INSTITUT NATIONAL

DES SCIENCES

APPLIQUEES . . L
LYON Département IF / Architecture Matérielle

INSA

Architecture des Ordinateurs 2025/2026 - TD

Dans cette série de TP «msp430», on va étudier le fonctionnement d’un (petit) ordinateur réel, pour mieux com-

prendre l'interface entre le logiciel et le matériel. Vous devrez donc faire les diverses manipulations demandées,

et par moment écrire des bouts de programme.

Nous ne ramasserons pas de compte-rendu; par contre, vous avez intérét a prendre des notes tout au long du

déroulement du TP pour pouvoir les relire par la suite : dans les TP d’apres, mais aussi avant les QCM, et aussi

avant 'examen | Pour chaque exercice, mettez donc par écrit (sur papier ou sur ordinateur) les manips que vous

faites, les questions que vous vous posez, et les nouvelles notions que vous comprenez.

Comme tout objet technologique, notre plate-forme de TP s’accompagne d’une documentation technique abon-

dante. Pour ne pas vous noyer sous la doc, nous vous en avons copié les extraits essentiels directement dans

le sujet, sous forme d’encadrés. Pour les plus curieux, nous vous avons aussi mis a disposition les documents

sur Moodle :

motherboard.pdf décrit notre carte d’expérimentation et les différents composants présents sur la carte.

msp430x4xx.pdf est le manuel générique de la famille MSP430. Le processeur est documenté au chapitre 3
de ce document.

datasheet-msp430g4618.pdf donne les détails techniques de notre modéle précis de msp430.

Partiel: MSP 430 - Prise en main

1 Découverte de la carte

Pour chaque binbme, allez prendre le matériel nécessaire au TP : une carte d’expérimentation, une sonde JTAG
(le boitier gris avec une nappe d’'un cbté), et un cable USB.

Exercice 1 Que signifie 'acronyme USB, au fait? Expliquez en une phrase la signification du S. Faites valider
cette phrase par un enseignant, mais n’attendez pas qu'’il arrive pour passer a la suite.

Exercice 2 Que signifie 'acronyme JTAG ? Lexplication détaillée est donnée dans I'encadré page 7, que nous
lirons en temps utile.

Extrait de la documentation : motherboard.pdf page 6

Wireless LCD Analog
CC1100/ Out
2420/2500 >

EMK
Interface Buzzer

4>

O

FG4618

AAA

RS-232

,,,,,,,,,,,,,,,,,,,,,,,

Capacitive

Microphone

Buttons

Touch
Pad —1

Sur cette carte mére, en plus du msp430, il y a tout un tas de périphériques :

1.

©oOoNOORALDN

un écran a cristaux liquides (pour afficher des chiffres et des icénes)
un microphone

un buzzer (pour jouer du son)

une prise casque (pour jouer du son aussi, mais plus joli)

un quartz (pour générer le signal d’horloge)

deux boutons poussoirs

des voyants lumineux (LED)

une roue tactile capacitive (fouchpad) en forme de chiffre 4

un port série (RS-232)

etc. ...

Exercice 3 Pour chacun de ces éléments, indiquez sur le schéma ci-dessus son emplacement approximatif.
Certains éléments (LEDs, quartz) ne sont pas sur le schéma, vous devrez les chercher directement sur la carte.

Le quartz est repéré X2, et les diodes sont repérées LED1, LED2, LED3 et LED4.

Commentaire La carte comporte deux microcontréleurs. Lun est un MSP430F2013 (c’est le petit), et 'autre un
MSP430FG4618 (c’est le gros). C’est avec ce second msp430 qu’on va travailler dans ces TP. Les diodes LED1,
LED2, et LED4 y sont connectées par des pistes de la carte mere. La diode LED3, par contre, est connectée au
F2013, qu’on ne va pas utiliser du tout. Vous pouvez dés maintenant oublier son existence, ainsi que celle de la

LEDS.

Exercice 4 Lencadré page suivante montre le schéma électrique de la carte mére. Retrouvez les différents

composants vus jusqu’ici, et indiquez leur emplacement sur le schéma.

motherboard.pdf page 19

Extrait de la documentation

MSP430FG4618 Pin Access Power Supply Configuration RF Daughter Card Connect Isolated RS232 Communication
1 vcC [2
H2 H5 Hg VREG_EN 3 o I s ~lo DVCC 4618
SW1 bl w2 LCDCAR. H_I|I_N P57 P6.0. i P61 RESETCC S FIFQ I s
GDOO B 2 GDO2 P56 3] s p5s P6. 3 [+ pe e by FIFOP 7 E
RESETCC__§ 6 VREG_EN — P6.4 5 P65] GDOO
FIFO 7] s FIFOP P6.6 7] P6 N b GDQ SN by
JEEY by 4D Bl 9 UL
H3 H6 Ho Iy UCLKl a e by A
uTXD1___ LRXD1 P7.0 Bl LICAOSIMO VEREF-___1 REF+ v by IMOT = = E
P4.2 3| 4 sivo1 ucaosoMi 3l ZJ4_ucAoCLK PS.0 3] i ps1 19 OMIT O.1uF 900 gz v=
SOMII___§ 6 LCikl P74 B 6 p75 P10.6 B 07 — — x
P46 7] 8 P4 P76 7] s p RFL RF2 3
Ha H7 L T ﬁ PS8802
P2.0 bl P21 P3.0 1 LICBOSDA GND DVCC 4618 GND
P22 P23 UCBOSCL LUCBOCLK VCC_1: FG4618 Supply Config 7 UCAQRXD
UCAOTXD_9 6 UCAORXD P34 5 6 P35 VCC_2: F2013 Supply Config 2L D
P26 7] e P2 P36 7] e p3 JTAGL Ss=
Pos 1-2: FET Powered LY m— =
Pos 2-3: Battery Powered 21
20T 1
i 2 ale 3
i b = b 7
LCL PWR1 4 0.1uF U2 2 |
FET_PWRI 8 =)
— Z Tour -
vee AVCC_4618 T Slooln 2 5
Re % GND 5353~ N
AW _”nrﬂ. H
N
m 10" pvcc 4618 2 PS8802 PC_GND
& |R1O AVCC 4618 o 2\ ANA)
2 83Euos A2 YA A
10 1ol [T 13 o ssgggeegsayn | -
= = qoo goESEEa A
Thouro1ur Jrourfodur 999 GND DVCC 4618
ERE GND GND wﬁ
1 Slofeols| ol wln]¢)
GND 11
= I o x| o o Am
O figfpsrrineplatagafiltey - s (E
g pE xJgdes3aagdd «
DVCC 461, et i BES ol | 75 UCAOTXD
Pa SEd vs/ucnerxo | Z4_UCAORXD oln
REF P4 g pas/chouT | 73 P26 <t
Ve I alo| [2ls| [2la| [2le [Co IcT0 PGS P2.7/ppcazeLk/omee [72 P27
BWTDIO 1 2 EET PWR2 2SE| (22| |23 | | 2=2= PG6 pag/ucseste [71 P30 p1
PWR2 4 1C1_PWR2 > > > b 0.1uF | 10uF P&, 70 _UUCBOSDA 1, Buzzer
1 [L L | REF e+ 9 LICBOSCL 2 Mute
2 L B [8 X LH_H.”_ 8 v paasucsecik |68 UCBOCLK
0wy [10 GND _”[wour passmsa [67 P34
L 235 [12 o GND VEREE+_10 | uerer+/maca Pas/TB P35 P3.
b3 [14 ~ 5 VEREE= 11| vner—rverer- Pas/mes | 65 P36
. 239 WT% B3 PS1 12 | bms us var/moe |64 D3 L v —SEWTDIO
Jul [CLIES WPV P50 13 | esessusnsasonss pranmos |63 UTXDL 0-DNP
S P107 14 | eraz/e2seassonans peammes [62 URXDL _ I DVCC 2618 R22
o 14 olm PlOG ovssz [61 _GND T wﬁ WTCK
s 4 vee PLO/TACLK/ACLK/AO+ 0 0 s S0 P10.6/64 MSP430F G461 x ouce 60 CC 461, 01y 0-DNP
PLI/TAO/AQ-/Ad+ 0 1 S1 P14/ Leocp/ras CDCAP)
14 yss P12/TAL/AL+/A4- [—20 2 o S2 PL03/86 pe7/R23 | 58 P57 (For opt. F2013 programming)
i PLIVREAL 0 3 12 s3] Pia2/sr P/ corer/ats | 57 P86 |
GND L1190 nmyRsT/sBWTDIO P1.4/SMCLK/A2+/TCK 0 4 © = S4 P10.1/58 Pe.5/RE3 B35 -
LY test/sewrck P15/TA0/A2-/SCLK/TMS P15 m X S8 Piae/ss Pe.4/c0M3 COM3 10uF
me wwm 2 xanp26/TAL PL6/TAL/A3+/SDO/SCLITDTCLK 8 AR LCBOSDA Wm paz/ste paa/conz mwﬂm * h
/P2 A3 Pas/sis Poi2/con L
X0uT/P2.7 P1.7/A3-/SDI/SDA/TDO/TDI s o TV 2 Fast . cons oMo GND So ﬁwm_«_@ SBLCDA4
MSP430F2013PW B 6 P30 GND 59 Pot/s13 prgg o142
7 B UCBOCLK W STel S0, 1A.1B.1C.1D
. 1 1F1GIEDPL DOL_ERR_MINUS_ MEM 6 s21
cedeeeBudBanaREe /m 2A_2B_2C_2D ENV_TX_RX_8BC 5520
ddiddddsaddanNnynny R] 3 2F_2G_2E_DP2 ANT_A2_A1_AO s19
2Effdee e RN NNNRY 3E88 by 2F 26,26 D A2 AL A0 T
—BL: <l ol 5. 3F_3G_3£.COL3 AUAR AD_AL 1
(Mic Supply) wm 4A_4B_4C_4D PL_PO_P1 P2 ﬁm
<> - AF_AG_4E_DP4 F1_F2 F3_F4
vee 030 MMU1MHM11WO176EAKMWOMMlll PS6 | x5 5C 5D FS PR P4 P3 [E10 S14
SR rtrind ENNNS eI it}) s | or o6 st cols Como |B31&_COMO
Breadboard Mic Input Circuitry and 888 333 10 o [oy [Crs17—com1
1st Order OAOQ Active HPF 338 =] S11 3 | 666 65 DP6 comz |BS16 _COM2
s - °53 S12 2 | 7A.78.7C.7D coms |-P8Ls COM3
~= © § Sl 7F_7G_7E_.DP7
5%+ g 8 I Audio output jack
| INYYY P6.0 Sallen-Key 2nd Order OAL Active LPF PGS put)
L] R29 (AO/OA0I0) (A5/0A20)
wlx
P67 WA P4 d2R o o
(A7/DACT) "R2a4 R2 (A4/OALI0) = E .
P6.1 > B & 2 MSP430FG4618/F2013 Experimenter's Board
(A1/OA00) 22nF 3.3nF P4 P
1| x<
0 Output 225 gy =
" Raronom o3 - @ fope FEEE gl 3 MSP-EXP430FG4618 PCB Ver 0-00
<2, (A3/0A10) DAL
GND 27 oD 230§ O Document Number: VER:
g4
0-00
GND GND Date: 26-Oct-2006 [Sheet: 1/1

