
3IF - Architecture des ordinateurs - DS 2024/2025 – page 1/18

NOM, Prénom :

IF-3-S1-EC-AO Architecture des Ordinateurs 10/06/2025

Consignes
— Durée : 1h30 (une heure trente minutes)
— Tiers-temps : 2h (deux heures)
— Ce devoir comporte 17 (dix-sept) questions sur 18 pages, documentations incluses)
— Seul document : 1 feuille recto-verso manuscrite
— Répondez sur le sujet
— REMPLISSEZ VOTRE NOM TOUT DE SUITE
— Crayon à papier accepté, de préférences aux ratures et surcharges.
— Les cadres donnent une idée de la taille des réponses attendues.

1 Questions de cours - Généralités

Q1. Expliquez la différence entre l’encodage 1-hot et l’encodage logarithmique des états d’un automate. Vous
pourrez prendre l’exemple d’un automate à n états.

Dans un encodage logarithmique, le numéro de l’état i ∈ [0..n− 1] est encodé en binaire sur ⌈log2n⌉ bits.
Dans un encodage one-hot, le numéro de l’état i ∈ [0..n − 1] est encodé par un vecteur de n bits où le bit
de rang i est vrai et les autres sont tous à 0.

Q2. Rappelez lequel de ces deux encodages a été choisi dans l’implémentation de la micromachine. Citez un
avantage et un inconvénient de ce choix.

On a choisi un encodage one-hot.
— Avantage 1 : la fonction de transition est plus simple à écrire, car on a seulement besoin de se

préoccuper de décrire la condition sous laquelle le bit i encodant l’état i devient vrai.
— Inconvénient 1 : le nombre de bits nécessaires pour encoder les états de l’automate est plus grand

(n > log2n).

Q3. Rappelez la définition de mot (en anglais word dans une architecture). Vous pouvez donner un exemple.

1

3IF - Architecture des ordinateurs - DS 2024/2025 – page 2/18

On appelle mot l’unité de donnée manipulée naturellement, par défaut, par un processeur. Par exemple,
sur un processeur 16 bits, un mot est une donnée de 16 bits.

2

3IF - Architecture des ordinateurs - DS 2024/2025 – page 3/18

Q4. Expliquez en quelques lignes la différence entre instruction machine et instruction assembleur.

— Une instruction machine est une instruction encodée en binaire, telle qu’elle est interprétée par le
processeur.

— Une instruction assembleur est une version textuelle d’une instruction machine.

Q5. Soit un programme exécutable préparé pour s’exécuter sur un processeur msp430. Donnez une raison vue
en cours en en TP pour laquelle ce programme binaire ne peut pas être exécuté sur un processeur intel IA32.

Le jeu d’instructions machines du msp430 n’est pas le même que celui reconnu par un processeur IA32.
NB : il y a d’autres raison dans le domaine du format de fichier, mais on ne l’a pas vu dans le module.

Q6. Le msp430 est une architecture ... (entourez la bonne réponse)

a Register-memory

b Load-Store
Expliquez votre réponse :

C’est une machine Register-memory, on peut manipuler des données stockées en mémoire depuis à peu
près n’importe quelle instruction.

Q7. Dans la micro-machine, est-il possible d’utiliser l’instruction JR -20 IFN ? Pourquoi?

Non, parce que -20 est une valeur qui ne tient pas sur 5 bits en Cà2.

3

3IF - Architecture des ordinateurs - DS 2024/2025 – page 4/18

2 MSP430

Q8. Sachant que le msp430 utilise un adressage 16-bits, quel est la taille maximale de son espace d’adressage
(en octets)?

Le modèle que nous avons utilisé propose une mémoire vive de 8Ko. Expliquer la différence entre ces deux
tailles.

2**16=65536.
La réponse attendue doit contenir qu’il faut pouvoir adresser :

— la ROM qui contient les programmes
— les périphériques MMIO

On ne leur a pas parlé du extended mode qui fait qu’en fait le msp430 a 1Mo d’espace d’adressage, ce
qui fait bcp plus de flash :)

4

3IF - Architecture des ordinateurs - DS 2024/2025 – page 5/18

Q9. Un MSP430 exécute le code de la colonne de gauche (qui n’a pas la prétention de réaliser quelque chose
d’utile).

