 bits tout pile. C'est quand méme plus
régulier : ce sera plus simple a construire et cela consommera moins.

Bonus : plus tard, les gens qui faisaient I’ARM se sont rendu compte que ce code consommait beaucoup de
mémoire, et ont défini un nouvel encodage des instructions dans lequel les instructions qu’on peut encoder en 16
bits sont encodées en 16 bits... C'est désormais I'encodage par défaut, et si vous ne donnez pas I'option ~marm, c’est
celui que vous observerez.

8.4 Instruction set architecture

La définition du jeu d’instructions est décisive : ce sera l'interface entre le hard et le soft.

— Le programmeur (ou le compilateur) ne connait que ces instructions machines et leur séman-
tique bien documentée dans de gros manuels de référence. Il ne sait pas comment elles sont
implémentées, et s’en fiche pas mal. D’ailleurs cela change tout le temps.

— Le concepteur du pentium 12 doit contruire un processeur qui implémente ce jeu d’instruction et
sa sémantique. A part cela, il a toute liberté.

On parle souvent d'ISA pour instruction-set architecture. Des exemples d'ISA sont IA32 (implémenté
par les vieux processeurs Pentium, Athlon, etc), son descendant 64-bit (celui de votre ordinateur) qu’Intel
appelle EMT64 et Linux appelle AMD64 (car il a été proposé par AMD), IA64 (implémenté par les
processeurs Itanium), Power (implémenté par les processeurs IBM Power trés chers, et les processeurs
PowerPC meilleur marché), ARM, MSP430, ... Il y a aussi une ISA open-source qui s’appelle RiscV (lire
“risc five”).

L'exemple d’EMT64/ AMD64 montre combien I'ISA est déconnecté du processeur I'implémentant : il
n’y a pas un transistor de commun entre les processeurs d’Intel et leurs concurrents d’AMD, et pourtant
ils peuvent exécuter les mémes programmes. On discutera plus bas la relation entre ISA et architecture.

En pratique, les ISA évoluent, et les grandes familles évoquées ci-dessus se déclinent en versions,
ajoutant des instructions au jeu d’instructions de base. Exemples (plus ou moins connus grace a un
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marketting plus ou moins efficace) : les extension multimedia a IA32, SSE/SSE2/SSE3/ ... chez Intel
3DNow chez AMD, ou encore Thumb, Jazelle, NEON et VFP chez ARM, ...

Il est important de savoir bien distinguer les noms marketing des ISA de ceux des processeurs. Par
exemple, ARMv?7 est un ISA, alors que ARM7 est un processeur (qui n'implémente pas du tout ARMv7?).
AMDG64 et EMT64 sont, a peu de choses pres, des noms marketings différents pour la méme ISA. Allez
bouquiner sur Wikipedia les pages sur ARM et IA32, et faites cet exercice.

8.5 Que définit I'ISA

Un programme typique c’est une boucle qui va chercher des opérandes en mémoire, calcule dessus,
puis les range en mémoire. On va définir des instructions pour tout cela.

8.5.1 Types de données natifs

Commencons par les opérations de calcul. L'ISA définit avant tout un certain nombre de types de

données sur lesquels elle aura des opérateurs de calcul matériels. Les types typiques sont

— des adresses mémoire. On a besoin d’y lire et d’y écrire.

— des champs de bits, sur lequel on peut faire des ET, des OU, des XOR, des décalages...

— des entiers de différentes tailles (8, 16, 32, 64 bits pour I'lA32; 8 et 32 pour ’ARM; 32 pour
I’Alpha, etc). Il y a deux sous-types, les entiers signés et non signés. Grace au complément a 2,
ils se distinguent uniquement par la gestion des débordements et des décalages. Autrement dit,
la méme instruction d’addition marche aussi bien pour des entiers signés et non signés (c’est
I'addition modulo 2F). Par contre il faut des instructions différentes pour les comparaisons de
deux entiers : par exemple sur 4 bits, le test 1111 > 0001? renvoie vrai si on considere que ce sont
des entiers non signés, et faux si on est en complément a 2.

— des nombres en virgule flottante : simple précision (32 bits) et double précision (64 bits). Ces
formats sont imposés par un standard, appelé poétiquement IEEE 754, dont la version courante
date de 2019. Ce standard définit également les précisions quadruple (128 bits) et half (16 bits). IA32
et [A64 ajoutent des formats a 80 bits, [A64 ajoute un format a 82 bits...

Les extensions multimedia, introduites dans les années 90, définissent des vecteurs de petits entiers

(MMX) et des vecteurs de petits flottants (3DNow, SSEx, AVXy). Pour I'ISA ARM, l'équivalent s’appelle
NEON.

8.5.2 Instructions de calcul

L'ISA définit ensuite des instructions de calcul pour ces différents types de données : addition,
multiplication, décalage, OU logique... Nous allons filer I'exemple de 1’addition, pour les autres c’est tres
similaire.

11 faut, dans une instruction d’addition, pouvoir spécifier ce qu’'on additionne (les opérandes) et ot1 on
le range (la destination). Idéalement, on aimerait donner trois adresses dans la mémoire. Une instruction
serait alors “ajouter le contenu de la case mémoire numéro X au contenu de la case mémoire numéro Y et
ranger le résultat dans la case numéro Z, les trois contenus étant interprétés comme des entiers 32 bits”.
Pour un processeur moderne qui peut adresser une mémoire de 232 mots, I'information totale des trois
opérandes nécessiterait déja 3 x 32 = 96 bits. Si je veux coder chaque instruction dans un mot de 32 bits
c’est mal parti.

C’est pourquoi les ISA définissent tous une mémoire de travail plus petite, interne au processeur, que
l'on appelle les registres. Chez les RISC, ils sont tous identiques et forment une petite mémoire adressable
interne. Si l’on a 16 registres et que les opérations de calcul ne peuvent travailler que sur le contenu de
ces registres (cas de I’ARM), les trois opérandes d’une instruction peuvent se coder sur 3 x 4 = 12 bits
seulement. Un avantage supplémentaire est que ces registres seront lus et écrits plus vite que la mémoire
principale, puisqu’ils sont intégrés sur la puce du processeur.

Chez les processeurs CISC, les registres ont de petits noms et des fonctions différentes (accumulateur, registre
d’index, ... nous ne détaillerons pas).

Une autre solution est de ne travailler que sur une seule case mémoire a la fois, comme dans I'addition de
toto. c ci-dessus. Nous l'expliquons plus en détail plus bas. Mentionnons toutefois qu’elle n’est utilisée que

2. En 2007, a 15 jours d’intervalle, Intel a annoncé 1'extension SSE4 qui introduit par exemple une instruction calculant a*b+c*d
en flottant avec 3 arrondis, puis AMD a annoncé 1’extension SSE5 ajoutant une instruction FMA : a*b+c avec un seul arrondi. Je ne
sais pas comment ils se sont partagé ces effets de manche, mais j’ai parié trois polys que les processeurs qui sortiraient 5 ans plus tard
auraient tous les deux extensions. Allez voir si j’ai gagné sur http://en.wikipedia.org/wiki/FMA_instruction_set,
parce que I'histoire est rigolote.


http://en.wikipedia.org/wiki/FMA_instruction_set
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par des ISA datant de la préhistoire de la paléoinformatique, avant que les vitesses de la mémoire centrale et du
processeur ne fassent le grand écart,

Nous pouvons a présent définir une instruction d’addition dans un processeur RISC. Son mnémonique
sera par exemple add RO, R1 -> R3.Laforme générale pour une opération binaire sera op Rx, Ry
-> Rd, ol op peut étre add, sub, mul, xor, ... et d, x et y sont les numéros des registres destination
et sources. Le codage de cette instruction sera trés simple : un certain nombre de bits pour coder op,
(mettons les 8 premiers, ce qui nous permet 256 instructions différentes), un certain nombre pour coder d,
un certain nombre pour coder x et y. Il sera d’autant plus simple de construire I’architecture que ce code
est simple : on mettra le code du registre destination toujours au méme endroit, et idem pour les deux
opérandes.

Remarquez que les “vrais” mnémoniques sont le plus souvent écrits op Rd, Rx, Ry — et parfoisla
convention est de mettre la destination en dernier (voir toto. s), et on trouve méme les deux conventions
qui cohabitent pour le méme processeur suivant les systemes d’exploitation! La raison en est surtout
historique : les premiers mnémoniques reprenaient les champs de bits dans I'ordre dans lequel ils étaient
dans l'instruction, ce qui facilitait 1’assemblage — je parle d'une époque oti le programme assembleur était
lui-méme écrit en assembleur sur des cartes perforées. Notre convention, utilisant -> est plus lisible,
et comme le mnémonique n’est qu'une représentation textuelle on la garde : il faut se convaincre que,
si le choix de I'ISA lui-méme fait la différence entre un bon processeur et un mauvais, le choix de ses
mnémoniques, par contre, n’est qu'une convention et n’a pas grande importance.

Nous avons défini une addition dite a trois opérandes puisque les trois opérandes sont exprimés. 11 y
a d’autres solutions :

— Instructions a 2 opérandes : op Rd, Rx —> Rd.On écrase 'un des opérandes.

— Intructions a 1 opérande : idem, mais Rd est fixé et implicite. On I’appelle en général I'accumulateur,

en hommage aux temps héroiques ot les processeurs n’avaient méme pas de multiplieurs, et o1
I'on accumulait des séquences d’additions.

— Instructions a pile (0 opérande) : le processeur dispose d’une pile (comme les calculettes HP), et

une instruction add prend ses deux opérandes au sommet de la pile et y range le résultat.

Il'y a la un compromis :

— l'instruction a trois opérandes est la plus puissante, et donc la plus compacte en termes de nombres
d’instructions. Elle est préférée pour les processeurs RISC récents : leur unité d’information fait 32
bits, et on se donne donc 32 bits pour chaque instruction, ce qui permet d’y coder trois opérandes
voire plus (voir ci-dessous)

— Auvec des instructions a 0, une ou deux opérandes, il faut souvent faire des copies des registres
écrasés (c’est une autre instruction), ou bien des swap et des dup sur la pile : un programme donné
a besoin de plus d’instructions. Par contre, en terme de nombre total de bits, le programme est
plus compact.

Le plus compact est le jeu d’instruction a pile, puisqu’il n'y a que 'instruction a coder, pas ses
opérandes. C’est la raison pour laquelle ce type d’instruction est souvent choisi pour le bytecode
des machines virtuelles pour les langages comme Caml ou Java.

11 faut noter que dans tous les ISA, I'un des registres peut souvent étre remplacé par une constante. Le
mnémonique est alors par exemple add R12, 4 -> R1.Techniquement, c’est une instruction différente,
a laquelle on peut donner un mnémonique différent, par exemple addi pour add immédiate constant. On
peut aussi préferer laisser le mnémonique add, puisqu’il n'y a pas d’ambiguité.

11 est raisonnable de coder la constante en place du numéro de registre qu’elle remplace, ce qui signifie
que si on n’a que 16 registres on ne peut coder que les constantes de 0 a 15. C’est déja pas mal. Il y a plein
d’astuces pour récuperer des bits de plus pour ces constantes immédiates.

Un cas particulier est l'instruction move Rx -> Rd qui réalise une copie. On aimerait que sa version
constante, que nous appelerons let, puisse mettre une constante arbitraire de 32 bits dans un registre,
mais ceci nécessiterait une instruction de plus de 32 bits... Définissons donc LetHigh 123 -> R4
LetLow 456 —> R4
qui placent la constante (16 bits) respectivement dans les moitiés hautes et basses de Rd. Cela permettra
de charger un registre avec une constante arbitraire en deux instructions de 32 bits. Une option CISC
(voir toto. s) est d’avoir une instruction de chargement de constante 32 bits qui fait plus de 32 bits.

Dans toto. s, l'addition est une opération a deux opérandes, dont une constante et une en mémoire (sur
laquelle nous reviendrons).

8.5.3 Instructions d’accés mémoire

On a aussi besoin d’instructions pour 1’acces a la mémoire.
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Lecture et écriture basique

Par exemple, une instruction qui demande a la mémoire le contenu de la case d’adresse le nombre
contenu dans R2, et le place dans R5, s’écrira
Read [R2] —-> R5

et 'instruction d’écriture s’écrira
Write R3 -> [R06]

Adressage indirect

Dans une machine 3 opérandes, on n’utilise pas le troisieme champ opérande. Comment 1'utiliser
intelligemment ? En inventant des modes d’adressages plus sophistiqués. Par exemple, si A est un tableau
stocké en mémoire a partir de 'adresse 4, ’acces a 'élément A[1] de ce tableau demande d’ajouter a et i
pour obtenir 1’adresse de la case. 1l est naturel de proposer les instructions
Read [R2+R3] —> R5
Write R3 —-> [R6+R7]

Remarquez que dans le write, on n’a aucun registre de destination, les trois registres sont lus. Cela
signifie que cette instruction aura un vrai surcott architectural par rapport aux instructions de calcul
qui lisent deux registres et en écrivent un. Si on choisit d’offrir cette instruction, cela implique que notre
architecture matérielle sera capable de sortir trois registres différents de la boite a registres : on peut se
demander alors s’il n’y a pas d’autres instructions (de calcul) qui ont besoin de lire trois registres aussi.
On pensera au MAC (multiply-accumulate) qui réalise Ri+Rj*Rk —> Rd (eta sa version flottante
qui s’appelle FMA pour fused multiply-add, le mot fused faisant référence au fait qu’il n’y a qu'un seul
arrondi a la fin de ces deux opérations). Ce sont des instructions a 4 opérandes.

Cette remarque est un peu prématurée, vous la comprendrez mieux a la révision, apres étre passé
une fois sur le chapitre suivant. Ce qui est caché derriére, c’est qu’on réfléchit a I’architecture matérielle
en concevant I'ISA : ici, on se souvient que lecture et écriture dans une mémoire utilisent deux ports
de données différents (voir les figures pp 47| et suivantes — au fait, il faut se convaincre que pour lire
plusieurs registres a la fois il suffit de séparer les ports d’adresse et de répliquer le multiplexeur de sortie
sur la figure Cela a un cofit en surface, mais les acces en parallele a plusieurs cases mémoires sont
possibles).

Exemple d’acces a un tableau dans ARM : LD R1, [R3, R5 LSL#4]

(si les cases du tableau sont de taille 16) et avec post-incrément : LD R1, [R3, R5 LSL#4]!
(le "V se lit “bang” et met a jour R3 par R3 <— R3+ (R5<<4), ce qui permet de un tableau en gardant un
pointeur sur la case courante).

Cette derniére instruction écrit dans deux registres, ce qui est en principe plus cher en matériel si les
deux écritures sont en méme temps : il faut arbitrer dans quel ordre se feront les écritures. Ici (pour le
moment) pas de souci, une des écritures doit attendre le temps qu’une donnée revienne de la mémoire,
alors que l'autre peut se faire plus vite. On utilise le port d’écriture des registres 8 un moment ot il eut
été inutilisé, ce qui n’a pas de surcotit matériel.

Instructions de gestion de pile

Les langages de haut niveau utilisent beaucoup des piles (last in, first out). Par exemple, ¢’est comme
cela que I'on gere les appels de procédures (call et return que l'on va voir bientdt).

— Une pile est stockée en mémoire.

— Un registre sert de pointeur de pile (on 'appelle alors SP pour stack pointer).

— Linstruction Push R1 va empiler la valeur de R1 sur la pile, c’est-a-dire réaliser la séquence

d’actions Write R3 -> [SP] puis SP+1 -> SP (le tout en une instruction)

— L’instruction Pop R3 va faire le contraire, c’est-a-dire SP-1 -> SP puis [SP]->R3
La description précédente nous donne une pile montante (en mémoire) avec un pointeur vers la prochaine
case vide. En fait il y a 4 variantes de pile :

— Sivous échangez SP-1 et SP+1 ci-dessus, vous obtenez une pile descendante : quand on empile,

on descend dans la mémoire.

— Si vous échangez les deux actions de chaque séquence (par exemple Push devient SP+1 —-> SP
puis Write R3 -> [SP]), vous obtenez une pile dont le pointeur pointe sur le dernier élément
empilé.

Certains processeurs imposent 1'une de ces 4 variantes (exemple : IA32), d’autres vous laissent choisir.
Par exemple sur ARM n’importe quel registre peut servir de pointeur de pile, et le push et le pop sont
des variantes des instructions mémoire classiques. Par exemple LD R1, [R3, #4]! peut servir de pop
sur une pile descendante qui pointe sur pile pleine, et dont le pointeur de pile est R3.



8.5. QUE DEFINIT L'ISA 81

8.5.4 Instructions de contrdle de flot

Pour le moment notre processeur est capable d’exécuter un cycle de von Neumann sur carton
perforé, mais pas de sauter des instructions ni de répéter en boucle un programme. Il reste a ajouter des
instructions de branchement.

Sauts inconditionnels, relatifs et absolus

11 faut au moins deux instructions de saut relatif :
Jump +123 qui avance de 123 instructions
Jump -123 qui recule de 123 instructions.

Ces deux instructions sont en pratique des additions/soustractions sur le PC. Cela s’appelle un saut
ou branchementE] relatif (relatif au PC). La constante ajoutée/soustraite occupe tous les 24 bits restant
(une fois qu’on a choisit de coder l'instruction elle-méme sur 8 bits).

On ne peut donc pas sauter a plus de 2%* cases de la position actuelle du PC. Si vous y tenez, le
processeur vous offrira en général une instruction permettant de sauter a un emplacement arbitraire (saut
ou branchement absolu). A nouveau, soit il faut plus de 32 bits pour coder une telle instruction, soit il faut
bricoler. On peut simplement mettre des adresses de saut dans des registres, et le saut absolu est alors un
MOV Rx -> PC (il nécessite donc plus d"une instruction, pour remplir Rx avec I’adresse voulue avant
le saut). Il y a aussi des mécanismes plus spécifiques. Par exemple, on a vu des sauts absolus indirects,
motivés par le besoin d’avoir des appels systémes partagés : 'ISA décrete que les 219 premieres cases
mémoires contiennent des adresses de saut (que vous remplirez avec les adresses des fonctions systeme
de base comme malloc ou printf), et I'instruction de saut absolu n’a besoin que de 10 bits pour coder
une telle adresse. Par contre, un saut absolu nécessite une lecture mémoire supplémentaire. Il y a toujours
une LCDE sur les sauts absolus.

Sauts conditionnels — drapeaux

Pour revenir a une instruction de saut minimale, il faut tout de méme pouvoir implémenter des
boucles for et while. Les instructions de saut existent en version conditionnelle, par exemple :
GoForward 123 IfPositive
qui avance de 123 instructions si le résultat de I'instruction précédent cette instruction était positif. On
aura un certain nombre de telles conditions (si le résultat était nul, non nul, s’il y a eu un débordement de
capacité). Pour ces branchements conditionnels, la distance de saut occupe moins de bits, car il faut des
bits pour coder la condition.

Le processeur doit donc garder en mémoire l'information correspondante (résultat positif, résultat
nul, ...) d'une instruction a 'autre. Cette information est compacte (peu de bits) et est stockée dans un
registre de drapeaux. Voici les 4 drapeaux (archiclassiques) de 'ISA ARM :

— Z (zero) qui vaut 1 si le résultat d"un calcul est nul

— C (carry) qui contient la retenue sortante d’une addition (dommage de la perdre)

— N (negative) qui contient une copie du bit de signe du résultat

— V (oVerflow) qui indique si une addition/soustraction, considérée en complément a 2, a débordé.

Techniquement, pour l’addition, si les deux opérandes ont des signes différents, le résultat ne
déborde jamais. Si les deux opérandes sont du méme signe, alors I’addition a débordé si le bit de
signe du résultat est différent de celui des opérandes. Pour la soustraction, réfléchissez vous-méme.
C’est a peu preés le seul endroit o1 I’on s'inquiéte du complément a 2, car (rappel) ’addition et la
soustraction se fichent pas mal de savoir si leurs entrées et sorties sont signées ou pas, c’est une
des beautés du complément a 2.

C’était le minimum syndical : des drapeaux, et une instruction de saut conditionnel. Mais plus la
technologie évolue plus un saut conditionnel devient cotiteux, essentiellement parce qu’il introduit de
I'incertitude qui empéche le pipeline — on verra plus tard. Voyons donc quelques variations.

Une idée rendue possible par le passage aux instructions 32 bits (ol on a plein de place, par rapport a
8 ou 16 bits), est de permettre que toutes les instructions soient conditionnelles : la condition sous laquelle
une instruction va s’exécuter est codée dans un champ supplémentaire du mot d’instruction, et on trouve
ce champ dans toutes les instructions. C’est le cas dans I’ARM et IA64.

Dans IA64, de plus, il n'y a pas un seul jeu de drapeaux, mais des registre de prédicat : chaque instruction
de test peut choisir dans quel registre de prédicat elle stocke le résultat du test, et chaque instruction peut
étre prédiquée (conditionnée) par un registre de prédicat.

Dans la variante récente dite Thumb2 du jeu d’instruction ARM, il y a une instruction IT pour If-Then
qui rend conditionnelles les instructions suivantes (jusqu’a 4 : I'instruction suivante est conditionnelle, et

3. Branchement par rapport au tronc d’exécution si on faisait PC=PC+1...
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on encode dans le IT si les 3 suivantes le sont, et méme si elles font partie du then ou du else). Au final
cela permet de rendre toutes les instructions conditionnelles pour des instructions encodées sur 16 bits.

Les étudiants de I'ENS 2016-2017 ont inventé une variante simplifiée, I'instruction snif pour skip
next 1if, qui permet de se passer completement des drapeaux : dans Thumb?2 on encode encore une
condition sur les drapeaux dans l'instruction IT. Dans un snif on encode directement la comparaison,
par exemple snif R1<R2. Cette instruction existe (sous un autre nom) dans les microcontroleurs PIC.

Dans I'ISA RISC-V, c’est un mélange : le saut conditionnel est une instruction qui compare deux
registres (elle inclut donc une opération arithmétique). La comparaison est encodée sur 3 bits : il faut
aumoins =, #, et > et > en versionssignées et non-signées. Si la comparaison est vraie on saute a une
distance définie par une constante sur 12 bits. RISC-V profite donc de la largesse d’encodage pour se
débarasser completement des drapeaux.

Remarque : dans tous les processeurs a drapeau, on a un drapeau C qui contient la retenue sortante
d’une addition. On a aussi une instruction add with carry (en général ADC) qui est une adddition qui
prend comme retenue entrante la valeur du drapeau C. Cela permet de faire facilement des additions sur
des entiers plus large que la taille native du processeur : par exemple sur un processeur 32 bits on fait de
I'arithmétique 64 bits en un ADD puis un ADC 32 bits.

Et donc le RISC-V renonce aussi & I’ADC en renoncant aux drapeaux : I’émulation de '’ADC cofitera
un saut conditionnel. L'idée est que ce n’est pas trés grave vu que la largeur du mot natif est au moins 32
bits. L'ADC était tres utile a I'époque des processeurs 8 bits, beaucoup moins en 32 bits, pas du tout en 64
bits.

Appel de sous-routine

Enfin, il y a une poignée d’instructions qui servent a supporter les langages de haut niveau, en
particulier un call et un return pour les appels de procédure. Sur le fond, call printf estun saut
absolu a I’adresse de print £. Toutefois, avant de sauter, il doit sauvegarder quelquepart I’adresse de
I'instruction qui suit le call. Ainsi, I'instruction return (a la fin du code de print £) peut copier cette
adresse sauvegardée dans le PC, ce qui reprend l'exécution juste apres le call.

Le plus souvent, ’adresse de retour (I’adresse de l'instruction qui suit le call) est empilée sur une
pile, et return est essentiellement un pop PC. On va voir des variantes un peu plus loin.

On parle d’appel de sous-routine et pas encore d’appel de procédure, parce qu'une procédure sous-
entend un certain nombre de parameétres avec leur types, etc. Notre call fait juste un saut, sans passer
de parametre. Et return correspond bien a “return;” en C, mais on ne sait pas encore comment
faire “return value;”.La maniére dont le passage de parametre est implémenté sera vue en détail au

chapitre

8.5.5 Les appels systéme, les interruptions, et I’atomicité

... seront traités au chapitre

8.5.6 Quelques ISA

Voici pour finir quelques exemples représentatifs d'ISA, par ordre croissant de performance... et de
consommation électrique.

— MSP430 est un jeu d’instruction RISC 16 bits a 16 registres qu’on retrouve dans les applications
tres faible consommation (cartes a puces, tags RFID). Il y a des instructions a un et deux opérandes.
Si ces opérandes sont des registres, l'instruction tient en un mot de 16 bits. Les opérandes peuvent
aussi étre une case mémoire, dont 1’adresse (sur 16 bits) est codée dans un des mots suivant
I'instruction. Ou des constantes immédiates sur 16 bits, idem. Dans ce cas les instructions font 32
ou 48 bits. Certains registres sont spéciaux : le PC est R0, les drapeaux sont dans le registre R1,
et le registre R2 peut prendre différentes valeurs constantes utiles (0, 1, -1...). Un mot de contexte :
c’est un jeu d’instruction pour microcontroleur trés basse consommation. Un microcontroleur embarque
processeur, mémoire, quelques périphériques (timers, etc) et interfaces d’entrée/sortie dans la méme puce.
L'objectif de faible consommation limite la fréquence, tandis que I'objectif d’une puce tout-en-un limite la
capacité mémoire. D’oit le choix d'une architecture 16 bits seulement, et le choix d’avoir des instructions
qui calculent directement sur la mémoire. Le choix de fréquence basse permet en effet de faire une lecture
mémoire et un calcul par cycle. D’ailleurs, le nombre de cycles que prend chaque instruction est exactement
égal au nombres d’accés mémoire qu’elle fait.

— ARM est I'ISA qu’on trouve entre autre dans tous les téléphones portables. Cette ISA a commencé
comme un jeu d’instruction RISC 32 bits & 16 registres. Dans cette ISA originale, toutes les instruc-
tions sont codées dans exactement un mot mémoire (32 bits). Les instructions sont a 4 opérandes :



8.6. CODAGE DES INSTRUCTIONS 83

la quatrieme est un décalage qui peut s’appliquer au second opérande. Le second opérande, et le
décalage peuvent étre des constantes. Par exemple, add R1, R0, RO, LSL #4 calcule dansR1
la multiplication de RO par 17, sans utiliser le multiplieur (lent, et parfois d’ailleurs absent). Il y a
d’autres applications plus utiles, comme la manipulation d’octets, et la construction de grandes
constantes.

Pour le marché de I'embarqué, ARM a ensuite introduit un mode du processeur qui utilise
un second ISA, dit thumb (comme Tom Pouce) d’économie de mémoire. Toutes les instructions
y ont 2 opérandes seulement et tiennent sur 16 bits. Le processeur expanse en interne chaque
instruction en l'instruction 32 bits correspondante. Cette expansion n’est pas cotiteuse, par contre
le méme programme, s’il fait moins d’octets au final, demande plus de cycles. Ce mode est utilisé
typiquement pour les parties non critiques de 'OS d"un téléphone portable.

Tous les processeurs ARM récents permettent un mode Thumb-2 dans lequel des instructions
de 16 et 32 bits peuvent étre mélangées. De nos jours, gce produit du code Thumb-2 par défaut.

I'ISA ARM a été reprise en profondeur dans les versions 64 bits (ARM64 ou AArch64) :ily a
désormais 32 registres de 64 bits, etc. Les instructions font a nouveau toutes 32 bits et la plupart
des idées rigolotes des débuts ont été abandonnées au profit d'instructions flottantes, vectorielles,
crypto, etc.

— Power est un autre jeu d’instruction 32 bits qu’on trouve de la Xbox aux serveurs de calculs d'IBM.
Les instructions ont également 4 opérandes : 1'opération arithmétique de base est le fused multiply
and add ou FMA, qui faitRd := Rx X Ry + Rgz,laquelle permet méme de faire des additions
et des multiplications.

— SPARC est ISA 32 bits a trois opérandes. Son originalité est d'implémenter a partir de SPARC
V2 une fenétre glissante de registres sur un ensemble de registres plus grands. Une instruction
spéciale fait glisser la fenétre. Ainsi on a peu de registres visibles a un instant donné (donc
un mot d’intruction qui reste petit), mais beaucoup de registres architecturaux. Cela a plein
d’avantages, comme lors du passage des parametres a une fonction. Cela a enfin des avantages
pour implémenter un pipeline logiciel. Cette idée est reprise par 'ISA IA64 dont il sera parlé en

— RISC-V (prononcer risquefailleve) est un ISA open-source congu par les gens qui ont inventé le
RISC dans les années 90 et obtenu le prix Turing en 2017 pour cela. Il fait une synthese de toutes
les bonnes idées qu’on a eu depuis (en particulier dans les 3 ISA précédentes), la plupart du temps
en les ignorant dans une démarche de retour aux sources du RISC qui place la simplicité avant
tout . Toutefois, c’est un excellent exercice, a la fin de ce cours, de lire son document d’ISA (The
RISC-V Instruction Set Manual) : il est relativement court, et plein de notes de bas de page qui
justifient les choix faits en les mettant en regard avec les choix faits par d’autres processeurs et
I’évolution de la technologie. Par ailleurs, c’est aussi 'ISA a la mode, et comme il est open-source
son écosystéme se développe a toute vitesse. Bref, si ce cours ne vous a pas donné toutes les billes
pour lire cet ISAﬂ allez vous en plaindre au prof.

— EMT64/AMD64 est une usine a gaz (introduite par AMD, donc nommée AMD64 sous linux, mais
Intel 'appelle EMT64). Cet ISA possede plusieurs couches de registres ajoutées par les évolutions
de I'ISAP} et la taille de ces registre a grandi aussi. Les instructions sont de tailles variables, comme
on a vu. Il peut réaliser des opérations arithmétiques dont un opérande est directement en mémoire
(voir notre toto. s), ce que ne font plus les RISC a cause de l'écart de performance entre acces a
un registre et accés a la mémoire.

— J’en présenterai deux autres en

8.6 Codage des instructions

Méme avec de I'imagination, cela nous fait moins de 256 instructions différenteslﬂ: l'instruction
elle-méme sera codées sur 8 bits du mot d’instruction. Dans les 24 bits restant, on codera selon le cas trois
registres, deux registres et une petite constante, deux registres (acceés mémoire), un registre et une petite
constante (décalage de bits), un registre et une grande constante.

