

NOM, Prénom:

DS Architecture des Circuits

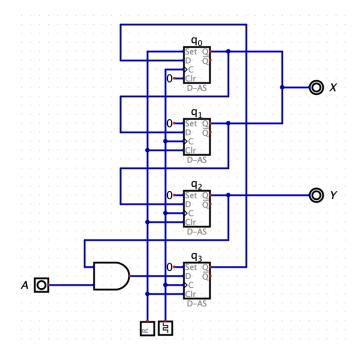
19 décembre 2024

Durée 1h30. Répondez sur le sujet. REMPLISSEZ VOTRE NOM TOUT DE SUITE

Vingt questions, un point par question quelle qu'en soit la difficulté; pas de points négatifs.

Tout dispositif électronique interdit (calculatrice, tablette, ordinateur, montre connectée, écouteurs...)

Un seul document autorisé: une feuille A4 recto-verso de notes personnelles.

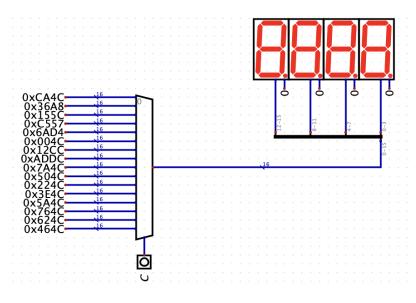

Crayon à papier accepté, de préférence aux ratures et surcharges. Pour les schémas l'utilisation d'une règle n'est pas indispensable mais elle est tout de même recommandée!

Crayon à papier accepté, de préférence aux ratures et surcharges. Pour les schémas l'utilisation d'une règle n'est pas indispensable mais elle est tout de même recommandée!								
Q1. Dessinez ici le schéma général d'une machine de von Neumann (vous veillerez à bien faire figurer tous les signaux et à nommer tous les éléments; il n'est pas demandé de détailler l'intérieur des éléments).								
Q2. Dessinez ici le schéma général d'implémentation d'une FSM (vous veillerez à bien faire figurer tous les signaux et à nommer tous les éléments; il n'est pas demandé de détailler l'intérieur des éléments).								

Q3. Dessinez ici le schéma général d'une ASM (vous veillerez à bien faire figurer tous les signaux et à nommer tous les éléments; il n'est pas demandé de détailler l'intérieur des éléments).
Q4. Combien de bits sont nécessaires pour coder l'entier naturel décimal $X = 896698677589$? (Huit cent quatre-vingt-seize milliards six cent quatre-vingt-dix-huit millions six cent soixante-dix-sept mille cinq cent quatre-vingt-neuf).
Réponse :
Q5. Combien de bits sont nécessaires pour coder l'entier naturel hexadécimal $Y = 0.896698677589$?
Réponse :
Q6. Soit deux nombres A et B codés en complément à deux sur 64 bits . On exprime ces deux nombres en hexadécimal :
A = 0xF0.85.2D.55.12.00.23.0F B = 0x1E.99.B2.33.12.00.23.02
On calcule $X = A + B$ au moyen d'une ALU 64 bits. En sortie de l'ALU que vaut X ? Que valent les quatre "flags" Z, N, C et V?
Réponses :
X =
Z =
N =
C =
V =
Justifier rapidement la valeur des quatre flags :
, , , , , , , , , , , , , , , , , , ,

Q7. Le circuit ci-dessous implémente un automate simple avec un encodage "one-hot coding". Cet automate est supposé avoir quatre états (son état initial étant q_0), son alphabet d'entrée comporte un seul bit A et son alphabet de sortie comporte deux bits X et Y.

Le circuit comporte malheureusement deux erreurs, l'une d'entre elles est flagrante, l'autre est un peu plus subtile. Indiquer les deux erreurs sur le schéma et donner une explication rapide.

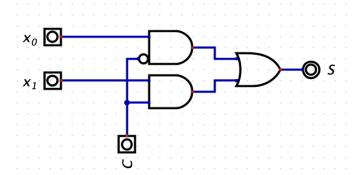


Réponses:

Explication de la première erreur :

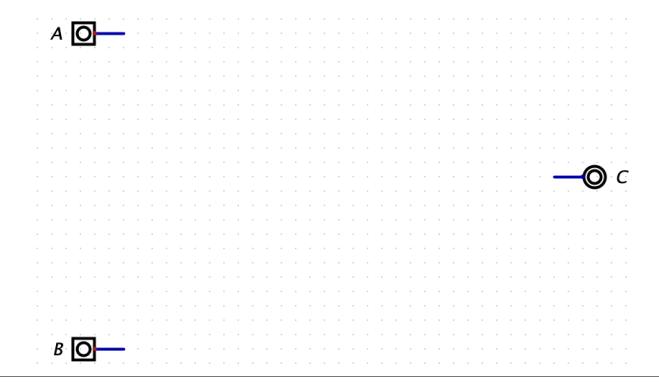
Explication de la deuxième erreur :

Q8. Dans le circuit ci-dessous, l'entrée C est une entrée de 4 bits. Qu'est-ce que le circuit va afficher si l'entrée C est égale à 0xC?