Pour chaque ligne, remplissez la table avec :

— (à gauche) l’adresse de chaque instruction
— sous les colonnes Registers et Memory content les valeurs des registres et de la mémoire après

l’exécution de l’instruction correspondante (vous pouvez laisser en blanc les cases inchangées).

Remarque : le MSP 430 accède à la mémoire en mode little-endian. Les instructions considérées tiennent sur
16 bits, sauf celles manipulant une constante. Dans ce cas la constante est stockée (comme dans la microma-
chine) à la suite de l’instruction qui occupe ainsi 32 bits en mémoire. Le pointeur de pile pointe sur la dernière
case occupée et la pile croit vers les adresses faibles.

Toutes les valeurs en hexadécimal commencent par 0x, vous prendrez soin d’utiliser la même notation.

Address Instruction Registers Memory content

PC SP R3 R5 R6 0x2c 0x2d 0x2e 0x2f 0x30 0x31 0x32 0x33

(initial) −→ 0x220c 0x34 0x1234 0x5ef2 0x4002 0xde 0x15 0x10 0xee 0xc3 0xa8 0x12 0xd7

0x220c MOV R3, R6

. . . PUSH R5

. . . PUSH R6

. . . CALL 0x3804

. . . ADD R6, R5

Correction mise à jour le 19/01/2026, pour un bug dans la mise à jour de SP.

Address Instruction Registers Memory content

PC SP R3 R5 R6 0x2c 0x2d 0x2e 0x2f 0x30 0x31 0x32 0x33

(initial) −→ 0x220c 0x34 0x1234 0x5ef2 0x4002 0xde 0x15 0x10 0xee 0xc3 0xa8 0x12 0xd7

0x220c MOV R3, R6 0x220e 0x1234

0x220e PUSH R5 0x2210 0x32 0xf2 0x5e

0x2210 PUSH R6 0x2212 0x30 0x02 0x40

0x2212 CALL 0x3804 0x3804 0x2E 0x16 0x22

0x2216 ADD R6, R5 0x2218 ????

Q10. Un MSP430 exécute le code ci-dessous à gauche. A droite, vous trouverez le contenu d’un extrait de la
mémoire avant l’exécution du programme.

Rappel : vous retrouvez en pages 16 et 17 les informations indispensables concernant le jeu d’instruction
msp430 pour comprendre ce programme.

5

3IF - Architecture des ordinateurs - DS 2024/2025 – page 6/18

.section .init9

main:
mov #0, r9
mov &0x0b00, r10
mov #0x0b02, r11

loop:
cmp r9,r10
jeq finish
mov r9,r12
and #0x1,r12
jnz pass
mov #0, @r11

pass:
incd r11
inc r9
jmp loop

finish:
jmp finish

0x0b00 0a
0x0b01 00
0x0b02 0a
0x0b03 00
0x0b04 09
0x0b05 00
0x0b06 08
0x0b07 00
0x0b08 07
0x0b09 00
0x0b0a 06
0x0b0b 00

0x0b0c 05
0x0b0d 00
0x0b0e 04
0x0b0f 00
0x0b10 03
0x0b11 00
0x0b12 02
0x0b13 00
0x0b14 01
0x0b15 00

Donnez dans le tableau suivant les différentes valeurs de R9, R10, R11 et R12 obtenues à chaque itération de
la boucle, c’est à dire au moment où PC = loop. Remarques : certaines cases à la fin du tableau peuvent être
vides.

R9

R10

R11

R12

Quelles sont les valeurs de R9, R10, R11 et R12 à la fin du programme?
R9 : R10 : R11 : R12 :

Expliquez l’objectif du programme. Soyez précis :

R9 0 1 2 4 5 6 7 8 9 10

R10 0xa 0xa 0xa 0xa 0xa 0xa 0xa 0xa 0xa 0xa

R11 0x0b02 0x0b04 0x0b06 0x0b08 0x0b0a 0x0b0c 0x0b0e 0x0b10 0x0b12 0x0b14

R12 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00

Quelles sont les valeurs de R9, R10, R11, R12 à la fin du programme?
R9 : 10 R10 : 0xb R11 : 0x0b14 R12 : 0x01
Expliquez l’objectif du programme. Soyez précis :

6

3IF - Architecture des ordinateurs - DS 2024/2025 – page 7/18

Ce programme parcourt un tableau de 10 éléments rangé à partir de l’adresse 0xb02. Il remplace tous
les éléments T[i] de rang i pair par la valeur 0.

