INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 1

NOM, Prénom :

IF-3-S1-EC-AO Architecture des Ordinateurs 10/06/2025

Consignes
— Durée : 1h30 (une heure trente minutes)
— Tiers-temps : 2h (deux heures)
— Ce devoir comporte 17 (dix-sept) questions sur[12] pages, documentations incluses)
— Seul document : 1 feuille recto-verso manuscrite
— Répondez sur le sujet
— REMPLISSEZ VOTRE NOM TOUT DE SUITE
— Crayon a papier accepté, de préférences aux ratures et surcharges.
— Les cadres donnent une idée de la taille des réponses attendues.

1 Questions de cours - Généralités

Q1. Expliquez la différence entre I'encodage 1-hot et I'encodage logarithmique des états d’'un automate. Vous
pourrez prendre I'exemple d’un automate a n états.

Q2. Rappelez lequel de ces deux encodages a été choisi dans 'implémentation de la micromachine. Citez un
avantage et un inconvénient de ce choix.

Q3. Rappelez la définition de mot (en anglais word dans une architecture). Vous pouvez donner un exemple.

INSA‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 2

Q4. Expliquez en quelques lignes la différence entre instruction machine et instruction assembleur.

Q5. Soit un programme exécutable préparé pour s’exécuter sur un processeur msp430. Donnez une raison vue
en cours en en TP pour laquelle ce programme binaire ne peut pas étre exécuté sur un processeur intel IA32.

Q6. Le msp430 est une architecture ... (entourez la bonne réponse)
[a] Register-memory

@ Load-Store
Expliquez votre réponse :

Q7. Dans la micro-machine, est-il possible d'utiliser l'instruction | JR -20 IFN |? Pourquoi?

2 MSP430

Q8. Sachant que le msp430 utilise un adressage 16-bits, quel est la taille maximale de son espace d’adressage
en octets) ?

Le modele que nous avons utilisé propose une mémoire vive de 8Ko. Expliquer la différence entre ces deux
tailles.

INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 3

Q9. Un MSP430 exécute le code de la colonne de gauche (qui n’a pas la prétention de réaliser quelque chose
d’utile).
Pour chaque ligne, remplissez la table avec :
— (a gauche) I'adresse de chaque instruction
— sous les colonnes Registers et Memory content les valeurs des registres et de la mémoire aprés
I'exécution de l'instruction correspondante (vous pouvez laisser en blanc les cases inchangées).

Remarque : le MSP 430 accede a la mémoire en mode little-endian. Les instructions considérées tiennent sur
16 bits, sauf celles manipulant une constante. Dans ce cas la constante est stockée (comme dans la microma-
chine) a la suite de I'instruction qui occupe ainsi 32 bits en mémoire. Le pointeur de pile pointe sur la derniére
case occupée et la pile croit vers les adresses faibles.

Toutes les valeurs en hexadécimal commencent par 0x, vous prendrez soin d’utiliser la méme notation.

Address | Instruction Registers Memory content
PC ‘ SP ‘ R3 ‘ R5 ‘ R6 0x2¢c ‘ 0x2d ‘ 0x2e ‘ 0x2f ‘ 0x30 ‘ 0x31 ‘ 0x32 ‘ 0x33

‘ ‘ (initial) — H 0x220c ‘ 0x34 ‘ 0x1234 ‘ 0x5ef2 ‘ 0x4002 H Oxde ‘ 0x15 ‘ 0x10 ‘ Oxee ‘ 0xc3 ‘ 0xa8 ‘ 0x12 ‘ 0xd7 ‘

0x220c | MOV R3, R6

PUSH R5

PUSH R6

CALL 0x3804

ADD R6, R5

Q10. Un MSP430 exécute le code ci-dessous a gauche. A droite, vous trouverez le contenu d’'un extrait de la
mémoire avant I'exécution du programme.
Rappel : vous retrouvez en pages et les informations indispensables concernant le jeu d’instruction
msp430 pour comprendre ce programme.

