
Département IF / Architecture Matérielle

Architecture des Ordinateurs 2025/2026 - TD

Dans cette série de TP «msp430», on va étudier le fonctionnement d’un (petit) ordinateur réel, pour mieux com-
prendre l’interface entre le logiciel et le matériel. Vous devrez donc faire les diverses manipulations demandées,
et par moment écrire des bouts de programme.
Nous ne ramasserons pas de compte-rendu ; par contre, vous avez intérêt à prendre des notes tout au long du
déroulement du TP pour pouvoir les relire par la suite : dans les TP d’après, mais aussi avant les QCM, et aussi
avant l’examen ! Pour chaque exercice, mettez donc par écrit (sur papier ou sur ordinateur) les manips que vous
faites, les questions que vous vous posez, et les nouvelles notions que vous comprenez.
Comme tout objet technologique, notre plate-forme de TP s’accompagne d’une documentation technique abon-
dante. Pour ne pas vous noyer sous la doc, nous vous en avons copié les extraits essentiels directement dans
le sujet, sous forme d’encadrés. Pour les plus curieux, nous vous avons aussi mis à disposition les documents
sur Moodle :
motherboard.pdf décrit notre carte d’expérimentation et les différents composants présents sur la carte.
msp430x4xx.pdf est le manuel générique de la famille MSP430. Le processeur est documenté au chapitre 3

de ce document.
datasheet-msp430g4618.pdf donne les détails techniques de notre modèle précis de msp430.

Partie I: MSP 430 - Prise en main

1 Découverte de la carte

Pour chaque binôme, allez prendre le matériel nécessaire au TP : une carte d’expérimentation, une sonde JTAG
(le boîtier gris avec une nappe d’un côté), et un câble USB.

Exercice 1 Que signifie l’acronyme USB, au fait ? Expliquez en une phrase la signification du S. Faites valider
cette phrase par un enseignant, mais n’attendez pas qu’il arrive pour passer à la suite.

Exercice 2 Que signifie l’acronyme JTAG? L’explication détaillée est donnée dans l’encadré page 7, que nous
lirons en temps utile.

1

Extrait de la documentation : motherboard.pdf page 6

2

4. Functional Overview

The MSP430FG4618/F2013 experimenter’s board supports various applications
through the use of the on-chip peripherals connecting to a number of on-board
components and interfaces as shown in Figure 2.

LCD

FG4618

F2013

Wireless
CC1100/

2420/2500
EMK

Interface
JT

A
G

2
JT

A
G

1
Buzzer

Microphone

Analog
Out

Capacitive
Touch

Pad

Buttons

R
S-

23
2

Figure 2: Experimenter’s board block diagram

Wireless communication is possible through the expansion header which is
compatible with all Chipcon Wireless Evaluation Modules from Texas Instruments.
Interface to a 4-mux LCD, UART connection, microphone, audio output jack,
buzzer, and capacitive touch pad enable the development of a variety of
applications. Communication between the two on-board microcontrollers is also
possible. In addition, all pins of the MSP430FG4618 are made available either via
headers or interfaces for easy debugging. Sample code for this board is available
online at www.ti.com/msp430.

Sur cette carte mère, en plus du msp430, il y a tout un tas de périphériques :
1. un écran à cristaux liquides (pour afficher des chiffres et des icônes)
2. un microphone
3. un buzzer (pour jouer du son)
4. une prise casque (pour jouer du son aussi, mais plus joli)
5. un quartz (pour générer le signal d’horloge)
6. deux boutons poussoirs
7. des voyants lumineux (LED)
8. une roue tactile capacitive (touchpad) en forme de chiffre 4
9. un port série (RS-232)

etc. ...

Exercice 3 Pour chacun de ces éléments, indiquez sur le schéma ci-dessus son emplacement approximatif.
Certains éléments (LEDs, quartz) ne sont pas sur le schéma, vous devrez les chercher directement sur la carte.
Le quartz est repéré X2, et les diodes sont repérées LED1, LED2, LED3 et LED4.

Commentaire La carte comporte deux microcontrôleurs. L’un est un MSP430F2013 (c’est le petit), et l’autre un
MSP430FG4618 (c’est le gros). C’est avec ce second msp430 qu’on va travailler dans ces TP. Les diodes LED1,
LED2, et LED4 y sont connectées par des pistes de la carte mère. La diode LED3, par contre, est connectée au
F2013, qu’on ne va pas utiliser du tout. Vous pouvez dès maintenant oublier son existence, ainsi que celle de la
LED3.