On s’attachera a ce que le jeu d’instruction soit le plus orthogonal possible : les registres seront toujours
codés au méme endroit, ce qui facilitera la construction du circuit.

On constate que chaque instruction laisse plein de bits inutilisés. C’est du gachis, et si on voulait

4. Avez vous remarqué que tout ce bla bla ne vous apprend rien sur cet ISA? C’est a croire que c’est expres.

5. Il était une fois, a I’époque 8 bits, un registre de 8 bits nommé A. Au passage a 16 bits il fut renommé AX (pour A eXtended, et
A désigne toujours les 8 bits de poids faible de AX). Au passage a 32 bits, il fut renommé EAX, pour Extended AX. Au passage a 64
bits, bien qu’il restat les lettres T, N et D a utiliser dans le mot “extended”, il fut renommé RAX. Il contient toujours EAX, AX et A.

6. ..mais c’est qu’on manque d’'imagination : il y en a plusieurs centaines dans AMD64.
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construire un processeur compétitif, on coderait dedans des options supplémentaires qui rendent I'ins-
truction plus puissante. Pour ceux que cela intéresse, cherchez “ARM assembly language” pour avoir
une idée de telles options.

8.7 Adéquation ISA-architecture physique

En principe, le jeu d’instruction représente une bonne abstraction de la mécanique sous-jacente du
processeur. Ainsi le programmeur a acces a toutes les ressources du processeur, et seulement a elles.

Par exemple, lorsque I'ISA offre une opération de division, cela veut en général dire que le processeur
dispose d’un diviseur. Lorsque les opérandes d"une opération peuvent étre des registres numérotés de RO
a R15, cela signifie en principe qu’il y a une boite a registres (une petite mémoire adressable) a 16 entrées
dans l'architecture.

Toutefois, cette belle harmonie, qui était de regle a I'époque héroique des processeurs 8 bits, et qui est
de regle pour les ISA récents, souffre trois grosses exceptions.

La premiere est le fait de jeux d’intruction historiques, tels I'IA32. Par exemple, cet ISA fut a 'origine
défini avec 8 registres flottants, ce qui était a 'époque un bon compromis. De nos jours, 8 registres
flottants ne sont plus suffisants pour la gestion efficace d’une unité superscalaire et pipelinée, c’est a dire
capable de lancer a chaque cycle plusieurs (2 a 4) instructions flottantes dont le résultat n’arrivera que
plusieurs cycles (3 a 5) plus tard. L'architecture physique comporte donc beaucoup plus de registres, et le
processeur fait tout un travail de renommage des registres ISA en registres physiques. Ainsi, l'architecture
physique ne correspond plus a I'ISA. Ceci a un surco(it matériel certain, mais aussi quelques avantages.
Par exemple, un jeu d’instruction a 8 registres est plus compact qu'un jeu d’instruction a 128 (cas de
I'TA64) : les programmes prendront moins de mémoire. Donc il y a un courant de pensée qui préconise
des ISA ne correspondant pas au matériel, tant qu’on sait implémenter leur sémantique efficacement en
matériel.

Le second cas de non-correspondance entre I'ISA et 1’architecture date d'une époque oit 1’on program-
mait plus en assembleur qu’aujourd hui. Il paraissait judicieux de mettre dans I'ISA des opérations rares
et complexes, comme par exemple les fonctions élémentaires sinus, exponentielle, ou des opérations
de traitement sur des chaines de caracteres, ou des modes d’adressages indirects réalisant en une ins-
tructions plusieurs acces mémoire... Ce sont des instructions IA32, qui au final sont exécutées par un
petit programme stocké dans le processeur lui-méme. On appelle cela la microprogrammation. C’est une
caractéristique des ISA CISC, et pour le coup, tout le monde pense que c¢’était une mauvaise idée. En
effet, par rapport a la méme fonctionnalité implémentée en logiciel utilisant des instructions simples, cela
rend le processeur

— plus cotiteux (il faut stocker les microprogrammes),

— plus complexe (il faut un mini cycle de von Neumann a l'intérieur du grand),

— plus risqué (un bug dans le microcode nécessite de changer le processeur, alors qu'un bug dans du
logiciel se corrige facilement)

— moins flexible : on ne peut pas adapter ces routines a un contexte donné. Par exemple, on aime
avoir plusieurs versions d'une fonction élémentaire : I'une trés rapide mais peu précise, une autre
trés précise mais plus lente, une troisiéme orientée débit, etc.

Petite histoire : en 1990, quelques années apreés que les intructions exponentielle et logarithme aient été
microcodées pour le processeur 80386/80387 (ancétre du pentium, en 1985), les PC (comme maintenant)
étaient livrés avec des mémoires de plus en plus importantes (loi de Moore). P.T.P Tang proposa des
algorithmes qui calculent ces fonctions beaucoup plus rapidement, grace a 1'utilisation de grosses tables
de valeurs précalculées (grosse voulant dire : 1Ko). Depuis, tout le monde calcule ces fonctions en logiciel,
et les instructions correspondantes sont inutilisées. Pourquoi ne pas implémenter les mémes algorithmes
en microcode, me direz-vous? Parce que pour le coup, le cofit en transistors de la table ne serait pas
justifié.

Le troisiéme cas de non-correspondance entre ISA et architecture est d'ajouter a I'ISA des instructions
qui ne sont pas implémentées dans les premieres versions du processeur, mais dont tout porte a croire
qu’elle le seront a I’avenir. Exemples : la précision quadruple (flottants de 128 bits) dans les SPARC,
I'arithmétique flottante décimale dans certains processeurs IBM. Tant que le processeur n'implémente
pas ces instructions en matériel, elles déclenchent un saut (techniquement, en utilisant le mécanisme des
interruptions) vers une sous-routine logicielle qui traite 'instruction.
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8.8 Un peu de poésie pour finir

IA32 a des instructions qui font de 1 a 17 octets. L'encodage est sans queue ni téte : il y a des préfixes,
des suffixes, etc. Il n’y a que 8 registres entiers, et tous ne sont pas utilisables par toutes les instructions.
Les opérations entieres travaillent sur un modeéle registre-registre ou registre-mémoire, et les opérations
flottantes sur un modele de pile (qui n’a jamais pu étre implémenté comme initialement prévu, a savoir
une pile virtuelle infinie dont la pile physique fonctionne comme un cache).

La bonne nouvelle est que les compilateurs arrivent trés bien a vivre avec un sous ensemble tres
réduit de ce jeu d’instruction. Par exemple, certaines instructions traitent des chaines de caractére (copie
de chaine etc), mais l'utilisation des instructions simples donne un code plus rapide.

Cherchez sur Internet le document qui spécifie le jeu d’instruction IA32, et comptez les centaines de
pages.

L'extension d'IA32 & 64 bits est pire.
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Chapitre 9

Construction d’un processeur RISC

Pour construire un processeur, on procéde en principe en trois temps :
1. On définit le jeu d’instructions : voir le chapitre précédent.

2. On construit le chemin de données (ou datapath en neozélandais), dont un exemple est la figure
p-[89} Il est composé de blocs combinatoires (dont la boite & opérations ou ALU pour arithmetic and
logic unit), et de registres (la boite a registres, les différents registres qui contiennent le PC ou les
drapeaux, etc). On les relie par les fils qu’il faut, avec les multiplexeurs qu’il faut. A ce stade on
laisse tranquillement débranchés un certain nombre de signaux de commandeﬂ— voir la figure —
car c’est I’étape 3 qui s’en préoccupera.

3. Enfin on construit un automate qui produit au bon moment tous les signaux de commande qu’on
a laissé débranchés a 1’étape 2, pour permettre a I’architecture d’'implémenter un cycle de von
Neumann.

En pratique on itére sur les étapes 1 et 2, selon le principe qu'un bon processeur est un processeur
facile a construire, mais on n’attaque pas I'étape 3 avant d’avoir défini toutes les instructions et s’étre
assuré qu’on sait les implémenter dans le chemin de données. C’est en co-construisant le jeu d’instruction
et son chemin de donnée que 1'on se rend compte qu'une ISA orthogonale

— minimise le nombre de multiplexeurs nécessaires

— maximise la partie du décodage des instructions qui est dans le chemin de données, et minimise

celle qui est dans I'automate, donc le nombre d’états de ce dernier, donc son cofit.
Dans les détails on peut déplacer la frontiere entre chemin de donnée et automate, cela reste un choix
d’implémentation. Dans 1'exemple qui suit, ce choix est dirigé par la simplicité de présentation, plus que
par la performance du processeur obtenu.

9.1 Un jeu d’instruction RISC pas terrible mais a 1a mode

A titre d’exemple nous allons implémenter un jeu d’instructions 32 bits qui est un RISC-V tres simplifié
dont les caractéristiques sont les suivantes :

— Adpresses d’octets sur 32 bits (on peut adresser 232 octets donc seulement 23° mots de 32 bits).

— 32 registres appelés Rp a R3;. Le registre R est spécial, il vaut toujours zéro, et écrire dedans c’est
pisser dans un violon.

— Code 3 opérandes.

— Les bits 0 a 6 du mot d’instruction codent l'instruction (opcode). On a ainsi 127 instructions
possibles.

— Le numéro d du registre destination R; d'une instruction est toujours codé dans les bits 7 a 11.

— Le numéro i et j des deux registres opérandes R; et R; sont toujours codés dans les bits 15 a 19 et
20a24.

— pour les instructions ALU, le bit 5 détermine si le second opérande est une constante immédiate
ou un registre.

— Lorsque le second opérande d’une instruction de calcul est une constante immédiate, la valeur de
cette constante est codée dans les bits 20 a 31.

— Les autres bits servent a coder des trucs et des machins. IIs sont souvent inutilisés. Parfois ils
définissent des sous-instructions pour un opcode donné. En particulier les 8 instructions ALU
de bases (AND, OR, XOR, SLL, SRL, SRA, ADD, SUB) sont en fait entassées sur le méme opcode

1. faux ami : en cockney c’est control signals, en frangais c’est signaux de commande.
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(enfin sur 2 opcodes, la variante 2 registres et la variante a constante immédiate) et distinguées par
les bits 12 a 14.

— Pas de drapeau, mais un saut relatif conditionnel qui compare deux registres (R; et R;), la compa-
raison étant encodée dans les bits 12 a 14. Tous les autres bits sont récupérés pour faire un offset
signé sur 12 bits, qui est multiplié par 4 parce que toutes les instructions font 4 octets.

— On a pour les accés mémoire : Rd<-[Ri+k] et Rj—>[Ri+k]ou k est un offset signé de 12 bits
construit différemment dans le load et le store (dans un cas en recyclant les bits de j comme pour
les opérations ALU avec constante immédiate, dans 'autre en recyclant les bits de d a la place).E]

— Pour les acces mémoire les bits 12 a 14 codent la taille de 1’acceés (un octet, 16 bits, 32 bits) et ou ces
bits vont dans R; (pour 16 bits, dans la moitié du haut ou dans la moitié du bas, etc.

On a simplifié en ignorant plein d'instructions du vrai RISC-V pour que la figure[9.2] reste dessinable.

24 20 19 15 14 12 11 7 6 0
opération a 2 registres | i | i | et | d | opcode |
opération a 1 registre 3 20 1 b1 B 7o 0

] d

et constante immédiate | . | : | fet | d | PREo |
31 20 19 15 14 12 11 7 6 0

lecture mémoire | k | i | type | d [ T bpcode | ]

31 25 24 20 19 15 14 12 11 7 6 0

écriture mémoire | ku | j | i | type | kr | opcode |

31 25 24 20 19 15 14 12 11 7 6 0

saut conditionnel | ke | ] | i [emp | | k; | | | opcode | |

FIGURE 9.1 - Codage de certaines instructions du RISC-V.

9.2 Plan de masse

J’ai déja dit tout le bien que j’en pensais de la notion d’orthogonalité.

L’architecture de notre processeur putatif est donnée par la figure Par rapport a ce que j’ai pu
dessiner en cours, il est possible que ce soit plus propre.

Comme déja dit, a ce stade on laisse tranquillement débranchés un certain nombre de signaux de
commande :

— les entrées de commande de certains multiplexeurs : par exemple celui qui controle le bus d’adresse,
I'information peut venir du PC ou de I’ALU, et cela dépend de oti on en est dans le cycle de von
Neumann...

— les entrées we de tous les registres (pour write enable, parfois aussi appelée ce pour clock enable,
mais c’est mal — voir la page [46). Sinon tous les registres ont implicitement la méme horloge
et on ne la représente pas. On nomme ces entrées, mais on les laisse également débranchées,
car I'instant auquel on veut enregistrer une information (par exemple la nouvelle valeur du PC)
dépend également de ot on en est dans le cycle de von Neumann.

On a fait entrer tous les bits du mot d’instruction dans ’ALU et I'automate de commande, en fait elles

n’ont besoin que des bits opcode et fct de la figure

11 faut vous convaincre que vous savez déja tout construire la dedans.

Quand on voit le résultat cela parait compliqué, mais quand on le construit instruction par instruction
c’est tout naturel (enfin il faut une bonne gomme quand méme). Je vous invite donc a la redessiner sur
une feuille A4 (vite fait en mode brouillon et au crayon a papier parce qu’on va gommer) en suivant
I'ordre suivant.

1. Poser le registre du PC, et un additionneur qui ajoute toujours 4 devant. Le brancher sur la sortie
Addr. Ne pas oublier son entrée we. Poser le registre d’instruction IR, et brancher son entrée sur
I'entrée DI du processeur. Ne pas oublier 'entrée we du registre. Et voila, on a un cycle de von
Neumann qui ne fait rien.

2. Mais a quoi sert une instruction Rd<-[PC+k] ? Eh bien c’est trés utile pour accéder a un attribut d’un objet. Le fait de ne
garder que cette instruction illustre peut-étre I'importance qu’ont pris les langages objets...
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Une fois ce dessin fait, il ne reste
tous les petits sighaux de commande

FIGURE 9.2 — S7il te plait, dessine-moi un RISC-V (en bleu les registres, en vert le combinatoire)

. poser I’ALU et la boite a registres. Bien énumérer toutes leurs entrées et sorties. Par exemple,

I’ALU a une sortie cmpTrue parce qu’elle va calculer une comparaison pour les sauts conditionnels.
C’est normal et pas grave de l'oublier au début.

. Pour faire marcher les instructions ALU a deux registres, tirer les fils entre Ri et Rj et les entrées de

I’ALU, entre la sortie de ’ALU et Rd (sans mux pour le moment). Tirer aussi les fils entre le mot
d’instructions et les entrées i, j, et d.

. Pour faire marcher les instructions ALU a un registre et une constante immédiate, ajouter un

multiplexeur devant une des entrées de I’ALU. Une entrée de ce MUX est Rj, 'autre est une
constante qu’on apporte depuis le registre d’instruction.

. Pour faire marcher les instructions mémoires, ajouter le mux avant la sortie Addr. Ajouter aussi

un mux devant 'entée Rd de la boite a registres. Tirer les fils.

. Enfin, pour faire marcher le saut relatif, ajouter un mux devant I'entrée de I'additionneur du PC :

des fois on ajoutera 4 (on passe a l'instruction suivante), des fois on ajoutera la constante de saut.
Tirer les fils.

. Pour que le saut relatif devienne conditionnel, on peut soit faire rentrer cmpTrue dans ’automate,

qui positionnera m5 a 0 lorsque cmpTrue est a 1. Ou bien on peut choisir, comme sur la figure, que
c’est le chemin de donnée qui décide : il faut ajouter 4k au PC si on est dans une instruction de
saut relatif (m5 est vrai) et si cmpTrue est a 1. Sinon on ajoute 4 au PC. Remarque : en fait méme
mb5 pourrait étre considéré comme une fonction combinatoire du mot d’instruction... Mais autant
cacher cette fonction dans la grosse fonction de sortie de ’automate de commande.

. Enfin, lister les signaux de controle et poser 'automate qui les produit. Cet automate prend en

entrée le mot d’instruction, et possiblement d’autres signaux qui viennent du datapath (mais pas
ici).

Construction de I'automate de commande

2

plus qu’a construire I’automate intitulé “control”, et qui positionne
en fonction du cycle de von Neumann de chaque instruction.

“

Par exemple, la figure [9.3|décrit un automate minimal qui permet d’exécuter les instructions ALU

dans

le chemin de donnée de la figure[9.2]:

3. Rappel : control en Elizabethain ¢’est commande en frangais, pas controle.
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— au premier cycle, on positionne le multiplexeur en bas a droite (m2=1) pour que le PC soit recopié
sur le bus d’adresse MAddr. La mémoire réagit en plagant le contenu de la case mémoire d’adresse
PCsur le bus de donnée MDI. L'automate positionne aussi le write enable du registre IR a 1 (et laisse
les autres we a 0 — par convention dans cette section, les signaux non précisés dans une patate sont
a0).

— ainsi au front montant qui termine ce cycle, la donnée présente sur MDI donc en entrée de RI est
enregistrée dans RI. Dans tous les autres états du cycle de von Neumann on va laisser wel a 0, ce
qui nous garantit que l'instruction reste stable le temps qu'il faut.

— Le cycle suivant s’appelle Decode, et il ne fait rien de particulierE] sauf envoyer 'automate sur un
chemin ou sur I’autre en fonction de I'instruction.

— Au cycle suivant, par exemple pour les instructionsn ALU, on fait deux choses en paralléle:

— on réalise le calcul dans I’ALU. La boite a registres regoit du mot d’instructions i, j, et d. Le mux
m1 est aussi positionné en fonction du mot d’instruction (c’est son bit 5). Elle sort les contenus
des registres

— on augmente PC. Pour cela il faut positionner m5=0 pour que 'additionneur ajoute 4, et wePC
a1 pour que le résultat de cette addition soit enregistré au prochain front montant.

Exercice : completez en ajoutant un chemin pour les écritures mémoire (l’automate doit alors activer

weMem au bon moment), puis un chemin pour les instructions de saut conditionnel (I’automate doit
alors positionner m5 a 1).

start

InstrFetch

wePC=0 weR=0 wel=1
ml=x m2=1 m3=x
m4=x mb5=x

ExecuteRMEM

wePC=1 weR=1 wel=0
ml=1 m2=0 m3=1
m4=0 m5=0

ExecuteALU

wePC=1 weR=1 wel=0
ml=instr[5] m2=x
m3=0 m5=0
m4=0

Decode

wePC=0 weR=0 wel=0 opcode:...
ml=x m2=x m3=x
m4=x m5=x

opcode=""

FIGURE 9.3 — Le cycle de von Neumann pour l'exécution des instructions ALU et lecture mémoire. Rappel : “x” veut dire
“don’t care”

Pour I'encodage des états, on pourra essayer de s’arranger pour que les bits codant les états soient
directement des signaux de commande.

Enfin il ne reste qu’a implémenter ’automate comme vu au chapitre [}

Et voila un processeur universel qui fonctionne. C’est un objet de ce genre la qu’on vous demande de
construire en TD. Au chapitre suivant nous explorons différentes maniéres de le rendre plus efficace.

4. Lorsqu’on pipelinera ce processeur, on trouvera du boulot a faire dans I'état Decode.
5. Ce serait plus pédagogique de décomposer ces deux actions en deux cycles, mais quand je le fais il y a toujours un petit malin
pour me faire remarquer que cela peut se faire au méme cycle.
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Entrées/sorties, interruptions,
exceptions, et appels systemes

Rappels : call/ret versus branch-and-link/mov PC, R14: Cfp.

Dans cette section, nous allons montrer comment le mécanisme de call (ou branch-and-link), une fois
en place, va se révéler incroyablement utile dans au moins trois situations : la gestion des interruptions,
la gestion des exceptions, enfin les appels systemes.

Mais d’abord, il nous faut discuter un peu comment la machine de von Neumann discute avec le
Monde Extérieur.

10.1 Interfaces d’entrée/sorties

C’est vrai ca. Et le clavier ? Et I’écran ? Et la carte son? Et la prise réseau?

Tous ces gadgets sont appelés périphériques (en canadien de 1'ouest devices).

Pour gérer un périphérique on met en place des protocoles partagés par I'ordinateur et le périphérique.

Deux exemples (treés simplifiés)

— Ce que vous tapez au clavier s’accumule dans une zone de mémoire appelée le tampon (ou buffer)
clavier. L’ordinateur, lorsque cela lui chante, lit ces informations, puis informe le clavier (par une
écriture dans une autre zone de mémoire) qu’il les a lues, et donc que la zone correspondante du
tampon est a nouveau disponible.

— De méme, l'ordinateur écrit, quand cela lui chante, dans une autre zone mémoire, des valeurs de
couleurs. La carte vidéo, a la fréquence dictée par le moniteur, accede & ces mémes cases mémoires
et envoie l'information correspondante au moniteur qui les jette sur 1’écran avec son canon a
électrons, formant une image. Enfin du temps des moniteurs cathodiques c¢’était cela.

Plus généralement, les entrées/sorties s’appuyent sur deux mécanismes :

1. la projection en mémoire des entrées/sorties (memory-mapped 10). Le périphérique a le droit
d’écrire ou de lire des informations dans certaines zones bien précises de la mémoire, et ce dans
le dos du processeur. Le matériel qui implémente cette interface s’appelle device controler dans le
texte, parfois coupleur en québecois.

Remarque : il a jadis existé dans de vieux processeurs des instructions d’entrées/sorties qui
permettaient au processeur de lire ou d’écrire une valeur sur un bus spécifique, distinct des bus
Adpresses et Données. La projection en mémoire est plus souple, mais aussi plus économique en
broches d’entrées/sorties (les pattes de la puce).

2. un mécanisme d’interruptions qui permet a un signal externe d’interrompre temporairement le
programme en cours pour que le processeur s’occupe de traiter 'événement. Ce sera détaillé en
En gros, lorsque survient un événement, 'instruction en cours est terminéeﬂ le PC courantE]
est sauvegardé quelquepart, et sa valeur est remplacée par I'adresse d’une routine de traitement
d’interruption ou (interrupt handler) ou Interrupt Service Routine (ISR) qui fait en général partie du
systeme d’exploitation (tiens tiens, le voila). Puis le cycle de von Neumann reprend, le processeur
exécutant I'ISR qui gere ce qui a provoqué I'interruption. Ceci fait, le PC est restauré, et 'exécution
du programme interrompu reprend la ou elle avait été interrompue.

. T ire, les i . ., . . . _
1. Dans le cas d’exécution superscalaire, les instructions en cours sont terminées au sens de terminator : on les re-lancera
2. Dans le cas d’exécution superscalaire, c’est toute une poésie de savoir quel est le PC courant.
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On voit que le protocole qui régit la communication avec le périphérique est aussi en partie implémenté
par du logiciel, qu’on appelle device driver c’est-a dire pilote de périphérique. Ce sont les fameux drivers qu'il
faut installer quand on ajoute un gadget a son PC.

Parenthése gamerz : I'invention des GPU L'acces a la mémoire video fonctionne a plein régime tout le
temps. Pour un pauvre écran de 1024 <800 pixels codés sur 4 octets, rafraichi a 60Hz (a moins, il fatigue les
yeux), la carte video doit envoyer 60 x 4 x 1024 x 800 = 196608000 octets/s au moniteur. Cela justifie que ces
acces ne passent pas par le bus général de I'ordinateur, comme jadisf'| Il y a désormais un bus dédié a la vidéo. Le
probleme reste que le processeur doit calculer et envoyer a la carte video une quantité similaire de données par
seconde pour définir I'image, dans les contextes oit elle bouge beaucoup (Lara Croft est toujours pressée). L'idée
suivante est donc de faire réaliser les calculs graphiques (rotations, perspective et éclairage) par la carte video.
L’avantage n’est pas uniquement que cela fait moins de boulot au processeur : cela fait aussi beaucoup moins
de communications entre processeur et carte graphique, puisqu’une image est alors décrite par un ensemble de
triangles et de textures, ce qui est beaucoup plus compact.

a. Mon premier ordinateur, le ZX81, passait la moitié de sa vie & remplir son écran noir et blanc de 256x192 pixels. Mais il était
pas cher.

Une notion importante ici est que les entrées/sorties sont le plus souvent asynchrones, c’est-a-dire
selon un minutage indépendant de celui du processeur (puisque le Reste du Monde n’est pas aux ordres
de notre processeur).

Et le mécanisme pour ceci est celui des interruptions.

10.2 Interruptions

Une interruption c’est donc quand le Reste Du Monde interrompt le processeur. Exemples :

— Il est arrivé un paquet sur la carte réseau, et il faut s’en occuper.

— Un facheux a appuyé sur une touche du clavier. Pas moyen d’étre tranquille.

— La carte son signale qu’elle n’a bient6t plus d’échantillons a jouer.

— Etc.

Une interruption est un événement qui peut étre provoqué soit par une cause externe (il y a des broches
pour cela sur la puce du processeur), soit par une cause interne, et on parle alors parfois d’exceptions
(division par zéro, accés mémoire interdit, on en verra plein d’autres en .

Dans nos trois exemples, remarquez que les deux premiers sont des entrées du processeur (le monde
extérieur doit interrompre le processeur, c’est naturel) mais le troisieme, la carte son, c’est une sortie
du processeur. C’est moins naturel. Cela illustre la chose suivante : une fois qu’on a un bon mécanisme
d’interruption, on s’en sert partout.

Lorsque survient un tel événement, le processeur interrompt (temporairement) ce qu’il était en train
de faire (son programme) pour sauter a la routine de traitement des interruptions.

C’est donc un mécanisme de call/return, avec une premiere grosse différence : I’adresse a laquelle le
processeur saute est fixe (déterminée par la nature de l'interruption.

On va voir bient6t qu’il y a une autre grosse différence, qui est que le processeur change de mode.

En cas d’interruption urgente, du reste, il faut quand méme que le processeur termine proprement
le cycle de von Neumann de l'instruction en cours avant de sauter a la routine de traitement des
interruptions. Ceci nous ameéne a la question suivante.

10.3 Instructions atomiques

Si I'on revient au call normal, en mode utilisateur, il fait deux actions en une instructions : 1/
sauvegarder I'adresse de retour, et 2/ changer le PC. Il est important que ces deux actions ne soient pas
séparables (on parle d’atomicité) pour ne pas permettre qu'une interruption intervienne entre les deux.
Plus précisément, ce qui doit étre atomique est 'empilement de 1’adresse de retour (push) : si on le fait en
deux instructions (par exemple écrire en mémoire puis incrémenter le pointeur de pile), une interruption
entre les deux va provoquer un second push, donc deux écritures a la méme case mémoire, la premiére
étant perdue.

Voici en détail deux mécanismes qui existent sur de vrais processeurs :

— call atomique : fait un empilement puis un saut de maniére atomique. C’est la maniere tradition-

nelle de faire. Une interruption déclenche également un call vers une adresse prédéterminée.
Vous pouvez vérifier que tout se passe bien.
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— les designers de ’ARM ont trouvé que le mécanisme de call était trop complexe. Plus exactement
il a trois actions a réaliser (une sur SP, une sur la mémoire, et une sur PC) : c’est trop. L'instruction
ARM qui remplace le call est BL pour branch and link qui copie le PC dans R14 puis exécute le
saut. C’est le destinataire du saut qui est chargée de sauvegarder R14 sur la pile (et parfois on peut
I"économiser).
Mais alors, une interruption entre le BL et la sauvegarde de R14 ferait qu’on perdrait R14. Argh.
Pour cette raison, une interruption, dans ces ISA, utilise un R14 et un SP qui sont spécifiques aux
interruptions. Du coup pas besoin de les sauvegarder. De plus cela allege le temps de traitement
d’une interruption urgente. Pour des raisons similaires, ARM a des instructions de sauvegarde
atomique de tous les registres en mémoire.
Autrement dit, lorsque survient une interruption, le processeur change aussi de R14 et de SP.
Certains processeurs font de méme pour une partie de leurs registres standard Ri pour éviter les
sauvegardes et restaurations en cas d’interruption urgente.
On voit que le processeur peut travailler dans deux modes : le mode normal, et le mode “traitement
d’interruption”, qui se distinguent par les registres physiques associés aux R14 et PC des instructions.
Généralisons un peu.

10.4 Modes d’exécution

Donc on des instructions atomiques, donc non interruptibles. Mais que se passera-t-il si une seconde
interruption survient alors que le processeur n’a pas fini de traiter la premiere (il est toujours dans I'ISR) ?
On aimerait assurer une certaine atomicité (ininterruptibilité) a 'ISR.

La solution usuelle est quune interruption fait passer le processeur dans un mode ininterruptible.

C’est I'ISR qui choisira quand revenir au mode normal. Du coup il faut une instruction différente
pour revenir d'une interruption vers le mode normal (RETI au lieu de RET).

C’est ainsi qu’'un processeur qui se respecte peut fonctionner au moins dans deux modes : le mode
utilisateur et le mode superviseur (systeme).

Certains processeurs ont toute une hiérarchie de modes intermédiaires, et une interruption fait passer
le processeur dans un mode plus privilégié. Tout en bas, le mode utilisateur; tout en haut le mode
superviseur; et au milieu un ou plusieurs niveaux d’interruptions avec des priorités entre elles. Par
exemple des interruptions pas trop urgentes (niveau 1) et des interruptions a traiter en urgence (niveau
2). Les interruptions urgentes peuvent interrompre la routine de traitement des interruptions de niveau 1,
mais le contraire n’étant pas vrai.

Remarquez que la montée en privilege lors du traitement d"une interruption assure que le processeur
ne sera pas interrompu par une seconde interruption de méme niveau tant qu’il n’aura pas terminé de
traiter la premiére.

Avec tout cela, on comprend qu’une interruption n’est pas traitée instantanément. Il y a typique-
ment un mécanisme de handshake (request/acknowledge, vous vous souvenez) entre 1'extérieur et le
processeur. Et éventuellement une file d’attente a 1’extérieur.

10.5 Exceptions

C’est un mécanisme qui permet de traiter des problemes provoqués par le programme lui-méme. Le
Reste du Monde est ici innocent, mais le mécanisme mis en place va étre exactement le méme que pour
traiter une interruption : montée en privilege, saut vers une ISR, puis retour.

Quelques exceptions avec des traitement utiles :

— invalid operation : I'ISR tue le processus fautif. Pour cela on voit bien qu’elle doit s’exécuter dans
un mode trés privilégié. Mais alors, que fait le RETI puisqu’on a tué le programme ot ’on devait
revenir ? Que mettre dans notre PC? Eh bien votre Linux retourne au shell qui a lancé le processus
fautif. C’est juste un autre processus en fait. Le mécanisme pour cela sera vu en[14.2.1]

— unavailable but valid operation, par exemple opération flottante alors qu’on n’a pas de maté-
riel flottant : I'ISR I’émule en logiciel. Pas forcément besoin de privilege (et on accepte d’étre
interrompu).