.section .init9
main:
nov #0, 9 0x0b00 0Oa
mov &0x0b00, r10 0x0b01 00 0x0b0c 05
mov #0x0b02, riil 0x0b02 Oa 0x0b0d 00
Lloop: 0x0b03 00 0x0ObOe 04
cmp 19,110 0x0b04 09 0x0bOf 00
jeq finish
mov 9,712 0x0b05 00 0x0b10 03
and #0x1,r12 0x0b06 08 0x0b11 00
jnz pass 0x0b07 00 0x0b12 02
L, e o 0x0b08 07 0x0b13 00
P ed o1t 0x0b09 00 0x0b14 01
inc r9 0x0b0a 06 0x0b15 00
jmp loop 0x0bOb 00
finish:
jmp finish

Donnez dans le tableau suivant les différentes valeurs de R9, R10, R11 et R12 obtenues a chaque itération de
la boucle, c’est a dire au moment ou PC = loop. Remarques : certaines cases a la fin du tableau peuvent étre
vides.

INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 4

R9

R10

R11

R12

Quelles sont les valeurs de R9, R10, R11 et R12 a la fin du programme ?
R9 : R10 : R11 : R12:

Expliquez I'objectif du programme. Soyez précis :

3 Passage de parameétres

On considére le programme C a gauche qui appelle une fonction sum4 qui réalise la somme de ses 4 parametres.
On trouvera a droite sa traduction en assembleur msp430.

1 | sumé4:
2 SUB.W #38, R1
3 MOV.W R12, 6(R1)
4 MOV.W R13, 4(R1)
5 MOV.W R14, 2(R1)
6 MOV.W R15, @R1
1 |int sum4(int a, int b, int c, int d){ 7 MOV.W 6(R1), R12
2 return a+b+c+d; 8 ADD.W 4(R1), R12
3 |} 9 ADD.W 2(R1), R12
4 10 ADD.W OR1, R12
5 11 ADD.W #38, R1
6 |int main(){ 12 RET
7 int x1, x2, x3, x4; 13 |main:
8 int y; 14 SUB.W #10, R1
9 x1 = 11; 15 MOV.W #11, 8(R1)
10 x2 = 12; 16 MOV.W #12, 6(R1)
11 x3 = 13; 17 MOV.W #13, 4(R1)
12 x4 = 14, 18 MOV.W #14, 2(R1)
13 y = sumé(x1,x2,x3,x4); 19 MOV.W 2(R1), R15
14 20 MOV.W 4(R1), R14
15 |} 21 MOV.W 6(R1), R13
22 MOV.W 8(R1), R12
23 CALL #suméd
24 MOV.W R12, @R1
25 MOV.B #0, R12
26 ADD.W #10, R1
27 RET

IN A‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 5

Q11. A votre avis, comment les quatre valeurs de x1, x2, x3 et x4 sont elles passées de main a la fonction
sum4 ?

Q12. A quoi correspondent les deux instructions | sub.w #8, Ri|et|add.w #8, R1], respectivement lignes 2
et 11 du code assembleur (a droite).

Q13. Dessinez la pile au moment ou le processeur s’appréte a exécuter l'instruction de la ligne 7 du code
assembleur (a droite).

INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 6

4 Masquage des interruptions

On considére la micromachine comme elle a été congue en TP, avec I'extension gérant les interruptions. Dans
cette implémentation, lorsqu’une interruption a été levée, le processeur charge dans PC I'adresse AO. A cette
adresse est rangée un ensemble d’instructions qui réalise le traitant d’interruption. Les détails nécessaires au
bon déroulement des questions sont rappelés plus loin.

On propose dans cette partie d’étendre cette micromachine afin de permettre le masquage des interruptions. Ce
masquage a deux buts :

— Premiérement, il doit empécher la prise en compte d’une interruption dés lors qu’une premiére interruption
est déja en cours de traitement. Autrement dit (sur 'automate de la figure donnée plus loin), si on a déja
franchi I'état JumpTolISR une fois mais qu’on n’a pas encore traité d’instruction reti, les occurrences de
IRQ sont ignorées.

— Deuxiémement, le programmeur peut explicitement demander de masquer les interruptions avec une
instruction maskIT. Les interruptions sont alors ignorées jusqu’a I'exécution de l'instruction unmaskIT.

Ce mécanisme inclut deux parties au fonctionnement distinct pour le programmeur :

— D’un coté, il peut utiliser les instructions maskIT et unmaskIT pour demander au processeur d’ignorer
(resp. prendre en compte) les interruptions. On supposera qu’au démarrage les interruptions sont prises
en compte.

— D’un autre coté, les interruptions sont automatiquement masquées par le processeur dés lorsqu’une
premiére interruption a été traitée, et jusqu’a ce que linstruction reti ait été exécutée.

On vous demande dans la suite d’'implémenter ce mécanisme en vous basant sur les figures données plus loin et
qui donnent le chemin de données et 'automate de contrdle incluant le traitement des interruptions tel qu’étudié
en TD.