1.1 Vous avez dit microcontrbleur ?

Le MSP430FG4618 est un microcontrdleur, c’est a dire un System-on-Chip : une méme puce qui contient a la
fois un processeur, de la mémoire, et des contréleurs de périphériques. Si on zoome sur l'intérieur de la puce,
on a donc affaire a I'architecture illustrée ci-dessous.

Extrait de la documentation : datasheet-msp4309g4618.pdf page 5

XN/ XOouT/ P3 x/P4 x P7x/P8 x
XT2N XT20UT bvCcif2 Dvssifz P5xP6x POxP10x

4x8/2x16

Oscillators Flash (FG) Ports P1/P2

P7/P8
FLL+ P SMCLK Comparator 28 /O PgP10

A
2Channels Interrupt 4x8/2x16 /O

‘MCLK Channels Voltage out capability

8MHz DMA
CPUX Controller
incl 16
Registers 3 Channels

Enhanced
Emulation Hardware Timer B7

FG only Brownout Multiplier Watchdog Timer A3 Basic Timer| LCDA USART!

Protection WDT+ 7CC &
JTAG MPY 36C || Registers | | Real Time 160 UART SP
Segments

MPYS . ;
Interface SVSSVM MAC 15/16 Bit Registers Shadow 1234 Mux

-
[}
L]
[
L]
L]
[
[}
[}
[}
L]
L
.
[}
L]
L]
L]
L}
L]
L]
L)
[}
L
L]
L
L}
L]
.
L]
[}
L}
[}
[}
1
[}
.
[}
[}
L}
1
1
[}
L]
n
L]
.

Les fleches repérées MAB et MDB sont respectivement le Memory Address Bus et le Memory Data Bus
(les mémes que dans la micro-machine). Ce sont eux qui relient le processeur au reste-du-monde, comme
dans toute machine de von Neumann qui se respecte.

Vous pouvez constater qu’ici, le reste du monde ne se limite pas a la mémoire comme dans notre micro-
machine... Nous allons détailler tout cela.

Exercice 5 Repérez sur ce diagramme le processeur, la RAM, la mémoire flash. Vérifiez que vous connais-
sez le sens des acronymes RISC, CPU, RAM, ADC, DAC. Sinon, ouvrez le glossaire qui est tout au début de
msp430x4xx.pdf (p. 4). Demandez des explications a un enseignant si nécessaire. Ignorez les autres acronymes
pour le moment.

Exercice 6 Branchez maintenant la sonde JTAG sur la carte. Vous devriez pouvoir choisir sans difficulté entre
les deux connecteurs JTAG en regardant la figure de la page 2.

1.2 Zoom sur le processeur

Si on se rapproche encore, on tombe sur I'architecture suivante :

Extrait de la documentation : msp430x4xx.pdf page 44

MDB MAB

AN 15

RO/PC Program Counter

R1/SP Stack Pointer 0

R2/SR/CG1 Status

R3/CG2 Constant Generator

>

o

o

LOUSUE00EII 000

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose

R13 General Purpose

R14 General Purpose

R15 General Purpose

16

QA

16

Zero, Z
Carry, C
Overflow, V
Negative, N

16-bit ALU

<
%

Commentaire Attention, ce schéma ne montre que la vue ISA (instruction-set architecture), c’est a
dire du point de vue de l'utilisateur du processeur. Elle cache les détails de microarchitecture que le
programmeur n’a pas besoin de connaitre : 'automate de contr6le, le registre d’'instruction, etc.

Les seuls éléments représentés sur le schéma sont donc ceux qui sont accessibles au programmeur :
les 16 registres architecturaux, les drapeaux, ainsi que l'unité arithmétique et logique. Remarquez au
passage que les 4 premiers registres sont spécialisés pour un usage particulier : (RO est le compteur
ordinal, etc. A l'inverse les 12 autres registres sont généraux, on (le programmeur) peut y mettre ce qu’on
veut.

Exercice 7 Sur le schéma de la page 4, indiquez ou se trouvent nos 16 registres, ainsi que l'automate de
contrdle.

Exercice 8 Explicitez 'acronyme ALU.

Exercice 9 Tiens, il manque les fleches sur les fils entre ALU et les drapeaux. Ajoutez-les.

Exercice 10 Allez lire la page https://fr.wikipedia.org/wiki/Registre_de_processeur et résumez, en une
phrase, la différence entre un registre spécialisé et un registre général.

2 Prise en main des outils : mspdebug

Pour que la suite marche il faut avoir tapé une fois dans votre terminal la ligne suivante (attention, par défaut il
faudra répéter cette commande a chaque ouverture d’un nouveau terminal) :

’source /opt/msp430—toolchain/env.sh‘

Pour communiquer avec notre MSP430 au travers de linterface USB/JTAG, on va utiliser un programme appelé
mspdebug. Cet outil va nous permettre de charger des programmes dans la mémoire, d’'observer et de contréler
I'exécution du programme, d’inspecter le contenu du CPU et de la mémoire, etc.

Exercice 11 Branchez la carte, et lancez mspdebug en tapant la ligne commande suivante :

mspdebug -j -d /dev/ttyUSBO uif

Largument uif est le nom du driver a utiliser, ici celui de notre boitier JTAG.

Vous devez obtenir une série d’informations techniques compliquées, puis une liste des commandes dispo-
nibles, et enfin un prompt de la forme (mspdebug) en début de ligne. Commencez par effacer complétement les
mémoires de la puce en tapant dans mspdebug la commande [erase |.

On va maintenant se servir de mspdebug pour allumer et éteindre la diode LED4. Comme illustré par la fi-
gure p. 4, tous nos périphériques sont «mappés» sur des adresses mémoire : en écrivant les bonnes valeurs
aux bonnes adresses, on peut contrbler ces périphériques.