— invalid operation in user mode. La sentence sera la mort.

— memory protection fault. Idem, mais ce mécanisme peut étre détourner de plein de manieéres
utiles.

— address translation fault, avec 'exemple de la pile.
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10.6 Appel systeme

Supposons que le processeur dispose d’instructions craignos, comme celles qui servent a initialiser la
protection de la mémoire (qu’on verra plus tard). Il faut qu’elles soient accessibles uniquement en mode
superviseur. C’est ce qui va permettre d’isoler les processus les uns des autres (un processus ne pourra
pas lire la mémoire d’un autre). Ce n’est pas juste pour se protéger des d’éventuels méchants (processus
malveillants ou espions), c’est surtout pour se protéger des abrutis et des amateurs (c’est ce qui permet
qu’un processus qui plante ne plante pas tout le systeme). C’est donc tres utileﬁ

La seule maniere de passer du mode utilisateur au mode superviseur est par un appel systeme.
Techniquement, un appel systéme ressemble a un call ou BL: il sauvegarde une adresse de retour. Mais
I’adresse de destination n’est pas un argument du call comme dans un call normal. C’est une adresse
fixe, un point d’entrée du systéme, qui plus est inaccessible en écriture depuis le mode utilisateur (soit en
ROM, soit en mémoire protégée).

Donc un appel systeme sauvegarde 'adresse de retour, change de mode, puis saute a une adresse
systéme fixe. Le code systéme qui s’y trouve se termine par une autre instruction spéciale qui redescend
en privilege (repasse en mode utilisateur) puis saute a I’adresse de retour sauvegardée.

Bref, appel systéme et interruption s’appuient sur les mémes mécanismes. Réciproquement on peut
voir I’appel systeme comme une interruption a la demande du logiciel. Par exemple, dans les ISA ARM,
l'instruction d’appel systéme s’appelle SWI pour SoftWare Interrupt.

10.7 Instructions de synchronisation

Voici une autre classe d’instructions qui doivent étre atomiques, et donc non interruptibles, et donc
justifient des instructions spécifiques. Pour pouvoir programmer un processeur multicceur, il faut pouvoir
implémenter des verrous qui permettent de synchroniser des cceurs. Les primitives de verrouillage
doivent faire, de maniére atomique, une lecture mémoire, un test sur la valeur lue, et éventuellement une
écriture. Par la suite on a développé des techniques de synchronisation plus siouxes.

3. Car en sincére humaniste je veux croire qu'il y a sur terre plus d’ahuris que d’authentiques malfaisants.



Chapitre 11

Exécution parallele

11.1 Pipeline d’exécution

Les bases

L’idée est simple : c’est celle du travail a la chaine.

Faisons pour commencer I’hypotheése simplificatrice que notre processeur ne sait faire que des
additions et des soustractions. On suppose donc qu’on n’a qu’'une unité d’exécution, et on oublie
momentanément les accés mémoire.

Alors, pendant que le processeur charge l'instruction # du programme (instruction fetch ou IF), il peut
décoder I'instruction n — 1 (decode ou D), lire les registres pour I'instruction n — 2 (operand load ou OL),
exécuter l'instruction n — 3 (execute ou EX), et écrire le résultat de I'instruction n — 4 dans le registre
destination (writeback ou WB).

Exemple : On a du matériel qui fait I'IF en 1ns, une lecture et une écriture des registres en 1ns, et
toutes les opérations en 1ns. Dessiner le diagramme d’exécution (en x le temps, en y les étages du
pipeline) pour le programme suivant :

1: Rl <- add R2,R3
R4 <- sub R5,1
3: R6 <- add R7,R8

efftf2]3[4[5]6[7[8[9] | [ [ [ [ | [ | [ [ |
iy
1D
OL
EX
MEM
WB

[\

On définit ainsi les étages du pipeline. Techniquement jusque la c’est trés simple, il suffit d’avoir un
paquet de registres pour chaque étage, qui transmet 'instruction en cours d’un étage a 1’autre. Remarquez
qu’il faut transmettre le long du pipeline toutes les infos utiles a la vie future de l'instruction, par exemple
son registre de destination.

Les accés mémoire

Maintenant parlons des accés mémoire. On va déja supposer qu’on a un accés mémoire séparé
programme/donnée, pour pouvoir EX une instruction mémoire en méme temps qu’on IF une instruction
subséquente. En pratique, on a effectivement deux accés mémoire distincts lorsqu’on a des mémoires
caches séparées pour les instructions et pour les données (ICache et DCache). On verra en[13.1|que cela a
plein d’autres avantages. Admettons pour le moment.

Ensuite on peut considérer qu'une instruction mémoire est une instruction comme les autres, qui
s’exécute dans 1’étage EX. Cela pose deux petits problemes : le premier est que c’est vraiment une
mécanique différente des autres qui s’occupe des acces mémoire. Le second est : adieu les modes
d’adressages compliqués.

Donc on va plutot dire que toutes les instructions passent par un étage supplémentaire, dit MEM,
apres 1’étage EX. Ciel, cela ajoute un cycle au temps d’exécution de chaque instruction. Oui mais on est en
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pipeline : si on considere le temps d’exécuter tout le programme de 100000 cycles, cela ne lui ajoute qu'un
cycle aussi. Dessinez des chronogrammes de pipelines jusqu’a avoir bien compris la phrase précédente.

Les aléas de la vie

Considérons le programme suivant :

1 RO <- xxxx // adresse du vecteur X
2 Rl <- yyyy // adresse du vecteur Y
3 R2 <- nnnn // taille des vecteurs
4 R3 <= 0

5 .boucle R10 <- [RO]

6 R11 <- [R1]

7 R12 <= R10 % R11

8 R3 <= R3 + R12

9 RO <- RO + 4

10 Rl <- R1 + 4

11 R2 <- R2 -1

12 ifNZ B boucle

On a plein de dépendances dans ce programme. On parle de dépendance lorsqu’une instruction dépend
pour s’exécuter du résultat d’une instruction précédente. Une autre maniere de voir est que s'il n’y a pas
de dépendance entre deux instructions, on peut les exécuter dans n'importe quel ordre. Ou en méme
temps (en parallele).

On distingue

dépendance de donnée qui sont de trois types :

— lecture apres écriture ou RAW. Par exemple 'instruction 7 doit attendre pour lire la valeur de
R11 que l'instruction 6 ait écrit cette valeur dans R11.
— écriture apres lecture ou WAR. Par exemple l'intruction 9 ne peut pas modifier RO tant que
I'instruction 5 n’a pas fini de la lire.
— écriture aprés écriture ou WAW. Onn’en a pas ici, mais si on avait deux lignes commencant par R1
<- ...,onne pourrait pas les échanger au risque de changer la sémantique du programme.
Seule la premiére (RAW) est une vraie dépendance, c’est a dire une dépendance d’un producteur
vers un un consommateur. Les deux autres sont dites “fausses dépendances”, car elles ne pro-
viennent que du fait qu’on a un nombre de registres limités. On pourrait toujours les supprimer
en utilisant un autre registre la seconde fois, si on avait un nombre infini de registres. Par exemple,
la dépendance WAR de 5 a 10 se résolverait en utilisant R100 a la ligne 10 (et en renommant
R100 toutes les occurrences suivantes de RO dans le programme). Cette notion est importante
a comprendre, car on va avoir plein de techniques matérielles qui reviennent a renommer les
registres pendant I’exécution du programme pour ne pas étre géné par les fausses dépendances.
Attention, il peut y avoir des dépendances de données entre deux instructions a travers d’une
case mémoire. C’est plus difficile a détecter puisque cela ne se voit pas forcément a la compilation
du programme.

dépendance de contrdle typiquement pour savoir quelle branche on prend en cas de saut condition-

nel. Par exemple on ne peut pas décider ligne 12 du saut tant que la ligne 11 n’a pas produit la
valeur du drapeau Z.

dépendance de ressources (encore une fausse dépendance qui pourrait étre supprimée par plus de

matériel) : si par exemple une lecture mémoire fait deux cycles et n’est pas pipelinée, I'exécution
de l'instruction 6 dépend de ce que l'instruction 5 ait libéré la ressource.

Et pourquoi je vous embéte avec cette notion dans le chapitre sur le pipeline ? D'une part parce que
c’est une notion centrale en informatique (elle parle de la sémantique d"un programme). D’autre part
parce que dans le pipeline, le W arrive longtemps apres le R. Dans le cas de deux instructions consécutives
avec une dépendance RAW, si on ne fait pas attention, le W de la premiere pourrait se dérouler apres le R
de la seconde, qui lirait alors n'importe quoi.

On gere les dépendances

1.

d’abord en les détectant. Convainquez-vous que c’est relativement facile, bien que cotiteux en
matériel. En fait, c’est a cela que sert 'étage ID (Instruction Decode) entre IF et EX (pasque sinon, dans
notre processeur RISC orthogonal, le décodage d’instruction était quasi trivial). Sur sur la figure
la boite “Analyse de dépendances” compare les deux registres opérandes de l'instruction a
exécuter avec les registres destination de toutes les instructions en cours dans le pipeline. . Le plus
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FIGURE 11.1 — Modifications au processeur de la ﬁgurepour le pipeliner (brouillon incomplet). A gauche, le registre a
décalage qui contient les instructions dans les différents états. Pour le reste, on a juste un automate plus compliqué qui va
activer les différents “write enable” plus souvent que dans la version non pipelinée. Exercice : indiquez vous-méme sur les fils

“constante” de quel étage ils proviennent.

coliteux serait de gérer les dépendances de données a travers la mémoire, mais pour le moment le
probleme ne se pose pas car lecture et écriture mémoire se font dans le méme étage, donc dans
'ordre du programme).

. ensuite en bloquant le pipeline (plus d’IF) en cas de dépendance jusqu’a ce que l'instruction

bloquante ait avancé suffisamment pour que la dépendance soit résolue. On parle aussi d’insérer
une bulle dans le pipeline (est-ce une métaphore ou une allégorie?).

. enfin en ajoutant des court-circuits & notre pipeline. Les deux principaux sont

— un court-circuit des données : on avait un signal qui remontait le pipeline pour aller stocker
dans la boite a registre le résultat des opérations durant WB. Ce signal est désormais espionné
par I'étage EX, qui y repérera les couples (numéro de registre, valeur) qui l'intéressent. Ainsi,
une dépendance de données ne bloque plus une instruction dans 1’étage OL mais dans 1’étage
EX. En fait, on va méme court-circuiter 1’étage MEM pour les instructions qui ne font pas
d’acces mémoire, mais attention alors aux conflits possibles entre un couple qui viendrait de
I'étage EX et un couple qui viendrait de 1’étage MEM au méme cycle. Les court-circuits se
voient bien sur le diagramme temporel.

— Un court-circuit des drapeaux vers 1’étage IF.

. Une derniére technique pour gérer les dépendances de contrdle est I'exécution spéculative. On prédit

le résultat d’un branchement, on charge le pipeline en fonction de la prédiction, et quand on s’est

trompé on doit jeter des instructions en cours d’exécution (fastoche, c’est le fil reset des registres

du pipeline, et aucune instruction n’est définitive tant qu’elle n’a pas écrit dans les registres). En
terme de cycles perdus, c’est comme si on avait bullé sur la dépendance de controle, mais on ne
paye ce prix que lorsqu’on s’est trompé dans la prédiction.

Et comment qu’on prédit?

— Heuristique simple : on prédit qu'un branchement est toujours pris. C’est (presque) vrai pour
les branchements en arriére a cause des boucles, et vrai une fois sur deux pour les branchements
en avant. Si on a toutes les instructions conditionnelles (ARM, 1A64), les branchements en
avant pour cause de 1if sont rares, et la prédiction est bonne a plus de 90% (elle sera mauvaise
seulement une fois sur nnnn dans notre programme ci-dessus).

— On utilise un prédicteur de branchement : on associe a chaque adresse de branchement, par une
fonction de hachage simple (typiquement les 8-10 derniers bits de ’adresse de l'instruction de
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branchement), un historique des branchements a cette adresse (enfin, a ce hash). Le processeur
utilise cet historique pour spéculer sur la branche a suivre pour le instruction fetch.

La premiere idée est juste de se souvenir si un branchement a été pris ou pas par un bit,
et on prédit donc que le prochain passage du processeur a cette adresse prendra la méme
décision. Mézalors regardons ce qui se passe dans une boucle for qui est elle-méme dans une
boucle : la premiere prédiction sera au hasard, ensuite pendant qu’on reste dans la boucle
interne, on prédit qu’on saute en arriére et on a raison, sauf a la fin de la boucle ou on se trompe.
Ensuite quand la boucle externe fait & nouveau rentrer dans la boucle interne, on est stir de se
tromper une seconde fois, puisqu’on se souvient que le dernier branchement était de sortir de
la boucle...

Une solution a peine plus chere est 'automate a 4 états (codés sur 2 bits) de la figure[11.2}
Ce prédicteur doit se tromper deux fois pour changer la prédiction, si bien qu’il ne se trompe
qu’une fois par boucle.

FIGURE 11.2 — L'automate d’un prédicteur de branchements. Un tel automate est associé a chaque adresse d’instruction de
branchement. Il change d’état chaque fois que le processeur exécute une instruction de saut a cette adresse. L'entrée AT (actually
taken) de I'automate vaut 1 ssi le saut a été pris. La sortie PT est la prédiction de I'automate : 1 si le branchement est predicted
taken. Les noms wpt et spnt se lisent respectivement weak predict taken et strong predict not taken (inférez les autres).

On voit que la gestion physique des dépendances est variable : par exemple, certaines dépendances
vont bloquer les instructions a I'étage OL, d’autres a 1’étage EX. Quand on va dans les détails, ces
techniques sont tres complexes. Il faut se convaincre qu’on peut partir du plus simple (buller) et aller
vers le plus complexe (court-circuits et exécution spéculative).

En résumé, la notion de dépendance est une notion abstraite importante. Elle est gérée aussi en amont
par le compilateur qui va construire le graphe de dépendance d’un programme pour minimiser leur
impact. Reprenons notre programme : un compilateur optimiseur saura intercaler les instructions de
gestion de boucle entre les instructions d’acces mémoire et de calcul qui présentent de vraies dépendance.

Fenétres de registres Les systémes de fenétres de registres permettent un renommage de chaque registre d
chaque itération en une seule instruction (et dans IA64 c’est méme dans l'instruction de branchement) : c’est la
technique du pipeline logiciel qui permet (dans notre exemple) de charger un registre a l'itération n, de faire
la multiplication et I'addition a l'itération n + 1, et de ranger le résultat a 'itération n 4 2. Ainsi on a éloigné
les instructions dépendantes suffisamment pour qu’elles aient chacune le temps de traverser tranquillement le
pipeline.

Il 'y a un surcoflt : l'initialisation et la fin de la boucle sont plus compliquées, car il faut amorcer puis vider le
pipeline logiciel. Donc le code est plus gros.

Aléas Enfin, il y a des aléas qui se traitent comme des dépendances. Par exemple, une division par zéro doit
provoquer une interruption du programme (ou exception). Concrétement, en découvrant que le dividende vaut
zéro (dans I'étage EX), le processeur doit sauter a une routine d’erreur. Du coup, toutes les instructions qui
suivaient la division, et qui avaient été lancées dans le pipeline, deviennent caduques : on doit vider le pipeline
avant de traiter une exception.

11 se passe la méme chose en cas de traitement d’interruption en général : si on veut pouvoir la traiter en urgence
on ne peut pas attendre que toutes les instructions lancées se terminent, on doit les annuler.

Un autre cas important est le cache miss (on verra ce que c’est en vous comprendrez donc cette phrase
seulement a la seconde lecture du poly). Un cache miss va bloquer a I'étage MEM (on parle d’aléa mémoire).
Comme le mécanisme de traitement des dépendances et celui de traitement des aléas sont similaires, les dépendances
sont parfois aussi appelées aléas (en Cockney, hazard). C’est le cas dans le Patterson et Hennessy, mais je
n’aime pas du tout. Un aléa, pour moi, c’est aléatoire.
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La techno et les pipeline

Construire un pipeline simple c’est juste ajouter des registres. Pour qu’il soit efficace il faut

— qu’on ait bien équilibré la tranche de travail de chaque étage. Ce n’est pas si difficile, grace a la
notion de retiming.

— que le surcotit des registres (en terme de temps de traversée) soit négligeable. En 2002 il y a eu
deux papiers dans la conf ISCA convergeant vers 1'idée que la profondeur optimale était de 8 a
10 portes de base dans chaque étage. Le pentium 4 était en plein dedans. Malheureusement ces
papiers ont négligé les nouveaux petits soucis des techno submicroniques, et le P4 n’a pas pu étre
poussé jusqu’aux fréquences prévues.

11.2 Exploitation du parallélisme d’instruction : exécution supersca-
laire

Si on creuse, on constate que notre pipeline peut encore étre amélioré.

— On a fait comme si I'étage EX était monolithique, mais en fait on a dedans un additionneur/sub-
tracteur (1ns), un multiplieur (5ns, pipeliné), les mémes en flottant (8ns), une unité logique (1ns),
etc. Tous ces opérateurs pourraient fonctionner en paralléle, avec des profondeurs de pipelines
différentes.

— Mais alors, les instructions vont se terminer dans le désordre. Par exemple si l'instruction # est
une multiplication et I'instruction n + 1 est une addition, on aura le résultat de 'addition avant
celui de la multiplication. Remarque : le multiplieur en 5 cycles peut s’insérer dans notre pipeline
de la section d’avant, il insérera 4 bulles, et voila tout.

— Tant qu’a faire, vu que les instructions se terminent dans le désordre, on peut les lancer dans le
désordre.

— Tant qu’a vivre dans le désordre, on peut aussi lancer plusieurs instructions a la fois.

Un processeur qui fait tout cela, tout en conservant une sémantique séquentielle au jeu d’instructions est

appelé superscalaire. Nous allons détailler les mécanismes qui rendent cela possible ci-dessous.

Sémantique d’un programme assembleur La sémantique de I'assembleur est (normalement) définie par
I'ISA.
— La sémantique d’une instruction est une fonction qui prend I'ordinateur dans un certain état, et le rend
dans un autre état. L'état est constitué des valeurs des registres visibles de I'ISA (le PC, ceux de la boite
a registre, les drapeaux) ainsi que des valeurs de la mémoire. Les autres registres (ceux ajoutés pour le
pipeline, etc) ne doivent pas intervenir dans la sémantique.
— La sémantique d’un programme est construite par composition des sémantiques de ses instructions, avec
un opérateur de point fixe pour les boucles. C’est cette sémantique que I'exécution dans le désordre doit
préserver.

Par opposition il existe des processeurs dont le jeu d’instruction a une sémantique exposant explicite-
ment le parallélisme. L'extréme dans cette direction est un processeur VLIW (very large instruction word)
dans lequel chaque instruction est un mot de (par exemple) 128 bits, et est composée de 4 sous-instructions
de 32 bits destinées a étre lancées sur autant d’unités d’exécution. On aura typiquement deux unité
entiere, un FMA flottant, et une unité mémoire. Remarquez qu’il n'y a pas lieu d'imposer I'orthogonalité
du codage des instructions de chaque sous-classe. Les différents unités d’exécution sont toutes pipelinées,
mais avec des profondeurs différentes. Dans la version extréme de cette idée, c’est le compilateur qui
se charge de gérer toutes les dépendances de données : si le FMA fait 5 cycles, alors il ne produira pas
de code dans lequel deux FMA dépendants sont séparés par moins de 5 instructions. Les bulles dans le
pipeline sont ici des Nop (No Operation) insérés par le compilateur.

L'inconvénient du VLIW est d’avoir du code plus gros, car plein de Nops. Cela se soigne en ajoutant
une petite couche de compression/décompression de code. Il faut se convaincre que cela sera moins
cotiteux que 'architecture superscalaire qui suit...

11.2.1 Architecture superscalaire (*)

Comment construit-on une architecture superscalaire ? Pour détecter les instructions qu’il peut lancer
en parallele, le processeur doit analyser les dépendances sur une fenétre d’instruction en entrées. Il doit
ensuite renommer les registres, d'une maniere ou d'une autre (voir plus bas) pour faire disparaitre les
fausses dépendances. Il peut alors sélectionner dans sa fenétre des instructions indépendantes et les
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lancer. Une instruction se termine au bout d"un nombre de cycles variables, qui dépend non seulement de
la latence de 1'opération a effectuer, mais aussi des dépendances de données et méme des aléas mémoire,
etc. Lorsque le calcul est terminé, le processeur envoie d’abord le résultat a toutes les instructions qui
l'attendent (a travers éventuellement les registres de renommage), puis il doit recopier le résultat (le
registre de renommage) dans les “vrais” registres (ceux du jeu d’instruction), en assurant la sémantique
séquentielle. Ce processus est encore compliqué par le fait qu’on doit en plus maintenir la cohérence
séquentielle en cas d’exception.

On va voir un exemple d’implémentation, mais encore une fois dans ce domaine 1'imagination est
reine. L'idée centrale est celle du renommage des registres, en gardant la correspondance avec les registres
du code dans des tables. On va avoir plusieurs tables partiellement redondantes : c’est pour que leur
acces soit rapide. Le mot clé a chercher pour avoir des explications plus précises sur les Internets est :
Tomasulo algorithm, on trouve de bonnes vidéos.

Analyse des dépendances et renommage

Les instructions qui arrivent sont lancées dans 1’ordre ou le désordre (plusieurs par cycle). La seule
condition a ce niveau pour lancer une instruction est qu’il y ait une unité libre pour la recevoir.

En fait 'instruction lancée atterrit dans une petite table de stations de réservation située en amont de
l'unité d’exécution. Elle va y attendre la valeur de ses opérandes.

Chaque station de réservation (SR) contient une instruction en attente d’exécution, avec ses registres
sources et destination, mais aussi des champs destinés a recevoir les opérandes. Ces champs peuvent
contenir :

— soit la valeur de l'opérande, si elle était déja disponible dans la boite a registres au lancement de

I'instruction,

— soit un pointeur vers la station de réservation qui contient l'instruction qui va produire cet

opérande, en cas de dépendance de donnée.

On a donc au niveau du lancement une table qui dit “tel registre sera produit par telle SR”. C’est cette
table, consultée avant le lancement des instructions suivantes, qui assure le renommage des registres
opérandes et supprime ainsi les fausses dépendances. Elle peut aussi tout simplement indiquer “tel
registre est disponible dans la boite a registres”, c’est d’ailleurs son état au démarrage.

En résumé, les registres destination sont éventuellement renommés en SR au lancement. Ainsi,
lorsqu’on a deux instructions proches qui écrivent dans R1, les deux R1 ne sont pas renommés dans la
méme SR. Bien sfir, au lancement d’une instruction dont la destination est R1, la table précédente est mise
a jour pour dire “désormais R1 sera produit par telle SR”.

Exécution dans le désordre

Il y a un bus commun des résultats (il est tres large, typiquement plusieurs centaines de bits, car il
peut y passer plusieurs résultats par cycles). L'info qui passe est de type (registre destination, SR qui était
responsable de cette opération, valeur du résultat). Chaque station surveille ce bus pour y attraper les
opérandes qui manquent a ses SR (en comparant les SR de ses opérandes en attente aux SR qui passe sur
le bus).

Enfin, a chaque cycle, chaque unité de calcul choisit, parmi ses SR, une entrée pour laquelle tous les
opérandes sont disponibles, et la fournit au pipeline de calcul. La SR correspondante est alors libérée.

Au fait, le nombre de SR par unité de calcul est un parametre dont la détermination est compliquée.
Ce sera typiquement entre 1 et 4.

Terminaison dans 1’ordre

C’est pas tout, mais il faut écrire dans la mémoire et dans les registres ISA dans l’ordre. Pour cela, il y a
une unité de “terminaison dans ’ordre” en aval des unités d’exécutions, et qui surveille également le bus
commun. Cette unité contient un tampon circulaire des instructions lancées et pas terminées (reordering
buffer, ROB). Chaque entrée est créee au lancement, et contient une instruction avec sa SR. Lorsqu’une
instruction a fini de s’exécuter, son résultat passe sur le bus résultat suscité. Le ROB l'attrape et la marque
comme terminée. A chaque cycle, le ROB prend un paquet d’instructions terminées consécutives, et les
termine effectivement, en écrivant leur résultats dans les registres ou en mémoire.

Si vous avez suivi, une SR peut servir plusieurs fois a des intervalles rapprochés. Pour assurer qu’on
pointe bien vers la bonne instruction, les pointeurs vers des SR évoqués plus haut sont en fait des couples
(SR, entrée de ROB).
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La ROB gere les mauvaises prédictions de branchement (et autres exceptions) : en cas de mauvaise
prédiction, on vide la ROB de toutes les instructions qui suivent le branchement mal prédit. Ces ins-
tructions vont finir de s’exécuter, mais leurs résultats n’arriveront jamais ni dans un registre ni dans la
mémoire. Il faut également purger de la table “tel registre sera produit par telle SR” les informations
mises par les instructions effacées de la ROB (cherchez comment, je ne suis pas stir de moi). Puis on repart
sur le code de la branche correcte.

Reste & assurer la cohérence séquentielle de la mémoire. C’est pour cela qu’on a besoin d'unités
mémoire parmi nos unités de calcul. En lecture, elles doivent s’assurer avant de retourner la valeur lue
qu’aucune des instructions précédemment lancée ne va modifier I'adresse a lire. Toute I'info est 1a, entre
la ROB et les SR des unités d’écriture mémoire. En écriture, il y a un tampon qui calcule les adresse mais
n’écrit qu’au feu vert de la ROB, donc dans 'ordre.

Au final, un vrai processeur va pouvoir lancer jusqu’a 4 a 6 instructions par cycles, en retirer autant,
et en avoir bien plus en vol a un instant donné. Mais en moyenne, on aura un nombre d’instruction par
cycles (IPC - I'inverse du CPI qui mesure la qualité du pipeline) qui dépassera rarement 2.

11.2.2 VLIW ou superscalaire (*)

Avant tout, faisons un peu de statistiques sur du vrai code. On constatera avec amertume que le
parallélisme d’instruction moyen que 1’'on arrive a extraire (en tenant compte uniquement des vraies
dépendances, pas des fausses) est de l'ordre de 3-4. Autrement dit, avec un processeur superscalaire idéal,
on arriverait en moyenne a lancer 3-4 instructions en paralléle par cycle. C’est une question compliquée,
d’une part parce qu’il existe des code intrinsequement paralleles (mon éternel produit de matrices I'est
presque), d’autre part parce que cela dépend du jeu d'instruction : avec des instructions plus complexes,
donc plus puissantes, on réduit le parallélisme d’instruction... Disons qu’il y a un consensus actuel disant
qu’il ne sera pas rentable de construire des processeurs ayant plus d’une dizaine d’unités d’exécutions :
on ne saura pas les remplir avec du code séquentiel (et pour le code parallele, voir plus bas, [T1.4.4).

La différence fondamentale entre VLIW et superscalaire est que la gestion du parallélisme d’instruc-
tion est faite dans un cas par le compilateur, dans l'autre par du matériel. Voyns les avantages et les
inconvénients.

— Le gros avantage du VLIW est la simplicité de son matériel : on a vu que la détection des dépen-
dances et I'exécution dans le désordre sont cofiteuses. De plus, elles consomment de 1’énergie pour
une tache purement administrative, pas pour le calcul. Les VLIW consomment beaucoup moins.

— Le VLIW a typiquement du code plus gros (plein de Nop), ce qui finit par avoir un impact sur
la conso et la perf (besoin de caches plus grands par exemple). Le superscalaire a du code plus
compact.

— Le code VLIW n’est pas portable d"une archi a la suivante : il faut tout recompiler si la profondeur
du pipeline FMA passe de 3 a 5 par exemple. A I'opposé, votre Pentium 4 extrait les dépendances
de vieux code DOS aussi bien que du code plus récent.

— Le compilateur voit une fenétre de code beaucoup plus grande, et est capable d’en extraire presque
parfaitement tout le parallélisme d’instruction pour le donner au VLIW. Le matériel ne pourra
considérer qu’une fenétre plus petite du code en cours d’exécution.

— Par contre, le compilateur fait un travail statique, alors que le matériel a ’avantage de ne considérer
que les dépendances sur la branche de code effectivement prise. Sur du code plein de ifs, la
détection des dépendances peut étre beaucoup plus fine si faite en matériel.

Considérant tout ceci, les processeurs VLIW ont du succes dans le domaine embarqué, oit

— la basse consommation est importante;

— les traitements qui ont besoin de beaucoup de puissance de calcul sont tres paralleles (multimedia,
compressions de données);

— le code est compilé une fois pour toutes (donc la non-portabilité n’est pas vraiment un probleme);

11.3 Deux jeux d’instructions VLIW récents

11.3.1 IA64

Le jeu d’instruction IA64, concu pour le calcul haute performance, est un peu batard. Il considere
les avantages et inconvénient ci-dessus, et essaye de prendre le meilleur des deux mondes en terme de
performance. En principe, tout le travail que le compilateur peut faire pour un VLIW, il peut aussi le faire
pour un superscalaire. Mais il faut pouvoir I'exprimer ensuite pour le jeu d’instruction.

Donc le jeu d’instruction IA64 est un VLIW bizarre (ils appellent cela EPIC pour explicitely parallel
instruction computing) : paquets de 128 bits pour 3 instructions, mais le parallélisme est exprimé surtout



102 CHAPITRE 11. EXECUTION PARALLELE

par des bits qui délimitent les ensembles d’instructions qu’on peut lancer en parallele (et ces ensembles
peuvent faire de une a beaucoup beaucoup de sous-instructions). Les sous-instructions ne sont pas
directement en face du matériel correspondant, il y a une certaine liberté. Et il y a tout de méme du
matériel de détection des dépendances, pour que le code soit portable.

Au final, IA64 récupere aussi le pire des deux mondes (LCDE) : des compilateurs compliqués et
inefficaces, et beaucoup de matériel consacré a I’administration.

Les processeur Itanium (IA64 est le nom de leur ISA) ont été un flop commercial, essentiellement a
cause du retard de plusieurs années qu’a pris leur production. Intel et HP ont arrété de les vendre en
2021.

