INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 1

NOM, Prénom :

IF-3-S1-EC-AO Architecture des Ordinateurs 10/06/2025

Consignes
— Durée : 1h30 (une heure trente minutes)
— Tiers-temps : 2h (deux heures)
— Ce devoir comporte 17 (dix-sept) questions sur[18] pages, documentations incluses)
— Seul document : 1 feuille recto-verso manuscrite
— Répondez sur le sujet
— REMPLISSEZ VOTRE NOM TOUT DE SUITE
— Crayon a papier accepté, de préférences aux ratures et surcharges.
— Les cadres donnent une idée de la taille des réponses attendues.

1 Questions de cours - Généralités

Q1. Expliquez la différence entre I'encodage 1-hot et I'encodage logarithmique des états d’'un automate. Vous
pourrez prendre I'exemple d’un automate a n états.

Dans un encodage logarithmique, le numéro de I'état i € [0..n — 1] est encodé en binaire sur [log>n] bits.
Dans un encodage one-hot, le numéro de I'état i € [0..n — 1] est encodé par un vecteur de n bits ou le bit
de rang i/ est vrai et les autres sont tous a 0.

Q2. Rappelez lequel de ces deux encodages a été choisi dans 'implémentation de la micromachine. Citez un
avantage et un inconvénient de ce choix.

On a choisi un encodage one-hot.
— Avantage 1 : la fonction de transition est plus simple a écrire, car on a seulement besoin de se
préoccuper de décrire la condition sous laquelle le bit i encodant I'état / devient vrai.
— Inconvénient 1 : le nombre de bits nécessaires pour encoder les états de I'automate est plus grand
(n > logzn).

Q3. Rappelez la définition de mot (en anglais word dans une architecture). Vous pouvez donner un exemple.

IN A‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 2

On appelle mot l'unité de donnée manipulée naturellement, par défaut, par un processeur. Par exemple,
sur un processeur 16 bits, un mot est une donnée de 16 bits.

INSA‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 3

Q4. Expliquez en quelques lignes la différence entre instruction machine et instruction assembleur.

— Une instruction machine est une instruction encodée en binaire, telle qu’elle est interprétée par le
processeur.
— Une instruction assembleur est une version textuelle d’'une instruction machine.

Q5. Soit un programme exécutable préparé pour s’exécuter sur un processeur msp430. Donnez une raison vue
en cours en en TP pour laquelle ce programme binaire ne peut pas étre exécuté sur un processeur intel IA32.

Le jeu d’instructions machines du msp430 n’est pas le méme que celui reconnu par un processeur 1A32.
NB : il y a d’autres raison dans le domaine du format de fichier, mais on ne I'a pas vu dans le module.

Q6. Le msp430 est une architecture ... (entourez la bonne réponse)
[a] Register-memory
@ Load-Store

Expliquez votre réponse :

C’est une machine Register-memory, on peut manipuler des données stockées en mémoire depuis a peu
prés n’'importe quelle instruction.

Q7. Dans la micro-machine, est-il possible d'utiliser l'instruction | JR -20 IFN |? Pourquoi?

Non, parce que -20 est une valeur qui ne tient pas sur 5 bits en Ca2.

INSA‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 4

2 MSP430

Q8. Sachant que le msp430 utilise un adressage 16-bits, quel est la taille maximale de son espace d’adressage
(en octets) ?

Le modele que nous avons utilisé propose une mémoire vive de 8Ko. Expliquer la différence entre ces deux
tailles.

2**16=65536.
La réponse attendue doit contenir qu’il faut pouvoir adresser :
— la ROM qui contient les programmes
— les périphériques MMIO
On ne leur a pas parlé du extended mode qui fait qu’en fait le msp430 a 1Mo d’espace d’adressage, ce
qui fait bcp plus de flash :)

INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 5

Q9. Un MSP430 exécute le code de la colonne de gauche (qui n’a pas la prétention de réaliser quelque chose
d’utile).

Pour chaque ligne, remplissez la table avec :

— (a gauche) 'adresse de chaque instruction
— sous les colonnes Registers et Memory content les valeurs des registres et de la mémoire aprés
I'exécution de l'instruction correspondante (vous pouvez laisser en blanc les cases inchangées).