3 Passage de paramètres

On considère le programme C à gauche qui appelle une fonction sum4 qui réalise la somme de ses 4 paramètres.
On trouvera à droite sa traduction en assembleur msp430.

1 int sum4(int a, int b, int c, int d){
2 return a+b+c+d;
3 }
4
5
6 int main(){
7 int x1, x2, x3, x4;
8 int y;
9 x1 = 11;

10 x2 = 12;
11 x3 = 13;
12 x4 = 14;
13 y = sum4(x1,x2,x3,x4);
14
15 }

1 sum4:
2 SUB.W #8, R1
3 MOV.W R12, 6(R1)
4 MOV.W R13, 4(R1)
5 MOV.W R14, 2(R1)
6 MOV.W R15, @R1
7 MOV.W 6(R1), R12
8 ADD.W 4(R1), R12
9 ADD.W 2(R1), R12

10 ADD.W @R1, R12
11 ADD.W #8, R1
12 RET
13 main:
14 SUB.W #10, R1
15 MOV.W #11, 8(R1)
16 MOV.W #12, 6(R1)
17 MOV.W #13, 4(R1)
18 MOV.W #14, 2(R1)
19 MOV.W 2(R1), R15
20 MOV.W 4(R1), R14
21 MOV.W 6(R1), R13
22 MOV.W 8(R1), R12
23 CALL #sum4
24 MOV.W R12, @R1
25 MOV.B #0, R12
26 ADD.W #10, R1
27 RET

7

3IF - Architecture des ordinateurs - DS 2024/2025 – page 8/18

Q11. À votre avis, comment les quatre valeurs de x1, x2, x3 et x4 sont elles passées de main à la fonction
sum4?

Q12. À quoi correspondent les deux instructions sub.w #8, R1 et add.w #8, R1 , respectivement lignes 2
et 11 du code assembleur (à droite).

Q13. Dessinez la pile au moment où le processeur s’apprête à exécuter l’instruction de la ligne 7 du code
assembleur (à droite).

8

3IF - Architecture des ordinateurs - DS 2024/2025 – page 9/18

Q11.a À votre avis, comment les quatre valeurs de x1, x2, x3 et x4 sont elles passées à de main à la
fonction sum4?
Elles sont passées par 4 registres R12, R13, R14 et R15. C’est confusant, il y a un mic-mac avec la pile
coté main et coté sum4, m’enfin.

Q11.b À quoi correspondent les deux instructions sub.w #8, R1 et add.w #8, R1 , respectivement
lignes 2 et 11 du code assembleur (à droite).
C’est deux instructions sont là pour faire de la place sur la pile. sum4 commence par recopier ses argu-
ments dans la pile justement.

Q11.c Dessinez la pile au moment où le processeur s’apprète à exécuter l’instruction de la ligne 7 du
code assembleur (à droite).
ben il s’agît de vérifier qu’ils incluent

— l’adresse de retour de l’instruction call (dont on ne connaît pas la valeur au juste mais pas grave),
puis les valeurs 11, 12, 13 et 14 dans le bon ordre.

4 Masquage des interruptions

On considère la micromachine comme elle a été conçue en TP, avec l’extension gérant les interruptions. Dans
cette implémentation, lorsqu’une interruption a été levée, le processeur charge dans PC l’adresse A0. A cette
adresse est rangée un ensemble d’instructions qui réalise le traitant d’interruption. Les détails nécessaires au
bon déroulement des questions sont rappelés plus loin.

On propose dans cette partie d’étendre cette micromachine afin de permettre le masquage des interruptions. Ce
masquage a deux buts :

— Premièrement, il doit empêcher la prise en compte d’une interruption dès lors qu’une première interruption
est déjà en cours de traitement. Autrement dit (sur l’automate de la figure donnée plus loin), si on a déjà
franchi l’état JumpToISR une fois mais qu’on n’a pas encore traité d’instruction reti, les occurrences de
IRQ sont ignorées.