Q14. Proposez un encodage binaire pour les deux instruction maskIT et unmaskIT.

Q15. Complétez le chemin de données ainsi que I'automate de contrdle des pages suivantes pour permettre
I'exécution des deux instructions maskIT et unmaskIT.
’ Répondez sur les schémas des pages suivantes ‘

Q16. Complétez le chemin de données ainsi que I'automate de contrdle pour prendre en compte le masquage
et démasquage des interruptions par I'entrée dans I'exécution d’'une ISR et I'exécution de I'instruction reti.
’ Répondez sur les schémas des pages suivantes ‘

Q17. Sice n’est pas déja fait, pensez a faire en sorte que les interruptions soient ignorées dans les bonnes
conditions.
’ Répondez sur les schémas des pages suivantes ‘

INSA

3IF - Architecture des ordinateurs - DS 2024/2025 — page 7

offset

Control Unit

—> progFetch

MDI

Instruction Register

A0

hard-coded address
of the ISR!

MA
— ceDest NB: 4 n f
5 : ew outputs for our
—» cePC ceave Control Unit. MDO
—» celR — restore
— ceFlags | __, celnterruﬂ"J MDI
— |R
A — [ntAck
— ceM
— ceM
— Mem2Reg
—» ceCst MDO IntAck
arg2S
opcode ceDes i
Reg A Mem2Req
destS : Reg B arg1 ceRegA
argls ! Reg A Reg A
S : arg1S
1
offset
: Reg B (» Reg B
cond 1
' Reg A DN arg2 ceRegB
opcode 1
instrJR : 1
S ceDest destS
ZCN
Reg Flags 1%
celnterrupt
restore 0 MA restore ?ceFlags
\
1
PC Saved
rogFetch
TcePC Prog Lo
ceSave
SavedPC
T ceSave

3IF - Architecture des ordinateurs - DS 2024/2025 — page 8

celR,progFetch

Bytelnstr
instrALU

restore
ceFlags
ce

instribyte
instrCMP

NoRegWrite
cePC,ceFlags
I
Q instrJR

JumpCondTrue lingtrCMIP "\ i

RCondFa
w 1Bytelnsti

Ise
instrMemRead
IR

instrRETi

1Bytelnstr

instrMemWrite cstFetch

progFetch

Q ceCST
rMemWrit
ceDst,cePC
Rea
JumpToISR

cePC

(0 Mem2Reg
ceSave

celnterrupt IRO //
IntAck Lg IDQ

IRQ

INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 9

Jeu d’instruction de la micromachine

Nous travaillons avec un processeur pur 8-bit, avec les spécifications suivantes :
— ses bus d’adresse et données sont sur 8 bits;
— le seul type de donnée supporté est I'entier 8 bits signé ;
— il posséde deux registres de travail de 8 bits, notés A et B.
Au démarrage du processeur, tous les registres sont initialisés a 0. C’est vrai pour A et B, et aussi pour le Program
Counter (PC) : le processeur démarre donc avec le programme a I'adresse 0.
Les instructions offertes par ce processeur sont :

Instructions de calcul a un ou deux opérandes par exemple

B ->A 21 -> B B+A ->A B xor -42 -> A
not B -> A LSR A > A A xor 12 -> A B-A ->A4;
Explications :

— la destination (a droite de la fleche) peut étre A ou B.

— Pour les instructions a un opérande, celui ci peut étre A, B, not A, not B, ou une constante signée de 8
bits. Linstruction peut étre NOT (bit & bit), ou LSR (logical shift right). Remarque : le shift left se fait par
A+A->A.

— Pour les instructions a deux opérandes, le premier opérande peut étre A ou B, le second opérande peut
étre A ou une constante signée de 8 bits. Lopération peut étre +, -, and, or, xor.

Instructions de lecture ou écriture mémoire parmiles 8 suivantes :
*A -> A *A -> B A -> %A B -> xA
*cst -> A *cst -> B A -> xcst B -> xcst
La notation *X désigne le contenu de la case mémoire d’adresse X (comme en C).
Comprenez bien la différence : A désigne le contenu du registre A, alors que *A désigne le contenu de la
case mémoire dont I'adresse est contenue dans le registre A.