Remarque : le MSP 430 accede a la mémoire en mode little-endian. Les instructions considérées tiennent sur
16 bits, sauf celles manipulant une constante. Dans ce cas la constante est stockée (comme dans la microma-
chine) a la suite de l'instruction qui occupe ainsi 32 bits en mémoire. Le pointeur de pile pointe sur la derniere
case occupée et la pile croit vers les adresses faibles.

Toutes les valeurs en hexadécimal commencent par 0x, vous prendrez soin d’utiliser la méme notation.

Address | Instruction Registers Memory content
PC ‘ SP ‘ R3 ‘ R5 ‘ R6 0x2c ‘ ox2d ‘ 0x2e ‘ ox2f ‘ 0x30 ‘ 0x31 ‘ 0x32 ‘ 0x33

’ ‘ (initial) — H 0x220c ‘ 0x34 ‘ 0x1234 ‘ 0x5ef2 ‘ 0x4002 H Oxde ‘ 0x15 ‘ 0x10 ‘ Oxee ‘ 0xc3 ‘ 0xa8 ‘ 0x12 ‘ 0xd7 ‘

0x220c | MOV R3, R6

PUSH R5

PUSH R6

CALL 0x3804

ADD R6, R5

Correction mise a jour le 19/01/2026, pour un bug dans la mise a jour de SP.

Address | Instruction Registers Memory content

PC | SP | R3 | R5 | R6 0x2c | 0x2d | 0x2e | ox2f | 0x30 | 0x31 | 0x32 | 0x33

| | (initial) — || 0x220c | 0x34 | 0x1234 | 0x5ef2 | 0x4002 || Oxde | 0x15 | 0x10 | Oxee | 0xc3 | Oxa8 | 0x12 | 0kd7 ‘

0x220c | MOV R3, R6 0x220e 0x1234

0x220e | PUSH R5 0x2210 | 0x32 0xf2 0x5e

0x2210 | PUSH R6 0x2212 | 0x30 0x02 | 0x40

0x2212 | CALL 0x3804 0x3804 | Ox2E 0x16 | 0x22

0x2216 | ADD R6, R5 0x2218 7727

Q10. Un MSP430 exécute le code ci-dessous a gauche. A droite, vous trouverez le contenu d’un extrait de la
mémoire avant I'exécution du programme.

Rappel : vous retrouvez en pages et les informations indispensables concernant le jeu d’instruction
msp430 pour comprendre ce programme.

INSA‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 6

.section .init9
main:
nov #0, 9 0x0b00 Oa
mov &0x0b00, rl0 0x0b01 00 0x0b0c 05
mov #0x0b02, riil 0x0b02 Oa 0x0b0d 00
Lloop: 0x0b03 00 0xObOe 04
cmp x9,r10 0x0b04 09 0x0bOf 00
jeq finish
mov 19,712 0x0b05 00 0x0b10 03
and #0x1,r12 0x0b06 08 0x0Ob11 00
jnz pass 0x0b07 00 0x0b12 02
passs #0, Grid 0x0b08 07 0x0b13 00
" iped rid 0x0b09 00 0x0b14 01
inc r9 0xObOa 06 0x0b15 00
jmp loop 0x0bOb 00
finish:
jmp finish

Donnez dans le tableau suivant les différentes valeurs de R9, R10, R11 et R12 obtenues a chaque itération de
la boucle, c’est a dire au moment ou PC = loop. Remarques : certaines cases a la fin du tableau peuvent étre
vides.

R9

R10

R11

R12

Quelles sont les valeurs de R9, R10, R11 et R12 a la fin du programme ?
R9 : R10: R11: R12:

Expliquez I'objectif du programme. Soyez précis :

R9 0 1 2 4 5 6 7 8 9 10

R10 Oxa Oxa Oxa Oxa Oxa Oxa Oxa Oxa Oxa Oxa

R11 0x0b02 | 0xOb04 | 0xOb06 | 0xO0b08 | 0x0b0Oa | 0xObOc | 0xObOe | 0x0b10 | OxOb12 | OxOb14

R12 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00

Quelles sont les valeurs de R9, R10, R11, R12 a la fin du programme ?
R9 :[10] R10 :[0xb|R11 :[0x0b14| R12 : [0x01
Expliquez I'objectif du programme. Soyez précis :

INSA‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 7

Ce programme parcourt un tableau de 10 éléments rangé a partir de I'adresse 0xb02. Il remplace tous
les éléments TI[i] de rang i pair par la valeur 0.