Réponse :

Q9. Donnez, sans la simplifier, une équation logique sous forme normale correspondant à la table de vérité ci-dessous. Simplifiez ensuite votre équation de façon à trouver la forme logique la plus simple possible.


а	b	С	x
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Q10. On souhaite réutiliser le circuit ci-dessous (en plusieurs exemplaires) pour réaliser un multiplexeur 16 vers 1.

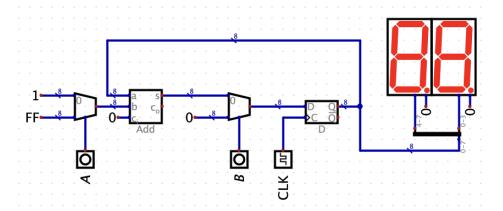
- Combien faudra-t-il de portes logiques pour réaliser ce multiplexeur 16 vers 1?:
- Quelle sera la longueur du chemin critique du multiplexeur 16 vers 1 (le chemin critique sera exprimé en nombre de portes)?:

Q11.	A et B sont des entrées de 4 bits.	. Dessinez un circuit permettant de tester l'égalité de A et de B et de
retour	ner le résultat sur la sortie C. Vous	s n'utiliserez que des portes logiques et des "splitters".

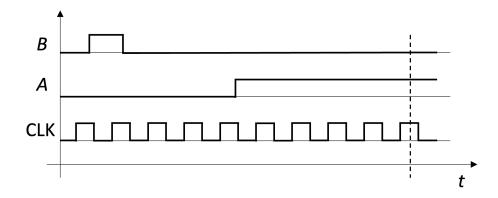
Q12. On souhaite stocker en mémoire un tableau de 32.000 mots binaires de 64 bits. Quelle est, en octets, la taille minimale de la mémoire qu'il va falloir utiliser?

Réponse:

On souhaite utiliser un entier pour coder l'index de ce tableau. Quelle sera la taille minimale de cet entier? (entourer la bonne réponse)


- 8 bits (un char)
- 16 bits (un short)
- 32 bits (un long)
- 64 bits (un long long)
- Q13. On souhaite implémenter un automate comportant 57 états en utilisant la méthode vue en cours.

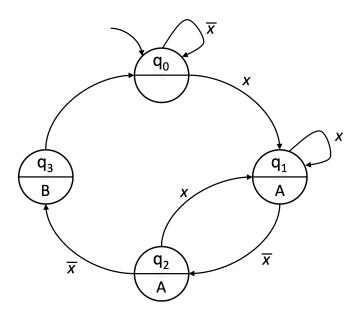
Quelle devra être la taille du registre d'état (en nombre de bits)?


- En supposant un codage logarithmique :
- En supposant un codage en "one-hot coding" :

Q14.

On s'intéresse au circuit suivant, composé d'un additionneur, de deux multiplexeurs, d'un registre à 8 bits et de deux afficheurs hexadécimaux :

On applique à ce circuit les entrées décrites par le chronogramme ci-dessous.

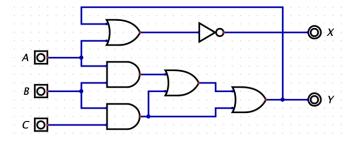


Que verra-t-on sur les afficheurs hexadécimaux à l'instant figuré par la ligne pointillée?

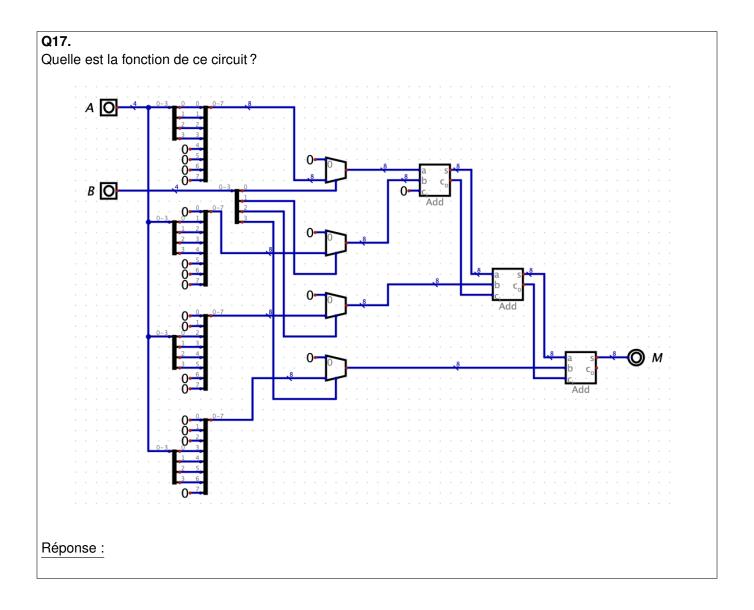
Réponse:

Q15.