Sauts absolus inconditionnels par exemple JA 42 qui met le PC a la valeur 42

Sauts relatifs conditionnels par exemple JR -12 qui enléve 12 au PC
JR offset JR offset IFZ JR offset IFC JR offset IFN
exécutée si Z=1 exécutée si C=1 exécutée si N=1
Cette instruction ajoute au PC un offset qui est une constante signée sur 5 bits (entre -16 et +15). Précisé-
ment, 'offset est relatif a 'adresse de l'instruction JR elle-méme. Par exemple, JR 0 est une boucle infinie, et
JR 1 est un NOP (no operation : on passe a l'instruction suivante sans avoir rien fait).

La condition porte sur trois drapeaux (Z,C,N). Ces drapeaux sont mis a jour par les instructions arithmétiques
et logiques.

— Zvaut 1 si l'instruction a retourné un résultat nul, et zéro sinon.

— C regoit la retenue sortant de la derniére addition/soustraction, ou le bit perdu lors d’un décalage.

— N retient le bit de signe du résultat d’'une opération arithmétique ou logique.

Comparaison arithmétique par exemple B-A7 ou A-427
Cette instruction est en fait identique a la soustraction, mais ne stocke pas son résultat : elle se contente de
positionner les drapeaux.

‘ 3IF - Architecture des ordinateurs - DS 2024/2025 — page 10

Liste compacte des instructions MSP430

Mnemonic Description Operation v
ADC(.B) dst Add C to destination dst + C — dst *
ADD(.B) src,dst Add source to destination Src + dst — dst *
ADDC(.B) src,dst Add source and C to destination src + dst + C — dst *
AND(.B) src,dst AND source and destination src .and. dst — dst 0
BIC(.B) src,dst Clear bits in destination .not.src .and. dst — dst -
BIS(.B) src,dst Set bits in destination src .or. dst — dst -
BIT(.B) src,dst Test bits in destination src .and. dst 0
BR dst Branch to destination dst — PC -
CALL dst Call destination PC+2 — stack, dst = PC -
CLR(.B) dst Clear destination 0 — dst -
CLRC Clear C 0—-C -
CLRN Clear N 0—N -
CLRZ Clear Z 0—-2Z -
CMP(.B) src,dst Compare source and destination dst - src *
DADC(.B) dst Add C decimally to destination dst + C — dst (decimally) *
DADD(.B) src,dst Add source and C decimally to dst. src + dst + C — dst (decimally) *
DEC(.B) dst Decrement destination dst -1 — dst *
DECD(.B) dst Double-decrement destination dst -2 — dst *
DINT Disable interrupts 0— GIE -
EINT Enable interrupts 1—GIE -
INC(.B) dst Increment destination dst +1 — dst *
INCD(.B) dst Double-increment destination dst+2 — dst *
INV(.B) dst Invert destination .not.dst — dst *
JC/JHS label Jump if C set/Jump if higher or same -
JEQ/JZ label Jump if equal/Jump if Z set -
JGE label Jump if greater or equal -
JL label Jump if less -
JMP label Jump PC + 2 x offset = PC -
JN label Jump if N set -
JNC/JLO label Jump if C not set/Jump if lower -
JNE/JNZ label Jump if not equal/Jump if Z not set -
MOV(.B) src,dst Move source to destination src — dst -
NOP No operation -
POP(.B) dst Pop item from stack to destination @SP — dst, SP+2 — SP -
PUSH(.B) src Push source onto stack SP -2 — SP, src - @SP -
RET Return from subroutine @SP - PC,SP +2 — SP -
RETI Return from interrupt *
RLA(.B) dst Rotate left arithmetically *
RLC(.B) dst Rotate left through C *
RRA(.B) dst Rotate right arithmetically 0
RRC(.B) dst Rotate right through C *
SBC(.B) dst Subtract not(C) from destination dst + OFFFFh + C — dst *
SETC SetC 1—-C -
SETN SetN 1—=N -
SETZ SetZ 1—-C -
SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 — dst *
SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C — dst *
SWPB dst Swap bytes -
SXT dst Extend sign 0
TST(.B) dst Test destination dst + OFFFFh + 1 0
XOR(.B) src,dst Exclusive OR source and destination src .xor. dst — dst *

INSN 3IF - Architecture des ordinateurs - DS 2024/2025 — page 11

Instructions de saut du MSP430

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset
Label Jump to label if carry bit is set
Label Jump to label if carry bit is reset
Label Jump to label if negative bit is set
Label Jump to label if (N .XOR. V) =0
Label Jump to label if (N . XOR. V) =1

Label Jump to label unconditionally

Modes d’adressage du MSP430

As/Ad Addressing Mode Syntax Description
00/0 Register mode Rn Register contents are operand
01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X

is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/- Indirect register @Rn Rn is used as a pointer to the
mode operand.