3 Passage de parameétres

On consideére le programme C a gauche qui appelle une fonction sum4 qui réalise la somme de ses 4 parameétres.
On trouvera a droite sa traduction en assembleur msp430.

1 |sumé:
2 SUB.W #38, R1
3 MOV.W R12, 6(R1)
4 MOV.W R13, 4(R1)
5 MOV.W R14, 2(R1)
6 MOV.W R15, ©R1
1 |int sum4(int a, int b, int c, int d){ 7 MOV.W 6(R1), R12
2 return a+b+c+d; 8 ADD.W 4(R1), R12
3 |} 9 ADD.W 2(R1), R12
4 10 ADD.W OR1, R12
5 11 ADD.W #8, R1
6 |int main(){ 12 RET
7 int x1, x2, x3, x4; 13 |main:
8 int y; 14 SUB.W #10, R1
9 x1 = 11; 15 MOV.W #11, 8(R1)
10 x2 = 12; 16 MOV.W #12, 6(R1)
11 x3 = 13; 17 MOV.W #13, 4(R1)
12 x4 = 14, 18 MOV.W #14, 2(R1)
13 y = sumé(x1,x2,x3,x4); 19 MOV.W 2(R1), R15
14 20 MOV.W 4(R1), R14
15 |} 21 MOV.W 6(R1), R13
22 MOV.W 8(R1), R12
23 CALL #sumé
24 MOV.W R12, OR1
25 MOV.B #0, R12
26 ADD.W #10, R1
27 RET

IN A‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 8

Q11. A votre avis, comment les quatre valeurs de x1, x2, x3 et x4 sont elles passées de main a la fonction
sum4 ?

Q12. A quoi correspondent les deux instructions | sub.w #8, R1|et|add.w #8, R1], respectivement lignes 2
et 11 du code assembleur (a droite).

Q13. Dessinez la pile au moment ou le processeur s’appréte a exécuter l'instruction de la ligne 7 du code
assembleur (a droite).

INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 9

Q11.a A votre avis, comment les quatre valeurs de x1, x2, x3 et x4 sont elles passées a de main a la
fonction sum4 ?

Elles sont passées par 4 registres R12, R13, R14 et R15. C’est confusant, il y a un mic-mac avec la pile
coté main et coté sum4, m’enfin.

Q11.b A quoi correspondent les deux instructions [sub.w #8, R1|et|add.w #8, R1|, respectivement
lignes 2 et 11 du code assembleur (a droite).
C’est deux instructions sont la pour faire de la place sur la pile. sum4 commence par recopier ses argu-

ments dans la pile justement.

Q11.c Dessinez la pile au moment ou le processeur s’appréte a exécuter I'instruction de la ligne 7 du
code assembleur (a droite).
ben il s’agit de vérifier qu'ils incluent
— l'adresse de retour de l'instruction call (dont on ne connait pas la valeur au juste mais pas grave),
puis les valeurs 11, 12, 13 et 14 dans le bon ordre.

4 Masquage des interruptions

On considére la micromachine comme elle a été congue en TP, avec I'extension gérant les interruptions. Dans
cette implémentation, lorsqu’une interruption a été levée, le processeur charge dans PC I'adresse AO. A cette
adresse est rangée un ensemble d'instructions qui réalise le traitant d’interruption. Les détails nécessaires au
bon déroulement des questions sont rappelés plus loin.

On propose dans cette partie d’étendre cette micromachine afin de permettre le masquage des interruptions. Ce
masquage a deux buts :

— Premierement, il doit empécher la prise en compte d’'une interruption des lors qu’une premiére interruption
est déja en cours de traitement. Autrement dit (sur 'automate de la figure donnée plus loin), si on a déja
franchi I'état JumpTolISR une fois mais qu’on n’a pas encore traité d’instruction reti, les occurrences de
IRQ sont ignorées.