Par exemple, pour activer cette diode, il faut tout d’abord écrire la valeur 2 a I'adresse 50. Ensuite, on allumera la
diode en écrivant la valeur 2 a I'adresse 49, et on I'éteindra en écrivant 0 a 'adresse 49. Admettons ces valeurs
pour l'instant, nous les expliquerons dans un moment.

Exercice 12 Toujours dans mspdebug, tapez et lisez I'aide de la commande memory write. Remar-
quez au passage que vous pouvez aussi taper tout court pour obtenir la liste des commandes disponibles,

et | help bidule | pour obtenir de I'aide sur la commande bidule.

Exercice 13 Faites s’allumer et s’éteindre la diode quelques fois.

A savoir : le JTAG

Lacronyme JTAG désigne une méthode permettant de lire ou d’écrire n'importe quel bit de mémoire
d’'un circuit séquentiel. Cette méthode nécessite «seulement» des modifications mineures a I'intérieur du
circuit, ainsi qu’une poignée de signaux connectés au monde extérieur (de deux a cinq fils, suivant les
variantes du protocole).

Le principe de base est simple : il s’agit de considérer virtuellement I'ensemble du circuit (ici le MSP 430)
comme un seul gros automate, selon la figure suivante que vous connaissez maintenant bien.

I
NOJ
s s © s
T + o + F —> Y

1000 =

(@)

X —> SE

reset —

1

Ck

Dans cette figure, le registre d’état est un énorme registre (1000 bits sur notre exemple) qui contient le
registre de 'automate de contréle, mais aussi tous les registres de la partie «datapath» : les registres de
la boite a registres, tous les registres de pipeline, la valeur des flags etc. Tout I'état du processeur, quoi.
Si vous n’avez pas compris ce paragraphe, faites-le vous expliquer par un enseignant.

On ajoute (de maniére automatique) a chaque flip-flop de cet immense registre un tout petit peu de
circuiterie pour faire de I'ensemble des 1000 registres binaires un unique immense registre a décalage.
C’est une transformation automatique qui est décrite par la figure ci-dessous :

Le registre d’état de la figure ci-dessus, avant... ... et aprés sa transformation en JTAG
1
R — R
—|—0
test
R B R
test

R B R

TestDataln
test

TestDataOut

Le JTAG, suite

Avec tout cela, le circuit fonctionne normallement lorsque test est a 0. Et on peut, en 1000 cycles, mettre
le circuit dans un état quelconque. Il suffit de mettre test a 1, et de pousser I'état qu’on veut dans le grand
registre a décalage ainsi obtenu. Dans le méme temps, I'état précédent du circuit sort sur testOut : on
peut également, toujours en 1000 cycles d’horloge, lire I'état complet du processeur. C’est ce qu'on va
faire dans ce TP pour contréler 'exécution de notre programme en pas-a-pas, mais aussi pour observer
quand on le désire les valeurs des registres.

Mais pourquoi cela s’appele JTAG ? Parce que cela sert surtout a tester chaque puce, y compris les plus
complexes comme votre Pentium, avant de le mettre en boite. En effet, lors du processus de fabrication,
il arrive souvent qu’une poussiére malencontreuse rende un transistor inopérant. Comment détecter cette
situation pour jeter les puces défectueuses au plus t6t?

Bien sdr, on pourrait lui faire booter Linux puis Windows et jouer un peu a Quake dessus, et on se dirait
qu’on a tout testé. Mais cela prendrait de longues minutes par puce, et le temps c’est de I'argent.

Voici une technique qui permet de tester toute la puce en quelque centaines de milliers de cycles seule-
ment (comptez combien de cycles a 4GHz il faut pour booter Linux en 20s).

— On met test a 1, puis on pousse un état connu, pas forcément utile, dans le processeur.

— Puis on met test a 0, et on fait tourner le processeur pendant quelques centaines de cycles.
— |l fait sans doute n’importe quoi, mais ce n’est pas grave.

— On remet test a 1, et on sort I'état complet du processeur (tout en poussant un nouvel état).

— On compare I'état obtenu avec I'état (obtenu par simulation) dans lequel doit étre le processeur si
chacune de ses portes fonctionne correctement. S’il y a une différence, on le jette !

— Etonrecommence plusieurs fois, avec des états construits pour faire fonctionner tous les transistors
de I'énorme fonction T — pas forcément des états dans lequel le processeur peut se trouver en
fonctionnement normal.

Tout ceci est méme normalisé par le Joint Test Action Group : JTAG.

Et le rapport avec notre interface JTAG ? Eh bien, une fois gu’on a ce mécanisme en place, on peut méme
s’en servir pour débugger : on peut aller observer ou changer la valeur de n'importe quel registre du
processeur en quelque dizaines de milliers de cycle. Il suffit de lire I'état, changer les bits qu’on veut, et
réécrire I'état modifié. C’est comme cela que vous pourrez, dans ce TP, observer dans mspdebug ce qui
se passe a l'intérieur de votre MSP430.

Il'y a méme une boite nommée JTAG interface qui permet, a travers le JTAG, d'observer aussi tout le
contenu de la RAM et des périphériques.

Bien sdr, le nombre des registres et 'ordre dans lequel ils sont chainés dépend du microcontréleur utilisé,
c’est pourquoi on doit passer les bons argumentsa mspdebug.

3 Assemblage et exécution d’'un programme

Exercice 14 Créez un nouveau répertoire TPMSP430, et retapez dans un fichier ex14.s le programme sui-
vant :

.section .init9

main:
/* initialisation de la diode rouge */
mov.b #2, &50

/* eteindre */
mov.b #0, &49

/* allumer */
mov.b #2, &49

loop:
jmp loop

Dans ce programme,

— .section .init9 est une commande a destination de msp430-gcc pour lui indiquer ou placer ce code —
voir 'encadré ci-dessous.

— mov.b est I'instruction assembleur qui réalise une copie (move) d’'un octet (b pour byte).
— en assembleur msp430, #17 désigne la valeur 17, alors que &17 désigne la case mémoire d’adresse 17.

— donc mov.b #2, &49 est une instruction assembleur qui réalise une copie de la valeur constante 2 vers
la case mémoire d’adresse 49. Attention, les arguments sont dans l'ordre inverse de la commande mw de
mspdebug... Moyen mnémotechnique : en assembleur MSP430, la virgule se lit «to».

— jmp est une instruction MSP430 de saut (pour jump)

— main: et loop: sont des définitions d’étiquettes (label). Une étiquette désigne un emplacement dans notre
programme, qu’on peut utiliser par exemple comme destination dans les instruction de saut (ou autres).
Pour un saut absolu comme notre jmp loop, GCC utilisera dans le langage machine I'adresse réelle de
I'étiquette. Pour un saut relatif, il calculera la distance de saut (aka déplacement ou offset) en faisant une
soustraction entre I'adresse de départ et 'adresse de destination.

— lci, remarquez qu’on finit notre programme par une boucle infinie dont il ne sortira pas : cela assure que
notre pointeur de programme ne part pas se balader au hasard dans la mémoire...

Exercice 15 Traduisez ce programme en un exécutable en langage machine avec la commande suivante :
msp430-gcc -mmcu=msp430fg4618 -mdisable-watchdog -o prog.elf exl4d.s

Les deux options sont importantes. La premiére, -mmcu=msp430£g4618, indique la puce exacte ciblée. La se-

conde, -mdisable-watchdog, débranche le watchdog, un composant matériel qui fait rebooter le systéme lors-

qu’il est inactif trop longtemps. Allez lire le premier paragraphe de la page wikipedia «watchdog timer» et vous

comprendrez par quel mécanisme votre téléphone reboote lorsqu’il ralentit trop.

Attention, si on fait une faute de frappe dans cette option, il N’y aura pas de message d’erreur mais le programme

fera n'importe quoi, puisqu’il rebootera sans fin.

A savoir : assemblage et éditions de liens

Pour passer d’'un programme en langage assembleur a un programme exécutable, il faut réaliser deux
opérations :

1) 'assemblage consiste a convertir un fichier texte contenant des instructions vers un fichier binaire
contenant les méme instructions, mais en langage machine. Loutil qui fait ¢a, 'assembleur, est
typiqguement nommé as (et dans notre cas msp430-as), et permet de passer d’un fichier bidule.s
a un fichier bidule.o.

Mais ce n’est pas fini : le programme consiste peut-étre en plusieurs morceaux, qu’il faut maintenant
coller ensemble.