11.3.2 Kalray K1

Le processeur Kalray est un VLIW pur, car sa conception a été orientée vers la basse consommation.
Une instruction VLIW (lancée chaque cycle) se compose de

— deux instructions entieres 32 bits (ou une instruction 64 bits)

— une instruction de multiplication et/ou de calcul flottant, ou une troisieme instruction entiere.

— une instruction mémoire

— une instruction de branchement/controle.

Ce processeur n’est pas aussi orthogonal que mon ARM ou mon RISC-V. En effet, la complexité
matérielle du manque d’orthogonalité, tant qu’elle se limite & une petite couche de logique combinatoire
pour le décodage des instructions, a un cotit minime, donc on se l’autorise. La complexité en terme de
conception est prise en charge par des outils avancés générant le processeur+compilateur.

Les registres sont complétement unifiés. Un registre 64 bits est obtenu en appariant deux registre 32
bits consécutifs.

L’exécution est completement dans 1’ordre, bien que 1’exécution des instructions aient des latences
variables : 1 cycle pour les instructions entieres, 2 cycles pour les multiplications entieres, 3 cycles pour
les instructions flottantes.

Une originalité est I'instruction complexe (mais pas CISC) qui calcule a x b + ¢ x d en flottant.

Mais le point fort du processeur Kalray est d’intégrer 256 coeurs K1 sur une puce. Ce qui nous ameéne
a la section suivante.

11.4 Exploitation du parallélisme de processus

II est facile de dupliquer un coeur de processeur pour en avoir deux. La difficulté est de les faire
collaborer a la résolution d’'un méme probleme, ce qui suppose a/ échanges d’informations et b/ syn-
chronisation (b/ étant du reste nécessaire a a/).

11.4.1 FEchange de messages versus partage de mémoire

Quand deux étudiants veulent communiquer, ils s’envoient des messages par un canal quelconque.
Pour faire communiquer deux circuits/programmes/coeurs/processus/ calculateurs on peut de méme
mettre en place des mécanismes d’échange de message (message passing). On a aussi une possibilité
supplémentaire : le partage de mémoire (shared memory) (inaccessible aux étudiants, et c’est sans doute
tant mieux). Conceptuellement, on a deux processeurs (ou plus) branchés a la méme mémoire a travers
un bus partagé.

En terme de modele de programmation, le partage de mémoire est plus confortable. En terme
d’architecture, I’échange de messages est plus simple a construire. Il est facile de se convaincre qu’on
peut émuler I'un par l’autre et réciproquement. L'architecture sera typiquement du partage de mémoire
au niveau d’une puce (processeur multicceur), et de I'échange de message entre deux PC/blades/cartes
meres.

Mais comme 1'un peut émuler 1’autre, commengons par abstraire le modele de programmation des
mécanismes architecturaux sous-jacents.

11.4.2 Modele de programmation : thread versus process

Ici on parle donc de modele de programmation (ou bien de 'abstraction offerte par 1'OS). On peut
donner une tache soit & un processus, soit a un thread (que Moliére appelait “fil d’exécution” et Victor
Hugo “processus léger”). La différence fondamentale est la suivante :

1. A ce stade on pourrait s’inquiéter d"une certaine confusion mais apres une page ou deux tout sera clair.
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Proc. 1

Mémoire

Proc. 2

FIGURE 11.3 — Vue abstraite d’une architecture @ mémoire partagée

— Deux processus vivent dans des espaces mémoires isolés. Un processus ne peut pas accéder a la
mémoire d'un autre processus. Ce n’est pas juste qu’il n’a pas le droit, c’est qu’il ne peut méme pas
exprimer les adresses qui lui donneraient acces a la mémoire d"un autre processus. Cette isolation
est garantie par des mécanismes qu’on verra au chapitre

Par conséquent, quand on veut que deux processus communiquent, cela doit passer par des
messages, par exemple abstraits dans les tuyaux (pipes) d"Unix.

— Deux threads peuvent partager la mémoire... a condition qu’ils appartiennent au méme processus.

On donnera donc a des processus distincts des taches bien distinctes (par exemple un processus pour
le traitement de texte, un autre pour gérer 'imprimante, un troisieme qui transcode un DVD). Et quand
on voudra paralléliser une tache de calcul lourde dans un processus (le transcodage), on pourra essayer
de la distribuer sur plusieurs threads au sein d"un méme processus.

Ce qui est “léger” dans les threads, c’est que leur création ne demande pas de construire toute
l'isolation mémoire.

11.4.3 Grandeur et misére de la mémoire partagée

Le fonctionnement en parallele de deux threads partageant de la mémoire amene un indéterminisme
intrinséque qu’on n’avait pas jusque la. En effet, que ce passe-t-il lorsque les deux veulent écrire deux
valeurs différentes a la méme adresse? On saura construire du matériel qui tranche dans ce cas, mais
il est difficile de donner une sémantique propre a ce genre de situations. Il faut donc les éviter par des
mécanismes de verrous, mais... c’est a la charge du programmeur : on renonce a donner une sémantique
a tous les programmes. Au passage, tous les mécanismes de synchronisation a base de verrous reposent
sur I'écriture par plusieurs threads dans une case mémoire partagée : la question “que se passe-t-il dans
ce cas la” ne peut pas étre glissée sous le tapis : on en a vraiment besoin.

Et dong, en fait, comme modele de programmation, les threads sont une horreur. Le moindre pro-
gramme de 4 lignes peut cacher des bugs horriblement subtils. Cela ne nous regarde pas vraiment dans
ce cours, mais quand méme, si vous pensez que les threads sont une bonne idée, googlez les deux petits
articles suivants :

— The problem with threads par Edward Lee.

— The trouble with multicore par David Patterson.

Mais vous allez voir que c’est pas cher a implémenter, alors on va quand méme en mettre partout.

11.4.4 Architecture : Multifilature (multithreading)

L’idée est que de construire un processeur capable de gérer plusieurs contextes, qui exécuteront
chacun un processus légers (threads). On duplique essentiellement la boite a registres et le PC, et au
augmente un peu la taille de certaines autres structures de données comme les stations de réservation.
Mais on ne duplique pas les unités d’exécution (les ALU, les FPU, etc) qui ne bossaient de toute maniere
pas a tous les cycles.

Quand un thread doit attendre (accés mémoire lent, ou méme dépendance de donnée ou branchement
conditionnel), le processeur occupe les unités de calcul avec les instructions des autres threads qui ne
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sont pas bloqués. Bref, un thread remplit les bulles de l'autre et réciproquement. C’est une maniére
relativement simple et bon marché d’optimiser 1'utilisation des ressources de calcul du processeur.

Ilaété proposéE] des calculateurs sans cache, mais avec 128 threads pour recouvrir la latence de la
mémoire (barrel processor, ce qui se traduit sans doute par processeur a barillet). Il faut les trouver, les 128
threads, dans votre Tetris. Oracle vend actuellement des processeurs SPARC tres multithreadés (8 threads
matériels par coeur) pour les serveurs web et autres, qui peuvent traiter des centaines de transactions a
un instant donné.

On peut faire basculer un coeur SMT d’un thread a 1’autre en un cycle, mais on ne peut pas le faire
basculer d"un processus a l'autre en un cycle : I'isolation mémoire est coliteuse a mettre en place (on verra
pourquoi au chapitre|13) et on a besoin de la rentabiliser sur plein de cycles.

Quand vous faites cat /proc/cpuinfo sur un processeur Intel 4 coeurs, vous en voyez 8. Ce que
cette commande compte, c’est le nombre de PC (program counter) qui peuvent vivre leur vie en parallele
a un instant donnéf}

11.4.5 Architecture : processeurs multicoeurs

C’est facile, on duplique le processeur (voir les photos de puces multicoeurs). C’est pour cela que tout
le monde en fait actuellement.

En vrai il y a un probléme de taille : la mémoire était déja trop lente pour un coeur, cela ne va pas
s’arranger si 8 coeurs se la partagent. La solution est d’avoir des caches locaux a un coeur : les caches de
niveau 1 (L1) sont privés a chaque coeur, le cache de niveau 2 est typiquement partagé a plusieurs coeurs
sur une puce, et les caches de niveau 3 peuvent étre partagés entre plusieurs puces. Typiquement.

Mézalors il faut assurer la cohérence de ces caches : si la mémoire est partagée, alors une adresse peut
se retrouver dupliquée dans plusieurs caches, et il ne faudrait pas qu’il y ait des valeurs différentes a
cette méme adresse. On verra cela en

11.5 Mécanismes architecturaux pour ’exclusion mutuelle

Voir le sujet d’exam “les instructions de synchronisation a travers les ages”.

11.6 Conclusion : parallélisme partout

En résumé, le matériel de votre PC est plein de parallélisme :

— bit-level parallelism : par exemple pour faire un additionneur » bits en temps log 7.

— word-level parallelism, aka unités vectorielles ou SIMD (Single Instruction, Multiple Data).

— instruction-level parallelism, aka ILP, aka superscalaire ou VLIW.

— thread-level parallelism, aka multithreading,

— core-level parallelism, aka multicore, multiprocessor, etc. Il y a plusieurs étages dans ce dernier
niveau : puce multicoeur, carte multipuce, boitier (ou armoire) multicarte, centre de calcul multi-
armoires, et Ze Grid multi tout. Mais au final on compte les coeurs.

Du point de vue du programmeur, les deux derniers niveaux pourraient tous deux s’appeler process-
level parallelism ou program-level parallelism : dans les deux cas on a plusieurs cycles de von Neumann
indépendantsﬁ

Donc la distinction entre les deux derniers niveaux est surtout justifiée du point de vue de l’archi-
tecture : deux threads dans un processeur multithreadé partagent leurs ressources d’exécution (ALU,
FPUs etc) et donc ont un gros automate en commun pour gérer les deux cycles de von Neumann. Pour le
pauvre architecte qui construit cet automate, c’est une maniéere profondéement différente d’exploiter le
parallélisme de processus.

Attention, du point de vue du programmeur/systéme, la ot1 il y a une différence fondamentale, c’est
entre thread (deux threads partagent la mémoire) et processus (deux processus vivent dans des espaces
mémoire isolés). Mais cette remarque est prématurée car 1'isolation mémoire sera vue dans un chapitre
ultérieur.

En tout cas le mot thread a un sens trés précis en systéme et un sens trés précis en archi, et ce ne sont
pas tout-a-fait les mémes. Vous voici prévenus.

2. Il était une fois une boite qui s’appelait Tera et développait un calculateur appelé Tera MTA (multi-threaded architecture). Elle a
levé tellement d’argent avec cette idée qu’elle a racheté le vénérable constructeur de supercalculateurs Cray, juste pour pouvoir
vendre le Tera MTA sous le nom Cray MTA.

3. Intel appelle cela HyperThreading, ce qui veut dire “multithreading a 2 threads seulement”...

4. Dailleurs cat /proc/cpuinfo prétend que j'ai 8 processeurs alors que je sais que j'ai 4 coeurs multithreadés.
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11.6.1 Taxonomie 1 :1la classification de Flynn

Flynn donne une classification du parallélisme explicite, ou si vous préférez du parallélisme dans le

modele de programmation :

— SISD : single instruction, single data. Une instruction travaille sur une donnée. C’est ce qu’on a vu
au chapitre précédent.

— SIMD : single instruction, multiple data. Une instruction travaille sur plusieurs données. Histori-
quement on a eu des calculateurs exploitant un SIMD massif (256 données en parallele). Googlez
Connection Machine, MasPar si cela vous amuse. De nos jours on a dans chaque processeur des
instructions SIMD a plus petite échelle : une instruction applique la méme opération a un vecteur
de 4 a 32 nombres. Dans les deux cas on a un seul automate qui contrdle tous les opérateurs, c’est
économique. Par contre ce n’est pas tres flexible.

— MIMD : multiple instructions, multiple data : on a plusieurs programmes qui vivent leur vie.

— MISD n’a pas de sens.

Attention de ne pas avoir des ceilleres de Flynn.

— On peut exploiter le parallélisme méme en SISD par la technique du pipeline et de I'exécution
superscalaire. C’est méme une trés bonne chose puisque pour le programmeur c’est caché/sans
prise de téte/automatique/implicite.

— Un processeur moderne multicoeurs c’est du MIMD ot chaque I peut faire du SIMD... cette
classification date d’avant les processeurs modernes.

11.6.2 Taxonomie 2 : la classification de Raina

C’est une classification des architectures MIMD suivant la maniere dont elles accedent a la mémoire.

Les deux premieéres lettres décrivent le modele de programmation : mémoire partagée, ou bien mémoire
distribuée. La mémoire partagée c’est plus facile a programmer, mais c’est impossible a construire
d’une maniere qui passe a I’échelle. La mémoire distribuée implique qu’il faut alourdir le modele de
programmation avec des communications explicites entre les processeurs.

Les deux lettres suivantes (et plus si nécessaire) décrivent la réalité du matériel. Cela donne :

— DADM : disjoint address spaces, distributed memory : en terme de mémoire, les processeurs sont
isolés les uns des autres. NORMA veut dire “no remote memory access”, comme ¢a c’est clair. Le
plus simple a construire mais il faut expliciter toutes les communications.

— SASM : Shared address space, shared memory : tous les processeurs se battent pour la méme
mémoire. Cela ne passe pas a I’échelle.

— SADM : Shared address space, distributed memory. On a le beurre (la mémoire partagée entre
les processeurs) et I’argent du beurre (la mémoire physique distribuée, ce qui permet des acces
concurrents donc le passage a 1’échelle), mais il va falloir le payer par du matériel. Les options
possibles pour ce matériel :

— SADM-NUMA (non uniforme memory architecture). On place les données physiquement dans
les mémoires distribuées, et apres elles ne bougent plus. Si on veut accéder a une donnée sur
une mémoire lointaine cela va marcher mais cela va prendre le temps de la communication.

— SADM-OSMA : c’est 'OS (donc le logiciel) qui ajoute 1’abstraction de la mémoire partagée par
dessus une architecture DADM.

— SADM-CCMA (cache-coherent memory architecture) : il y a du matériel qui assure la cohérence
des caches des différents processeurs avec la mémoire principale. Un exemple de protocole de
cohérence de cache est le protocole MESI survolé en section[13.1.8|

— SADM-COMA (cache-only memory architectures) : la mémoire est uniquement composée des
caches de chaque processeur, pas besoin de s’embéter avec une mémoire centrale derriére.

Dans les protocoles de cohérence de cache distribués, il y a toujours un moment ot il faut qu'un
processeur acquiere 1’exclusivité sur une adresse (car il ne peut en écrire qu'un, comme dit Yoda dans
Highlander). Cela veut dire qu’il doit envoyer un message a tout le monde et surtout attendre la réponse
de tout le monde. Ceci prend toujours un temps qui ne passe pas bien a 1’échelle.
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MIMD
DADM SASM SADM
NORMA UMA NUMA CC-NUMA OSMA COMA
Cray XTs Sequent Symmetry CRAYT3D,EF Dash Munin DDM
IBM BlueGene CRAYX, Y, C Flash Ivy KSR1,2
SUN Constellation 5G| Power Challenge gg: mﬁ;&ﬂex ;o::an

FIGURE 11.4 — Classification MIMD de Raina, avec des exemples de vraies machines



Chapitre 12

Du langage au processeur (*)

Ce chapitre a eu sa raison d'étre a une époque... il ne sera sans doute pas traité en cours parce que des gens plus
compétents vous feront des cours de compilation plus sérieux, mais on le laisse quand méme.

12.1 Introduction : langages interprétés, langages compilés, proces-
seurs virtuels

... al’oral.

C, C++, Fortran, qui sont compilés directement en instructions machines.

Python ou Javascript sont interprétés.

Java ou C# sont compilés, mais pour un processeur virtuel qui va tourner dans une machine virtuelle
munie d"un processeur virtuel (purement simulé) et d'un espace d’adressage virtuel. Avantages : porta-
bilité, sandboxing. Inconvénient : performance. Solution a I'inconvénient : compilation Just In Time, qui
traduit les parties les plus utilisées du programme assembleur virtuel directement en “vraies” instructions
machines. Exemple : Dalvik pour Android.

Ne pas confondre... Au passage, ne pas confondre machine virtuelle comme dans [VM (Java Virtual Machine)
et machine virtuelle comme dans VirtualBox.

La premiere émulefl|un processeur différent du processeur matériel, qui peut méme étre irréaliste en matériel.

La seconde émule la machine au sens boitier avec ses périphériques etc, mais avec le méme processeur, en faisant
au final tourner le code de la machine émulée aussi directement que possible sur le matériel.

1l'y a aussi des émulateurs de machines. Par exemple je peux faire tourner dans une machine virtuelle VirtualBox
un navigateur qui utilise une machine virtuelle Java pour faire tourner dedans un programme émulateur de
Gameboy qui émule entre autre le processeur Z80 de la Gameboy. Merci a la loi de Moore, avec ces 4 couches
d’émulation/fvirtualisation, les jeux tournent quand méme plus vite que sur la console d’origine...

11y a aussi la notion de mémoire virtuelle, qu’on verra dans le chapitre suivant, et qui est encore autre chose.

a. Unjour on m’a demandé ce que cela veut dire “émuler” et j’étais bien embété. Le Larousse dit que ce verbe ne sert qu’en
informatique : c’est quand un ordinateur fait semblant d’étre un autre ordinateur. On peut chercher un rapport lointain avec
I’émulation en classe.

Dans toute la suite on parle de langages compilés nativement, et en fait on va surtout compiler le CEI

12.2 L’arriere-cuisine du compilateur

12.2.1 Variables et expressions

La sémantique du C est orientée mémoire : il faut comprendre une variable comme le contenu d’'une
case mémoire (ou de plusieurs cases consécutives si nécessaires). D’ailleurs on peut demander 'adresse
de n’importe quelle variable par I'opérateur &. Par exemple si la variable A est stockée a 'adresse @A,
la ligne de C A=A+1; se décompose en une séquence d’instructions machines qui vont 1/rapatrier le
contenu de la case d’adresse @A dans un registre du processeur; 2/ ajouter 1 a ce registre, et 3/ écrire en
mémoire le résultat a 'adresse @A.

1. C’est une contrepéterie.

107
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Si vous ne demandez pas d’optimisation particuliére a gcc, le code assembleur produit ressemble
exactement a cela, et ¢’est pourquoi vous trouverez des séquences de code visiblement stupides, par
exemple dans mon programme jouet compilé vers ARM :

str r3, [fp, #-8]
ldr r3, [fp, #-8]

Oui, il s’agit bien d’une écriture d’un registre a une adresse, immédiatement suivie d'une lecture
de la méme adresse pour remettre son contenu dans le registre ot il est déja. C’est idiot. Explica-
tion : le programme est compilé instruction C par instruction C; I’écriture termine une instruction C
(variable=expression;. La lecture commence l'instruction C suivante.

Au passage, voila pourquoi on utilise le méme mot dans “compilation d’un programme” et “compila-
tion des meilleurs tubes des années 70”. Dans les deux cas c’est la juxtaposition de morceaux indépen-
dants.

Si vous branchez les optimisations (gcc -O1, -O2, etc) le compilateur fera le ménage dans ces instruc-
tions inutiles.

Une expression arithmétique est un arbre, et en général il faut parcourir I'arbre pour réaliser les calculs
intermédiaires dans le bon ordre, éventuellement en les stockant dans des cases mémoires temporaires.

12.2.2 Désucrage des opérations de contrdle de flot

Conditionnelle if-then-else On peut toujours implémenter le i f-then-else par un test et un
saut conditionnel (et possiblement deux autres sauts non conditionnels en cas de else.

Si le jeu d’instruction supporte les instructions conditionnelles (le conditional move est assez courant)
ou les instructions prédiquées, on peut aussi implémentater un i f-then ou un if-then-else par
prédication. La prédication consiste a conditionner au résultat du test I’exécution d’instructions qui ne
sont pas des sauts. Par exemple, pour un i f-then-else, on exécutera les deux branches pour au final
ne retenir que celle qui correspond au résultat du test.

Cela peut valoir le coup parce que les branchements sont cotiteux dans un processeur pipeliné.

Boucles L'implémentation d"une boucle (For, Do, While) se fait selon une variation du schéma suivant
(se reporter au document donnant la sémantique du langage) :

1. évaluer I'expression contrdlant la boucle

2. sielle est fausse, brancher apres la fin de la boucle, sinon commencer le corps de boucle
3. ala fin du corps de boucle, réévaluer I'expression de controle

4. sielle est vraie, brancher au début de la boucle sinon continuer sur 'instruction suivante

Il y a donc un branchement par exécution du corps de boucle. En général un branchement produit
une certaine latence (quelques cycles).

Case aka switch La difficulté d’implémentation des instructions case (e.g. switch en C) est de
sélectionner la bonne branche efficacement. Le moyen le plus simple est de faire une passe linéaire sur les
conditions comme si ¢’était une suite imbriquée de 1 f-then-else. Dans certains cas, les différents tests
de branchement peuvent étre ordonnés (test d’une valeur par exemple), dans ce cas on peut faire une
recherche dichotomique du branchement recherché (O(log(n)) au lieu de O(n)).

On peut aussi faire des sauts a une adresse calculée a partir de la variable du switch, ou utiliser une
table d’adresses. Dans ce cas, la décision est en temps constant.

12.2.3 Tableaux

Le stockage et 1’acces aux tableau sont extrémement fréquents et nécessitent donc une attention
particuliere. Commengons par la référence a un simple vecteur (tableau a une dimension). Considérons
que V a été déclaré par V[min...max]. Pour accéder a V[i], le compilateur devra calculer l'offset de
cet élément du tableau par rapport a I'adresse de base a partir de laquelle il est stocké. L'offset est
(i —min) X w ou w est la taille des éléments de w. Si min = 0 et w est une puissance de deux, le code
généré s’en trouvera simplifié (les multiplications par des puissance de 2 se font par décalage de bits, ce
qui est en général plus rapide qu’une multiplication).

Si la valeur de min est connue a la compilation, le compilateur peut calculer I’adresse (virtuelle)
@V} qu’aurait le tableau s’il commengait a 0 (on appelle quelquefois cela le faux zéro), cela évite une
soustraction a chaque acces aux tableaux :
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_ V[3..10]
min

@V0 @V

Sila valeur de min n’est pas connue a la compilation, le faux zéro peut étre calculé lors de I'initialisation
du tableau.

Pour les tableaux multidimensionnels, il faut choisir la fagon d’envoyer les indices dans la mémoire.
Il y a essentiellement trois méthodes, les schémas par lignes et par colonnes et les tableaux de vecteurs.

Par exemple, le tableau A[1..2,1..4] comporte deux lignes et quatre colonnes. S'il est rangé par lignes
(row major order), on aura la disposition suivante en mémoire :

_ V[3..10]
min

S’il est rangé par colonne on aura :

’1,1 |2,1 | 1,2 | 2,2 |1,3 |2,3 |l,4 | 2,4 ‘

Lors d"un parcours du tableau, cet ordre aura de I'importance. En particulier si I’ensemble du tableau
ne tient pas dans le cache. Par exemple avec la boucle suivante, on parcourt les cases par lignes; si1'on
intervertit les boucles i et j, on parcourera par colonnes :

fori <+ 1to2
forj <+ 1to4
Ali, j] < Ali, jl +1

Certains langages (java) utilisent un tableau de pointeurs sur des vecteurs. Voici le schéma pour

A[1.2,1.4] et B[1.2,1.3,1..4]
/\ L 2 [ s [uis |

T a1 122 [123 [ 124 ]

Lt [132 (133 [134

+———=[2u1 [212 [ 213 [214 |

7\\2,2,1 [ 222 [223 | 224 |

‘2,3,1 ‘ 232 ‘ 233 ‘ 234 ‘

Ce schéma est plus gourmand en place (la taille des vecteurs de pointeur grossit quadratiquement avec
la dimension) et I’acces n’est pas tres rapide, de plus le programmeur doit écrire une boucle pour allouer
le tableau ligne par ligne. Concernant la place, ce schéma permet toutefois d’implanter efficacemement
des tableaux non rectangulaires (matrices triangulaires) mais c’est sans doute anecdotique.
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Considérons un tableau A[miny..maxy, miny..max;) rangé par ligne pour lequel on voudrait accéder a
I'élément A[i, j]. Le calcul de 1’adresse est : @A[i, j| = @A + (i — miny) X (maxy —ming +1) X w+ (j —
miny) X w, ou w est la taille des données du tableau. Si on nomme long, = (max, — miny + 1) et que
’on développe on obtient : @A[i, j] = @A +1i x longy X w+ j x w — (miny X longy + miny X w). On peut
donc aussi précalculer un faux zéro @Ay = @A — (miny x longy X w + miny x w) et accéder 1'élément
Ali,j] par @Ag + (i x longy + j) X w. Si les bornes et la taille ne sont pas connues a la compilation, on
peut aussi effectuer ces calculs a I'initialisation. Les mémes optimisations sont faites pour les tableaux
rangés par colonnes.

L’accés aux tableaux utilisant des pointeurs de vecteurs nécessite simplement deux instructions par
dimension (chargement de la base de la dimension i, offset jusqu’a 1’élément dans la dimension 7). Pour
les machines ot1 I'acces a la mémoire était rapide comparé aux opérations arithmétiques, cela valait le
coup (ordinateur avant 1985).

Lorsqu’on passe un tableau en parametre, on le passe généralement par référence, méme si dans le
programme source, il est passé par valeurs. Lorsqu’un tableau est passé en parametre a une procédure,
la procédure ne connait pas forcément ses caractéristiques (elles peuvent changer suivant les appels
comme en C). Pour cela le systeme a besoin d’un mécanisme permettant de récupérer ces caractéristiques
(dimensions, taille). Cela est fait grace au descripteur de tableau (dope vector). Un descripteur de tableau
contient en général un pointeur sur le début du tableau et les tailles des différentes dimensions. Le
descripteur a une taille connue a la compilation (dépendant uniquement de la dimension) et peut donc
étre alloué dans 1’AR de la procédure appelée.

Beaucoup de compilateurs essaient de détecter les acces en dehors des bornes des tableaux. La
méthode la plus simple est de faire un test sur les indices avant chaque appel a ’exécution. On peut faire
un test moins précis en comparant 1’offset calculé a la taille totale du tableau.

12.2.4 Chaines de caractéres

La manipulation des chaines de caracteres est assez différente suivant les langages. Elle utilise en
général des instructions opérant au niveau des octets. Le choix de la représentation des chaines de
caracteres a un impact important sur les performance de leur manipulation. On peut stocker une chaine
en utilisant un marqueur de fin de chaine comme en C traditionnel :

a

Unegchainei

ou en stockant la longueur de la chaine au début (ou la taille effectivement occupée, si ce n’est pas la
taille allouée) :

100/ U|ln|e |ylc |hla]|il |n]|e

La plupart des assembleurs possédent des opérations pour manipuler les caractéeres (sur les ARM,
LDRB au lieu de LDR pour charger un octet. Pour les MSP430, exercice : allez chercher dans la doc donnée
en TP). Pour cette raison, la mémoire est le plus souvent également adressée par octet, méme pour une
ISA pure 32bit, comme ARM.

Toutefois, sur ARM on impose que les chargements de mots de 32 bits (par LDR, mais aussi le
chargement des instructions) soit uniquement sur des adresses multiples de 4 (octets). Sur les pentium
modernes aussi, il est tres conseillé d’aligner les accés mémoire pour les données 32 et 64 bits sur des
adresses multiples respectivement de 4 et 8 octets. Sinon, je crois que cela marche mais je suis certain que
cela prend plus du double du temps.

Cela dit il y a eu des architectures 32 bits o1 la mémoire était adressée par mots de 32 bits (le DEC
Alpha arrivait a tourner a des fréquences bien supérieures a ses concurrents, grice en partie a ce genre de
sacrifice). Dans ce cas on doit faire des décalages et des masques pour extraire un octet particulier d'un
mot 32bits.

Pour les manipulations de chaines (comme pour les tableaux d’ailleurs), beaucoup d’assembleurs
possédent des instructions de chargement et de stockage avec autoincrément (pré ou post), c’est a dire
que l'instruction incrémente 1’adresse servant a ’accés en méme temps qu’elle fait 1’acces. Ceci permet de
faire directement l’accés suivant au mot (resp. caractére suivant) juste apres.
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12.2.5 Structures

Les structures sont utilisées dans de nombreux langages. Elles sont trés souvent manipulées a I'aide
de pointeurs et créent donc de nombreuses valeurs ambigués. Par exemple, pour faire une liste en C, on
peut déclarer les types suivants :

struct ValueNode { Union Nodef{
int Value struct ValueNode;
}; struct ConsNode;

b
structu ConsNode {
Node *Head;
Node *Tail;
b

Afin d’émettre du code pour une référence a une structure, le compilateur doit connaitre l’adresse
de base de 1’objet ainsi que le décalage et la longueur de chaque élément. Le compilateur construit en
général une table séparée comprenant ces informations (en général une table pour les structures et une
table pour les éléments).

Table des structures

Nom Taille Premier elt
ValueNode 4 0
ConsNode ] 1
Table des 1 ments
Nom Longueur decalage Type [Prochain elt
| ValueNode.Value 4 0 int 1

ConsNode.Head 4 0 Node * 2 1
ConsNode.Tail 4 4 Node * L

Avec cette table, le compilateur génere du code. Par exemple pour accéder a pl — Head on peut
générer l'instruction :

load AQ rpl,O = 1 // 0 est le décalage de "Head’

Si un programme déclare un tableau de structure dans un langage dans lequel le programmeur ne
peut pas avoir acces a 1’adresse a laquelle est stockée la structure, le compilateur peut choisir de stocker
cela sous la forme d’un tableau dont les éléments sont des structures ou sous la forme d’une structure
dont les éléments sont des tableaux. Les performances peuvent étre trés différentes, 1a encore a cause du
cache.

12.3 Application binary interface

I"ABI (application binary interface) est un contrat entre le compilateur, le systeme d’exploitation et la
machine cible. Le but de ce contrat est de fixer les régles qui permettront a ces trois acteurs de coopérer
harmonieusement :
Ce contrat répartit les responsabilités de chacun, et fixe des regles du jeu pour
— l'allocation des ressources (quel registre est réservé pour quoi? qui est chargé de réserver I’espace
mémoire des différentes variables? quel registre sera utilisé comme le pointeur de pile lorsqu’il y
a le choix comme sur ARM?),

— le comportement (quels registres une procédure a le droit d’écraser, quels registres une procédure
a le devoir de rendre dans I’état ot elle 1’a trouvé),

— le placement en mémoire (o1 est le point d’entrée d'une procédure, o1 sont ses variables locales et

globales?).