— Deuxiémement, le programmeur peut explicitement demander de masquer les interruptions avec une
instruction maskIT. Les interruptions sont alors ignorées jusqu’a I'exécution de l'instruction unmaskIT.

Ce mécanisme inclut deux parties au fonctionnement distinct pour le programmeur :

— D’un coté, il peut utiliser les instructions maskIT et unmaskIT pour demander au processeur d’ignorer
(resp. prendre en compte) les interruptions. On supposera qu’au démarrage les interruptions sont prises
en compte.

— D’un autre coté, les interruptions sont automatiquement masquées par le processeur dés lorsqu’une
premiere interruption a été traitée, et jusqu’a ce que l'instruction reti ait été exécutée.

On vous demande dans la suite d’implémenter ce mécanisme en vous basant sur les figures données plus loin et
qui donnent le chemin de données et 'automate de contrdle incluant le traitement des interruptions tel qu’étudié
en TD.

Q14. Proposez un encodage binaire pour les deux instruction maskIT et unmaskIT.

INSA‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 10

On pourra choisir :
-pourmask:[0 [0 1 1 1 [undef | undef | undef |

-pourunmask:|{ 0 [1 0 1 0 [undef | undef | undef |

Q15. Complétez le chemin de données ainsi que I'automate de contrdle des pages suivantes pour permettre
I'exécution des deux instructions maskIT et unmaskIT.
’ Répondez sur les schémas des pages suivantes ‘

Q16. Complétez le chemin de données ainsi que I'automate de contréle pour prendre en compte le masquage
et démasquage des interruptions par I'entrée dans I'exécution d’une ISR et I'exécution de I'instruction reti.
’ Répondez sur les schémas des pages suivantes ‘

Q17. Sice n'est pas déja fait, pensez a faire en sorte que les interruptions soient ignorées dans les bonnes
conditions.
’ Répondez sur les schémas des pages suivantes ‘

INSA

3IF - Architecture des ordinateurs - DS 2024/2025 — page 11

offset

Control Unit

—> progFetch

MDI

Instruction Register

A0

hard-coded address
of the ISR!

MA
— ceDest NB: 4 n f
5 : ew outputs for our
—» cePC ceave Control Unit. MDO
—» celR — restore
— ceFlags | __, celnterruﬂ"J MDI
— |R
A — [ntAck
— ceM
— ceM
— Mem2Reg
—» ceCst MDO IntAck
arg2S
opcode ceDes i
Reg A Mem2Req
destS : Reg B arg1 ceRegA
argls ! Reg A Reg A
S : arg1S
1
offset
: Reg B (» Reg B
cond 1
' Reg A DN arg2 ceRegB
opcode 1
instrJR : 1
S ceDest destS
ZCN
Reg Flags 1%
celnterrupt
restore 0 MA restore ?ceFlags
\
1
PC Saved
rogFetch
TcePC Prog Lo
ceSave
SavedPC
T ceSave

3IF - Architecture des ordinateurs - DS 2024/2025 — page 12

init

ceDest,cePC,
ceFlags

Bytelnstr
instrALU

restore
ceFlags

ceP

instribyte
instrCMP NoRegWrite
cePC,ceFlags
instrRETI IRQ
instr/R
JumpCondTrue lingtrCMR “\ instrCM
insYy(ALU
1Bytelnstr
1Bytelnst instrMemWrite cstFetch
instrMemRead progFetch
ceCST
m instrMemWrit
ceDst,cePC
2 Mem2Reg
strMemRe
JumpToISR ’
cePC
ceSave

celnterrupt IRO //
IntAck Lt‘ IDQ

IRQ

3IF - Architecture des ordinateurs - DS 2024/2025 — page 13

Control Unit.

NB: 4 new outputs for our

"

VA —> progFetch
_C. — ceDest
—> L » ePC — ceSave
_N. Control Unit — celR — restore
cond —> ceFlags — celnterru
z — |R
pcode > A — [ntAck
> — ceM
— Mem2Reg
—_— — ceCst » MDO
IR0 ~ arg2S
|) g
_____________________ Reg A 0
destS Reg B 1 o
argls
arg1S

Reg A arg2
opcode g 0 E

ceSave

of the ISR!

hard-coded addresTJ

mask

ITMasked
B regMasked(1bit) |—>

TceMaskIT

ceDest

destS

ZCN
-’
0 MA restore ceFlags
1
Saved
progFetch Flags
ceSave

3IF - Architecture des ordinateurs - DS 2024/2025 — page 14/.