2) I'édition de liens consiste a coller ensemble plusieurs fichiers machin. o, et a placer chacun d’entre
eux aux bonnes adresses, par exemple pour s’assurer qu’ils ne se marchent pas les uns sur
les autres. Loutil qui fait ca, I'éditeur de liens, est typiguement nommé , et produit un fichier
truc.elf

Invoquer ces différents outils comme il faut avec les bonnes options est compliqué et souvent source
d’erreur. Heureusement, il existe aussi une commande générique qui est beaucoup plus simple
d'usage, et qui se charge d’appeler as et 1d dans le bon ordre et avec les bons arguments. Ainsi, vous
pouvez obtenir directement un exécutable avec la commande donnée.

Exercice 16 Désassemblez le programme obtenu par
msp430-objdump -d prog.elf
Cherchez, dans la sortie de cette commande, votre main, et répondez aux questions suivantes :
— Quel est le code binaire de linstruction jmp loop?
— A quelle adresse cette instruction est-elle assemblée ?
— Est-ce un saut relatif ou un saut absolu ?

— D’ou viennent toutes ces instructions supplémentaires, autour de votre programme ?

9

Exercice 17 Depuis mspdebug, transférez votre programme sur la carte en utilisant la commande
’prog prog.elf ‘ puis lancez-le avec la commande [run|. Constatez que la diode reste toujours allumée (c’est
normal, on ne l'éteint jamais). Interrompez I'exécution en appuyant sur Ctr1+C.

4 Exécution d’un programme pas a pas

A partir dici, il est productif d’avoir deux terminaux ouverts : I'un dans lequel mspdebug reste ouvert, 'autre dans
lequel vous exécutez vos msp430-gcc. Cela permet de conserver 'historique des commandes passées dans
mspdebug.

Exercice 18 Copiez ex14.s en un nouveau fichier ex18. s, déplacez les instructions d’allumage et d’extinction
a l'intérieur de la boucle infinie : le but est de faire clignoter la diode. Assemblez par msp430-gcc, puis dans
mspdebug chargez votre programme par prog et exécutez-le de nouveau par run.

Si tout va bien, on dirait que la diode reste encore toujours allumée. C’est peut-étre que vous vous étes trompés.
C’est peut-étre aussi qu’elle clignote bien, mais trop rapidement pour notre ceil. En effet, la fréquence du CPU
est de 1MHz, et chaque instruction prend une poignée de cycles d’horloge, donc notre boucle tout entiére tourne
a plus de 100kHz.

Interrompez de nouveau I'exécution, et au lieu de la relancer avec [run|, utilisez cette fois la commande
qui exécute une seule instruction machine (faites donc help run et help step au passage).

Constatez qu’en exécutant ainsi le programme en mode pas-a-pas, on arrive maintenant a voir ce qui se passe.
Décidez ainsi si la diode clignote ou si vous vous étes plantés. Auguel cas, corrigez.

5 Programmation en assembleur : variables et boucles

Vous allez maintenant devoir modifier votre programme un peu plus sérieusement. Pour la syntaxe de 'assem-
bleur MSP430, aidez-vous des explications qui sont données dans les deux encadrés page 12 et page 13.

Débuggage : points d’arréts

Pour la mise au point, utilisez mspdebug. En plus des commande qu’on a vues jusqu’ici, vous aurez peut-

étre besoin de la commande (memory display) pour lire la mémoire, et de pour mettre
des points d’arrét. Pour plus de détails, help md et help setbreak.

Exercice 19 Introduisons d’abord les registres et les opérations logiques. Modifiez le programme comme suit :

.section .init9
main:
mov.b #2, &50 /* initialisation de la diode */
mov #2, r1b /* valeur initiale de la valeur de la diode */

loop:
mov.b ri15, &49 /* transferer ri15 vers la diode */
xor #2, rib /* que fait cette ligne? */
jmp loop

La nouveauté est I'utilisation de I'un des registres visibles sur le dessin de la page 5. Linstruction xor #2, ri15
met dans r15 le ou-exclusif (xor), bit & bit, de r15 et de la valeur 2. Remarquez que nous travaillons sur r15 avec
des instruction sans le suffixe .b : ces instructions travaillent sur 16 bits, pas juste 8. Essayez de prédire ce
que fait ce programme. Executez ce programme pas-a-pas, et observez dans la fenétre mspdebug la valeur du
registre r15 au cours de I'exécution.

Exercice 20 Ajoutez au programme précédent ce qu’il faut pour que, tout en faisant clignoter la diode, il compte
les tours de boucle 1 dans le registre r14). Vérifiez que r14 augmente bien dans mspdebug.

Exercice 21 Question difficile, n’hésitez pas a appeler a I'aide. Modifiez votre programme afin de ralentir
suffisamment la boucle infinie pour pouvoir observer le clignotement a 'oeil nu. Pour cela, vous allez rajouter, a
l'intérieur de la boucle existante, une seconde boucle qui ne fait rien sauf perdre du temps. Ce sera I'équivalent
assembleur d’une boucle for (i=2000; i>0; i--){} Partantd’une certaine valeur, par exemple 20000, stockée

10

dans un registre, par exemple R13, elle décrémente ce registre a chaque tour. Pour sortir de la boucle il faut un
saut conditionnel, par exemple JNZ (vous pouvez utiliser le fait quer le drapeau Z est mis a jour par I'instruction
SUB qui décrémente votre registre). Attention, 20000 tient sur 16 bits mais pas sur 8 bits : utilisez des instructions
sans I'extension .b.

11

Survol de la syntaxe assembleur du msp430

On vous présente ici la syntaxe que vous allez devoir utiliser en TP. Elle est en général insensible a la
casse (majuscules ou minuscules, c’est pareil). Ne touchez pas aux registres R0 a RS, ils sont spéciaux,
voir le dessin de la page 5.

Opérations La plupart des instructions est de la forme] OPCODE SRC, DST \ OPCODE est I'opération sou-
haitée, par exemple ADD, XOR, MOV, etc. La liste compléte est donnée page suivante. SRC et DST indiquent
les opérandes (source et destination) sur lesquels travailler. La destination est aussi le second opérande
de I'opération, ainsi la virgule peut souvent se lire «to». Par exemple peut se lire «<ADD
1 to R5» et, en C++, s’écrirait R5=R5+1;. Une instruction spéciale est I'instruction MOV, par exemple
, qui peut se lire <MOV R7 to R5» et s’écrirait en C++ R5=R7; 2
En détail, chague opérande est de I'une des formes suivantes :

— un nom de registre : R7, R15... (utilisez les numéros, pas de «SP» ni «PC» etc.)

— une constante immédiate, a préfixer par # : #42, #0xB600...

— le contenu d’'une case mémoire désignée par son addresse, & préfixer? par & : &1234, &0x3100...

— le contenu d’'une case mémoire dont I'adresse est la valeur contenue dans un registre, alors ce

registre est préfixé par @. Par exemple | MOV R7, @R5 |, s’écrirait en C++ ainsi : *R5=R7;

Par exemple, I'instruction | ADD &1000, R5| calcule la somme de R5 et de la valeur contenue dans la
case d’adresse 1000, et range le résultat dans R5. Attention, certaines combinaisons n’ont pas de sens,
et seront rejetées par 'assembleur avec un message d’erreur. Par exemple l'instruction MOV R8, #36 ne
veut rien dire.

Certaines instructions travaillent sur un seul opérande, et ont donc une syntaxe Iégérement différente. Par

exemple | INV DST | inverse chacun des bits de DST, ou |CLR DST | met DST a zéro. Reportez-vous a la

liste page suivante pour plus de détails, et/ou a la doc : msp430x4xx.pdf pages 56 et suivantes.

Drapeaux Certaines instructions, notamment les opérations arithmétiques et logiques, modifient les
drapeaux Z, N, G, V :
— Z est le Zero bit. |l passe a 1 lorsque le résultat d’'une opération est nul, et il passe a 0 lorsqu’un
résultat est non-nul.
— N est le Negative bit. Il passe a 1 lorsque le résultat d’'une opération est négatif (en complément a
deux) et il passe a 0 lorsqu’un résultat est non-négatif.
— Cestle Carry bit. Il passe a 1 lorsqu’un calcul produit une retenue sortante, et il passe a 0 lorsqu’un
calcul ne produit pas de retenue sortante.
— V est le Overflow bit. Il est mis a 1 lorsque le résultat d’une opération arithmétique déborde de la
fourchette des valeurs signées (en complément a deux), et a 0 sinon.
La liste page suivante détaille I'effet de chaque instruction sur les quatre drapeaux : un tiret lorsque le
drapeau n’est pas affecté, un 1 ou un 0 lorsque le drapeau passe toujours a une certaine valeur, et une
étoile lorsque I'effet sur le drapeau dépend du résultat.