— Deuxièmement, le programmeur peut explicitement demander de masquer les interruptions avec une
instruction maskIT. Les interruptions sont alors ignorées jusqu’à l’exécution de l’instruction unmaskIT.

Ce mécanisme inclut deux parties au fonctionnement distinct pour le programmeur :
— D’un coté, il peut utiliser les instructions maskIT et unmaskIT pour demander au processeur d’ignorer

(resp. prendre en compte) les interruptions. On supposera qu’au démarrage les interruptions sont prises
en compte.

— D’un autre coté, les interruptions sont automatiquement masquées par le processeur dès lorsqu’une
première interruption a été traitée, et jusqu’à ce que l’instruction reti ait été exécutée.

On vous demande dans la suite d’implémenter ce mécanisme en vous basant sur les figures données plus loin et
qui donnent le chemin de données et l’automate de contrôle incluant le traitement des interruptions tel qu’étudié
en TD.

Q14. Proposez un encodage binaire pour les deux instruction maskIT et unmaskIT.

9

3IF - Architecture des ordinateurs - DS 2024/2025 – page 10/18

On pourra choisir :
- pour mask : 0 0 1 1 1 undef undef undef
- pour unmask : 0 1 0 1 0 undef undef undef

Q15. Complétez le chemin de données ainsi que l’automate de contrôle des pages suivantes pour permettre
l’exécution des deux instructions maskIT et unmaskIT.
Répondez sur les schémas des pages suivantes

Q16. Complétez le chemin de données ainsi que l’automate de contrôle pour prendre en compte le masquage
et démasquage des interruptions par l’entrée dans l’exécution d’une ISR et l’exécution de l’instruction reti.
Répondez sur les schémas des pages suivantes

Q17. Si ce n’est pas déjà fait, pensez à faire en sorte que les interruptions soient ignorées dans les bonnes
conditions.
Répondez sur les schémas des pages suivantes

10

3IF - Architecture des ordinateurs - DS 2024/2025 – page 11/18

MA

MDO

MDI

ceM

ceRegB

MDI ceRegA
Reg A

Reg B

ALU

Reg A

Reg B

3

arg1

arg2

Reg A

Reg B

arg1S

0
1

Reg A

arg2S

0
1

MDO

arg2S
opcode

progFetch

0
1

MA

+offset

1

JR
JA

1
0

0
1

Reg Cst

ceCst

MDI

IR

ceIR

MDI

Instruction Register

1
0

Mem2Reg
ceDest destS

ceDest destS

IRQ

1
0

1
0

A0
SavedPC

ceSave

ceInterrupt
restore

PC Saved
Flags

ceSave

restore

0
1

Reg Flags
ZCN

ceFlags

cePC

hard-coded address
of the ISR!

Control Unit

progFetch

ceFlags

ceDest

JR
JA

cePC
ceIR

ceM
Mem2Reg
ceCst

C
N

cond

opcode
2

4

Z

ceSave
restore

NB: 4 new outputs for our
Control Unit.