-
init
IRQ
InstrFetch DoJA
W celR progFetch IRQ JA.cePC
5 r ITMaske A
DoRETi RCondTrue TBytelnstr /" RegWrite
PCIR instrALU
restore cehcl ceDest,cePC,
ceFlags ceFlags
ceP! S
ceMaskIT igstr)R finstrDecode) instribyte 8
i NoRegWi
not(mask JumpCondTrue instrCMP GiREg)it 2
o cePC,ceFlags
DN ytelnstr
- . IR
instrRETi Q instrlR
JumpCondTrue IncrPC lingtrCMP "\ instrCM|
e insYALI
RCondFals
cePC 1Bytelnstr
IRQ 1B{jtelnsti instrMemWrite cstFetch
afid not(ITMasked) instrMgmR | progCFSe_trch
cel
IRQ
MemRead MemWrite / -
instrMemWrits
IR ceDst,cePC ceM,cePC
DA Mem2Re:
,RQ . ihstrMemR
JumpToISR 1RQ pratibienRe
cePC
ceSave
celnterrupt IRO
IntAck I PO
ceMaskIT f— i
mask instr/Byte instf1Byte
ask insfrUnMask
InstrFetch
InstrFetch
ceMaskIT ceMaskIT
(nask not(mask)

INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 15

Jeu d’instruction de la micromachine

Nous travaillons avec un processeur pur 8-bit, avec les spécifications suivantes :
— ses bus d’adresse et données sont sur 8 bits;
— le seul type de donnée supporté est I'entier 8 bits signé ;
— il posséde deux registres de travail de 8 bits, notés A et B.
Au démarrage du processeur, tous les registres sont initialisés a 0. C’est vrai pour A et B, et aussi pour le Program
Counter (PC) : le processeur démarre donc avec le programme a I'adresse 0.
Les instructions offertes par ce processeur sont :

Instructions de calcul a un ou deux opérandes par exemple

B ->A 21 -> B B+A ->A B xor -42 -> A
not B -> A LSR A > A A xor 12 -> A B-A ->A4;
Explications :

— la destination (a droite de la fleche) peut étre A ou B.

— Pour les instructions a un opérande, celui ci peut étre A, B, not A, not B, ou une constante signée de 8
bits. Linstruction peut étre NOT (bit & bit), ou LSR (logical shift right). Remarque : le shift left se fait par
A+A->A.

— Pour les instructions a deux opérandes, le premier opérande peut étre A ou B, le second opérande peut
étre A ou une constante signée de 8 bits. Lopération peut étre +, -, and, or, xor.

Instructions de lecture ou écriture mémoire parmiles 8 suivantes :
*A -> A *A -> B A -> %A B -> xA
*cst -> A *cst -> B A -> xcst B -> xcst
La notation *X désigne le contenu de la case mémoire d’adresse X (comme en C).
Comprenez bien la différence : A désigne le contenu du registre A, alors que *A désigne le contenu de la
case mémoire dont I'adresse est contenue dans le registre A.

Sauts absolus inconditionnels par exemple JA 42 qui met le PC a la valeur 42

Sauts relatifs conditionnels par exemple JR -12 qui enléve 12 au PC
JR offset JR offset IFZ JR offset IFC JR offset IFN
exécutée si Z=1 exécutée si C=1 exécutée si N=1
Cette instruction ajoute au PC un offset qui est une constante signée sur 5 bits (entre -16 et +15). Précisé-
ment, 'offset est relatif a 'adresse de l'instruction JR elle-méme. Par exemple, JR 0 est une boucle infinie, et
JR 1 est un NOP (no operation : on passe a l'instruction suivante sans avoir rien fait).

La condition porte sur trois drapeaux (Z,C,N). Ces drapeaux sont mis a jour par les instructions arithmétiques
et logiques.

— Zvaut 1 si l'instruction a retourné un résultat nul, et zéro sinon.

— C regoit la retenue sortant de la derniére addition/soustraction, ou le bit perdu lors d’un décalage.