Sauts conditionnels Les instructions de branchement sont de la forme [JMP label| Regardez par
exemple le programme page 8. Le saut peut étre soit inconditionnel (instruction JMP), soit soumis & une
condition sur les drapeaux. Par exemple, I'instruction est un Jump if Non-Zero : elle sautera
vers label si et seulement si le bit Z est faux.

Opérandes «word» ou «byte» Chaque instruction peut travailler sur des mots de 16 bits (par dé-
faut), ou sur des octets (il faut pour cela remplacer OPCODE par OPCODE.B) . Par exemple, l'instruction
]MOV.B R10, &42\ copie les 8 bits de poids faible de R10 vers l'octet situé a I'adresse 42, alors que
linstruction MOV R10, &42 copie tout le contenu de R10 vers les deux octets situés aux adresses 42 et
43°.

a. Et donc en termes Unix c’est cp, pas mv.

b. Si par mégarde on écrit au lieu d’écrire alors non seulement ¢a ne cause aucun message
d’erreur, mais surtout le programme fera n’importe quoi. Vous voila prévenu. Et si vous voulez savoir ce qui se passe dans ce
cas, assemblez puis désassemblez, puis cherchez dans la doc ce qu’on vous a caché.

c. Précision : les 8 bits de poids faible vont en 42, et les 8 bits de poids fort vont en 43. On dit que le msp430 est de
type little-endian. Allez lire https://fr.wikipedia.org/wiki/Endianness si c’est la premiére fois que vous voyez ce mot.

12

Liste compacte des instructions MSP430

Mnemonic Description Operation \'
ADC(.B) dst Add C to destination dst + C — dst *
ADD(.B) src,dst Add source to destination src + dst — dst *
ADDC(.B) src,dst Add source and C to destination src + dst + C — dst *
AND(.B) src,dst AND source and destination src .and. dst — dst 0
BIC(.B) src,dst Clear bits in destination .not.src .and. dst — dst -
BIS(.B) src,dst Set bits in destination src .or. dst — dst -
BIT(.B) src,dst Test bits in destination src .and. dst 0
BR dst Branch to destination dst — PC -
CALL dst Call destination PC+2 — stack, dst = PC -
CLR(.B) dst Clear destination 0 — dst -
CLRC Clear C 0—-C -
CLRN Clear N 0—N -
CLRZ Clear Z 0—-Z -
CMP(.B) src,dst Compare source and destination dst - src *
DADC(.B) dst Add C decimally to destination dst + C — dst (decimally) *
DADD(.B) src,dst Add source and C decimally to dst. src + dst + C — dst (decimally) *
DEC(.B) dst Decrement destination dst -1 — dst *
DECD(.B) dst Double-decrement destination dst -2 — dst *
DINT Disable interrupts 0— GIE -
EINT Enable interrupts 1—GIE -
INC(.B) dst Increment destination dst +1 — dst *
INCD(.B) dst Double-increment destination dst+2 — dst *
INV(.B) dst Invert destination .not.dst — dst *
JC/JHS label Jump if C set/Jump if higher or same -
JEQ/J2Z label Jump if equal/Jump if Z set -
JGE label Jump if greater or equal -
JL label Jump if less -
JMP label Jump PC + 2 x offset = PC -
JN label Jump if N set -
JNC/JLO label Jump if C not set/Jump if lower -
JNE/JNZ label Jump if not equal/Jump if Z not set -
MOV (.B) src,dst Move source to destination src — dst -
NOP No operation -
POP(.B) dst Pop item from stack to destination @SP — dst, SP+2 — SP -
PUSH(.B) src Push source onto stack SP -2 — SP, src - @SP -
RET Return from subroutine @SP — PC,SP +2 — SP -
RETI Return from interrupt *
RLA(.B) dst Rotate left arithmetically *
RLC(.B) dst Rotate left through C *
RRA(.B) dst Rotate right arithmetically 0
RRC(.B) dst Rotate right through C *
SBC(.B) dst Subtract not(C) from destination dst + OFFFFh + C — dst *
SETC SetC 1—-C -
SETN SetN 1—=N -
SETZ SetZ 1—-C -
SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 — dst *
SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C — dst *
SWPB dst Swap bytes -
SXT dst Extend sign 0
TST(.B) dst Test destination dst + OFFFFh + 1 0
XOR(.B) src,dst Exclusive OR source and destination src .xor. dst — dst *

Remarque chacune de ces instructions est documentée en détail dans la doc (msp430x4xx.pdf, section
3.4). Il faut s’y reporter si vous avez besoin de précisions.

13

6 Memory-mapped IO

A savoir : Les entrées-sorties

Du point de vue du processeur, un périphérique se présente comme un ensemble de registres (au sens
du cours d’AC), qui permettent d’échanger de I'information entre le CPU et le périphérique.
On peut distinguer informellement trois sortes de registres dans un périphérique :

— les registres d’état du périphérique fournissent de I'information sur I'état du périphérique : est-il actif,
est-il prét, a-t-il quelquechose a dire, etc. lls sont typiquement accessibles en lecture seulement : le
processeur peut lire leur contenu, mais pas le modifier.

— les registres de contréle ou de configuration du périphérique sont utilisés par le CPU pour configurer
et contrbler le périphérique. lls seront typiquement accessibles en lecture-écriture, ou parfois en écriture
seulement.

— les registres de données du périphérique permettent de lui envoyer des données (en écrivant dedans
depuis le CPU) ou de recevoir des données de la part d’un périphérique (en lisant dedans).

Contréleur de périphérique Périphérique (optionnel)
reg. d’état
Monde
e —
CPU ——{ reg. de configuration| extérieur

[
«——{ reg. de données |
[

Tout cela est assez informel. Dans certains cas, un méme registre peut appartenir a plusieurs de ces
catégories, par exemple s'il contient a la fois des informations d’état (en lecture seule) et des information
de configuration (en lecture/écriture).

La circuiterie contenant ces registres est appelée le contréleur du périphérique. La plupart des boites
sur la figure de la page 4 sont des contrbleurs de périphériques. Physiquement parlant, le contr6leur est
parfois situé sur le périphérique lui-méme, par exemple un contréleur de disque dur. Parfois au contraire
il est placée plus prés du processeur (ceux de la page 4 sont tous intégrés sur la méme puce). et reliée
ensuite au périphérique proprement dit par un moyen quelconque. Par exemple, votre carte vidéo est
reliée a votre écran par un cable VGA ou HDMI. Larchitecture générique est illustrée ci-dessous :

Les registres matériels doivent pouvoir étre accédés individuellement par le CPU. Comme pour les
cases mémoire, on leur donne donc chacun une adresse distincte. Certains processeurs distinguent les
adresses de mémoire et les adresses de registres matériels; ils offrent alors des instructions distinctes
pour accéder aux uns et aux autres. A I'inverse, la majorité des processeurs, dont notre MSP430, uti-
lisent un unique espace d’adressage : certaines adresses correspondent a de la mémoire, et d’autres
a des registres matériels. Les entrées-sorties se font alors avec les mémes instructions que les acces
mémoire classiques. De plus, les contréleurs de périphériques et la mémoire se partagent les mémes
bus d’adresse et de donnée : a nouveau, voir la figure de la page 4.

On parle alors d’entrées/sorties «projetées en mémoire», ou Memory-Mapped Input/Output.

14

Utile pour le TP : le plan mémoire du msp430

Du point de vue du CPU, la mémoire principale et les périphériques se présentent tous comme des
cases mémoire. Certains registres matériels font 16 bits, et occupent donc deux adresses consécutives
(a gauche sur le schéma ci-dessous). Certains autres registres ne font que 8 bits, et occupent une seule
adresse. Vous aurez aussi remarqué que la «<mémoire» est elle-méme composée d'une région de RAM
(en lecture-écriture) et d’une région de mémoire flash (en lecture seule).

Pour s’y retrouver, la documentation technique nous indique le «plan d’adressage» (en VO, la memory
map) c’est a dire une cartographie I'espace d’adressage de la machine :

Address Access
FFFFh
Interrupt Vector Table Word/Byte
FFCOh
FFBFh
Flash Word/Byte
3100h
30FFh
RAM Word/Byte
1100h
Reserved No access
01FFh
16-Bit Peripheral Modules Word
0100h
00FFh
8-Bit Peripheral Modules Byte
0010h
000Fh) .)
Special Function Registers Byte
0000h

Exercice 22 Pour allumer notre diode on écrivait aux adresses 50 et 49. Traduisez-les en hexa (de téte!) et
placez-les sur le plan mémoire.