ceInterrupt
IntAck

IntAck

5
2

4

destS
arg1s
arg2s

offset
cond
opcode
instrJR

11

3IF - Architecture des ordinateurs - DS 2024/2025 – page 12/18

InstrFetch

ceIR,progFetch

RegWrite

ceDest,cePC

NoRegWrite

cePC,ceFlags

MemRead

ceDst,cePC

JRCondFalse
cePC

init

ceFlags

JRCondTrue
cePC,JR

Mem2Reg

JumpToISR
cePC

ceSave
ceInterrupt

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ
IRQ
IRQ

IRQ
IRQ

IRQ

IRQ

DoRETi

instrRETi

restore

InstrDecode

cstFetch

progFetch

IncrPC

cePC

MemWrite

ceM,cePC

ceCST

1ByteInstr
instrALU

instr1byte
instrCMP

2ByteInstr

1ByteInstr
instrMemWrite1ByteInstr

instrMemRead

instrJR
!JumpCondTrue

instrJR
JumpCondTrue

instrMemWrite

instrMemRead

instrJA

DoJA

JA,cePC

IntAck

ceFlags

!instrCMP
instrALU

instrCMP

cePC

12

3IF - Architecture des ordinateurs - DS 2024/2025 – page 13/18

MA

MDO

MDI

ceM

ceRegB

MDI ceRegA
Reg A

Reg B

ALU

Reg A

Reg B

3

arg1

arg2

Reg A

Reg B

arg1S

0
1

Reg A

arg2S

0
1

MDO

arg2S
opcode

progFetch

0
1

MA

+offset

1

JR
JA

1
0

0
1

Reg Cst

ceCst

MDI

IR

ceIR

MDI

Instruction Register

1
0

Mem2Reg
ceDest destS

ceDest destS

IRQ

1
0

1
0

A0
SavedPC

ceSave

ceInterrupt
restore

PC Saved
Flags

ceSave

restore

0
1

Reg Flags
ZCN

ceFlags

cePC

hard-coded address
of the ISR!

Control Unit

progFetch

ceFlags

ceDest

JR
JA

cePC
ceIR

ceM
Mem2Reg
ceCst

C
N

cond

opcode
2

4

Z

ceSave
restore

NB: 4 new outputs for our
Control Unit.

ceInterrupt
IntAck

IntAck

5
2

4

destS
arg1s
arg2s

offset
cond
opcode
instrJR

mask

1
0

regMasked(1bit)

ceMaskIT

ITMasked

13

3IF - Architecture des ordinateurs - DS 2024/2025 – page 14/18

InstrFetch

ceIR,progFetch

RegWrite

ceDest,cePC

NoRegWrite

cePC,ceFlags

MemRead

ceDst,cePC

JRCondFalse
cePC

init

ceFlags

JRCondTrue
cePC,JR

Mem2Reg

JumpToISR
cePC

ceSave
ceInterrupt

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ
IRQ
IRQ

IRQ
IRQ

IRQ

IRQ

DoRETi

instrRETi

restore

InstrDecode

cstFetch

progFetch

IncrPC

cePC

MemWrite

ceM,cePC

ceCST

1ByteInstr
instrALU

instr1byte
instrCMP

2ByteInstr

1ByteInstr
instrMemWrite1ByteInstr

instrMemRead

instrJR
!JumpCondTrue

instrJR
JumpCondTrue

instrMemWrite

instrMemRead

instrJA

DoJA

JA,cePC

IntAck

ceFlags

!instrCMP
instrALU

instrCMP

cePC
ceMaskIT
not(mask)

ceMaskIT
mask

maskIT
ceMaskIT
mask

unmaskIT
ceMaskIT
not(mask)

InstrFetch
InstrFetch

instr1Byte
instrMask

instr1Byte
instrUnMask

and not(ITMasked)

or ITMasked

14

3IF - Architecture des ordinateurs - DS 2024/2025 – page 15/18

Jeu d’instruction de la micromachine

Nous travaillons avec un processeur pur 8-bit, avec les spécifications suivantes :
— ses bus d’adresse et données sont sur 8 bits ;
— le seul type de donnée supporté est l’entier 8 bits signé ;
— il possède deux registres de travail de 8 bits, notés A et B.

Au démarrage du processeur, tous les registres sont initialisés à 0. C’est vrai pour A et B, et aussi pour le Program
Counter (PC) : le processeur démarre donc avec le programme à l’adresse 0.
Les instructions offertes par ce processeur sont :

Instructions de calcul à un ou deux opérandes par exemple
B -> A 21 -> B B + A -> A B xor -42 -> A
not B -> A LSR A -> A A xor 12 -> A B - A -> A ;

Explications :
— la destination (à droite de la flèche) peut être A ou B.
— Pour les instructions à un opérande, celui ci peut être A, B, not A, not B, ou une constante signée de 8

bits. L’instruction peut être NOT (bit à bit), ou LSR (logical shift right). Remarque : le shift left se fait par
A+A->A.

— Pour les instructions à deux opérandes, le premier opérande peut être A ou B, le second opérande peut
être A ou une constante signée de 8 bits. L’opération peut être +, -, and, or, xor.

Instructions de lecture ou écriture mémoire parmi les 8 suivantes :
*A -> A *A -> B A -> *A B -> *A
*cst -> A *cst -> B A -> *cst B -> *cst

La notation *X désigne le contenu de la case mémoire d’adresse X (comme en C).
Comprenez bien la différence : A désigne le contenu du registre A, alors que *A désigne le contenu de la
case mémoire dont l’adresse est contenue dans le registre A.