1/- Indirect @Rn+ Rnis used as a pointer to the
autoincrement operand. Rn is incremented

afterwards by 1 for .B instructions
and by 2 for .\W instructions.

11/- Immediate mode #N The word following the instruction
contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

Puissances de 2

216 = 65536 | 2%2 = 4 294 967 296 = 281 474 976 710 656
217 = 131 072 = 8 589 934 592 = 562 949 953 421 312
218 = 262 144 = 17 179 869 184 = 1125 899 906 842 624
8|219= 524 288 | 2% = 34 359 738 368 = 2251799 813 685 248

16 = 1048 576 | 2% = 68 719 476 736 = 4 503 599 627 370 496

32 | 22" = 2097 152 | 2% = 137 438 953 472 = 9 007 199 254 740 992

64 = 4194 304 = 274 877 906 944 = 18 014 398 509 481 984

128 | 228 = 8 388 608 = 549 755 813 888 = 36 028 797 018 963 968

256 | 224 = 16777216 | 20= 1099 511 627 776 = 72 057 594 037 927 936

512 = 33554432 | 2% = 2199 023 255 552 = 144115188 075 855 488

1024 = 67108864 | 22= 4398 046 511 104 = 288230376151 711 744

2048 | 227 = 134217728 | 23 = 8796 093 022 208 = 576 460 752 303 423 488

= 4096 | 228 = 268 435456 | 2*4 = 17 592 186 044 416 = 1152921 504 606 846 976

= 8192 | 229- 536870912 | 25 = 35184 372 088 832 = 2305 843 009 213 693 952

24 =16 384 | 230 =1 073 741824 | 2%6 = 70368 744 177 664 | 2%2 = 4 611 686 018 427 387 904
215 =32768 | 23" =2 147 483 648 | 247 = 140 737 488 355 328 | 2% = 9 223 372 036 854 775 808
264 = 18 446 744 073 709 551 616

INSA

Encodage du jeu d’instruction de la micro-machine

3IF - Architecture des ordinateurs - DS 2024/2025 — page 12

Les instructions sont toutes encodées en un octet comme indiqué ci-dessous. Pour celles qui impliquent une
constante (de 8 bits), cette constante occupe la case mémoire suivant celle de l'instruction.
Encodage du mot d’instruction :

| bit [7 | 68 | 5 | 4 | 3 | 2 | 1 [0 |
instruction autres que JR 0 codeop, voir table 3 | arg2s | arg1S | destS
saut relatif conditionnel 1 cond, voir table 4 | offset signé sur 5 bits

Signification des différents raccourcis utilisés :

| Notation | encodé par [valeurs possibles

dest

destS=instr[0]

A si destS=0, B si destS=1

argl

arg1S=instr[1]

A si arg1S=0, B si arg1S=1

arg2

arg2S=instr[2]

A si arg2S=0, constante 8-bit si arg2S=1

offset

instr[5 :0]

offset signé sur 5 bits

Encodage des différentes opérations possibles :

codeop | mnémonique remarques

0000 argl + arg2 -> dest addition ; shift left par A+A->A

0001 argl - arg2 -> dest soustraction; 0 -> A par A-A->A

0010 argl and arg2 -> dest

0011 argl or arg2 -> dest

0100 argl xor arg2 -> dest

0101 LSR argl -> dest logical shift right ; bit sorti dans C; arg2 inutilisé
0110 | argl - arg2 ? comparaison arithmétique ; destS inutilisé
1000 (not) argl -> dest not si arg2S=1, sinon simple copie

1001 arg2 -> dest arg1 inutilisé

1101 *xarg2 -> dest lecture mémoire ; arg1S inutilisé

1110 | argl -> *arg?2 écriture mémoire ; destS inutilisé

1111 JA cst saut absolu; destS, arg1S et arg2S inutilisés

Remarque : les codeop 0111, 1010, 1011, et 1100 sont inutilisés (réservés pour une extension future...).

Encodage des conditions du saut relatif conditionnel :

cond 00 01 10 11
mnémonique IFZ IFC IFN
(toujours) | sizéro | sicarry | sinégatif

	Questions de cours - Généralités
	MSP430
	Passage de paramètres
	Masquage des interruptions