Nous allons décrire une ABI typique pour le C et Fortran, qui doit permettre

— la compilation séparée des procédures et la construction de bibliotheques.

— les procédures récursives
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L’ABI est contrainte par les possibilités de I'ISA, mais est indépendante de 1'ISA : c’est essentiellement
un ensemble de conventions. Par exemple Windows et Linux, sur le méme processeur, n’ont pas la méme
ABL

12.3.1 Procédures et compilation séparée

Pour la plupart des langages impératifs, la procédure est 1'unité de base. Le compilateur permet par
exemple la compilation séparée des procédures. C’était indispensables aux temps héroiques de l'informa-
tique. De nos jours, le moindre PC peut en théorie gérer dans sa mémoire centrale des programmes
énormes, mais on continue a faire de la compilation séparée pour ses nombreux avantages :

— gain de temps lors du développement : on ne recompile que ce que est nécessaire,

— dualement, possibilité de passer plus de temps a faire des optimisation poussées sur des morceaux

de codes assez petits,

— possibilité de distribuer des bibliotheques pré-compilées, sans distribuer le code source

— DPossibilité d’édition de lien dynamique.

Tous ces avantages viennent au prix d'une étape d’édition de lien, qui assemble le code compilé des
différentes procédures pour en faire un programme complet. L’édition de lien autorise a compiler du
code pour une procédure, indépendamment du programme dans lequel elle va s’insérer.

La compilation séparée est encore plus intéressante si 1’on peut appeler depuis un programme en C
une bibliotheque écrite en Fortran, et réciproquement. Pour que ce soit possible, il faut que l'interfaces
des procédures au niveau du code objet soit compatible avec tous les langages.

Cette interface doit donc offrir I'union de tous les langages cibles envisagés, et pourra donc paraitre
inutilement compliquée lorsqu’on regarde le code compilé pour un langage simple comme C. Deux
exemples :

— Pascal a des procédures imbriquées, pas Clﬂ Une procédure imbriquée, c’est une déclaration de

procédure locale a une autre procédure. Il y a donc plusieurs espaces de nommage imbriqués.

— Les langages objets nécessitent des mécanismes spécifiques pour permettre héritage et surcharge,

encore une fois pour savoir a quelle sur-classe appartient une variable d"un objet. Ces mécanismes
seront inutilisés en C.

La compilation d'une procédure doit faire le lien entre la vision haut niveau (espace des noms
hiérarchique, code modulaire) et ’exécution matérielle qui voit la mémoire comme un simple tableau
linéaire et 'exécution comme une simple incrémentation du PC.

12.3.2 Récursivité et pile
Considérons I'exécution d'une procédure récursive (pensez a la factorielle ou a Fibonacci). Lorsque
jappelle factorielle (10), l'ordinateur doit
1. réserver de la place pour les variables locales de la procédure factorielle ()
2. brancher au début du code de factorielle ()
3. revenir d’ott il vient a la fin de ce code.

Les processeurs offrent tous une instruction machine qui permet ce type de “branchement en se
souvenant d’ot1 on vient”.
— Sur la plupart des processeurs (IA32 et MSP430 inclus), on a deux instructions, call et ret.
L’instruction call adresse réalise deux opérations :

1. empiler I’adresse de l'instruction suivant le call (PC+1, pour une certaine valeur de 1)
2. faire PC<-adresse

L'instruction ret n’a pas d’argument, mais c’est aussi un branchement : elle dépile une adresse,
puis branche a cette adresse.

— Sur les ARM et quelques autres, call est remplacé par BL adresse qui fait également deux
choses :

1. une copie de R15+4 (le PC de l'instruction suivant le BL) dans R14 (le link register
2. puis un saut vers adresse

L'instruction ret est remplacée par un MOV R14 -> R15. L'intérét est de ne pas faire d’accés
mémoire quand on n’en n’a pas besoin (appel a une procédure terminale, c’est-a-dire qui n"appelle
personne d’autre). En cas d’appel récursif, la procédure appelée devra quand méme empiler R14
au début, et le dépiler a la fin.

2. A vrai dire, gcc accepte les procédures imbriquées, c’est une extension GNU a C. Mais je vous défends formellement de vous
en servir



12.3. APPLICATION BINARY INTERFACE 113

Je rappelle que toutes ces instructions sont atomiques, c’est-a-dire ininterruptibles. On pourrait en
principe les émuler chacune par plusieurs instructions (des push, des pop et des sauts) mais ce serait le
bordel en cas d’interruption au milieu.

Donc on a une pile d’appel. La récursivité nécessite fondamentalement un mécanisme de pile.

12.3.3 Variables locales et passage de valeurs sur la pile

Cette pile est également 1’espace de stockage idéal pour les variables locales d"une procédure (voir la

figure :

— L’allocation et la déallocation se font par des additions et soustractions sur le pointeur de pile, au
début et a la fin de la procédure. Pas besoin de malloc compliqué.

— Pour ma factorielle, les différentes instances de la fonction (factorielle (10) a appelé
factorielle (9) quiaappelé factorielle (8), etc) ont chacune leurs variables locales sur la
pile. En haut de la pile, jai toujours les variables locales de la procédure en cours d’exécution.

— Du coup, pour le processeur, I'adresse d"une variable locale est SP+cste. La constante est appelée
aussi offset de la variable.

— Le passage des parametres peut également se faire sur la pile : lorsque toto appelle
tata(17,42), les valeurs 17 et 42 seront empilées juste avant le call tata. La procédure
appelée sait qu’elle a deux parametres et qu’elle les trouvera aux adresses SP-1 et SP-2. On
pourrait aussi les passer dans des registres, mais on a parfois plus de parametres a passer que de
registres

— De méme, la procédure peut passer sa ou ses valeurs de retour sur la pile, ot I'appelant les
retrouvera au retour du call

12.3.4 Vision globale de la mémoire

Tous les langages permettent aussi d’allouer de la mémoire dynamiquement (par exemple pour
les variables dont la taille n’est pas connue a la compilation). Cette mémoire est allouée sur le tas.
Typiquement, les variables dont la taille est petite et connue a la compilation (entiers, flottants, pointeurs
sur les objets) sont allouées dans la pile. Par contre les tableaux, les objets, etc sont alloués sur le tas. En C,
C++ ou Java cette allocation est explicite (il faut des malloc ou des new).

La mémoire linéaire est généralement organisée de la fagon suivante : la pile sert a “allocation des
appels de procédures (elle grandit par exemple vers les petites adresses), le tas sert a allouer la mémoire
dynamiquement (il grandit alors vers les grandes adresses). Ceci aussi fait partie de I’ABI, en particulier
pour 'ARM pour lequel n'importe quel registre peut servir de pointeur de pile, et les piles peuvent
monter ou descendre.

Code static Tas Memoire libre Pile

0 100000
(petites adresses) (grandes adresses)

Ce n’est pas encore tout. Une donnée peut, suivant sa portée et son type, étre stockée en différents
endroits de la mémoire (on parle de classe de stockage, storage class). Les principales sont

— stockage local a une procédure (sur la pile, déja vu),

— stockage dynamique (sur le tas, déja vu),

— stockage statique d'une procédure (a co6té du code),

— stockage global.

On va s’arréter 1a dans les détails. Et on pourrait reprendre pour un langage orienté objet.

12.3.5 Sauvegarde des registres

Si on ne prend pas de précaution, call est une instruction tres particuliere : elle peut potentiellement
changer les valeurs de tous les registres! En effet, I’appelé va utiliser les registres comme bon lui semble.

3. Les vraies ABI définissent des politiques du genre “si la procédure a moins de 4 parameétres, ils sont passés dans les registres
RO a R4. Sinon, les 4 premiers sont passés dans les registres et tous les suivants sur la pile. Une conséquence est qu’on peut observer
une grosse dégradation de performance en ajoutant juste un parametre a une procédure, cela m’est arrivé...

4. ... ou dans des registres, voir la note précédente.
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Parametres

sauvegarde
registres

resultat

adresse de retour
ARP access link

ARP appelant =

Variables
locales

Pile libre

FIGURE 12.1 — Enregistrement d’activation sur la pile

De plus, dans le trip de la compilation séparée,
— l’appelant ne sait pas comment est compilé ’appelé, donc quels registres il va utiliser.
— l'appelé ne sais pas qui l’appelle, donc quel registre I’appelant est en train d’utiliser.
L’ABI doit définir également un code de bonne conduite qui peut étre une des variantes suivantes :

1. C’est la responsabilité de I’appelant de sauvegarder (en les empilant) les registres dont il veut
conserver la valeur aprés le call. L'appelé n’a aucun souci a se faire, il peut utiliser tous les
registres comme bon lui semble.

2. C’est la responsabilité de I’appelé de sauvegarder (en les empilant) les registres qu’il va utiliser.
L’appelant n’a aucun souci a se faire, toutes les valeurs des registres seront inchangées apres le
call.

3. Pareil que 2/, mais pas pour tous les registres : les registres Rx a Ry peuvent étre écrasés par
I'appelé (que I'appelant se le tienne pour dit). Ce sont des scratch registers. Par contre, les registres
Rz a Rt doivent étre préservés par 'appelé (preserved registers). L'appelant n’a pas a se soucier de
les sauvegarder lui-méme.

Pour les détails : lisez I’ABI de votre systéme.

12.3.6 En résumé : I’enregistrement d’activation

L’espace mémoire mis en place en haut de la pile lors de I'appel d’une procédure est appelé enre-
gistrement d’activation (en rosbif activation record : AR). Cet espace est désalloué lorsque la procédure se
termine.

L’enregistrement d’activation comporte la place pour

— les parametres effectifs,

— les variables locales a la procédure,

— la sauvegarde de I'environnement d’exécution de la procédure appelante (essentiellement les

registres)

— l’adresse de retour de la procédure,

— et possiblement d’autres pointeurs, suivant les ABI :

— un pointeur vers les variables globales;

— un pointeur sur AR de la procédure appelante (utile pour les procédures imbriquées);

— pour les méthodes de langages objet, un pointeur vers I'objet (this), qui est lui-méme une
structure de donnée compliquée, avec des attributs et des pointeurs vers les surclasses pour
accéder aux attributs des surclasses en respectant les régles de visibilité...)

I1 faut encore insister sur le fait que tout ceci est une convention, un contrat, un choix. Tout est toujours
discutable, et les ABI évoluent avec le temps.

Par exemple, voici le code que gcc produit typiquement en entrée d"une procédure (esp est le
pointeur de pile, ebp est I’ARP, et la pile descend dans la mémoire comme sur la figure précédente) :
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.main:

pushl %ebp (empiler le lien vers I’ARP de 'appelant)

movl %esp, %ebp (I"ARP de cette procédure sera le pointeur de pile a cet instant)
subl $24,%esp (réserver sur la pile I'espace pour les variables locales)

12.3.7 En résumé : code a générer par le compilateur

Le code précédent est le prologue de la procédure. Chaque procédure contient un prologue et un

épilogue. De méme, chaque appel contient un pré-appel et un post-appel.

— Pre-appel Le pre-appel met en place I'AR de la procédure appelée (allocation de 1'espace nécessaire
et remplissage des emplacements mémoire). Cela inclut I’évaluation des parametres effectifs,
leur stockage sur la pile, 'empilement de 1’adresse de retour, I’ARP de la procédure appelante, et
éventuellement la réservation de 1’espace pour une valeur de retour. La procédure appelante ne
peut pas connaitre la place nécessaire pour les variables locales de la procédure appelée.

— Post-appel 1l y a libération des espaces alloués lors du pré-appel.

— Prologue Le prologue crée 1’espace pour les variables locales (avec initialisation éventuelle). Si la
procédure contient des références a des variables statiques, le prologue doit préparer 1’adressabilité
en chargeant le label approprié dans un registre.

— Epilogue L'épilogue libére I'espace alloué pour les variables locales, il restore I’ARP de I’appelant
et saute a ’adresse de retour. Si la procédure retourne un résultat, la valeur est transférée la ot elle
doit étre utilisée.

De plus, les registres doivent étre sauvegardés, soit lors du pre-appel de l'appelant, soit lors du

prologue de 'appelé.

En général, mettre des fonctionnalités dans le prologue ou I'épilogue produit du code plus compact

(le pre-appel et post-appel sont écrits pour chaque appel de procédure).

12.4 Compilation des langages objets

Fondamentalement, I'orientation objet est une réorganisation de l’espace des noms du programme
d’un schéma centré sur les procédures vers un schéma centré sur les données. Donc il faudrait tout
reprendre... ]'espére vous avoir donné les clés pour que vous compreniez la doc si vous avez un jour a la
lire.
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Chapitre 13

Hiérarchie mémoire

Dans ce chapitre on va voir différents raffinements du syst¢tme mémoire de notre PC, pour plus
de performance ou pour plus de fonctionnalité. Le matériel chargé de cette gestion s’appelle la MMU
(memory management unit) et est de nos jours directement intégré sur la puce du processeur.

13.1 Mémoire cache

Le principe du cache est de reprendre la table4.1|page[51} et d’y intercaler des mémoires de taille et
de performance intermédiaire a deux endroits :

— entre les registres et la mémoire centrale,

— entre la mémoire centrale et le disque.

On obtient la table[I3.1]

13.1.1 Principes de localité
Pourquoi un cache est utile? Parce que

1. Une adresse mémoire actuellement accédée a toutes les chances d’étre accédée a nouveau dans un
futur proche (localité temporelle )

2. Une adresse proche d’une adresse mémoire actuellement accédée a toutes les chances d’étre
accédée aussi dans un futur proche (localité spatiale)

Exemples : les boucles (il s’agit alors d’adresses du code). Le tri d’un tableau (adresses de données).
Etc. Ce principe de localité est tres général. Contre-exemple : le produit de matrices si la matrice est
trés grande. Solution : organiser le produit de matrice par blocs. Il existe une bibliotheque, ATLAS pour
Automatically Tuned Linear Algebra, qui définit la taille des blocs en fonction de la taille du cache.

13.1.2 Scratchpad versus cache

On peut laisser au programmeur/compilateur la charge de rapatrier manuellement dans le cache les
données actuellement/localement utilisées. Dans ce cas on parle plutdt de scratchpad memory, ou mémoire
brouillon. Le surcotit matériel se limite alors a la mémoire cache elle-méme. Par contre il y a un surcofit
de difficulté de programmation/compilation, ainsi qu'un surcofit en terme de taille de code, puisqu’il
faut des instructions qui servent a rapatrier des données dans le cache.

Pour éviter cela, le plus souvent, lorsqu’on parle de cache, on parle d'un mécanisme automatique
qui intercepte les requétes mémoires, et les aiguille soit vers le cache soit vers la mémoire, en gérant au

Type temps d’acces capacité typique
Registre 0.1ns 1 a 128 mots (de 1 a 8 octets)
Mémoire cache 1-4ns 4Koctets — 4Mo
Mémoire vive 10 - 100 ns 4 Goctets
Cache disque 100ns 512Koctets
Disque dur 10ms 100Goctets
Archivage Imn (illimité)

TABLE 13.1 — Hiérarchie mémoire d'un ordinateur en 2010
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passage le remplissage du cache avec les données actuellement utilisées. C’est a ce mécanisme qu’on
s’intéresse dans la suite.

Ce mécanisme sera implémenté en matériel pour les acces mémoire, et plut6t en logiciel pour les acces
disques qui sont de toute maniere lents. Mais les principes sont les mémes. Nous allons nous concentrer
sur le cache mémoire.

Construire ce mécanisme de gestion du cache a un cotit matériel et énergétique qui s’ajoute au cotit
de la mémoire cache elle-méme. Mais cela simplifie la vie du programmeur.

Considérant tout cela, on trouve des scratchpad sur les systémes embarqués : on veut éviter la
consommation électrique de la MMU, et par ailleurs leur code est statique et connu a I’avance. Par ailleurs
le scratchpad est explicite dans les environnements de programmation OpenCL et OpenVX. On trouve
des vrais caches sur tous les systémes un peu plus ouverts. Scratchpad versus cache, c’est un peu la
méme discussion que VLIW versus superscalaire. Le processeurs Kalray offre au choix scratchpad (pour
le temps réel/la prédictabililité) et cache (pour la simplicité de programmation).

13.1.3 Cache hit et cache miss

Et donc on va garder dans le caches les adresses (et les données correspondantes) accédées récemment
(cf figures ou ci-dessous). Un accés mémoire commencera par comparer l’adresse demandée
avec celles qui sont présentes dans le cache. En cas de succes (souvent) la donnée sera lue depuis le cache
(cache hit). En cas d’échec (défaut de cache ou cache miss, rarement espeére-t-on), la donnée sera d’abord
chargée de la mémoire vers le cache. Elle y sera présente pour cet accés et aussi pour les acces suivants
(localité temporelle). Et au passage, le cache chargera aussi les quelques données suivantes pour exploiter
la localité spatiale.

Concretement, le cache charge depuis la mémoire centrale une ligne de cache a la fois. La ligne de cache
est I'unité d’échange entre le cache et la mémoire, et fait quelques centaines d’octets. Une ligne de cache
de taille 2! est définie par “toutes les adresses ayant tous leurs bits identiques sauf les I de poids faible”.

Une fois définie la ligne de cache, et si on a les moyens, on peut organiser notre mémoire physique
pour qu’elle soit adressée par ligne uniquement. La mémoire physique sera alors construite pour réagir
a des adresses sans les | derniers bits et envoyer 2! octets en paralléle sur un bus tres large entre le
processeur et la mémoire. On verra cela en

13.1.4 Hiérarchie mémoire

Une mémoire cache se comporte, vu de l'extérieur, comme une RAM normale, mais réagit plus
rapidement. Par exemple, le cache disque est a peine plus lent que la mémoire vive — un peu tout de
meéme car les bus qui y accedent sont moins larges que ceux qui accédent a la mémoire vive.

Il peut en fait y avoir plusieurs niveaux de mémoire cache :

— le premier sur la puce méme du processeur, au plus pres de chaque coeur;

— le second toujours sur la puce, mais partagé entre plusieurs cceurs, donc un peu plus loin de

chacun;

— le troisiéme sur une puce séparée, mais avec un bus trés large (128-256 bits) avec le processeur.

De méme, il peut y avoir un cache disque dans le disque dur, et un autre dans la mémoire centrale.
Dans la suite, on ne va considérer qu'un niveau car les mécanismes sont les mémes lorsqu’il y en a
plusieurs.

13.1.5 Construction d’un cache

Comme le montre la figure a chaque ligne de cache est associée dans le cache son adresse
virtuelle, ainsi qu'un bit de validité (par exemple, toutes les lignes du cache sont invalides lorsqu’on
allume l'ordinateur). On voit que d’organiser le cache en lignes (et pas en mots) ne sert pas qu’a exploiter
la localité spatiale : cela sert aussi & minimiser le surcotit de ces données supplémentaires. Pour un cache
organisé par mots, il faudrait autant de bits pour les données que pour leur adresse...

Lorsque le processeur envoie une demande de lecture a une adresse donnée, il faut savoir si cette
adresse est présente dans le cache. Pour cela, le cache devrait comparer 1’adresse recue (sans ses [ derniers
bits) avec toutes les adresses présentes dans le cache. C’est cotiteux, donc on fait des compromis :

— Cache Direct-mapped : une ligne ne peut aller qu’a un seul endroit dans le cache, défini par les bits

de poids faible de 1’adresse de la ligne. Simple a réaliser, mais conflits nombreux.

— Cache Fully associative : une ligne peut aller n'importe ou dans le cache. Le cache est alors une
mémoire associative, comme un dictionnaire dans lequel I'adresse est le mot cherché, et la donnée
est la définition. Cela implique que le cache doit comparer une adresse d’entrée avec toutes ses
adresses, et en paralléle pour que ce soit rapide : c’est coliteux en matériel.
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4 3
<> <>
Address : | A | B [C]
0 1 2 3 4 5 6 7
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FIGURE 13.1 — Structure d’un cache direct-mapped avec 16 lignes de 8 mots. C est la position dans la ligne, B est directement le
numéro de la ligne dans le cache, et A est 'adresse de la ligne en mémoire, stockée avec la ligne et assortie d’un bit de validité.

2 3
“>r<—>
Address : | A [B] C |
0 1 2 3 4 5 6 7
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1 A M
A \Y
A \Y
AV
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3 A M
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FIGURE 13.2 — Structure d’un cache 4-way set associative. C est la position dans la ligne, B est le numéro de la voie dans le
cache, et A est l'adresse de la ligne en mémoire, stockée avec la ligne et assortie d'un bit de validité.
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— Cache n-way set associative : ¢’est un compromis intermédiaire. Une ligne peut aller dans le cache
dans un ensemble de taille n = 2, 4 ou 8 lignes. Il faut comparer l’adresse de la ligne avec les
adresses juste dans cet ensemble.

On a fait des statistiques, du genre 2 :1 Cache Rule : The miss rate of a direct-mapped cache of size N

is about the same as that of a two-way set-associative cache of size N /2. (Hennessy-Patterson, CAQA 1ére
édition, page 0)

Eviction du cache

Un probléme se pose lorsque le cache est plein, ce qui arrive assez vite puisque sa capacité est réduite.
Pour ajouter une nouvelle ligne, il faut en virer une. Laquelle?

En correspondance directe on n’a pas le choix.

Dans les autres cas, en principe on aimerait virer la moins utile dans le futur, mais... on ne connait pas
le futur. Alors on le prédit en fonction du passé : en premiere approximation, la ligne a virer est la moins
utilisée dans le passé (least recently used ou LRU).

Mais pour cela, il faut accrocher une date a chaque ligne. Encore des frais! Mais pas tant que cela :
tout ce qu’on veut savoir, c’est qui est le plus ancien. Par exemple, pour un cache a 2 voies il suffit d'un
bit par ligne : & chaque acceés on met a 1 le bit de la ligne accédé et a 0 le bit de ’autre. Pour les caches a
plus de 2 voies il faut plus de bits et il faudra les comparer tous, donc c’est compliqué. On re-approxime,
par exemple on fait deux paquets de 2 voies et on a un bit qui dit quel paquet a été LRU, et dans chaque
paquet on a un bit LRU comme pour le cache a deux voies.

Une technique qui marche bien aussi est de remplacer une ligne au hasard...

Ecriture dans un cache

On n’a parlé que de lectures, pas encore des écritures mémoire. Convainquons-nous d’abord qu’elles
sont bien moins fréquentes que les lectures. Déja, le code est surtout lu. Et pour les données, considérez
le produit de matrice de service : on fait n? écritures pour 1 lectures.

Deux stratégies en cas d’écriture :

— écriture directe dans la mémoire centrale (write through) : lent & chaque écriture, puisqu’on doit
attendre d’avoir fini I’écriture dans la mémoire centrale (des fois que l'instruction suivante soit
une lecture a cette adresse). Par contre le cache est toujours cohérent avec la mémoire centrale, donc
on peut virer une ligne sans plus de travail

— écriture différée (write back) : on n’écrit que dans le cache, ce qui est rapide. Mais le cache devient
incohérent avec la mémoire centrale. Lorsqu’on vire une ligne (éviction), il faut d’abord la recopier
en mémoire centrale.

Ces questions de cohérence deviennent cruciales lorsqu’on a un ordinateur multiprocesseur (ou
multicoeur, c’est plus la mode) a mémoire partagée. Dans ce cas il faut que tous les caches soient cohérents
entre eux. Ce qui veut dire que toute écriture a 'adresse a doit invalider toutes les lignes de caches
contenant a dans tous les autres processeurs (c’est moins cher d’invalider que de propager des copies
dont on n’est pas certain qu’elles seront utiles). Les protocoles qui assurent cette cohérence deviennent
vite subtils, et il y a souvent des bugs de ce type dans le révisions initiales des processeurs. Heureusement,
contrairement au bug de la division du pentium, ils peuvent étre cachés a 1'utilisateur par le systéme
d’exploitation... au prix d'une performance réduite.

Cache unifié ou cache séparé

Il peut étre utile d’avoir un cache séparé programmes/données, ce qui a l’avantage supplémentaire
d’éviter le conflit sur le bus mémoire entre lecture d’instruction et lecture de donnée. Toutefois, il risque
de ne pas étre rempli aussi optimalement qu'un cache unifié, par exemple dans le cas d"un petit nid de
boucle traitant beaucoup de données — encore mon produit de matrices. On voit souvent des caches
séparés pour le premier niveau de cache. Et des caches unifiés pour les niveaux suivants.

Attention toutefois, les deux caches séparés doivent tout de méme étre cohérents.

En résumé

En résumé, il y a un paquet de parameétres a considérer pour un cache :
— unifié ou séparé

— taille de la ligne de cache

— taille du cache

— associativité
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— politique de remplacement
— write-through ou write-back
et ceci, pour chaque niveau de la hiérarchie mémoire (combien en faut-il? Encore un parametre).
On gere ces parametre en simulant des processeurs exécutant des benchmark.
Au final, les hiérarchies actuelles assurent un miss rate inférieur a 1% en moyenne.

Et ya quoi dans mon PC? Essayez-voir :
lscpu —-caches

13.1.6 Statistiques et optimisation des caches (*)

11 faut faire des statistiques sur les acces mémoire pour définir les parametres du cache.

Ces statistiques dépendent des programmes, et différent selon qu’on parle de code ou de données.

Ensuite on combine ces statistiques a coups de loi d’Amdhal (calculs p. 564 du Patterson/Hennessy).
On constate en particulier que la performance d’un cache peut se dégrader rapidement si on augmente
juste la fréquence du processeur sans toucher a la hiérarchie mémoire.

13.1.7 Entre le cache et la mémoire physique (*)

Si on résume, le cache doit, en cas de miss, rapatrier toute une ligne de la mémoire physique. Les
options sont (de gauche a droite sur la figure [13.3))
— d’avoir un bus de la largeur de la ligne de cache (ici 8 x 32 bits) : on rapatrie une ligne en une

latence mémoire, mais c’est coliteux en filasse.

— d’avoir un bus de la largeur d’un mot, et un automate qui génere les adresses consécutives. On

rapatrie une ligne en 8 latences mémoires dans cet exemple.
de pipeliner les lectures mémoires sur ce bus : on envoie toutes les requétes en lecture, et (apres
une latence mémoire) on recoit en rafale toutes les données, une par cycle. Ainsi on rapatrie une
ligne en (nombre de mots mémoires)+(latence mémoire) cycles. Cette solution présente un bon
rapport performance/cotit. Les mémoires modernes (DDR et compagnie) sont faites pour cela :
elles ont une grande latence initiale, mais ensuite peuvent envoyer des données consécutives en
rafale, une donnée par cycle (mode burst).

Rappel : cela correspond a I’architecture interne d"une puce mémoire : allez relire la section
Si on veut faire une puce de mémoire d’1Mbit (220 bits) de forme carrée, on devra 'organiser en
210 Jignes de 219 bits. Mais la RAM n’a pas 2! = 1024 broches pour sortir une ligne. Elle va donc
d’abord, en utilisant les 219 bits de poids fort, sortir une ligne en paralléle dans un grand registre
interne de 1024 bits. Ceci est lent (parce qu'une toute petite cellule mémoire doit charger un long
fil) mais ce n’est pas tres grave. Ensuite, 1’acces au registre interne sera rapide : il utilise des points
mémoire statiques, et peut étre construit avec des transistors plus gros puisque sa capacité n’est
“que” de 1024 bits. Sortir un mot de 32 bits par cycle en utilisant les poids faibles de ’adresse est
rapide. Au fait, ce registre interne est aussi utilisé pour re-écrire en mémoire la ligne qu’on vient
de lire (car la lecture a été destructrice).

Jadis, le truc était d’utiliser des mémoires entrelacées, répondant chacun a son tour, un mot par
cycle.

Bl | L]
L1 L1
L1

8x32 s 32 } P

des acc s m moire

RAM

—_ = — RAM — = —

~ :

~_

8 m moires 8 m moires

FIGURE 13.3 — Entre cache et mémoire physique
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13.1.8 Les caches dans un multicoeur a mémoire partagée (¥)

On avait déja un goulot d’étranglement au niveau de 'interface mémoire, cela ne va pas s’arranger
si on a plusieurs cceurs qui se battent pour la mémoire. La solution est bien stir de donner un cache a
chaque cceur. La grosse question est alors la cohérence des différents caches. Si plusieurs cceurs travaillent
sur la méme adresse et que 1'un I’écrit, il faut propager cette écriture aux autres avant leur prochaine
lecture.

Voici un apercu d’une technique qu’on peut mettre en ceuvre dans ce cas : le protocole MESI. On
associe, a chaque ligne de cache dans chaque cache, un état qui peut étre 'un des suivants :

— I pour Invalide : un acces a une adresse de cette ligne provoquera un défaut de cache (cache miss)

pour faire remonter la donnée de la mémoire centrale.

— S pour Partagé (Shared). Le coeur a acceés en lecture mais pas en écriture, car d’autres coeurs ont
aussi cette ligne dans leur cache, également en lecture seulement pour l'instant.

— E pour pour Exclusif : Le cceur a acces en lecture et écriture, parce qu’aucun autre cceur n’a cette
ligne dans son cache. Mais il n’a pas encore écrit dedans : la ligne est cohérente avec la mémoire,
on peut la virer du cache sans autre forme de proces.

— M pour Modifié : pareil qu’Exclusif, mais il y a eu des écritures dans la ligne, et elle n’est plus
cohérente avec la mémoire centrale. Avant de la virer du cache il faudra I'écrire en mémoire (write
back).

II n’y a plus qu’a construire 'automate associé a ces 4 états. Les transitions sont provoquées par
les instructions de lecture/écriture mémoire des différents coeurs. Vous le trouverez dans tous les bons
bouquins. Le matériel responsable de la cohérence des caches sera chargé d’'implémenter cet automate.

Il'y a plein de communications cachées dans ce protocole. Par exemple, lorsqu’un cceur veut écrire
une donnée a une ligne qui est dans I'état S, il doit d’abord lancer une demande d’invalidation de cette
ligne a tous ses copains. Il n’est pas question de réaliser 1'écriture avant d’étre certain que toutes ces
invalidations ont été effectuées, et donc que 1’écriture ne va pas créer une incohérence.

Une conséquence est que I'automate qui implémente en pratique les 4 états MESI a un zillon d’états
intermédjiaires. En 2017 j’en ai vu un dans une these, il prenait plusieurs pages et les patates étaient toutes
petites.