Exercice 23 Cherchez la diode LED4 sur le schéma de la page 3. Comment s’appelle la broche du processeur
auquel elle est reliée ? La partie intéressante commence par P (comme Port d’entrée-sortie).

Ces broches sont des general purpose input/outputs, ou GPIO. Comme écrit en introduction du chapitre 11
de msp430x4xx.pdf, MSP430 devices have up to ten digital I/O ports implemented, P1 to P10. Each port has
eight I/O pins. Every I/O pin is individually configurable for input or output direction, and each I/O line can be
individually read from or written to.

Ces registres font 8 bits, ainsi les GPIO sont groupés par paquets de 8, juste parce qu’il sont mappés sur des
cases mémoire de 8 bits. La notation P5.1 se lit «le bit numéro 1 du port 5».

Chaque GPIO peut étre configuré en entrée (1) ou en sortie (O). Ce choix se fait (bit a bit) par écriture dans un
registre de controle. Pour le port 5 ce registre s’appelle P5DIR et est mappé a I'adresse 50. Vous reconnaissez
le 507

Les 8 bits de chaque port sont numérotés de 0 a 7. La valeur 2 qu’on écrivait & 'adresse 50 levait le bit numéro
1, dont la valeur en binaire est 2' = 2. Si on voulait lever le bit 3 on écrirait la valeur 22 = 8. Si on voulait lever &
la fois le bit 1 et le bit 3, on écrirait la valeur binaire 00001010, soit 0x0A, ou 10 en décimal.

15

Extrait de la documentation : msp430x4xx.pdf page 409

11.2 Digital I/O Operation

The digital I/O is configured with user software. The setup and operation of the
digital I/O is described in the following sections. Each port register is an 8-bit
register and is accessed with byte instructions. Registers for P7/P8 and
P9/P10 are arranged such that the two ports can be addressed at once as a
16-bit port. The P7/P8 combination is referred to as PA and the P9/P10
combination is referred to as PB in the standard definitions file. For example,
to write to P7SEL and P8SEL simultaneously, a word write to PASEL would
be used. Some examples of accessing these ports follow:

BIS.B #01h,&P70UT ; Set LSB of P70UT.
; P8OUT is unchanged
MOV.W #05555h, &PAOUT ; P70UT and P8OUT written

; simultaneously
CLR.B &P9SEL ; Clear P9SEL, P10SEL is unchanged
MOV.W &PBIN, &0200h ; P9IN and P10IN read simultaneously

; as 1lé6-bit port.

11.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the
corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low
Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

11.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding
I/0O pin when the pin is configured as 1/0 function and output direction.

Bit = 0: The output is low
Bit = 1: The output is high

11.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O
pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that
are selected for other module functions must be set as required by the other
function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

16

Exercice 24 Retrouvez I'adresse de P5DIR dans le tableau de la page 413 de msp430x4xx.pdf. On trouve en
bas de la p. 409 qu’un bit a 1 configure le port en sortie alors qu’un bit a 0 le configure en entrée. Ainsi au reset
du MSP430 toutes les 10 sont configurées en entrées et la puce ne risque pas d’agir sur son environnement tant
gu’elle n’est pas programmée pour.

Exercice 25 Qu’est-ce qui est mappé a I'adresse 49 ? Voici en principe démystifiés les deux mw du début du
TP. Si ce n’est pas encore tout clair, posez des questions...

Exercice 26 Et maintenant passons aux deux autres diodes LED1 et LED2 : cherchez-les sur le schéma de
la page 3, trouvez a quel bit de quel port elles sont reliées, enfin allumez-les séparément puis foutes les deux
ensemble (faites vos tests en utilisant des mw dans mspdebug plutdt que des itérations de compilation / prog /
run...)

Exercice 27 Le buzzer (cherchez-le sur les schémas) se commande comme une diode : pour jouer une note,
il suffit de le faire «clignoter» a la bonne fréquence. Essayez de jouer une note. Vous pouvez faire monter et
descendre la note pour faire des bruits de sirénes... faites un concours de sons et lumiéres.

Vous voudrez peut-étre définir I'équivalent assembleur d’'une procédure : I'instruction CALL #toto fait un saut a
I'étiquette toto, tout comme JMP toto (mais attention, il faut un # devant I'étiquette). En plus I'adresse suivant
linstruction CALL est mémorisée : ainsi, l'instruction RET, a placer a la fin du code de votre procédure, transfere
I’éxécution aprés le CALL. Et si vous voulez passer un parameétre a votre procédure, vous le passez dans un
registre...

7 S’il reste du temps

Exercice 28 Ecrivez (et testez) un programme qui lit un argument dans R15, et le sort en binaire sur nos deux
diodes : une diode clignote comme une horloge, et une autre diode s’allume pour les bits a 1 (en commencgant
par les bits de poids faible).

Exercice 29 Ecrivez une procédure qui divise R14 par R15 et renvoie le résultat dans R15.

17

Partie Il: MSP430 - Pile, appels de fonctions, interruptions

Le mécanisme des interruptions matérielles est un rouage essentiel dans le fonctionnement des ordinateurs.
Lobjectif de ce dernier TP est de le mettre en ceuvre sur la plateforme MSP430. En particulier, on va s’intéresser
aux notions suivantes : requéte d’interruption (IRQ), vecteur d’interruption, priorités, masquage d’interruption,
routine de traitement d’'interruption (ISR), sauvegarde de contexte, acquittement d’interruption.

Nous en avons vu une implémentation matérielle lors du dernier TP micromachine. Il utilisait un mécanisme
appelé branch and link, dans lequel I'adresse de retour était stockée dans un registre du processeur. Dans le
MSP430, 'adresse de retour est stockée sur une pile, ce qui permet par exemple a une routine de traitemement
d’interruption d’étre elle-méme interrompue par une interruption plus prioritaire. Nous allons d’abord observer ce
mécanisme de pile et les instructions associées.

Mais avant ¢a, on va prendre en main les boutons, sans s’occuper des interruptions.

1 Boutons et attente active

Exercice 30 Ressortez un programme qui fait clignoter une LED. Testez-le.

Exercice 31 Sur la carte (voir schéma dans le sujet de TP précédent) trouvez a quelles broches du msp430
sont connectés les deux boutons-poussoirs S1 et S2. Identifiez le port GPIO correspondant Px.

Exercice 32 Relisez I'encadré page 16 pour vous rafraichir la mémoire sur I'utilisation des entrées-sorties
numeériques.

Exercice 33 Au début de votre programme, configurez le port Px pour qu’il agisse comme une entrée (re-
gistre PxDIR). Vous trouverez les adresses des différents registres utiles a la page 413 de la documentation
msp430x4xX.

Exercice 34 Dans mspdebug, utilisez la commande md (au besoin, faites d’abord un help md) pour lire le
registre PxIN :

— quelle est la valeur de PxIN lorsque les deux boutons sont relachés ?
— quelle est la valeur de PxIN lorsque seul le premier bouton est pressé ?
— quelle est la valeur de PxIN lorsque seul le second bouton est pressé ?
— quelle est la valeur de PxIN lorsque les deux boutons sont pressés ?

Exercice 35 Dans la boucle principale de votre programme, remplacez le ralentissement par une attente sur
les boutons. On veut que le bouton soit appuyé puis relaché, comme illustré ci-dessous :

.section .init9

main:
/* initialiser la LED et les boutons */

boucle:
/* attendre qu’un bouton soit appuye’ */
/* attendre que le bouton soit relache’ */
/* inverser la LED */

jmp boucle

18

2 Les instructions call, ret, et un peu de pile

Les appels de fonction (aka «procédure», «méthode», «sous-programme», «routine») sont tellement courants
en pratique que toutes les architectures offrent des instructions dédiées pour les implémenter. Ces instructions
s'appellent par exemple CALL et RET sur msp430 (et sur x86), ou BL et BX sur ARM. Ainsi, saute
vers la fonction située a 'adresse (ou a I'étiquette) func, et retourne vers la fonction appelante (en fait
'adresse appelante).

Attention, erreur fréquente! si par mégarde vous écrivez CALL func au lieu de CALL #func alors votre pro-
gramme sera assemblé sans message d’erreur mais il fera n'importe quoi a I'exécution.

Exercice 36 Lisez les extraits de documentation ci-dessous et page suivante . TOS veut dire top of stack.