On s'intéresse à l'automate décrit par la figure suivante :

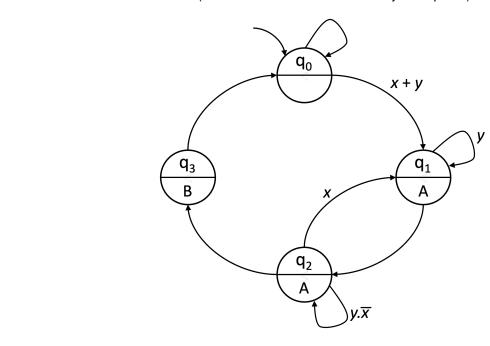

On suppose que cet automate est implémenté en utilisant un encodage logarithmique.

— Donner les tables de vérité correspondant à sa fonction de transition et à sa fonction de sortie


— Donner les équations booléennes de sa fonction de transition et de sa fonction de sortie

Q16.

Quelle est la longueur du chemin critique de ce circuit?



Réponse:

Q18.

L'automate ci-dessous est incomplet : il manque des conditions sur certaines transitions. Complétez-le de façon à le rendre réactif et déterministe (sans toucher aux conditions déjà indiquées).

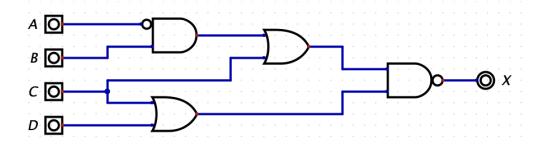
Q19. Soit une EEPROM dont le contenu est entièrement présenté dans le tableau suivant.

Add	0	1	2	3	4	5	6	7	8	9	0xA	0xB	0xC	0xD	0xE	0xF
0	0x7F	0x81	8	0x85	8	0x87	8	0x88	0x7F	0x89	0	0x90	0x7F	0x91	0x49	0x92
0x10	0x49	0x93	0x41	0x94	0	0x95	0x7F	0x96	0x97	0x98	1	0x99	0xA0	0xA1	0	0xA2
0x20	0x7F	0xA3	1	0xA4	1	0xA5	1	0xA6	0	0xA7	0x3E	0xA8	0x41	0xA8	0x41	0xAA
0x30	0x41	0xAB	0x3E	0xAC	0	0xAD	0	0xAE	0	0xAF	0	0xB0	0	0xB1	0	0xB2
0x40	0x78	0xB3	0xF	0xB4	1	0xB5	2	0xB6	0xC	0xB7	2	0xB8	1	0xC0	0xF	0xC1
0x50	0x78	0xC2	0	0xC3	0x3E	0xC4	0x41	0xC5	0x41	0xC6	0x41	0xC7	0x3E	0xC8	0	0xC9
0x60	0x7F	0xCA	0x48	0xCB	0x4C	0xCC	0x4A	0xCD	0x31	0xCE	0	0xCF	0x7F	0xFF	1	0xD1
0x70	1	0xD2	1	0xD3	0	0xD4	0x41	0xD5	0x7F	0x81	0x41	0x81	0x41	0x81	0x63	0x81
0x80	0x3E	0x81	0	0x81												
0x90	0	0x81														
0xA0	0x81	0x9F	0x9F	0x9F												
0xB0	0x9F															
0xC0	0x9F															
0xD0	0x9F															
0xE0	0x9F	0x7F	0x81	8	0x85	8	0x87									
0xF0	8	0x88	0x7F	0x89	0	0x90	0x7F	0x91	0x49	0x92	0x49	0x93	0x41	0x94	0	0x95

Quelle est la capacité de cette mémoire (en octets)?

Réponse :

Quelle est la largeur de son bus d'adresse (en bits)?


Réponse :

On lit cette EEPROM à l'adresse 0x43 ; Quelle valeur l'EEPROM retourne-t-elle ?

Réponse :

Q20.

Donnez, sans chercher à la simplifier, l'équation logique correspondant au circuit ci-dessous.

Réponse:

X =