13.2 Mémoire virtuelle

Dans cette section, on va voir une des vraies différences entre un microcontroleur (comme le MSP430)
et un ordinateur. Le second est congu pour pouvoir gérer plusieurs processus, et offre un certains nombre
de mécanismes matériels pour cela. La mémoire virtuelle est I'un de ces mécanismes.

Le principe est simple : on veut partager la mémoire entre plusieurs processus, mais on veut que
chacun ait I'impression qu’il est tout seul et a toute la mémoire pour lui. Donc en particulier, en termes de
jeu d’instruction, tout I'espace d’adressage. Seul I'OS sait qu’il y a plusieurs processus et arbitre la “vraie”
mémoire entre eux. La “vraie” mémoire peut du reste étre partagée entre plusieurs processus (code des
bibliotheques par exemple) — tant qu’on ne fait que la lire c’est facile.

Et donc les adresses manipulées par les instructions du jeu d’instruction sont des adresses virtuelles,
qui ne correspondent pas du tout aux adresses physigues. La traduction de 1'une en 1’autre est réalisée
automatiquement (en matériel), et est fonction du processus.

13.2.1 Vue générale

Le processeur possede un registre “numéro du processus en cours” ou PID qui contient le numéro du
processus courant, mettons sur 16 bits. Ce registre est mis a jour a chaque changement de processus (on
dit aussi changement de contexte).

L’adresse virtuelle (sur 32 bits) générée par une instruction est d’abord étendue par le PID. On obtient
une adresse virtuelle unique de 48 bits. Cette adresse virtuelle unique est ensuite traduite en une adresse
physique (de 28 bits si vous étes pauvre, de 36 si vous étes trés riche) qui est envoyée sur le bus physique
de la mémoire.

On voit que par ce mécanisme, on peut avoir deux processus qui exécutent un méme code, produisant
les mémes adresses absolues, sans se marcher sur les pieds. Par exemple, il est typique d’organiser la
mémoire ainsi : le code en bas, suivi par le tas qui croit en montant, et la pile descendant de I’adresse
maximale 232 — 1. Tous les processus auront leur pile partant de I’adresse (virtuelle) maximale, mais ce
ne sera pas la méme pile.

A ce point un petit dessin a deux processus s'impose. A gauche, les espaces d’adressages virtuels. A
droite, I’espace d’adressage physique.
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Remarque : si vous avez un processeur 64 bits (genre AMDG64), cela signifie que ses adresses virtuelles
sont de 64 bits, et donc que chaque processus peut adresser jusqu’a 2% octets. Toutefois, par le méme
mécanisme il pourra vivre dans une mémoire physique plus petite, et tout de méme avoir la pile qui
descend de I'adresse 2% — 1.

adresse virtuelle unique

adresse virtuelle

(16) PID 52 12
| i |
traduction
| I |
protection adresse page physique
|
adresse physique

FIGURE 13.4 — Vue d’ensemble de I'adressage a travers la mémoire virtuelle pour des adresses virtuelles de 64 bits

13.2.2 Avantages de la mémoire virtuelle

Puisque nous allons étendre les adresses virtuelles avec le PID, on peut en profiter pour établir un
systéme d’allocation et de protection de la mémoire. Et puisque les adresses manipulées par le programme
ne sont plus des adresses physiques, on peut envisager de modifier 'emplacement des adresses physiques
pour une adresse virtuelle donnée suivant les besoins.

Voici un résumé de ce que la mémoire virtuelle va permettre :

1. Donner a chaque processus I'impression qu'il est tout seul dans 1’ordinateur.

— impossibilité mécanique pour un processus d’écrire dans la mémoire des autres processus
(isolation mémoire)

— possibilité pour chaque processus d’allouer toute la mémoire physique (pas tous en méme
temps bien str).

2. Proposer des mécanismes de protection de la mémoire plus fins que I'isolation, par exemple :

— un bit associé a chaque adresse dit si elle est accessible

— un bit dit si elle est accessible en lecture seule, ou accessible en lecture/écriture.

— un bit dit si ’adresse peut contenir du code exécutable, ou pas. Lorsque le processeur tente
d’exécuter une instruction venant d’une adresse non exécutable, une exception est levée et
le systéme tue le processus sans autre forme de proces. Ainsi, il est impossible d’exécuter
directement du code malveillant caché dans une image par exemple.

— etc.

3. Donner l'illusion qu’il y a plus de mémoire que la mémoire physique réellement disponible

— les adresses (virtuelles) qui ne sont pas actuellement activement utilisées par 1’ordinateur
ne seront pas traduite en mémoire physique, mais en mémoire disque. La partie du disque
correspondant s’appelle alors mémoire d’échange ou swap en swahili.

— L’OS remontera ces adresses en mémoire physique automatiquement quand le besoin s’en fera
sentir.

— rappel de la LCDE : le Mo sur le disque est bien moins cher, mais bien plus lent que le Mo en
mémoire vive.

4. Faciliter 'allocation mémoire : une plage d’adresses virtuelles consécutives peut étre traduite en
plusieurs pages de mémoires physiques placées n'importe ou en mémoire. Deux exemples :

— Sur un processeur avec des adresses virtuelles de 64 bits, malloc devient trivial : 264 egt tellement
énorme qu’on n’a pas a se soucier de la fragmentation mémoire, on trouve toujours une plage
virtuelle assez grande. Ensuite on associe a chaque page virtuelle une page physique au hasard,
et on est bon.
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— A l'initialisation de chaque processus, on alloue une page pour la pile, pour un SP initialisé
a 2% — 1. En général cela suffit. Mais parfois, un processus fait assez de récursion pour que
tout a coup un empilement provoque un défaut de traduction. Cette exception est regue par le
systeme d’exploitation, qui teste si par hasard I'adresse fautive ne correspond pas a SP. Si c’est
le cas, au lieu de faire un segfault, le systeme alloue une page de plus pour la pile, puis relance
le processus interrompu a partir de l'instruction fautive : elle va désormais marcher.

L’idée d'un registre de PID n’est qu'une idée parmi d’autres. Par exemple, le powerPC n’a pas de
registre de PID, mais a a la place 16 “registres de segments” qui font I'expansion des 4 bits de poids forts
de l’adresse virtuelle en une adresse de page virtuelle sur 24 bits. Ce sont ces 16 registres qui sont changés
par I’OS a chaque changement de processus. Lorsque certains de ces registres contiennent des valeurs
identiques pour deux processus, la mémoire correspondante est partagée par les deux processus.

13.2.3 Aspects architecturaux

La traduction d’une adresse virtuelle en adressse physique peut se faire en principe par une lecture
de table. Deux problemes pratiques, que nous exposons dans le cas d’adresses étendues par le PID :

1. La table de traduction a 2%8 entrées, donc est plus grosse que la mémoire physique.
2. Chaque accés mémoire se traduit désormais par deux accés mémoire...

La solution au premier probléme va étre de faire cette traduction par pages mémoire, une page étant une
unité de mémoire intermédiaire, typiquement 4 Ko. Ainsi, le cotit de la traduction (tant en mémoire qu’en
temps) sera amorti sur toutes les adresses d'une page.

La solution au second probléme est d’utiliser un mécanisme de cache : les traductions récentes sont
conservées dans une petite mémoire associative, appelée TLB pour translation look-aside buffer. En pratique,
cette TLB réalise la traduction d’adresse trés rapidement la plupart du temps. Lorsqu’elle échoue, le
systeme ou le matériel doit réaliser la traduction pour de bon, ce qui peut impliquer plusieurs acces
mémoire, mais c’est tres rare : moins d"une adresse sur 4000 pour une page de 4Ko, espére-t-on. Rappelons
que le principe de localité s’applique toujours : les adresses d'une page ont toutes les chances d’étre
réutilisées de nombreuses fois, ce qui amortit encore plus le cofit.

13.2.4 Dans le détail : table des pages (*)

Tables des pages directe, organisée hiérarchiquement (Fig.2 de 1'article Virtual memory, issues of
implementation du magazine Computer).

Accés top-down ou bottom-up.

Pb : adresses virtuelles de 64 bits?

Solution : table des pages inversées (Fig. 5).

13.2.5 Cache d’adresses virtuelles ou cache d’adresses physiques ? (*)

Au fait, de quelles adresses on parle?

Le principe de localité fonctionne aussi bien en adresses virtuelles qu’en adresses physiques, des
lors que la traduction se fait par pages plus grosses que la ligne de cache. Si I’on choisit un cache en
adresses virtuelles, il faut naturellement qu’il utilise les adresses virtuelles étendues par le PID, sans quoi
l'isolation des processus n’est plus garantie. Quoiqu’une alternative est que 'OS marque tout le cache
comme invalide a chaque changement de processus.

II est plus naturel d’avoir un cache en adresses physiques. L'inconvénient est qu’il faut alors réaliser
la traduction virtuelle-physique, puis 1’acces au cache en séquence.

Avec un cache en adresses virtuelles, on économise cette traduction en cas de hit, ce qui permet de
retourner la donnée plus vite. L'inconvénient est que le code de printf£, et en général toute donnée
partagée, va se retrouver en plusieurs exemplaires dans le cache. On a du gachis de cette mémoire
cotiteuse.

Un bon compromis est sans doute de réaliser le cache de niveau 1 (le plus pres du processeur, et celui
qui doit étre le plus rapide) en adresses virtuelles, et les niveaux suivants en adresses physiques.

On va construire complétemement la version d"une hiérarchie mémoire qui a besoin du moins de
matériel. Puis on verra ce qui existe dans les “vrais” processeurs grace a un article paru dans IEEE
Computer.
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13.3 Une mémoire virtuelle + cache minimale

— Un registre de PID

— Un cache de niveau 1 séparé, indexé virtuellement, et tant pis pour les doublons.

— En cas de hit, 'accés mémoire ne pose pas de pb.

— Un défaut de cache géneére une interruption. Le systéme consulte ses tables, fait la traduction de la
ligne virtuelle en ligne physique, vérifie les droits, choisit une ligne de cache a virer, et copie la
ligne physique dans le cache. Le tout idéalement en matériel.

— Les niveaux suivants de la hiérarchie sont indexés physiquement.

13.3.1 Instructions spécifiques a la gestion mémoire

Et voici quelques instructions a ajouter a notre processeur. Sauf la premiére, ce sont des instructions
accessibles uniquement en mode superviseur du processeur.

— prefetch (pour la performance) : cette instruction demande a ce qu'une adresse soit présente dans

le cache.

— lecture et écriture directement en mémoire physique, pour y mettre par exemple la page des tables

— invalidation d’une ligne de cache ou d'une page

— éventuellement écriture dans les tables matérielles si elles existent

— etc...
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Chapitre 14

Conclusion : vers le systeme
d’exploitation (*)

L’OS a deux roles fondamentaux (et largement interdépendants) :

— virtualiser le matériel : donner a l'utilisateur I'illusion qu'il est tout seul sur un ordinateur; donner
au programme l'illusion qu’il s’exécute sur un matériel “mieux” (plus simple, moins limité) que le
vrai.

— gérer les ressources (les différents niveaux de mémoire, le temps de calcul, les processeurs, les
entrées/sorties,...) pour les partager au mieux entre plusieurs utilisateurs/applications.

Application Operating System

] [

Operating System

J.0 3

Hardware

FIGURE 14.1 — La place de I'OS selon Wikipedia (& gauche) et G. Salagnac (i droite). Du point de vue de I'architecte, c’est celle
de droite qui correspond le mieux a la réalité.

14.1 Le role de I’OS (du point de vue d"un prof d’archi)

Du plus fondamental au plus gadgetesque :

— Définir (ou tout au moins publier en fournissant une interface) des regles du jeu permettant a un
programme de fonctionner sur une machine donnée. Par exemple, comment demander (allouer)
de la mémoire, comment les procédures se passent des parametres, oil se trouve la pile, comment
afficher un caractere a 1’écran, comment créer un fichier disque, comment lancer un programme...

— Assurer les taches de maintenance de routine : compacter la mémoire lorsqu’elle est libérée,
envoyer les bonnes couleurs sur I’écran et les bons échantillons sonores dans le tampon de la carte
son au bon moment,...

— Démarrer les sous-systémes dans 1’ordre.

127
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— gérer les processus, et on va commencer par voir cela.

— Fournir diférentes abstractions du matériel et du logiciel, certaines dégénérant franchement en
allégories. Exemples : de I’arborescence du systeme de fichiers jusqu’au bureau avec des fenétres
et du drag and drop entre elles.

14.2 Multiutilisateur ou multitiche, en tout cas multiprocessus

On dit processus, ou tache.

Les processus doivent se partager

— la mémoire de I'ordinateur (l'espace) comme vu au chapitre[13];

— le temps;

— d’autres ressources, notamment des entrées/sorties, et depuis peu les ressources d’exécution : les
cceurs de vos processeurs multicceurs de gamerz.

Le role de I'OS est d’assurer ce partage sans disputes et dans la bonne humeur.

14.2.1 Partage du temps

Pour partager le temps, on le découpe en tranches de quelques milliers de cycles, et chaque processus
exécute une tranche de calcul a son tour.

Entre deux processus, le processeur doit changer de contexte. Un contexte c’est au moins 1'état de tous
les registres du processeur. Il sera stocké par le systeme en mémoire en attendant le prochain tour.

La tranche de temps doit étre

— assez courte pour que l'utilisateur, qui fonctionne a 100Hz, ait I'impression que les processus
s’exécutent en parallele,

— mais assez longue pour que le temps du changement de contexte reste négligeable devant le temps
passé a faire le boulot.

Un processeur de 1GHz qui qui veut changer de processus a 100Hz peut réaliser 10 millions de cycles de
chaque processus entre deux changements de contextes... c’est beaucoup.

Le partage du temps peut étre coopératif (chaque processus est responsable de rendre la main au
systéme apres le temps qu’il juge raisonnable) ou préemptif (le systeme alloue les tranches de temps et
interrompt les autres processus). Les premiers OS multitaches grand public étaient souvent coopératifs :

— c’est plus simple pour 'auteur du systéme (c’est essentiellemnt aux auteurs des applications de
gérer le multitache)

— a une époque ot les ordinateurs étaient moins rapide, cela permettait relativement facilement
de rendre le systeme réactif aux interactions avec l'utilisateur : par exemple, lorsque celui-ci
déplace une fenétre, le processus qui s’occupe de cela va décider de garder la main jusqu’a ce
que l'utilisateur lache la souris. Ainsi, 100% du temps CPU est consacré a assurer la fluidité du
déplacement de la fenétre.

— enfin cela n’a besoin d’aucun support matériel particulier.

Le gros inconvénient du multitache coopératif est qu'un plantage d"un processus peut planter tout le

systéme. De nos jours, on n’a plus que du multitache préemptif.

Celui-ci a besoin d"un support matériel minimal, sous formes au moins d’une interruption, typique-
ment déclenchée par une horloge extérieure au processeur tous les 100eme de seconde, qui interrompt le
processus courant et saute a la routine systeme qui va endormir ce processus (sauvegarder son contexte)
et réveiller le processus dont c’est le tour.

Dans les détails, I'OS maintient une liste chainée circulaire de contextes, un par processus (un contexte
étant une structure de donnée contenant ’état complet du processeur : la valeur de tous ses registres, et
une adresse de retour). Lorsqu’un processus est interrompu (au bout de sa tranche de 10ms), la routine de
traitement d’interruption sauvegarde ce contexte, puis le remplace par le contexte du processus suivant
dans la liste, y compris ’adresse de retour. Tant et si bien que le RETI (return from interruptions) qui
termine cette routine de traitement d’interruption ne reprend pas l'exécution du processus qui vient
d’étre interrompu, mais celle d"un processus qui avait été interrompu il y a longtemps.

Avec de la mémoire virtuelle, le contexte inclut aussi la table de traduction d’adresses du processus
(ou un pointeur dessus). Au changement de processus, pour assurer l'isolation, il faut vider la TLB (le
cache des traductions d’adresse) — le processeur doit fournir une instruction (en mode privilégié) pour
cela. Cela veut dire que les premiers acces mémoire du processus réveillé vont produire des page fault. Si
les caches d’instruction et données sont en adresses virtuelles il faut les purger aussi. Bref, le gros du cott
du changement de processus va étre lié a la mémoire virtuelle.
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14.2.2 Partage des entrées/sorties

La plupart des processus ne font rien la plupart du temps : ils attendent que 'utilisateur bouge sa
souris, son clavier, ou qu'un paquet arrive sur le réseau...

Pour implémenter une telle attente, on peut écrire une boucle infinie qui teste I’arrivée d’un événement.
C’est ce que vous ferez sur votre processeur. Toutefois, cette approche, dite attente active, est un gros
gaspillage de ressources de calcul : si par exemple le systéme a un gros calcul a réaliser en tache de fond
(par exemple une impression, qui consiste a convertir un document en une image a la résolution, énorme,
de I'imprimante), et que personne n’appuie sur une touche du traitement de texte, on préfere donner
plus de temps de calcul a I'impression, et moins a l’attente de la touche.

La bonne approche est d’endormir les processus qui attendent un événement (c’est a dire de ne plus
leur donner de tranche de temps du tout — en pratique les contextes correspondant sont sortis de la liste
chainée circulaire évoquée ci-dessous, et rangés dans un placard des processus endormis). A I'arrivée de
I'événement attendu, le systeme réveille le ou les processus qui attendent cet événement en les réinsérant
dans la liste circulaire.

Autrement dit, le résultat principal de ’appel & scanf ou getc est d’endormir votre processus.

Ainsi, 'attente active est remplacée par l'attente passive, et c’est ainsi que votre CPU load est a 0 quand
votre PC ne fait rien, ou que I'impression d'un document est capable d’accaparer 99% du temps CPU, le
1% restant étant ce dont votre PC a besoin pour gérer un étudiant tapant du texte le plus vite possible de
ses petites mains a 3Hz.

En fait, méme les processus systémes responsables des entrées/sorties (ceux qui vont réveiller vos
processus a vous) sont eux-méme en attente passive. Toutefois, eux sont réveillés par des interruptions
matérielles : appui sur une touche, la carte son réclame des échantillons a jouer, timer a une fréquence de
I'ordre de la miliseconde, etc.

Certains processeurs peuvent méme arréter completement leur horloge jusqu’a la prochaine interrup-
tion matérielle. Je ne sais pas ce qui se passe dans votre PC.

14.2.3 Partage des ressources d’exécution

On a a résoudre un probleme d’équilibrage des charges, ou load balancing en australien. Si on vous
demande de le faire, vous implémenterez un algorithme glouton qui fera bien l'affaire : quand arrive un
nouveau processus, on le refile au processeur qui a l’air le moins chargé.

Si par la suite tous les processus du coeur 0 se terminent ou s’endorment alors que le processeur 1 est
toujours a 100%, on peut envisager de redéployer certains des processus du second sur le premier. Un tel
rééquilibrage de charge a un cofit tres supérieur a un changement de contexte, donc il faut le faire avec
discernement. La difficulté est de prévoir ’avenir : quelle est la probabilité que tel processus endormi se
réveille, et pour combien de temps? L'OS peut maintenir des statistiques par processus.
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Annexe A

Rudiments de complexité

Il est utile, en architecture comme en programmation, de raisonner a la louche sur le cotit (en temps, en
mémoire, en surface, ...) d'une implémentation. Mais ce cotit dépend en général de la taille du probleme.
Nous donnons ici des éléments qui permettent, toujours a la louche, d’évaluer comment un cofit croit
avec la taille du probleme. Ce n’est pas toujours juste proportionnel !

Dans toute la suite, nn décrira la taille du probléeme.

Les fonctions utiles a ce cours sont les fonctions suivantes. Quand # est grand,

1 << ldogn << n << n* << n® << . << 2" << " <

La dedans, vous connaissez et visualisez bien 7 et n2. Il est important de bien se familiariser avec
2" et log, n. Non pas comme des objets abstraits, mais comme des objets qui arrivent naturellement en
architecture.

On va voir que 2", c’est déja tres cher. Par conséquent, les fonctions plus grande comme #n” et n! seront
de peu d’intérét pratique.

A.1 Les fonctions 2" et log, n

La fonction 2" apparait des le chapitre du codage. Dans ce cas, il suffit de comprendre que le 2 de 2"
est le 2 de binaire.

— Sur n bits on peut coder 2" informations différentes.

— Autrement dit, un mot de n bits peut prendre 2" valeurs différentes.

— La table de vérité d'une fonction combinatoire a n entrées binaires a 2" lignes.

Sa propriété fondamentale est la suivante :

20th = 27 x 2P
Mais en fait on utilise surtout la variante suivante (pour b = 1) :
20+ =2 x 27,

La fonction 2" apparait donc naturellement chaque fois qu’on a une construction algorithmique du
type : pour obtenir truc(n + 1), jassemble deux truc(n). En effet, le cotit de truc(n + 1) sera le double du
cotit de truc(n). Cela suggere que c e cofit sera en 2".

Une autre propriété utile, car elle sous-tend toute I'arithmétique binaire :

n—1
2" —1=) 2.
i=0

Vérifiez pour les petits 7 :
142 =3 =4-1
1+2+4 =7 =8-1
1+2+4+8 =15 =161

En fait c’est aussi une propriété que vous manipulez, dans sa version décimale, depuis que vous savez
compter : c’est 999 + 1 = 1000. Vous avez donc déja rencontré cette derniere propriété sous la forme
suivante : en binaire, 10000000 = 01111111 + 1. Réfléchissez une minute pour vous convaincre que c’est
la méme chose. Sinon, la preuve est par récurrence en utilisant 271 = 2 x 27,
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Enfin, la fonction 2" croit tres vite. Cela se voit dans les deux propriétés ci-dessus.

20 = 1,21 = 2,216 = 65536, 232 ~ 4.10° (4Giga), 2%* ~ 16.10'%. Peut-étre plus parlant : 264 ~
16 000 000 000 000 000 000.

Quant a la fonction log, 1, c’est I'inverse de 2" :

x=2Y <+— y=log,x

On peut donc reformuler a I’envers toutes les phrases dans lesquelles on avait un 2", par exemple :
pour coder n informations différentes, il faut logon bits.

Attention, si n n’est pas une puissance de 2, log, n ne sera pas entier. Il faut I'arrondir a I'entier
supérieur. La phrase correcte serait pour coder n informations différentes, il faut [logon| bits. Mais ce sera
souvent implicite, surtout dans les raisonnements a la louche.

A.2 Raisonner alalouche

Quand on évalue les cofits, on ajoute souvent les cotits de plusieurs composants. Mais quand on
raisonne a la louche, on ne s’intéresse qu’au plus important. Les autres cofits sont rassemblés dans une
formulation de type “et des chouillas”.

Tout cela peut s’appuyer sur des mathématiques propres. Si vous voulez creuser, allez wikipédier
comparaison asymptotique et complexité asymptotique.

Par exemple, quand pour obtenir truc(n + 1), j'assemble deux truc(n), j’ai souvent en fait besoin d’un
chouilla en plus. Pour obtenir un multiplexeur pour des adresses # bits, on assemble deux multiplexeurs
pour des adresses de n — 1 bits, et un multiplexeur de taille 1. Ce dernier est un chouilla. On obtient
quand méme un cofit total en 2".

Quand on a un doute on peut toujours faire une vraie récurrence ou1 I'on voit apparaitre une des
formules précédentes. On peut partir d'un schéma pour un petit n. Par exemple, la figure p-
fait apparaitre la récurrence ¢, 11 = 2c, + 1, avec ¢c; = 1 (ici a est le nombre de bits d’adresse). Calculez
les premiers termes (1, 3, 7, 15, 31) et intuitez-en que c;, = 2" — 1, ce que vous démontrerez ensuite en
utilisant la propriété déja vue 27+! = 2 x 2.

En général, si on a une somme de deux fonctions de la liste ci-dessus, a la louche on peut négliger la
plus petite. Je dirai donc que le cotit de la gare de triage de la p.[35]est en 2". Quel est le cot en fonction
du nombre de cases adressées k? On voit qu'il faut 1 +2 +4 4+ 8 4 ... + k/2 aiguillages, donc k — 1.

Pour des raisons similaires, on ne s’intéresse pas aux constantes qui peuvent multiplier ces fonctions.
Si je compare une solution qui cotite 2" et une solution qui cofite 12, je ne suis pas a un facteur 3 prés sur
ces cofits : le n% peut méme étre un 1772, dés que n sera assez grand ce sera moins cher que 2.

Si les constantes sont importantes pour vous, c’est que vous ne raisonnez plus a la louche — je ne dis
pas que c’est mal.

Pour conclure, les fonctions listées ci-dessus ont également les propriétés a la louche suivantes :

— Si le cofit est en log, 1, il faut que le probléme double de taille pour que le cotit commence a

augmenter. C’est donc pas cher. C’est bien.

— Si le cofit est en 1, il est proportionnel a la taille du probléme.

— Si le cotit est en 2", 'augmentation d’une unité de la taille du probleme fait doubler le cotit. On

n’ira pas tres loin.



Annexe B

VHDL, un langage pour la synthese de
circuits

B.1 Flot de synthése

La figure|B.1|est coupée de la premiere page du manuel d’un outil qui sert a concevoir des circuits (en
I'occurrence I'outil ISE, qui sert a programmer les FPGA Xilinx).

Design - Design Verification
Entry "
Behavioral
F Simulation
Design ’
Synthesis
1 |
Functional
" | Simulation
Design _|Static Timing
Implementation Analysis
Back _ Timing
Annotation Simulation
|
Xilinx Device _| In-Circuit
Programming | Verification

FIGURE B.1 — Le flot de conception pour implémenter un circuit sur un FPGA (vue tres simplifiée)

La boite Design entry recouvre différentes techniques de description de circuit. On y trouve des
interfaces qui ressemblent a LogiSim, et d’autres interfaces graphiques, par exemple pour dessiner un
automate sous forme de patates et de transitions.

Toutefois, la majorité des circuits sont décrits au moyen de deux langages standard et a peu pres
équivalents : VHDL et Verilog.

Par pure méchanceté, nous allons travailler avec le plus compliqué des deux, car d'une part c’est le
plus répandu en Europe, et d’autre part il est plus facile de passer de VHDL a Verilog que le contraire. Il y
a aussi des raisons purement techniques, comme un typage plus strict qui protege les débutants que vous
étes. La plupart des concepts que nous allons voir existent dans les deux langages, avec des syntaxes
différentes.
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B.2 Décrire un circuit par un langage

B.2.1 Description de circuit # programmation

Nous allons présenter VHDL essentiellement par opposition aux langages de programmation que
vous connaissez. En effet, VHDL n’est pas un langage de programmation. C’est un langage de description
de circuit intégré (Very large scale integration Hardware Description Language).

La différence fondamentale est la suivante. Dans un programme classique, on avance ligne par ligne
en exécutant le cycle de von Neumann. Une ligne de votre programme va sans doute correspondre a de
nombreux cycles, mais au final la sémantiqueE] du langage décrit une exécution séquentielle des différents
calculs et accés mémoire.

Par contre, dans un circuit, tout bouge potentiellement en méme temps. La sémantique d’un langage
de description de circuit est donc naturellement parallele. Chaque porte vit sa vie en parallele des autres
portes. S’il y a une séquentialité des éveénements dans un circuit, elle est uniquement causée par la
propagation de l'information le long des fils et a travers les portes, pas du tout par I'ordre dans lequel
sont décrits les différents composants en VHDL.

Relisez les deux paragraphes précédents avant de passer a la suite.

B.2.2 Mais au fait, quelle est la sémantique d’un circuit numérique?

11 est difficile de comprendre VHDL sans se poser cette question. Considérons un circuit dessiné
dans LogiSim. La sémantique de ce circuit, c’est ce qu'il fait, son comportement. Comment formaliser ce
comportement?

La meilleure réponse a ce jour est ce qu’on appelle une sémantique a événements discrets. Le compor-
tement d’un circuit, c’est la maniere dont il réagit & des évenements (des transitionsde0aloude1a0)
sur les entrées.

On peut simuler un circuit avec ce qu’on appelle un simulateur a événements discrets (toutes les boites
de droite de la figure|B.1|avec le mot simulation en sont). Un simulateur a évenement discret fonctionne
de la maniére suivante.

— 1l utilise un graphe du circuit, composé de portes reliées par des fils. Ce graphe ne bouge pas

pendant la simulation (un circuit ne se modifie plus une fois qu’il est assemb]lé).

— Il maintient liste d’événements triés par date. Un événement est un triplet (£,s,v) out

— t est une date (un instant),

— s est un signal (un fil du graphe du circuit), et

— v est une valeur de ce fil.

On n’a un événement que lorsque cette valeur change, par exemplede 0aloude1 a0 (il peuty
avoir d’autres valeurs possibles comme U pour Unknown ou Z pour haute impédance.

— Le simulateur réalise une seule boucle que voici :

Tant que la liste d’événements n’est pas vide,

— Avancer le temps au prochain événement, c’est-a-dire retirer 'éveénement (t,s,v) en téte de
liste;

— Regarder dans le graphe a quelles entrées de portes le signal s est connecté. Propager le
changement de valeur a travers ces portes. Cela génere de nouveaux évenements (un peu plus
tard) : les insérer & leur place dans la liste triée par .

— Et recommencer.

Cette sémantique a événements discrets est trés sympa puisqu’on la décrit avec une simple boucle
séquentielle : elle est facile & programmer, mais aussi facile & appréhender pour nos pauvres cerveaux
séquentiels.

11 faut comprendre que certains aspects du langage VHDL sont sous-tendus par cette sémantique.

B.2.3 Description comportementale ou description structurelle

Dans tout ce cours on a dessiné nos architectures comme des boites qu’on assemble par des fils. Il est
donc naturel que les outils comme Logisim offrent une interface a base de boites et de fils. C’est aussi le
cas de VHDL, qui appelle une boite une entity et un fil un signal. L'entité est un peu comme la déclaration
d’un prototype de fonction C dans un fichier . h.

11 faut aussi décrire l'intérieur de la boite noire. VHDL appelle cela une architecture pour une entité.

On peut donc décrire un gros circuit par ’assemblage de boites plus petites. Du LogiSim, quoi. Ceci
s’appelle une description structurelle.

1. La sémantique d'un programme, c’est son sens (au sens de “au sens de”), sa signification, ce qu'il fait. De préférence décrit en
termes formels et mathématiques.
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Mais VHDL permet aussi de décrire un composant par son comportement. L'idée est que c’est
plus abstrait, plus pres de la sémantique. Et qu’on arrivera bien a compiler automatiquement une telle
description en un assemblage de porte. C’est le discours que tenait le prof d’archi au sujet des fonctions
booléennes et des automates, n’est-ce pas? Cela s’appelle une description comportementale.