Sauts absolus inconditionnels par exemple JA 42 qui met le PC à la valeur 42

Sauts relatifs conditionnels par exemple JR -12 qui enlève 12 au PC
JR offset JR offset IFZ JR offset IFC JR offset IFN

exécutée si Z=1 exécutée si C=1 exécutée si N=1
Cette instruction ajoute au PC un offset qui est une constante signée sur 5 bits (entre -16 et +15). Précisé-
ment, l’offset est relatif à l’adresse de l’instruction JR elle-même. Par exemple, JR 0 est une boucle infinie, et
JR 1 est un NOP (no operation : on passe à l’instruction suivante sans avoir rien fait).
La condition porte sur trois drapeaux (Z,C,N). Ces drapeaux sont mis à jour par les instructions arithmétiques
et logiques.
— Z vaut 1 si l’instruction a retourné un résultat nul, et zéro sinon.
— C reçoit la retenue sortant de la dernière addition/soustraction, ou le bit perdu lors d’un décalage.
— N retient le bit de signe du résultat d’une opération arithmétique ou logique.

Comparaison arithmétique par exemple B-A? ou A-42?
Cette instruction est en fait identique à la soustraction, mais ne stocke pas son résultat : elle se contente de
positionner les drapeaux.

15

3IF - Architecture des ordinateurs - DS 2024/2025 – page 16/18

Liste compacte des instructions MSP430

Mnemonic Description V N Z C

ADC(.B) dst Add C to destination dst + C → dst * * * *

ADD(.B) src,dst Add source to destination src + dst → dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + C → dst * * * *

AND(.B) src,dst AND source and destination src .and. dst → dst 0 * * *

BIC(.B) src,dst Clear bits in destination .not.src .and. dst → dst − − − −

BIS(.B) src,dst Set bits in destination src .or. dst → dst − − − −

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR dst Branch to destination dst → PC − − − −

CALL dst Call destination PC+2 → stack, dst → PC − − − −

CLR(.B) dst Clear destination 0 → dst − − − −

CLRC Clear C 0 → C − − − 0

CLRN Clear N 0 → N − 0 − −

CLRZ Clear Z 0 → Z − − 0 −

CMP(.B) src,dst Compare source and destination dst − src * * * *

DADC(.B) dst Add C decimally to destination dst + C → dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst. src + dst + C → dst (decimally) * * * *