— N retient le bit de signe du résultat d’'une opération arithmétique ou logique.

Comparaison arithmétique par exemple B-A7 ou A-427
Cette instruction est en fait identique a la soustraction, mais ne stocke pas son résultat : elle se contente de
positionner les drapeaux.

‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 16

Liste compacte des instructions MSP430

Mnemonic Description Operation v
ADC(.B) dst Add C to destination dst + C — dst *
ADD(.B) src,dst Add source to destination Src + dst — dst *
ADDC(.B) src,dst Add source and C to destination src + dst + C — dst *
AND(.B) src,dst AND source and destination src .and. dst — dst 0
BIC(.B) src,dst Clear bits in destination .not.src .and. dst — dst -
BIS(.B) src,dst Set bits in destination src .or. dst — dst -
BIT(.B) src,dst Test bits in destination src .and. dst 0
BR dst Branch to destination dst — PC -
CALL dst Call destination PC+2 — stack, dst = PC -
CLR(.B) dst Clear destination 0 — dst -
CLRC Clear C 0—-C -
CLRN Clear N 0—N -
CLRZ Clear Z 0—-2Z -
CMP(.B) src,dst Compare source and destination dst - src *
DADC(.B) dst Add C decimally to destination dst + C — dst (decimally) *
DADD(.B) src,dst Add source and C decimally to dst. src + dst + C — dst (decimally) *
DEC(.B) dst Decrement destination dst -1 — dst *
DECD(.B) dst Double-decrement destination dst -2 — dst *
DINT Disable interrupts 0— GIE -
EINT Enable interrupts 1—GIE -
INC(.B) dst Increment destination dst +1 — dst *
INCD(.B) dst Double-increment destination dst+2 — dst *
INV(.B) dst Invert destination .not.dst — dst *
JC/JHS label Jump if C set/Jump if higher or same -
JEQ/JZ label Jump if equal/Jump if Z set -
JGE label Jump if greater or equal -
JL label Jump if less -
JMP label Jump PC + 2 x offset = PC -
JN label Jump if N set -
JNC/JLO label Jump if C not set/Jump if lower -
JNE/JNZ label Jump if not equal/Jump if Z not set -
MOV(.B) src,dst Move source to destination src — dst -
NOP No operation -
POP(.B) dst Pop item from stack to destination @SP — dst, SP+2 — SP -
PUSH(.B) src Push source onto stack SP -2 — SP, src - @SP -
RET Return from subroutine @SP - PC,SP +2 — SP -
RETI Return from interrupt *
RLA(.B) dst Rotate left arithmetically *
RLC(.B) dst Rotate left through C *
RRA(.B) dst Rotate right arithmetically 0
RRC(.B) dst Rotate right through C *
SBC(.B) dst Subtract not(C) from destination dst + OFFFFh + C — dst *
SETC SetC 1—-C -
SETN SetN 1—=N -
SETZ SetZ 1—-C -
SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 — dst *
SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C — dst *
SWPB dst Swap bytes -
SXT dst Extend sign 0
TST(.B) dst Test destination dst + OFFFFh + 1 0
XOR(.B) src,dst Exclusive OR source and destination src .xor. dst — dst *

3IF - Architecture des ordinateurs - DS 2024/2025 — page 17

INSA

Instructions de saut du MSP430

Mnemonic S-Reg, D-Reg

Label

Operation

JEQ/JZ
JNE/JNZ

Jump to label if zero bit is set
Label Jump to label if zero bit is reset
Label Jump to label if carry bit is set
Label Jump to label if carry bit is reset

Label

Jump to label if negative bit is set
Jump to label if (N .XOR. V) =0
Jump to label if (N . XOR. V) =1