Extrait de la documentation : msp430x4xx.pdf page 45

3.2.2 Stack Pointer (SP)

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3-3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3-4 shows stack usage.

Figure 3-3. Stack Pointer
15

Stack Pointer Bits 15 to 1

2(SP),R6 ; Item I2 -> R6
R7,0(SP) ; Overwrite TOS with R7
#0123h ; Put 0123h onto TOS
R8 ; R8 = 0123h

Figure 3-4. Stack Usage

Address PUSH #0123h POP R8

Oxxxh

Oxxxh — 2
Oxxxh — 4
Oxxxh — 6
Oxxxh — 8

19

Extrait de la documentation : msp430x4xx.pdf page 69

CALL Subroutine
Syntax CALL dst

Operation dst ->tmp dst is evaluated and stored
SP-2 -> SP
PC -> @SP PC updated to TOS
tmp -> PC dst saved to PC

Description A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status Bits Status bits are not affected.

Extrait de la documentation : msp430x4xx.pdf page 96

* RET Return from subroutine
Syntax RET

Operation @SP— PC
SP+2 - 8P

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is moved to
the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.

Remarque : Les instructions CALL et RET sont essentiellement des sauts. Les arguments de la fonction/pro-
cédure peuvent étre passés soit dans les registres, soit en mémoire. Idem pour I'éventuelle valeur de retour.
Si ce sont des programmeurs différents qui écrivent I'appelant et I'appelé, il faut qu'’il y ait entre eux une régle
du jeu commune. Cette régle commune, en général édictée par les concepteurs du systéme d’exploitation, est
appelée la convention d’appel (ou “ABI” : pour “Application Binary Interface”). Elle sera étudiée plus précisément
en compilation, car elle est aussi indispensable pour permettre la compilation séparée.

Exercice 37 Dans quelle direction grandit la pile du msp430 : vers les adresses croissantes, ou vers les
adresses décroissantes ?

Exercice 38 Dans votre programme, a quelle valeur SP est-il initialisé ? Cherchez dans le désassemblage
complet du programme l'instruction qui fait cette initialisation.

Exercice 39 Sur le plan mémoire du msp430 (cf sujet du TP précédent) repérez 'emplacement de la pile et sa
direction de croissance.

Exercice 40 Ressortez votre boucle de ralentissement et faites-en une procédure pause qui attend environ
une demi-seconde. On doit pouvoir utiliser cette procédure dans un programme de ce genre :

.section .init9

20

main:
/* initialiser la led */

boucle:
call #pause

/* inverser la led */
j boucle
pause:

/* copiez ici le code que vous avez deja */
ret

Exercice 41 Lintérét d’'une procédure est de I'appeler plus d’une fois... Modifiez votre programme pour qu’il
chronometre la durée d’appui sur le bouton : vous mesurerez ce temps en comptant le nombre de fois que vous
pouvez appeler pause avant que le bouton soit relaché. Une fois que le bouton est relaché, faites clignoter la
LED le méme nombre de fois. Vous aurez ainsi deux appels call #pause dans ce programme : I'un pour la
mesure du temps, et I'autre pour ralentir le clignotement.

Exercice 42 Mettez un breakpoint sur pause pour arréter I'exécution a I'entrée de cette procédure. Observez
la valeur du SP lors des deux appels. Observez la valeur pointée par SP lors des deux appels. Expliquez tout
cela a un enseignant.

Exercice 43 Lintérét de la pile apparait lorsque une fonction appelle elle-méme une autre fonction. Modifiez
votre programmme pour qu’il utilise une procédure blinkn qui fait clignoter la led n fois, ou n est la valeur de
R15 a I'entrée de la routine. Votre programme main appellera blinkn qui appellera lui-méme pause. Testez-le.

Exercice 44 Toujours a I'entrée de pause, retrouvez sur la pile pointée par SP les valeurs des adresses de
retour de vos deux call.

3 Boutons et interruptions

Un inconvénient majeur de ce qu’on a fait jusqu’ici c’est que le processeur est entierement occupé a attendre
que I'on appuie sur un bouton. On parle d’attente active, ou polling en langue de Shakespeare. Pour remédier
a ce probleme, on peut configurer le processeur pour qu’il réagisse aux appuis boutons a travers son mécanisme
d’interruption. Entre les appuis boutons, le processeur va ainsi étre libre d’exécuter autre chose!

Dans un premier temps, lisez les deux encadrés ci-dessous, pour vous rafraichir la mémoire sur les différentes
notions mises en jeu et pour commencer a comprendre comment les interruptions sont implémentées matériel-
lement dans le cas du msp430 et de notre carte.

A savoir : scrutation VS interruptions, requétes (IRQ), vecteur, routine de traitement (ISR)

La communication entre un périphérique et le processeur se fait en général au travers des registres
matériels. Un composant qui veut transmettre une information au programme place cette information
dans un de ses registres, et attend que le processeur vienne lire cette valeur. C'est cette technique,
appelée scrutation (en anglais polling) que vous avez utilisée précédemment pour connaitre I'état des
boutons. Un inconvénient majeur de cette approche est son incapacité a passer a I'échelle : pour ne pas
rater un événement, le programme doit continuellement aller scruter I'état du matériel, ce qui monopolise
le processeur.

Lalternative consiste a mettre en place un mécanisme d’interruptions (cf poly page 73). Dans ce cas, le
composant qui veut transmettre une information au programme place cette information dans 'un de ses
registres, puis envoie au processeur une requéte d’interruption (en anglais interrupt request ou IRQ). Se-
lon les architectures, ces requétes peuvent transiter sur le bus principal ou sur des fils dédiés appelés des
lignes d’interruptions. Dans ce cas-la, soit le processeur dispose d’'une entrée pour chaque source d’inter-

21

ruptions, soit comme illustré ci-dessous, les lignes d’interruptions sont concentrées par un périphérique
dédié, appelé le contréleur d’interruption.

Interrupt Periph Periph
IRQ controller P P
CPU |« system bus i >
Periph Periph Periph
I

Du c6té du processeur, la gestion des interruptions est intégrée au cycle de Von Neumann. Lorsqu’il
recoit une requéte, le processeur interrompt automatiquement I'exécution du programme et saute vers
une adresse bien connue, a laquelle il s’attend a trouver une routine de traitement spécifique (en anglais
interrupt service routine ISR, ou interrupt handler). Chaque ligne d’interruption est ainsi associée a une
routine distincte, ce qui permet au programmeur de prévoir un traitement différent pour chaque type
d’évenement. La correspondance {requéte ny — routine ry, requéte n» — routine r», etc.} est implémentée
par une structure de données appelée la table des vecteurs d’interruption (interrupt vector table ou IVT).
En général il s’agit d’'un tableau de pointeurs de fonction, chaque case contenant I'adresse d’une ISR.

Une routine d’interruption est un morceau de code similaire a une fonction, sauf qu’elle est invoquée
automatiquement par le processeur, et non pas par un appel explicite. En plus de traiter 'événement
proprement dit en allant lire et/ou écrire dans les registres du périphérique concerné, une ISR devra
typiquement accuser réception de l'interruption aupres du périphérique et/ou du contréleur d’interruption,
pour qu’il cesse d’émettre la demande. Enfin, terminer une ISR revient a restaurer le contexte d’exécution,
c’est a dire reprendre I'exécution du programme interrompu, qui ne se sera apercu de rien.

22

Utile pour le TP : les interruptions sur le MSP430

Le fonctionnement des interruptions est détaillé au chapitre 2.2 de la documentation (msp430x4xx.pdf
pages 29 et suivantes) et nous en reprenons les grandes lignes ici. Le CPU du MSP430 ne dispose pas
d’'une ligne d’interruption distincte pour chaque périphérique, mais d’une seule ligne partagée par tous
les périphériques. Un composant (par exemple le Module 2) qui veut lever une interruption fait passer
son interrupt flag a 1 (dans notre exemple, il s’agit donc du bit M2IFG). Certains modules ont plusieurs
drapeaux, mais le fonctionnement reste similaire (les petits carrés noirs du schéma représentent des bits
accessibles en mémoire dans un registre matériel). Le signal traverse les autres périphériques et atteint
le processeur. Celui-ci pergoit donc une requéte d’'interruption (IRQ) lorsque :

— au moins un des périphériques a un interrupt flag levé,

— et le bit GIE du registre SR est vrai (bit Global Interrupt Enable du Status Register)

Interrupt Priority High Low
| =
(<
IRQ
—= GIE [I
CPU Module 1 Module 2 Module 3 Module X Module Y
M3IFG1 | WYIFG
MG M2IFG W TMSIFG2 MT)iG r
> g 1 D D
Bus Grant ‘ ‘ U ‘ ‘ U LI—T
< MAB - 5LSBs

Pour savoir de qui vient la requéte, le processeur passe alors le signal Bus Grant a 1. Mais il se peut
que plusieurs périphériques aient des flags levés, et dans ce cas-la on veut les départager par ordre de
priorité. Chaque module, grace a la circuiterie illustrée ci-dessous, émet donc son propre numéro si et
seulement si :

— ce module a une interrution en attente (i.e. son interrupt flag est levé),

— et aucun module plus prioritaire n’a d’interruption en attente (cf fil de gauche sur le schéma),

— et le signal Bus Grant venant du CPU est actif (cf fil venant du bas).
Il'y a donc bien un et un seul numéro d’'IRQ envoyé au processeur (dans notre exemple, le nombre 2 codé
sur cinq bits : 0000010).