Les deux ne sont pas antinomiques. En gros, on aime décrire les gros circuits par des boites composées
de boites plus petites, et décrire I'intérieur des plus petites boites par une description comportementale.
Mais la aussi, c’est 1’art de I'ingénieur de trouver le bon équilibre.

Pour décrire un comportement arbitraire, on dispose d’un langage de programmation presque
classique, avec variables, conditionnelles, etc. Ce langage est destiné a s’exécuter dans le simulateur. Il
faut bien comprendre qu’il ne sera pas tranposé directement en un circuit.

B.2.4 VHDL synthéthisable

On arrive a simuler tout programme VHDL. Par contre, on n’arrive pas a transformer en un circuit
efficace tout programme VHDL. Tout ce qui est structurel se transpose directement en un circuit. Par
contre, les descriptions comportementales sont parfois synthéthisables, et parfois non. Et cela dépend des
outils utilisés. Souvent, les outils vous fournissent des modeles (templates) pour des fonctionnalités qu'ils
savent synthétiser. Le plus simple est de partir de cela.

B.3 Lelangage VHDL par ’exemple

Assez de blabla. Observons avec attention la figure

B.3.1 Entités, architectures et composants

Une entité c’est une boite noire. Quand on la déclare on 'appelle ent ity, et il faut juste définir ses
ports : ses entrées/sorties. Quand on l'utilise, on I’appelle un component mais c’est la méme chose.

Ensuite on peut définir plusieurs architectures pour une entité. L'idée est qu’on commencera par une
architecture comportementale (qui définit, dans un langage pas forcément synthéthisable, “ce que fait” la
boite noire). Puis quand on sera satisfait du comportement on pourra (plus ou loins progressivement)
remplacer cette architecture par une architecture plus structurelle : celle-ci sera synthéthisable, mais son
comportement ne sera plus explicite. On aimerait savoir faire ce raffinement de comportemental vers
structurel automatiquement, mais ce n’est pas encore cela.

En attendant, VHDL fournit des constructions permettant d’associer une architecture a chaque entité.
Nous, bien stir, on va définir une seule architecture par entité, cela suffira bien. C’est le cas de la ﬁgure

B.3.2 Variables, parametres, signaux et ports

Variables et parametres sont des notions qui ressemblent a celles des langages de programmation
classiques, alors que signaux et ports sont... des signaux. Des fils, quoi.

L'assignation des variables se fait par : =, celle des signaux par <= qui se lit en gros “se branche sur”.
Dans a<=expr; l'information portée par les signaux se propage de droite a gauche.

Quand-est-ce qu’on utilise une variable ou un parametre? Par exemple, le n de “additionneur n
bit” est un parametre de 1’architecture. On aura peut-étre envie de déclarer une variable p qui vaudra
p:=n+l;

Et donc les ports de l'additionneur n bits sont des vecteurs de 7 bits. On voit qu’on ne peut pas
construire physiquement cet additionneur tant qu’on n’a pas fixé les valeurs de ses parametres génériques.

Admirez sur la figure B.2|comment on branche un sous-ensemble d'un signal sur un autre au moyen
du mot-clé downto.

L’autre grosse utilisation des parametres est pour la spécification du temps, par exemple 1’entité
suivante définit une infinité de portes avec des délais différents :

entity nand is
generic(delay:time)

port (a,b:in std_logic; y:out std_logic)
end nand ;
architecture idiote of instr_reg is
begin

y <= not(a and b) after delay;
end architecture;
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library ieee;
use ieee.std_logic_1164.all;

entity instr_reg is
port ( clk : in std_logic;

ce : in std_logic;

rst : in std_logic;

instr : in std_logic_vector (15 downto 0);
cond : out std_logic_vector (3 downto 0);
op : out std_logic_vector (3 downto 0);
updt : out std_logic;

imm : out std_logic;

val : out std_logic_vector (5 downto 0) );

end entity;

architecture arch of instr_reg is
signal instr_r : std_logic_vector (15 downto 0);
begin

process (clk, rst)
begin
if rst = "1’ then
instr_r <= X"0000";

elsif clk’event and clk = 1’ and ce = 1’ then
instr_r <= instr;
end if;

end process;

cond <= instr_r (15 downto 12);
op <= instr_r (11 downto 8);
updt <= instr_r(7);
imm <= instr_r(6);
val <= instr_r (5 downto 0);

end architecture;

FIGURE B.2 — Un composant du processeur de la ﬁgure
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Il faudra l'instancier avec une valeur de delay, par exemple delay:=3ns;

Comprenez au passage la différence entre cette affectation et y<=expresssion;. Dans
y<=expression, y est un signal et le <= signifie “branché sur”. Plus précisément, il signifie “pro-
pager les éveénements qui viennent de expression vers y”. Il y a donc potentiellement une infinité de
changements de valeur de y dans cette ligne.

Par contre, une affectation de variable ou de générique comme delay=3ns est effectuée une seule
fois, a moins qu’elle ne soit explicitement dans une boucle.

B.3.3 Instances

Je rappelle quun composant c’est une entité. Et donc une instance d’un composant, c’est une copie
dont on fixe les parametres et dont on branche les ports. On peut avoir plein d’instances du méme
composant, par exemple si tout votre circuit est réalisé a base de porte non-et, vous vous retrouverez au
final avec quinze millions d’instances du composant non-et.

Une instanciation définit un nom d’instance (avant le :. Le nom de l'entité vient apres le :. Ensuite
viennent les assignations des ports et des parametres, sous la forme formel => effectif.Le => selit
comme "est branché sur" : il n’y a pas de notion de sens d’information. Ce n’est pas le “contraire” de <=!
Les événements peuvent se propager dans un sens ou dans 'autre a travers =>, suivant que le port est
une entrée ou une sortie. A mon avis c’est une syntaxe a la con.

porte_1l:nand
generic map (5 ns)
port map (entreel, entree2, sortie);

—— on peut aussi utiliser les noms des paramétres/ports de 1l’entité
porte_2:nand

generic map (15 ns)

port map (a=>entreel, b=>entree2, c=>sortie);

B.3.4 Types de base

Comme la plupart des langages, VHDL vient tout nu, et n’est utilisable que si on lui ajoute plein de
bibliotheques.

Sur la figure [B.2] vous avez la syntaxe pour inclure les bibliotheques de logique normalisées IEEE.
Elles définissent le type std_logic:

l Valeur H Nom \ Signification ‘
Ty’ Non initialisé Aucune valeur n’a été affectée au signal
"X’ Inconnu Impossible de déterminer la valeur du signal
10’ 0 logique
r1’ 1 logique
1y’ Haute impédance | Le signal est isolé grace a un transistor (cf. le bus 12Q)
T’ Sans importance | La valeur du signal n’est pas importante (don’t care)

et encore quelques autres, ainsi que la matrice qui dit ce qui se passe quand on branche ensemble deux
signaux avec des valeurs différentes.

Vous rencontrerez assurément ’ X’ et peut étre ' U’ en sortie de vos simulations. Souvent ce sera
normal.

Ces bibliotheques définissent aussi les opérateurs de base dessus : and,or, not, xor, nand, nor.

Iy auntype std_logic_vector qui est comme son nom l'indique, et dont vous avez des exemples
de déclaration et d"utilisation sur la figure

Remarque : Pourquoi une notationen (n downto m) etnonpas (m to n) ? Carlanotation downto
nous permet de représenter les bits de poids forts a gauche, ce qui est beaucoup plus lisible des qu’on
veut manipuler des signaux représentant des nombres.

Enfin on peut ajouter
use ieee.std_logic_arith.all;
use ileee.std_logic_unsigned.all;
pour pouvoir décrire un additionneur simplement par un + entre deux std_logic_vector. Il faut
qu’ils aient la méme taille et que le résultat ait aussi la méme taille.
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D’autres types

11 existe d’autres types pour les signaux, mais la plupart d’entre eux sont a éviter car ils n’offrent géné-
ralement pas de garantie quand a I'implémentation réelle de ces signaux, sauf a utiliser des constructions
tellement classiques que le compilateur les reconnait comme des circuits combinatoires.

Par exemple la maniére usuelle de décrire un multiplexeur est la suivante

y <= x0 when a = "0’ else x1;

C’est bien une construction comportementale. Du point de vue du langage, I'expressiona = ' 0’ est
de type booléen, pas signal. Mais les synthéthiseurs reconnaissent un multiplexeur.
Attention. Certains de vos collegues ont fort intelligemment utilisé

y <= x0 when a = 0’ else x1 when a="1";

cela se simule de maniére identique, mais les cas a=’U’, a=’ X, etc ne sont pas prévus, contrairement a
la formule officielle. Cela a suffi pour que le synthéthiseur décide de I'implémenter comme un registre
exotique, et plus rien ne marchait. 5i si.

De méme il existe un type integer, il permet de représenter des nombres entiers signés sur 32 bits
(de —2 147 483 647 a 2 147 483 647), comme par exemple les indices d"un signal std_logic_vector.
Mais si on veut manipuler un signal portant un entier 32 bits, on utilisera des std_logic_vector.

Description des automates

Enfin, les types énumérés se déclarent de la maniére suivante :
type t is (csty, csty, ...);

Un signal déclaré du type t peut donc prendre comme valeur uniquement une des constantes csty,
csty, ... Cela est tres pratique pour définir par exemple le signal représentant 1’état courant d'un automate.
Le choix de I'encodage de ce signal est alors laissé au synthétiseur VHDL, qui fera ce boulot généralement
mieux que nous de toute fagon.

Remarque : En fait, les types std_logic et boolean sont aussi des types énumérés :

type std_logic is ('U’, ’X’, '0', '1', 'z', 'W', 'L’, 'H', '-');
type boolean is (true, false);

B.3.5 Concurrent statement

Entre le begin etle end architecture d’une architecture, on a une liste de concurrent statement :
leur sémantique n’est pas une exécution séquentielle dans I'ordre ot ils sont écrits, mais bien une
exécution concurrente, ou paralléle. Autrement dit, on peut les écrire dans n’importe quel ordre.

Pour nos besoins, les concurrent statements sont essentiellement de 4 types :

— l'assignation de signal, déja vue,

— l'instanciation de composant, déja vue,

— le processus (process) qu’on ne verra pas, a l'exception suivante pres : Le paté entre process et
end process sur la figure([B.2|est la maniere officielle de décrire un registre avec un reset. On est
prié de faire comme cela.

— le if generate et for generate qui sont un if et un for concurrents, ou parallele. Voyez
les comme ceci : le if generate va produire du matériel si sa condition est vraie. Le for
generate va répliquer plein de fois du matériel. Attention, ils englobent un bloc de concurrent
statements mais leur condition ne porte pas sur des signaux mais sur des variables/parameétres.

La suite décrit en détaille le fonctionnement des processus et des generate, parce que Jérémie Detrey
I'avait tapé. Toutefois, vous étes invités tres expressément a copier et modifier des constructions de code
existant et fonctionnel, et a taper le moins possible de VHDL from scratch. La suite doit vous permettre
de comprendre ce que vous copiez, mais pas (tout de suite) d'inventer du VHDL... en tout cas si vous
voulez qu'il soit synthétisable.

B.3.6 Processes

Les processes sont le “coté obscur” de VHDL, c’est-a-dire le VHDL comportemental.



B.3. LE LANGAGE VHDL PAR L’EXEMPLE 141

Principe
Un process se présente de la maniére suivante :

process (signaly, signaly, ...)
begin

instry;

instry;

end process;

Les signaux indiqués en début de process sont appelés liste de sensibilité (sensitivity list) du process.
En fait, un process peut étre vu comme une sorte de sous-fonction, qui est appelée a chaque fois qu'un
événement (changement de valeur) se produit sur un des signaux de sa liste de sensibilité. Relisez la
section sur la simulation a évenements discrets, et vous comprendrez.

La grande caractéristique du process concerne le mode d’exécution de ses instructions. En effet, méme
s’il se trouve au milieu d"une architecture (dont les instructions sont donc exécutées toutes en parallele),
le process assure la séquentialité de I’exécution de ses instructions, comme pour n'importe quel langage
impératif classique.

Les instructions composant le cceur du process peuvent étre principalement de trois types (en fait il y
en a d’autres, mais ces trois-1a sont largement suffisants) :

Affectations Méme principe que les affectations dans une architecture :
signal <= expr;

Constructions de plus haut niveau Ce sont typiquement des conditionnelles ou des boucles. Par

exemple :
if cond then while cond loop
instry; instry;
instry; instry;
elsif cond’ then end loop;
else
end if;

Temporisations Ces instructions permettent de donner des indications de temps concernant I'en-
chainement séquentiel des instructions. L'instruction de temporisation la plus courante est le
wait:

wait for m ns;

Cette instruction permet d’attendre 7 nanosecondes (on peut bien évidemment changer 1'unité
de temps) avant d’exécuter les instructions suivantes. Par exemple, dans un process, les instruc-
tions :

x <= '0";
wait for 2 ns;
x <= '1";
wait for 5 ns;
x <= '0";
wait for 3 ns;
x <= "'1';

génereront le chronogramme suivant (ot le temps T correspond au temps au début de I'exécution
de ces instructions) :

T T+ 2ns T + 7nsT + 10ns
x /]

Un process sans liste de sensibilité étant exécuté en boucle, on peut ainsi aisément générer un
signal d’horloge, comme le suivant, cadencé a 100MHz (période de 10ns) :
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process
begin
clk <= ’0’; T T + 568 + 10ds5+ 1515+ 205+ 25145+ 30ns

wait for 5 ns;

clk <= 717 clk [ [

wait for 5 ns; B
end process;

Restrictions d’utilisation

Eh ben voila, on n’a plus qu’a écrire des bon vieux programmes dans des processus VHDL, pensez-
vous?

Eh bien malheureusement, non : il n'y a pas de compilateur qui sait transformer une telle spécification
comportementale en un circuit. Autrement dit, sauf cas rares (que 1’on verra dans la suite), les processes ne
sont pas synthétisables. Ils sont simulables, et on les utilisera pour décrire des stimuli a nos circuits, mais
en ce qui concerne la réalisation effective du circuit (sous forme de fils et de transistors), le synthétiseur
se retrouve tres vite dans les choux face a des processes.

L'utilisation de ces processes est donc strictement limitée aux fichiers de simulation, car ils nous
permettront dans ce cadre de générer facilement signaux d’horloge et stimuli.

Application aux registres

En fait, la seule utilisation des processes autorisée dans une architecture VHDL destinée a la synthese
est pour décrire des registres. Comme vous 'avez remarqué en TD, les éléments de mémoire décrits a
partir de portes vous obligent a utiliser des boucles combinatoires, dont la stabilisation n’est jamais tres
claire.

Les processes offrent une alternative a cela, puisqu’ils sont par définition des éléments synchrones du
circuit. Jetons par exemple un ceil au process suivant :

process (clk)
begin
if clk’event and clk = "1’ then
q <= d;
end 1if;
end process;

Ce process a le signal c1k dans sa liste de sensibilité. Cela signifie qu’il est exécuté a chaque fois qu'un
événement (changement de valeur) se produit sur c1k. Il sera donc appelé sur chaque front (montant
comme descendant) de notre horloge.

L'instruction i f nous permet de vérifier les conditions suivantes :

— qu'il s’agisse bien d’un front d’horloge (c1k’ event),

— et que ce front soit montant, c’est-a-dire que I'horloge soit désormais a1 (c1k = "17).

Une fois ces deux conditions vérifiées, le signal q recoit la valeur de d. Si l’on trace le chronogramme
correspondant, on voit bien que le comportement de ce process est le méme que celui d"un registre

(flip-flop) :

SPET il
d >< 0 @ d»> X ds X dy
S do dp ds

C’est la que le synthétiseur réalise une belle prouesse face a un tel process : en observant le chro-
nogramme du process, il est capable de reconnaitre un registre qu’il synthétisera alors proprement en
utilisant sa propre bibliotheque de cellules standards.

Mais c’est aussi la que se situe sa limite : mis a part ce process et quelques variations, point de salut.
Parmi les variations acceptables, on peut trouver :

— le registre (flip-flop) avec reset synchrone (rst) :
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process (clk)

begin
if clk’event and clk = ’1’ then 2
if rst = 1’ then drSt
A == df=
q <= "'0";
else
g <= d; clk
end 1if; =2
end if;

end process;

— le registre (flip-flop) avec clock-enable synchrone et (pour changer) reset asynchrone : on 1’a ajouté
dans la liste de sensibilité, ainsi un évenement sur reset va déclencher la remise a zéro du regstre.

process (rst, clk)

begin =2
if rst = "1’ then rstT
Ny o{d " i
q<="'0";
: ’ — —
elsif clk’event and clk 1" and ce 1" then o lcelk
q <= d;
end if; 2

end process;

B.3.7 Génération de circuit
Boucles de génération

Parfois, lorsqu’un circuit (ou tout du moins un bout de celui-ci) est trés régulier, il est plus simple de
le générer a 'aide d"une boucle plutdt que d’écrire plusieurs fois la méme chose en changeant juste les
indices dans les vecteurs de signaux.

Prenons par exemple le bout d’architecture suivant :

z(0) <= x(0) and y;

z(1l) <= x(1) and y; X7X6X5X4X3X2X1X()
z(2) <= x(2) and y;

z(3) <= x(3) and y; Y

z(4) <= x(4) and y;

z(5) <= x(5) and y;

z(6) <= x(6) and y; Z726252Z423Z27Z12Z()
z(7) <= x(7) and y;

Cela reste encore lisible pour huit signaux auxquels on applique juste une porte and, mais pour un
nombre plus important de signaux ou des fonctions plus complexes, ¢a devient rapidement incompré-
hensible, source potentielle de plein d’erreurs et bien entendu indébuggable.

VHDL permet d’éviter cela en adoptant une construction a base de boucle :

inst : for i in m to n generate
instry;
instry;

end generate;

ot i représente I'indice de boucle entier (qui n’a pas besoin d’étre déclaré au préalable) qui va parcourir
I'intervalle de m a n (inclus), instanciant a chaque fois le groupe d’instructions indiqué dans le corps de
la boucle. L'identifiant inst va servir a identifier de maniére unique chacune des instances du groupe
d’instructions, en les nommant de inst,, a inst,,.

Pour revenir a ’exemple précédent, on peut donc écrire plus simplement les lignes suivantes, qui
généreront exactement le méme circuit :

inst_and : for i in 0 to 7 generate
z (1) <= x(1i) and y;
end generate;
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Conditionnelle

On peut aussi trouver la version conditionnelle du generate qui fonctionne de la méme maniere :

inst : if cond generate
instry;
instry;

end generate;

On peut écrire du VHDL récursif, c’est méme parfois utile (un arbre est naturellement récursif) mais il
faut bien comprendre que le circuit sera complétement déroulé avant la simulation. Dans le processus
seront créés des tas de signaux et de composants, qui seront nommés pluis ou moins intelligemment par
le compilateur (en général, moins intelligemment que si vous les aviez nommés vous méme, n’est-ce
pas). Du coup, suivre ce qui se passe dans le circuit (débuggage, analyse le chemin critique, etc) devient
difficile. Vous voila prévenus.



Annexe C

Anatomie d’un Unix

On a vu du point de vue du matériel pas mal d’aspects systémes. Voyons comment tout ceci se traduit
pour l"utilisateur (en 1’occurrence le programmeur).
Ce chapitre est une resucée de l'introduction au bouquin de Tanenbaum.

C.1 Appels systémes

La norme POSIX (qui rend les Unix compatibles entre eux) en liste assez peu. Tanenbaum en donne
53, dont quelques uns obsolétes mais conservés par souci de compatibilité.

Remarque : chaque appel systéme a une interface sous forme d’une fonction C, mais la mécanique sous-
jacente variera d'un ordi a I'autre. Un appel systeme est plus qu’un appel de procédure. En particulier, il
doit basculer le processeur en mode privilégié.

C.2 Processus

Chaque processus est identifié par son PID, un entier. Il dispose de sa mémoire avec le code en bas,
suivi du segment de données, et la pile qui part du haut de la mémoire. On peut d’ailleurs avoir des
espaces d’adressages différents pour le code et les données.

On crée un processus par l'appel systéeme pid=fork () qui crée une copieﬂidentique du processus
courant (méme code, méme contenu de la mémoire, méme PC, mémes registres, mémes fichiers ouverts,
tout pareil).

Ensuite, chaque processus continue son petit bonhomme de chemin. Pour que le fils puisse s’émanciper
du pere, fork () renvoie un entier qui vaut

— 0 pour le fils, et

— le PID du fils pour le pere.

Un fork () dans un programme est donc typiquement suivi d'un test sur 'entier retourné pour que
chaque processus sache qui il est.

J'ai parlé de fils et de pére... L'ensemble des processus forme une généalogie, et la littérature des Unix
est pleine de concepts oedipiens (le pére tue son fils etc.).

Autre appels systemes liés aux processus (sans les détails) :

— pid=waitpid(pid, & statloc, opts) :attend qu'un fils meure.

— s=execve (name, argv, envp) :remplace le code du processus courant par un autre code —

name est le nom d’un fichier exécutable.

— exit (status) :fait mourir le processus

— size=brk (addr) : redimensionne la taille du segment de donnée du processus —malloc () va

I'appeler si nécessaireﬂ

— getpid () Qui suis-je vraiment? Le fils a recu 0 de fork (), mais un jour il voudra connaitre sa

véritable identité.

1. En pratique, on ne recopie pas vraiment la mémoire. On va se contenter de faire pointer les adresses virtuelles du fils vers les
mémes adresses physiques que celles du peére, mais en lecture seule. Seul le pére conserve le droit d’écrire dans cette mémoire. Tant
que le fils ne fait que lire, pas de probléme. Si le fils tente d’écrire, cela provoquera une exception qui va, pour le coup, faire une
copie de la page physique concernée pour la donner au fils avec acces en écriture. Ainsi on ne fait la copie que si nécessaire. Bref, le
prototype de cet appel systeme est tout simple, mais derriére il y en a du boulot.

2. Tiens, je fais man brk sous Linux pour voir pourquoi il s’appele brk (non je ne vous dirai pas, allez-voir vous-méme), et ils y
disent Avoid using brk() and sbrk() : the malloc(3) memory allocation package is the portable and comfortable way of allocating memory.
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C.3 Signaux

Les processus communiquent entre eux de deux manieres :

— soit par fichier (les tuyaux, vous savez, cat *.c | grep "toto",sont vus par les processus

comme des fichiers.)

— soit par signaux.

Un signal c’est 1’abstraction de ce qu’on a appelé une interruption ou une exception du point de vue
matériel. C’est envoyé soit par le hard, soit par un autre processus. Il y a un petit nombre de signaux
différents.

Donc un processus peut envoyer des signaux. Il peut donc aussi en recevoir. Par défaut, un signal tue
un processus, mais le processus peut annoncer qu’il s’attend a recevoir un signal et fournir pour cela
I’adresse d'une fonction gestionnaire de signal, qui sera appelée s’il regoit le signal (si I’adresse est nulle,
le signal sera ignoré).

— sigaction(sig, & action, & oldaction) définit]’action a exécuter a réception d'un si-

gnal

— sigreturn() a appeler a la fin du traitement d’un signal pour reprendre le train-train du

processus

— kill(pid, sig) envoie un signal

— pause () suspend ce processus jusqu’au prochain signal

C.4 Fichiers

Tous les fichiers sont abstraits dans une seule arborescence. Par conséquent, il faut un appel systeme
mount () qui définit la place d"un systéme de fichier qui arrive avec son arborescence a lui (par exemple
un CDROM) dans I’arborescence globale.

Et voila plein d’autres appels plus ou moins explicites (au choix pour les détails, la commande man
ou le Tanenbaum) :

— mknod

— open

— close

— read

— write

— lseek

— pipe

Il'y a aussi tous les appels qui concernent la gestion de 1’arborescence des fichiers :

— mkdir

— rmdir

— link

— unlink

— mount

— umount (unmount était sans doute trop long)

— chdir

C.5 Protection

Enfin, c’est bien beau de protéger les processus les uns des autres, mais il faut aussi protéger les
utilisateurs les uns des autres. Chaque utilisateur est identifié par un entier, son UID. Il peut faire partie
de différents groupes, chaque groupe identifié par son, devinez quoi, GID. Un processus peut connaitre
quel utilisateur I'a lancé par getuid ().

Comme tout est fichier, on n’a ensuite a protéger que des fichiers. Un fichier a un propriétaire (connu
par son UID donc) et un groupe. On peut le changer par chown () . La protection se fait par trois fois
trois bits (read, write et execute pour propriétaire, groupe et reste du monde) que I'on peut associer
a un fichier par chmod () [’} Chaque processus appartient a un utilisateur (a chaque PID est associé
I'UID de l'utilisateur qui, consciemment ou non, 1'a lancé), et un processus aura sur un fichier les droits
correspondant a cet utilisateur.

3. Ces deux appels systemes ont leur commande shell associée.
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Il 'y a aussi deux bits, SETUID et SETGID. Quand un utilisateur Toto lance le programme tata,
normalement (si le SETUID de tata vaut 0) I'UID du process créé pour exécuter tata est celui de Toto.
Si SETUID vaut 1, I'UID du processus tata devient celui du propriétaire du fichier tata. Cela permet de
donner a Toto les droits d"un autre utilisateur (souvent le superutilisateur, root), de maniere temporaire
et dans un contexte réduit a un seul programme.
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Annexe D

Systemes de fichiers

Un fichier est une abstraction persistante et nommée des données.
— Persistante : le fichier survit a la mort du processus qui 1’a créé.
— Nommée : le fichier est accédé par son nom.

D.1 L’abstraction du fichier

Vue conceptuelle d'un fichier :

— Aux temps héroiques des cartes perforées, les fichiers étaient des séquences d’enregistrements de
80 caracteres. Un enregistrement correspondait a une carte.

— Dans le monde Unix, développé aux temps héroiques des bandes magnétiques, un fichier est une
séquence d’octets. Pour 1’accéder, on passe par un file descriptor qui pointe quelque part dans le
fichier. Le fd est typiquemet initialisé au début du fichier et se déplace ensuite typiquement en
avancant dans le fichier. Autrement dit, la lecture (getc () ) ne prend pas une adresse.

— Dans le systeme de fichier des Macs avant qu’ils sombrent dans 1'Unix, un fichier était composé de
deux flux d’octets appelés data fork et resource fork, le second contenant les attributs du fichier (nom,
permissions, mais aussi position dans le bureau, vignette a afficher, et tout ce qu'une application
peut avoir envie d’associer avec un type de fichier particulier — pensez a toutes les infos que votre
appareil photo numérique stocke avec chaque photo).

— NTFS généralise : un fichier est un ensemble d’attributs, chaque attribut étant un flux d’octets.
Les données sont considérées comme 1'un des attributs. C’est vrai ¢a, la frontiére entre donnée et
métadonnée étant tout ce qu’il y a de floue, autant tout mettre au méme plan.

— Dans un SGBD (systeme de gestion de base de données) relationnel, un fichier est une base de
donnée, composée de tableaux a deux dimensions. Les colonnes sont nommées, et chaque ligne
correspond & une donnée. Les données sont accédées dans un tableau par une clé (Ia donnée d"une
valeur d’une colonne).

Ceci montre que, comme tout le reste, la notion de fichier, au départ trés proche du matériel, a évolué
vers de plus en plus d’abstraction. La tendance est d’abstraire désormais méme la localisation d"un fichier
dans la hiérarchie des répertoires, au profit d"un acces par le contenu, a la Google.

Cela dit il faut bien distinguer la vue conceptuelle d'un fichier de la maniére dont il est implémenté :

— le fichier Unix est implémenté quasi tel quel sur une bande magnétique.

— Stocké sur le disque, il est découpé en secteurs qui sont placés sur des pistes, et l'acces reste
séquentiel, mais par bloc. On peut organiser les différents secteurs d'un gros fichier comme une
liste chainée, mais on peut aussi imaginer des mécanismes d’acces plus rapides (on va voir).

— On peut méme programmer un RAMDisk, un disque virtuel stocké dans la mémoire vive. L’abs-
traction du fichier Unix ne profite alors pas de I'accés aléatoire de la mémoire.

— Il y a des bouquins entiers sur la maniére de stocker une grosse base de donnée sur un disque. La
meilleure maniére dépend completement du type d’acces que 1'on veut privilégier.

— Si un tableau est accédé essentiellement par une colonne donnée, on a intérét a le trier selon
cette colonne pour permettre une recherche dichotomique.

— S’il est accédé souvent par deux colonnes, on ne peut trier que selon une des deux. On peut
mettre en place un index (ensemble de couples (clé de la seconde colonne, pointeur vers ligne)
trié selon la seconde colonne. Inconvénients : cela consomme de la place, et il faut maintenir
I'index a jour.

— Cela c’était en lecture. Si on doit souvent insérer des lignes, il faut mettre en place une structure
de donnée du genre B-tree.
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On commence a voir la notion de donnée et de metadonnée (donnée sur les données). Exemples de
métadonnées (tous les systemes de fichiers ne les offrent pas tous) :

— le nom du fichier

— sa taille

— l'identité du propriétaire du fichier

— les dates de création, de modification, etc

— le type du fichier (répertoire, programme exécutable ou fichier de donnée, fichier spécial — voir

ci-dessous)

— le type du fichier (une image, du texte, un pdf, un fichier Word)

— eventuellement une vignette a afficher dans les navigateurs (qui écrase la vignette par défaut

déduite du type de fichier)

— et des choses moins visibles pour l'utilisateur : le type d’organisation interne du fichier, un pointeur

vers la fin si on pense qu’on voudra I’étendre, etc.

Types de fichiers : au moins le fichier standard et le répertoire. Sous Unix, on a en plus les fichiers
spéciaux (character special files and block special files) utilisés respectivement comme interfaces vers des
écrans/imprimantes et des disques physiques. Je les glisse sous le tapis.

La notion de type est importante. Le systéme doit savoir si un fichier est un programme exécutable
par exemple. Il peut consacrer un bit spécial a cela. Il peut aussi examiner I'extension du fichier, ou les
premiers caracteres. Unix mélange un peu tout. C’est le résultat d'un équilibre entre le typage fort, qui
protege les andouilles mais embéte les gourous, et un typage faible, qui rend la vie plus simple mais plus
dangereuse.