Label
Label

Label Jump to label unconditionally

Modes d’adressage du MSP430

As/Ad Addressing Mode Syntax Description
00/0 Register mode Rn Register contents are operand
01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.
01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.
01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.
10/- Indirect register @Rn Rn is used as a pointer to the
mode operand.
1/- Indirect @Rn+ Rnis used as a pointer to the
autoincrement operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .\W instructions.
11/- Immediate mode #N The word following the instruction
contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.
Puissances de 2
20 _ 1]2®= 65536 | 2% = 4 294 967 296 | 2%8 = 281 474 976 710 656
2" = 2|27 = 131072 | 233 = 8 589 934 592 | 2 = 562 949 953 421 312
22 = 4|28 = 262 144 | 234 = 17 179 869 184 | 250 = 1 125 899 906 842 624
28 = 8| 2%= 524 288 | 2% = 34 359 738 368 | 25" = 2 251 799 813 685 248
24 = 16 | 220 = 1048 576 | 2% = 68 719 476 736 | 2%2 = 4 503 599 627 370 496
25 = 32 | 221 = 2097 152 | 2%7 = 137 438 953 472 | 258 = 9 007 199 254 740 992
26 = 64 | 222 = 4194 304 | 2%8 = 274 877 906 944 | 254 = 18 014 398 509 481 984
27 = 128 | 228 = 8388608 | 2% = 549 755 813 888 | 25 = 36 028 797 018 963 968
28 = 256 | 224 = 16777216 | 240= 1099 511 627 776 | 2% = 72 057 594 037 927 936
2% = 512 2% = 33554432 | 2% = 2199023255552 | 25 = 144 115 188 075 855 488
210 = 1024 | 226 = 67 108864 | 22 = 4398 046 511 104 | 258 = 288 230 376 151 711 744
211 = 2048 | 227 = 134217728 | 2= 8796093022208 | 2°° = 576 460 752 303 423 488
212= 4096 | 228 = 268435456 | 2 = 17592 186 044 416 | 20 = 1 152 921 504 606 846 976
213= 8192 | 22°= 536870912 | 25 = 35184 372088832 | 25" = 2305 843 009 213 693 952
214=16384 | 230 =1 073741824 | 2% = 70368 744 177 664 | 252 = 4 611 686 018 427 387 904
215 =32 768 | 23! =2 147 483 648 | 2*7 = 140 737 488 355 328 | 263 = 9 223 372 036 854 775 808
264 = 18 446 744 073 709 551 616

INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 18

Encodage du jeu d’instruction de la micro-machine

Les instructions sont toutes encodées en un octet comme indiqué ci-dessous. Pour celles qui impliquent une
constante (de 8 bits), cette constante occupe la case mémoire suivant celle de l'instruction.
Encodage du mot d’instruction :

| bit [7 | 68 | 5 | 4 | 3 | 2 | 1 [0 |
instruction autres que JR 0 codeop, voir table 3 | arg2s | arg1S | destS
saut relatif conditionnel 1 cond, voir table 4 | offset signé sur 5 bits

Signification des différents raccourcis utilisés :

| Notation | encodé par [valeurs possibles

dest destS=instr[0] | A sidestS=0, B si destS=1

argl arg1S=instr[1] | A siarg1S=0, B si arg1S=1

arg?2 arg2S=instr[2] | A si arg2S=0, constante 8-bit si arg2S=1
offset instr[5 :0] offset signé sur 5 bits

Encodage des différentes opérations possibles :

codeop | mnémonique remarques

0000 argl + arg2 -> dest addition ; shift left par A+A->A

0001 argl - arg2 -> dest soustraction; 0 -> A par A-A->A
0010 argl and arg2 -> dest
0011 argl or arg2 -> dest
0100 argl xor arg2 -> dest
0101 LSR argl -> dest logical shift right ; bit sorti dans C; arg2 inutilisé
0110 | argl - arg2 ? comparaison arithmétique ; destS inutilisé
1000 (not) argl -> dest not si arg2S=1, sinon simple copie

1001 arg2 -> dest arg1 inutilisé

1101 *xarg2 -> dest lecture mémoire ; arg1S inutilisé

1110 | argl -> *arg?2 écriture mémoire ; destS inutilisé

1111 JA cst saut absolu; destS, arg1S et arg2S inutilisés

Remarque : les codeop 0111, 1010, 1011, et 1100 sont inutilisés (réservés pour une extension future...).

Encodage des conditions du saut relatif conditionnel :

cond 00 01 10 11
mnémonique IFZ IFC IFN
(toujours) | sizéro | sicarry | sinégatif

	Questions de cours - Généralités
	MSP430
	Passage de paramètres
	Masquage des interruptions