Module X

MAB Bus Grant

Lorsqu'il regoit ce numéro, le CPU I'utilise comme indice dans la table des vecteurs, et charge le vecteur
dans PC, ce qui revient & sauter a I'adresse de I'|SR.La table est située en mémoire flash a I'adresse
0xFFCO, donc le vecteur numéro x est le mot d’adresse OxFFC0+2x.

23

Dans la suite, vous allez mettre en oeuvre ce mécanisme d’interruption dans votre programme :
— envoi d’'une requéte sur appui de bouton
— réception des IRQ c6té processeur
— saut vers une ISR
— acquittement de l'interruption
— retour au programme principal

Remarque : tant que I’ensemble ne fonctionnera pas correctement (vers la question 49), vous ne pourrez
pas tester par vous-méme que vos réponses sont correctes. Du coup, soit vous comprenez ce que vous
faites et vous avancez jusqu’a la question 49, soit vous avez du mal et alors demandez-nous de I'aide
pour vous débloquer. Mais ne perdez pas trop de temps a patauger.

Exercice 45 Commencez par écrire une routine qui inverse I'état de la LED. Ce sera notre ISR. Utilisez tempo-

rairement une étiquette inutile, par exemple nous verrons plus loin par quoi la remplacer pour que
cette routine soit effectivement invoquée par le processeur en réponse a une interruption.

4 Interruption sur bouton poussoir

La premiere chose a faire consiste a faire en sorte que lorsqu’on appuie sur un des boutons, une interruption
soit émise vers le processeur.

Exercice 46 Commencez par lire I'encadré page suivante, qui parle de la gestion des interruptions sur les
ports GPIO.

Exercice 47 Dans votre programme, rajoutez les instructions nécessaires pour activer les interruptions du port
1.

24

Extrait de la documentation : msp430x4xx.pdf pages 411 et 412

11.2.6 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the
PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector,
and all P2 pins source a different single interrupt vector. The PxIFG register
can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set
when the selected input signal edge occurs at the pin. All PxIFGx interrupt
flags request an interrupt when their corresponding PxIE bit and the GIE bit
are set. Each PxIFG flag must be reset with software. Software can also set
each PxIFG flag, providing a way to generate a software-initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending
Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes
set during a Px interrupt service routine or is set after the RETT instruction of

a Px interrupt service routine is executed, the set PxIFGx flag generates
another interrupt. This ensures that each transition is acknowledged.

Note: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P20UT, or P2DIR can result in setting the
corresponding P1IFG or P2IFG flags.

Note: Length of I/O Pin Interrupt Event

Any external interrupt event should be at least 1.5 times MCLK or longer, to
ensure that it is accepted and the corresponding interrupt flag is set.

Interrupt Edge Select Registers P1IES, P2IES
Each PxIES bit selects the interrupt edge for the corresponding I/O pin.
Bit = 0: The PxIFGx flag is set with a low-to-high transition
Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PxIESx
Writing to P11ES or P2IES can result in setting the corresponding interrupt

flags.
PxIESx PxINx PxIFGx
0-1 0 May be set
0-1 1 Unchanged
1-50 0 Unchanged
1-50 1 May be set

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.
Bit = 0: The interrupt is disabled
Bit = 1: The interrupt is enabled

25

Exercice 48 Par défaut, le processeur n’écoute pas les interruptions. Il faut donc activer les interruptions ex-
plicitement. Le processeur fournit une instruction pour ¢a, eint. Allez vérifier son comportement et sa syntaxe,
page 80 de la doc. msp430x4xX.

Il reste maintenant a étiquetter convenablement votre traitant d’interruption pour que le compilateur I'associe au
bon vecteur d’interruption.

Exercice 49 En vous aidant de I'encadré page précédente et de I'extrait ci-dessous, déterminez le numéro du
vecteur d’interruption qui nous intéresse (colonne priority dans le tableau).
Dans votre code, remplacez I'étiquette temp_isr par les deux lignes suivantes, ou xx est le bon numéro :

.global __isr_xx
__isr_xx:

Extrait de la documentation : msp430x4xx.pdf pages 411 et 412

The interrupt vectors and the power-up start address are in the address range OFFFFh to OFFCOh. The
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 6-3. Interrupt Sources, Flags, and Vectors

INTERRUPT SOURCE INTERRUPT FLAG INTERRUPT ADDREs | PRIORITY
Power-Up
Ex\tﬁgt‘;']?oegset K () Reset OFFFEh | 31, highest
Flash Memory
NMI NMIIFG (1) 3) (Non)maskable
Oscillator Fault OFIFG(") (Non)maskable OFFFCh 30
Flash Memory Access Violation ACCVIFG(4@ (Non)maskable
Timer_B7 TBCCRO CCIFG0®) Maskable OFFFAh 29
Timer_B7 TBCCR1 CCIFST 10 TR oo CCIFGe, Maskable OFFF8h 28
Comparator_A CAIFG Maskable OFFF6h 27
Watchdog Timer+ WDTIFG Maskable OFFF4h 26
USCI_AO, USCI_BO Receive UCAORXIFG, UCBORXIFG(" Maskable OFFF2h 25
USCI_AO0, USCI_BO Transmit UCAOTXIFG, UCBOTXIFG () Maskable OFFFOh 24
ADC12 ADC12IFG)) Maskable OFFEEh 23
Timer_A3 TACCRO CCIFGO® Maskable OFFECh 22
Timer A3 TACCR1 CCIFG and, T oR2 CCIFG2, Maskable OFFEAh 21
I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7(N 4) Maskable OFFE8h 20
USART1 Receive URXIFG1 Maskable OFFE6h 19
USART1 Transmit UTXIFG1 Maskable OFFE4h 18
I/0 Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (D) Maskable OFFE2h 17
Basic Timer 1, RTC BTIFG Maskable OFFEOh 16
DMA DMAOIFG, DMA1IFG, DMA2IFG (") ¢4) Maskable OFFDEh 15
DAC12 DAC12.0IFG, DAC12.1IFG(") ¢4) Maskable OFFDCh 14
OFFDAh 13
Reserved Reserved®) : :
OFFCOh 0, lowest

(1) Multiple source flags

(2) Access and key violations, KEYV and ACCVIFG, only applicable to FG devices.

(3) A-resetis generated if the CPU tries to fetch instructions from within the module register memory address range (Oh to 01FFh).
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.

(4) Interrupt flags are located in the module.

(5) The interrupt vectors at addresses OFFDAh to OFFCOh are not used in this device and can be used for regular program code if
necessary.

Exercice 50 |l faut maintenant faire en sorte que votre traitant d’interruption acquite l'interruption. Pour c¢a,
relisez la partie concernant P1IFG dans I'encadré de la page page précédente.

26

Exercice 51 Avez-vous pensé au retour du traitant d’interruption ? Sinon (ou si vous avez utilisé I'instruction
RET) alors allez vite lire 'encadré ci-dessous et corrigez votre programme de fagon adéquat.

Extrait de la documentation : msp430x4xx.pdf pages 97

RETI
Syntax

Operation

Description

Status Bits

Mode Bits

Return from interrupt

RETI

TOS — SR
SP +2 — SP
TOS - PC

SP +2 — SP

The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

OSCOFF, CPUOFF, and GIE are restored from system stack.

Exercice 52 Dans la boucle principale de votre programme, faites de nouveau clignoter une (autre) diode (ou
mieux : jouez de la musique sur le buzzer) et constatez avec satisfaction que les deux activités (programme
principal et ISR) s’exécutent maintenant en bonne harmonie.

27