D.2 Implémentation d’un systeme de fichiers

Commengons par les systemes de fichier pour disque dur. L'unité d’allocation est appelée le bloc, ty-
piquement 1Ko. C’est une abstraction du secteur physique. Les blocs sont attrapés par deux coordonnées,
la piste et le secteur. Il y a un ordre séquentiel (une spirale) selon lequel I’acces est rapide.

Vous trouverez dans le Tanenbaum l'organisation de base d’un disque (au boot, le PC lit un bloc
particulier, le MBR, et exécute le code qu’il y a dessus. Le MBR se termine par une table des partitions. Le
premier bloc de chaque partition contient du code qui sert a lancer le systeme qui est sur cette partition.
Etc. I n’y a rien la dedans que vous n’eussiez inventé.)

Un répertoire est un fichier comme les autres, qui contient une liste de pointeurs (sur le disque) vers
les différents fichiers. Les noms des fichiers sont plutot stockés dans la structure de donnée du fichier
lui-méme que dans le répertoire.

Voyons a présent 1’organisation des blocs des différents fichiers, du plus simple au plus compliqué.

D.2.1 Allocation contigue

Bé voila, on met les fichiers a la suite les uns des autres sur le disque, sur la spirale. On consacre
quelques blocs au début a contenir des pointeurs vers les débuts et longueur de chaque fichier. La lecture
d’un fichier est aussi rapide que possible. L'acces aléatoire au milieu d'un gros fichier qui couvre plusieurs
pistes est possible. Tout baigne.

Enfin, tout baigne au début. On remplit le disque petit a petit, en bourrant les fichiers a la fin. Quand
on efface un fichier, il laisse un trou. Pour boucher un trou de maniere optimale il faudrait connaitre a
l'avance la taille de chaque fichier au moment du fopen (), ce qui est rarement le cas. Donc on préfere
remplir par la fin. Et quand le disque est plein, tout a coup le systeme doit tasser tous les fichiers au début
en supprimant les trous, ce qui peut prendre plusieurs minutes. En général, cela arrive juste au moment
ot vous deviez rendre votre DM.

Donc au début on faisait comme cela, et puis on a fait mieux, (voir ci-dessous). Puis on a inventé le
CDROMV, et tout-a-coup l’allocation contigue redevient intelligente pour ces nouvelles technos : quand
on grave un CD, on connait la taille de tous les fichiers.

Papy Tanenbaum en tire la morale qu’il faut toujours s’intéresser aux méthodes du passé, car les
nouvelles technos peuvent les remettre au gotit du jour. Je suis assez d’accord, en tout cas c’est super vrai
en arithmétique des ordinateurs.

D.2.2 Organisation en FAT

FAT c’est File Allocation Table. Voici I'idée. Pour gérer les trous qui apparaissent, il est naturel de penser
un fichier comme une liste chainée de blocs de taille fixe (I'optimal est typiquement 1 ou 2 Ko, mais
cela dépend du contexte bien sfir. cf ci-dessous). Chaque bloc commence par un pointeur vers le bloc
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suivant sur le disque, suivi par les données. Un petit fichier n"utilise qu"un bloc, un gros en utilisera
plusieurs, mais ils n’ont pas besoin d’étre consécutifs (on essaiera tout de méme qu'’ils le soient pour
accélérer 'acces séquentiel, bien sfir).

Du coup on peut remplir les trous précédents avec des blocs de nouveaux fichiers, quelle que soit leur
taille. Mais le probleme des listes chainées, c’est le temps qu’il faut pour faire un acces aléatoire : il faut
suivre la chaine, ce qui représente autant d’acces disques.

L’idée de la FAT est de mettre tous les pointeurs dans un gros tableau qui pourra tenir en mémoire.
On numérote les blocs de 1 a n, et la FAT est un tableau a n entrées, autant que le disque a de blocs. Un
pointeur vers le premier bloc d"un fichier est traduit en un index dans la FAT. Si le fichier consomme plus
d’un bloc, 'entrée de la FAT correspondante contient I'index du bloc suivant. Etc.

Avec une FAT il faut toujours suivre la chaine pour faire un acces au milieu d"un fichier, mais c’est a
présent en mémoire que cela se passe, et c’est 1000 fois plus rapide.

Naturellement, la FAT est aussi présente sur le disque lui-méme.

C’était une bonne idée quand les disques étaient petits, mais un systéme de fichier a base de FAT
consomme une taille mémoire proportionnelle au nombre de blocs. Pour un disque de 4Go avec des blocs
de 1Ko, on a 4Mblocs, chaque entrée de la FAT doit faire 4 octetsﬂ cela coute 16Mo. Pour un disque de
512 Go, on arrive a 2Go de RAM consacrées a la FAT. C’est pas terrible.

Bien sur, on peut laisser la FAT sur le disque et 1’accéder plus lentement si on est ric rac en mémoire.
Et cela peut se faire dans votre dos par un systeme de mémoire virtuelle.

D.2.3 I-nodes

La derniere technique, développée dans le monde Unix, est le index-node ou i-node. Un i-node est une
structure de données qui contient les différents attributs du fichier (nom, protection, etc) et un tableau
de pointeurs vers des blocs. Ici aussi, cette structure de donnée est présente sur le disque, et recopiée en
mémoire si nécessaire.

Le tableau est de taille fixe (on va faire en sorte qu'un i-node consomme un bloc par exemple), et si le
fichier occupe plus de blocs que le tableau ne peut contenir, les trois derniéres entrées sont des pointeurs
vers un tableau d’indirection simple, un tableau d’indirection double, et un tableau d’indirection triple.

Pour les tout petits fichiers (moins d’un bloc), les inodes consomment plus de place sur le disque
qu’une FAT : deux blocs par fichier. Par contre, ils ont deux avantages. Le premier est qu’on ne doit
conserver en mémoire qu’autant d’inode qu’on a de fichiers ouverts : la consommation mémoire est
indépendante de la taille du disque. Le second est que 'acces aléatoire est plus rapide, puisqu’on peut
sauter directement au milieu du tableau.

Un avantage des i-nodes est de permettre facilement d’avoir des hard links : on peut avoir plusieurs
répertoires pointant vers le méme i-node. En fait, chaque i-node a un compteur de références, et il est
détruit quand ce compteur atteint zéro — dans Unix, rm est en fait identique a unlink.

11 existe aussi des soft links, qui sont juste de trés petits fichiers contenant un chemin (textuel) dans
I'arborescence du disque. Contrairement aux hard links, ils peuvent pointer vers un fichier qui est sur un
autre disque,

D.2.4 Taille des blocs

Le choix de la taille optimale des blocs est un compromis entre deux questions : la place disque
gaspillée par les petits fichiers qui ne rentrent pas dans un bloc (plus le bloc est petit mieux c’est) et la
vitesse a laquelle on arrivera a lire un gros fichier (plus il est fragmenté en petits morceaux plus c’est
mauvais).

Il'y a aussi des contraintes liées a la mécanique : c’est mieux de faire tenir un nombre entier de blocs
dans un cylindre, etc.

Bien stir cela dépend du contexte, et en particulier de la taille médiane des fichiers sur le systeme,
éventuellement pondérée par la fréquence de leur acces. Il vaut mieux considérer la médiane que la
moyenne, qui peut étre trés perturbée par quelques tres gros fichiers. Le Tannenbaum mentionne plusieurs
mesures sur des vrais serveurs (académiques) ont donné des médianes similaires, a environ 1Ko en
1984 et 2Ko en 2005. Remarque personnelle : 4 mon avis sur votre PC a la maison, il y a plus de mp3
et de avi que de petits fichiers textes de 2Ko. Et plus sérieusement, méme sur mon PC du boulot, j’ai
essentiellement des PDF d’articles pas de moi, des sources latex de mes articles, slides et autres polys
avec figures et cie, les sources de mes programmes, et la médiane est plus dans les 50Ko. Il faut vivre
avec son temps.

1. Devinette : quelle est la différence entre FAT16 et FAT32?
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D.2.5 Gestion des blocs libres

Classiquement, soit par une liste chainée, soit par un bitmap. La liste prend plus de place disque
quand le disque est presque vide, mais on s’en fout puisque le disque est presque vide.

D.3 Cohérence et fiabilité

Un systeme de fichier est un objet fragile. L'OS a souvent a lire un bloc, le modifier et le réécrire sur le
disque. Si le courant est coupé au mauvais moment, au milieu d’une écriture, le disque peut rester dans
un état incohérent, par exemple on a déja écrit des données dans un bloc, qu’on a déja enlevé de la liste
des blocs libres, mais on n’a pas eu le temps de faire pointer aucun inode dessus. Ou le contraire, on a fait
pointer un inode vers un bloc qui est encore dans la liste des blocs libres.

Pour éviter cela on a deux techniques. D’abord on a £sck, qui construit une liste des blocs occupés,
une liste des blocs libres, et vérifie qu'un bloc n’est pas dans les deux listes a la fois, ou deux fois dans la
méme liste, etc.

Ensuite on a inventé les systémes journalisés (c’est un australicisme). Le journal est a comprendre
comme journal de bord, pas comme le Figaro. C’est juste un fichier spécial.

Avant de réaliser une opération potentiellement dangereuse, on écrit dans le journal qu’on va la faire.
Puis on copie dans le journal I'état précédent du systeme de fichier. Puis on ferme le journal. Puis on fait
I'opération dangereuse. Puis on rouvre le journal et on marque la modification comme terminée (commit).
Ainsi,

— Si le courant est coupé alors qu’on était en train d’écrire 1'intention dans le journal, on n’a pas
touché au systéme de fichier. Au redémarrage, on voit un journal pas refermé, on 'efface et tout
baigne.

— Si le courant est coupé alors qu’on est en train de faire la modification dangereuse du systéme de
fichier, on a au redémarrage dans le journal tout ce qu'il faut pour restaurer le systeme de fichier
dans son état précédent.

Une coupure de courant aura foutu le bordel, on aura perdu les données sur lesquelles on travaillait,
qu’on était en train d’écrire, il n'y a rien a faire. Mais casser le systeme de fichier, donc méme des données
sur lesquelles on n’était pas en train de travailler, ce serait beaucoup plus grave.

Dans les détails, naturellement, c’est plus compliqué.

Parenthese :

Cette idée est héritée du monde des bases de données, dans lesquelles la cohérence est capitale :
quand on fait un virement d"une banque a I’autre, un plantage peut faire échouer le virement, ce n’est
pas trés grave (quelqu’un ralera!). Ce qui serait grave, c’est qu'un plantage laisse les bases de données
dans un état incohérent : de 'argent viré d’un coté mais pas débité de 1’autre c6té, ou le contraire.

L'unité de modification d’une base de donnée est la transaction, qui est définie par les propriétés
ACID:

— A - Atomicité : une transaction s’effectue completement, ou pas du tout.

— C - Cohérence : une transaction prend une base de données dans un état cohérent, et la rend dans

un état cohérent.

— I-Isolation : des transactions effectuées en parallele ne s’influencent pas. Une transaction peut au
plus en retarder une autre, car on ne peut accéder en écriture a une méme information.

— D - Durabilité : une fois validée, une transaction survivra a toute défaillance dans le systeme.

D.4 Performance

Cache disque, prefetch (on dit read ahead), on a déja tout vu quand on faisait les hiérarchies mémoires.

11 s’y ajoute le besoin de minimiser les déplacements du bras du disque. Cela passe par

— une allocation des blocs d’un fichier sur des cylindres aussi proches que possibles,

— un ordonnancement des acces, quand il y en a beaucoup a traiter en attente, par cylindres voisins,

— un éparpillement des i-nodes sur tout le disque, au lieu de les mettre tous au début du disque
(approche naive).

D.5 Ce que je zappe

C’est tout ce qui a trait a la sécurité, la confidentialité, etc.



Annexe E

Le réseau

E.1 Introduction

E.1.1 Besoins

Différents modes d’échange d’information :

— communication point a point orientée message

— communication point & point orientée flux (stream)

— diffusion

— réduction

— multidiffusion

Services annexes :

— adressage : adresse MAC, adresse IP, adresse en texte. Traduction de l'une en 'autre.
— encryption, authentification, sécurité

— localisation (réseaux mobiles wifi et téléphone)

Partage des ressources physiques entre plusieurs processus/utilisateurs/ordinateurs
— multiplexage temporel (partage du temps, comme les processus se partagent le temps de calcul)
— abstraction possible : canaux logiques, ports

— notion de paquet encapsulant des données

— encapsulation multi-niveaux

Qualité :

— intégrité (pas toujours nécessaire, ex. TV sur friboxe)

— garanties temporelles (pas toujours nécessaires, ex. courriel)

— performance : débit, latence (performance du médium : “bande passante”)

E.1.2 Architecture globale

C’est une architecture mélant matériel et logiciel.
De haut en bas :
— Pour l'application : appels systemes par exemple pour
— demander l’adresse physique de la machine nommée www.playboy.com
— envoyer un mail a Florent .de-Dinechin@insa-lugdu. fr (opération de haut niveau)
— envoyer un paquet sur le port 35 de la machine 11.22.33.44 (opération de bas niveau)
— attendre un paquet
— ouvrir un canal temps-réel crypté pour recevoir un flux de données de www.playboy.com
— Pour le systeme d’exploitation :
— ouvrir/fermer des ports ou des canaux
— mettre en ceuvre les protocoles comme la traduction d’adresse
— découper/encapsuler les données dans des paquets si nécessaire
— recopier des tampons, éventuellement sous contrainte de temps réelﬂ jusqu’a avoir rempli le
tampon de la carte réseau avec les informations qu’il lui faut

1. Ici “temps réel” signifie “en assurant un temps de transmission total inférieur & un maximum préalablement spécifié par le
protocole, au vu de la lenteur ridicule des canaux d’entrée/sortie de 'utilisateur humain”. Par exemple, moins d’un 25éme de
seconde pour recevoir puis décrypter puis décompresser I'image suivante d’un film. Pour transmettre une information en vrai
temps réel il faudrait déja savoir la transmettre plus vite que la lumiére. Heureusement, il y a de la marge entre la durée qu’il faut a
la lumiére pour faire le tour du monde et 1/25éme de seconde. Oui, je sais, la lumiére va droit, elle ne fait pas le tour du monde.
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— éventuellement, pour un nceud non terminal du réseau, propager les paquets des autres.
— Pour la carte réseau
— envoyer et recevoir des paquets sur le réseau.
— pour cela, implémenter un protocole de communication qui dépend de la techno qu’elle a
derriere. Exemples : ethernet, token-ring, ADSL, ATM
— certains de ces protocoles (ATM) sont eux-mémes a base de paquets plus petits.

Certains des services de 1'Internet demandent une administration centralisée (annuaire des noms de
domaine). Toutefois le gros du travail est décentralisé : I'approche décentralisée est plus robuste en cas
de panne, supporte mieux la charge 1a ot1 elle est, et passe mieux a I’échelle. Le routage des paquets est
également totalement décentralisé.

E.1.3 En résumé : les défuntes couches OSI

Communications physiques dépendant de la technologie, de si on communique avec son voisin de
bureau ou avec Hong Kong.

Mais vue applicative unique : clients, serveurs et services.

Abstraction derrere des notions d’adresse, de canal, de port, de paquet, qui se traduit par des couches
logicielles et matérielles. Pour vos données, cela se traduit par des couches d’emballage (encapsulation),
qui au passage consomment de la bande passante.

Effort de normalisation par 'ISO (international standard organisation) : les couches OSI (open system
infrastructure). Jamais vraiment pris racine, parce que pendant les négociations on continuait de construire
un internet qui marchait fort bien — entre autre parce qu’il reprenait des bonnes idées de 1'OSL. Méme le
fait que l'état américain rende obligatoire la compatibilité OSI n’a pas réussi a I'imposer.

Bref, les voila :

1. couche physique (envoie des bits de point a point)

2. couche lien de donnée (gere I'emballage et le déballage des bits dans des paquets appelés alors
frame)

3. couche réseau (gere le routage des paquets)
4. couche transport (gére les communications processus a processus)

5. couche session (gere les différents flux associés a une méme application, par exemple synchronise
les paquets audio et video d’un film)

6. couche présentation (définit la taille en bits d’un entier, le format d’un flux video, ce genre de
choses)

7. couche application

Un neeud qui relaye juste un message qui ne lui est pas destiné n’a besoin pour cela que des trois
premieres couches. La définition des trois couches supérieures est un peu vague, les frontieres sont soit
mal définies, soit trop bien définies ce qui interdit certaines optimisations.

On va voir que l'internet, lui aussi organisé en couches, est plus flexible.

E.2 Les couches de I'internet

On n’a que 4 couches :

1. la couche “carte réseau” : elle dépend completement de la techno qui est derrieére, et les couches
supérieures ne veulent pas en entendre parler. Une carte réseau va faire intervenir du logiciel et
du matériel, et peut éventuellement travailler sur des paquets, etc.

2. la couche IP (internet protocol) : elle définit 1’abstraction du réseau logique, qui va permettre a plein
de technologies différentes de coopérer dans un seul réseau Internet avec un grand I. Pour cela,
cette couche définit la notion d’adresses IP, de paquet IP avec son format incluant ’adresse IP du
destinataire, etc (voir ci-dessous).

3. Une couche pour TCP, UDP et quelques autres (en gros la couche transport)
4. La couche application

Ces couches sont organisée de maniere plus flexible que chez OSI : il est courant que la couche
application parle directement a IP, voire a la carte réseau, sans passer par une couche transport.
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E21 IP

IP internet protocolE] définit :

— un espace d’adressage

— un service de transmission de paquets sans aucune garantie :

— un paquet peut se perdre
— un paquet peut arriver deux fois
— les paquets peuvent arriver dans le désordre.

C’est une philosophie “best effort” : on fait ce qu’on peut. En terme d’implémentation, la traduction
est un protocole assez léger qui par conséquent “run over anything”. Anything veut dire, un réseau fiable
ou bien un réseau que quand on envoie des données dessus on n’est jamais sur qu’elles arrivent, et dans
quel état. C’est en fait le bon choix, parce qu’il est facile d’implémenter une couche IP au dessus d’"une
technologie réseau fiable, alors que le contraire serait difficile.

Si vous voulez une garantie de service, ce sera de la responsabilité des couches supérieures (on va
voir TCP et UDP ci-dessous).

Un paquet IP est composé d'un en-téte (header en impérialiste) qui fait typiquement 20 octets mais
peut faire plus si nécessaire. Dans cet en-téte, a des emplacements fixés par la norme IP, on trouve

1. la taille totale du paquet, la taille de I'en-téte

2. I'adresse de destination, I’adresse de départ

3. un checksum de 16 bits qui permet de vérifier I'intégrité du paquet
4

. des informations indiquant si ce paquet est un morceau d’un paquet plus gros, et si oui quelle
est sa place dans ce paquet plus gros (au cours de la transmission d’un paquet IP, il pourra étre
fragmenté).

5. un champ “TTL” pour time to live : il est initialisé a 64 typiquement, et décrémenté a chaque
passage par un nceud de routage. Arrivé a zéro, le paquet est jeté sans autre forme de proces. Ainsi,
en cas de boucle dans le graphe de routage, les paquets ne s’accumulent pas.

6. un champ donnant la version du protocole IP utilisée (de nos jours IPv4 ou IPv6)
7. un champ “protocol” qui décrit le protocole de la couche supérieure qui a envoyé ce paquet
8. des champs optionnels pour mettre d’autres informations sur le paquet

Un gros paquet est fragmenté en paquets plus petits au départ, mais pourra étre fragmenté en paquets
encore plus petits durant le transport, selon les caprices des nceuds a travers lesquels il passe. Par contre
il ne sera réassemblé qu’a destination.

Lorsqu’on doit fragmenter un gros message en plusieurs paquets plus petits, quelle doit étre la
taille de ces petits paquets IP? Eh bien la couche IP n’impose rien, c’est la couche supérieure qui choisit.
Typiquement, cette derniére peut interroger au préalable la couche “carte réseau”, qui pourra lui répondre
que ses paquets a lui ne doivent pas dépasser 1500 octets (ethernet) ou 4500 octets (FDDI). La couche
supérieure fragmentera alors ses gros paquets en fonction de cela : a tout prendre, c’est le bon choix pour
causer avec les voisins. Cela dit, si la couche IP passe des paquets trop gros pour la couche carte réseau,
cette derniere les fragmentera et les réassemblera. On y perdra juste un peu en performance.

E.2.2 Routage (commutation de paquets)

IP définit des adresses hiérarchiquement : il y a une part qui identifie un réseau, et une part qui
identifie un nceud dans le sous-réseau. Certains nceuds (appelés routeurs) connectent plusieurs réseaux :
ils ont alors plusieurs adresses IP, une dans chaque sous-réseau. Un pied dans chaque réseau, quoi. De
plus, les routeurs ont une table qui liste, pour tous les sous-réseaux connus, sur quelle interface ils doivent
transmettre un paquet.

Il 'y a un protocole, DHCP (dynamic host configuration protocol) qui définit la maniere dont un
ordinateur nouvellement arrivé sur le réseau va recevoir une adresse IP.

Il y a aussi un protocole ami de IP, ICMP (control message) qui en cas d’échec a livrer le message (les
raisons ne manquent pas), envoie un message a ’expéditeur, sans garantie qu’il arrive bien stir. ICMP
définit aussi des messages plus positifs, comme “Il existe un chemin plus court de tel réseau a tel réseau”
qui permet de mettre a jour les tables de routage.

En fait, la construction de ces tables de routage mérite tout un chapitre a elle seul. Il faut aussi éviter
les embouteillages, minimiser la latence, etc.

2. On peut utiliser le mot “internet” pour ‘internetwork, réseau inter-réseau. Il ne prend alors pas de majuscule. Avec une
majuscule, il s’agit de I'Internet omniscient que vous connaissez. Certains ne lui mettent alors plus d’article. Et le vouvoiement
s'impose quand on s’adresse a Lui.
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E.2.3 UDP

User Datagram Protocol. Sans garantie non plus, mais il vérifie des checksums. Couche qui assure la
communication de processus a processus. Se contente de démonter et réassembler des paquets pour les
passer par IP.

Comment identifier un processus? Le PID peut varier d'une session a ’autre. On I’abstrait donc par
la notion de port. La couche UDP distribue les paquets selon des ports, et chaque processus surveille un
port donné.

E24 TCP

Transmission Control Protocol.

Tout comme UDP, mais lui assure des garanties.

Du point de vue applicatif, flux d’octets envoyés et recus dans I'ordre.
Derriére, systeme de requéte/acquittement + fenétre glissante.



	Introduction
	Des livres sérieux, parce que ce poly, bon.
	Historique du calcul mécanique
	Objectifs du cours
	La conception d'ASR est hiérarchique
	Quelques ordres de grandeur
	L'univers est notre terrain de jeu
	La technologie en 2018
	Calcul contre stockage et déplacement de données
	Ya pas que les PC dans la vie


	I L'information et comment on la traite
	Coder l'information
	Généralités
	Information et medium
	Information analogique
	Information numérique
	Coder le temps

	Coder des nombres entiers
	Numération de position pour les entiers naturels
	Ordres de grandeurs en puissances de 2
	Parenthèse pratique: superposition des codages
	Codage des entiers relatifs
	Et pour aller plus loin

	Coder du texte
	Coder les images et les sons
	Codes détecteurs d'erreur
	Codes correcteurs d'erreur
	Compression d'information
	Les QR-codes

	Transformer l'information: circuits combinatoires
	Algèbre booléenne
	Définitions et notations
	Expression booléenne
	Dualité
	Quelques propriétés
	Universalité 
	Fonctions booléennes

	Circuits logiques et circuits combinatoires 
	Signaux logique
	Circuits logiques
	Portes de base
	Circuits combinatoires
	Construction bottom-up de circuits combinatoires
	Construction top-down de circuits combinatoires
	Métriques d'un circuit combinatoire

	Quelques constructions algorithmiques de circuits combinatoires
	Les portes de base à deux entrées
	Le multiplexeur, abstraction du si-alors-sinon
	Le multiplexeur d'ordre k
	Pour le calcul sur les entiers
	Conclusion

	D'une fonction booléenne à un circuit combinatoire 
	Par les formes canoniques
	Par les arbres de décision binaire

	Application: construction des circuits arithmétiques de base
	Addition/soustraction binaire
	Multiplication binaire
	Division binaire

	Conclusion
	Annexe technologique contingente: les circuits CMOS
	Transistors et processus de fabrication
	Portes de base
	Vitesse, surface et consommation


	Memoriser l'information
	Mémoriser un bit 
	Le registre 1-bit, ou flip-flop
	Construction: du verrou (latch) au registre (Flip-Flop)
	Variantes: registre avec reset et / ou write enable
	Le registre n-bit

	Mémoire adressable
	Construction d'une mémoire adressable
	Construction des mémoires utilisant des porte de transmission 
	Et pour des puces plus carrées 
	Mémoire dynamique 
	Mémoire volatile ou non volatile

	Mémoires à accès séquentiel: piles et files
	File ou FIFO (first in, first out)
	Pile ou LIFO (last in, first out)
	Construction de piles et files

	Mémoires adressables par le contenu
	Disques (*)
	Une loi fondamentale de conservation des emmerdements

	Circuits séquentiels synchrones
	Quelques exemples de circuits séquentiels
	Restriction aux circuits séquentiels synchrones
	Correction et performance

	Automates
	Un exemple
	Définition formelle d'un système de transitions
	États, transitions
	Définition en extension des fonctions de transition et de sortie
	Correction et complétude d'un système de transitions

	Synthèse d'un automate synchrone
	L'approximation temporelle réalisée par l'automate synchrone
	Optimisation d'un automate synchrone

	Comprendre les circuits séquentiels comme des automates
	La norme JTAG
	Equivalence de circuits

	Conclusion: l'ingéniérie des automates

	Transmettre
	Medium
	Liaison point a point
	Série ou parallèle
	Protocoles

	Bus trois états 
	Réseaux en graphes (*)
	Les topologies et leurs métriques
	Routage
	Types de communication: point à point, diffusion, multicast

	Exemples de topologies de réseau (*)
	Le téléphone à Papa
	L'internet
	 FPGAs
	Le bus hypertransport
	Machines parallèles



	II Machines universelles
	Jeux d'instruction
	Rappels
	Vocabulaire
	Travaux pratiques
	Le jeu d'instruction de votre PC
	Le jeu d'instruction de votre téléphone portable

	Instruction set architecture 
	Que définit l'ISA
	Types de données natifs
	Instructions de calcul
	Instructions d'accès mémoire
	Instructions de contrôle de flot
	Les appels système, les interruptions, et l'atomicité
	Quelques ISA

	Codage des instructions
	Adéquation ISA-architecture physique
	Un peu de poésie pour finir

	Construction d'un processeur RISC
	Un jeu d'instruction RISC pas terrible mais à la mode
	Plan de masse
	Construction de l'automate de commande

	Entrées/sorties, interruptions, exceptions, et appels systèmes 
	Interfaces d'entrée/sorties
	Interruptions
	Instructions atomiques
	Modes d'exécution
	Exceptions
	Appel système
	Instructions de synchronisation

	Exécution parallèle
	Pipeline d'exécution
	Exploitation du parallélisme d'instruction: exécution superscalaire
	Architecture superscalaire  (*)
	VLIW ou superscalaire (*)

	Deux jeux d'instructions VLIW récents 
	IA64
	Kalray K1

	Exploitation du parallélisme de processus
	Échange de messages versus partage de mémoire
	Modèle de programmation: thread versus process
	Grandeur et misère de la mémoire partagée
	Architecture: Multifilature (multithreading)
	Architecture: processeurs multicoeurs

	Mécanismes architecturaux pour l'exclusion mutuelle
	Conclusion: parallélisme partout
	Taxonomie 1: la classification de Flynn
	Taxonomie 2: la classification de Raina


	Du langage au processeur (*)
	Introduction: langages interprétés, langages compilés, processeurs virtuels
	L'arrière-cuisine du compilateur
	Variables et expressions
	Désucrage des opérations de contrôle de flot
	Tableaux
	Chaînes de caractères
	Structures

	Application binary interface
	Procédures et compilation séparée
	Récursivité et pile
	Variables locales et passage de valeurs sur la pile
	Vision globale de la mémoire
	Sauvegarde des registres
	En résumé: l'enregistrement d'activation
	En résumé: code à générer par le compilateur

	Compilation des langages objets

	Hiérarchie mémoire 
	Mémoire cache
	Principes de localité
	Scratchpad versus cache
	Cache hit et cache miss
	Hiérarchie mémoire
	Construction d'un cache
	Statistiques et optimisation des caches (*)
	Entre le cache et la mémoire physique (*)
	Les caches dans un multicœur à mémoire partagée  (*)

	Mémoire virtuelle
	Vue générale
	Avantages de la mémoire virtuelle
	Aspects architecturaux
	Dans le détail: table des pages (*)
	Cache d'adresses virtuelles ou cache d'adresses physiques? (*)

	Une mémoire virtuelle + cache minimale
	Instructions spécifiques à la gestion mémoire


	Conclusion: vers le système d'exploitation (*)
	Le rôle de l'OS (du point de vue d'un prof d'archi)
	Multiutilisateur ou multitâche, en tout cas multiprocessus
	Partage du temps
	Partage des entrées/sorties
	Partage des ressources d'exécution



	III Annexes 
	Rudiments de complexité
	Les fonctions 2n et 2 n
	Raisonner à la louche

	VHDL, un langage pour la synthèse de circuits
	Flot de synthèse
	Décrire un circuit par un langage
	Description de circuit = programmation
	Mais au fait, quelle est la sémantique d'un circuit numérique?
	Description comportementale ou description structurelle
	VHDL synthéthisable

	Le langage VHDL par l'exemple
	Entités, architectures et composants
	Variables, paramètres, signaux et ports
	Instances
	Types de base
	Concurrent statement
	Processes
	Génération de circuit


	Anatomie d'un Unix
	Appels systèmes
	Processus
	Signaux
	Fichiers
	Protection

	Systèmes de fichiers
	L'abstraction du fichier
	Implémentation d'un système de fichiers
	Allocation contigue
	Organisation en FAT
	I-nodes
	Taille des blocs
	Gestion des blocs libres

	Cohérence et fiabilité
	Performance
	Ce que je zappe

	Le réseau
	Introduction
	Besoins
	Architecture globale
	En résumé: les défuntes couches OSI

	Les couches de l'internet
	IP
	Routage (commutation de paquets)
	UDP
	TCP