DEC(.B) dst Decrement destination dst − 1 → dst * * * *

DECD(.B) dst Double-decrement destination dst − 2 → dst * * * *

DINT Disable interrupts 0 → GIE − − − −

EINT Enable interrupts 1 → GIE − − − −

INC(.B) dst Increment destination dst +1 → dst * * * *

INCD(.B) dst Double-increment destination dst+2 → dst * * * *

INV(.B) dst Invert destination .not.dst → dst * * * *

JC/JHS label Jump if C set/Jump if higher or same − − − −

JEQ/JZ label Jump if equal/Jump if Z set − − − −

JGE label Jump if greater or equal − − − −

JL label Jump if less − − − −

JMP label Jump PC + 2 x offset → PC − − − −

JN label Jump if N set − − − −

JNC/JLO label Jump if C not set/Jump if lower − − − −

JNE/JNZ label Jump if not equal/Jump if Z not set − − − −

MOV(.B) src,dst Move source to destination src → dst − − − −

NOP No operation − − − −

POP(.B) dst Pop item from stack to destination @SP → dst, SP+2 → SP − − − −

PUSH(.B) src Push source onto stack SP − 2 → SP, src → @SP − − − −

RET Return from subroutine @SP → PC, SP + 2 → SP − − − −

RETI Return from interrupt * * * *

RLA(.B) dst Rotate left arithmetically * * * *

RLC(.B) dst Rotate left through C * * * *

RRA(.B) dst Rotate right arithmetically 0 * * *

RRC(.B) dst Rotate right through C * * * *

SBC(.B) dst Subtract not(C) from destination dst + 0FFFFh + C → dst * * * *

SETC Set C 1 → C − − − 1

SETN Set N 1 → N − 1 − −

SETZ Set Z 1 → C − − 1 −

SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C → dst * * * *

SWPB dst Swap bytes − − − −

SXT dst Extend sign 0 * * *

TST(.B) dst Test destination dst + 0FFFFh + 1 0 * * 1

XOR(.B) src,dst Exclusive OR source and destination src .xor. dst → dst * * * *

Operation

16

3IF - Architecture des ordinateurs - DS 2024/2025 – page 17/18

Instructions de saut du MSP430

Modes d’adressage du MSP430

Puissances de 2

20 = 1 216 = 65 536 232 = 4 294 967 296 248 = 281 474 976 710 656
21 = 2 217 = 131 072 233 = 8 589 934 592 249 = 562 949 953 421 312
22 = 4 218 = 262 144 234 = 17 179 869 184 250 = 1 125 899 906 842 624
23 = 8 219 = 524 288 235 = 34 359 738 368 251 = 2 251 799 813 685 248
24 = 16 220 = 1 048 576 236 = 68 719 476 736 252 = 4 503 599 627 370 496
25 = 32 221 = 2 097 152 237 = 137 438 953 472 253 = 9 007 199 254 740 992
26 = 64 222 = 4 194 304 238 = 274 877 906 944 254 = 18 014 398 509 481 984
27 = 128 223 = 8 388 608 239 = 549 755 813 888 255 = 36 028 797 018 963 968
28 = 256 224 = 16 777 216 240 = 1 099 511 627 776 256 = 72 057 594 037 927 936
29 = 512 225 = 33 554 432 241 = 2 199 023 255 552 257 = 144 115 188 075 855 488
210 = 1024 226 = 67 108 864 242 = 4 398 046 511 104 258 = 288 230 376 151 711 744
211 = 2048 227 = 134 217 728 243 = 8 796 093 022 208 259 = 576 460 752 303 423 488
212 = 4 096 228 = 268 435 456 244 = 17 592 186 044 416 260 = 1 152 921 504 606 846 976
213 = 8 192 229 = 536 870 912 245 = 35 184 372 088 832 261 = 2 305 843 009 213 693 952
214 = 16 384 230 = 1 073 741 824 246 = 70 368 744 177 664 262 = 4 611 686 018 427 387 904
215 = 32 768 231 = 2 147 483 648 247 = 140 737 488 355 328 263 = 9 223 372 036 854 775 808

264 = 18 446 744 073 709 551 616

17

3IF - Architecture des ordinateurs - DS 2024/2025 – page 18/18

Encodage du jeu d’instruction de la micro-machine

Les instructions sont toutes encodées en un octet comme indiqué ci-dessous. Pour celles qui impliquent une
constante (de 8 bits), cette constante occupe la case mémoire suivant celle de l’instruction.
Encodage du mot d’instruction :

Signification des différents raccourcis utilisés :

Notation encodé par valeurs possibles

dest destS=instr[0] A si destS=0, B si destS=1
arg1 arg1S=instr[1] A si arg1S=0, B si arg1S=1
arg2 arg2S=instr[2] A si arg2S=0, constante 8-bit si arg2S=1

offset instr[5 :0] offset signé sur 5 bits

Encodage des différentes opérations possibles :

codeop mnémonique remarques
0000 arg1 + arg2 -> dest addition ; shift left par A+A->A
0001 arg1 - arg2 -> dest soustraction ; 0 -> A par A-A->A
0010 arg1 and arg2 -> dest
0011 arg1 or arg2 -> dest
0100 arg1 xor arg2 -> dest
0101 LSR arg1 -> dest logical shift right ; bit sorti dans C ; arg2 inutilisé
0110 arg1 - arg2 ? comparaison arithmétique ; destS inutilisé
1000 (not) arg1 -> dest not si arg2S=1, sinon simple copie
1001 arg2 -> dest arg1 inutilisé
1101 *arg2 -> dest lecture mémoire ; arg1S inutilisé
1110 arg1 -> *arg2 écriture mémoire ; destS inutilisé
1111 JA cst saut absolu ; destS, arg1S et arg2S inutilisés

Remarque : les codeop 0111, 1010, 1011, et 1100 sont inutilisés (réservés pour une extension future...).

Encodage des conditions du saut relatif conditionnel :

cond 00 01 10 11
mnémonique IFZ IFC IFN

(toujours) si zéro si carry si négatif

18

	Questions de cours - Généralités
	MSP430
	Passage de paramètres
	Masquage des interruptions