Exercice 4 L’encadré page suivante montre le schéma électrique de la carte mère. Retrouvez les différents
composants vus jusqu’ici, et indiquez leur emplacement sur le schéma.

2

Extrait de la documentation : motherboard.pdf page 19

A
udio output jack

M
SP430FG

4618/F2013 Experim
enter's Board

RF D
aughter C

ard C
onnect

Isolated RS232 C
om

m
unication

Breadboard

Sallen-Key 2nd O
rder O

A
1 A

ctive LPF

(For opt. F2013 program
m

ing)

0-00

SoftBaugh SBLC
D

A
4

(A
4/O

A
1I0)

(A
3/O

A
1O

)

(A
7/D

A
C

1)

(A
0/O

A
0I0)

(A
5/O

A
2O

)

(A
1/O

A
0O

)

(A
2/O

A
0I1)

(M
ic Supply)

M
SP430FG

4618 Pin A
ccess

Pow
er Supply C

onfiguration

(O
utput

A
ttn.)

V
C

C
_1: FG

4618 Supply C
onfig

Pos 1-2: FET Pow
ered

V
C

C
_2: F2013 Supply C

onfig

Pos 2-3: Battery Pow
ered

Buzzer
M

ute

M
ic Input C

ircuitry and
1st O

rder O
A

0 A
ctive H

PF

M
SP-EXP430FG

4618 PC
B V

er 0-00

D
ocum

ent N
um

ber:

D
ate: 26-O

ct-2006
Sheet: 1/1

V
ER:

+

+

+

+

A
1

C
9

C
10

C
8

C
13

C
6

C
2

1
2

H
2

3
4

5
6

7
8

1
2

H
3

3
4

5
6

7
8

1
2

H
4

3
4

5
6

7
8

1
2

H
7

3
4

5
6

7
8

1
2

H
6

3
4

5
6

7
8

1
2

H
8

3
4

5
6

7
8

C
12

1

BA
TT

2

P1.0/TA
C

LK/A
C

LK/A
0+

2

P1.1/TA
0/A

0-/A
4+

3

P1.2/TA
1/A

1+
/A

4-
4

P1.3/V
REF/A

1-
5

P1.4/SM
C

LK/A
2+

/TC
K

6

P1.5/TA
0/A

2-/SC
LK/TM

S
7

P1.6/TA
1/A

3+
/SD

O
/SC

L/TD
I/TC

LK
8

P1.7/A
3-/SD

I/SD
A

/TD
O

/TD
I

9

V
C

C
1

V
SS

14

TEST/SBW
TC

K
11

XIN
/P2.6/TA

1
13

XO
U

T/P2.7
12

N
M

I/RST/SBW
TD

IO
10

U
4

LED
3

LED4 1
JP3

2

1 JP2
2

2 1

SP1

1
JP1

2

1 2 3

V
C

C
_1

C18

1
2

H
5

3
4

C
19

C21

1
JP4

2

C
1

1
2

H
9

3
4

5
6

12

M1

+-
B1

7F_7G
_7E_D

P7
P$1

7A
_7B_7C

_7D
P$2

6F_6G
_6E_D

P6
P$3

6A
_6B_6C

_6D
P$4

5F_5G
_5E_C

O
L5

P$5
5A

_5B_5C
_5D

P$6
4F_4G

_4E_D
P4

P$7
4A

_4B_4C
_4D

P$8
3F_3G

_3E_C
O

L3
P$9

3A
_3B_3C

_3D
P$10

2F_2G
_2E_D

P2
P$11

2A
_2B_2C

_2D
P$12

1F_1G
_1E_D

P1
P$13

1A
_1B_1C

_1D
P$14

C
O

M
3

P$15
C

O
M

2
P$16

C
O

M
1

P$17
C

O
M

0
P$18

F5_PR_P4_P3
P$19

F1_F2_F3_F4
P$20

PL_P0_P1_P2
P$21

A
U

_A
R_A

D
_A

L
P$22

BT_B1_B0_BB
P$23

A
N

T_A
2_A

1_A
0

P$24
EN

V
_TX_RX_8BC

P$25
D

O
L_ERR_M

IN
U

S_M
EM

P$26

13579

JTA
G

2

1113

2461214 810

1 3 5 7 9

JTA
G

1

11 13

2 4 6 12 148 10

1
6

2
7

3
8

4
9

5

RS232
G

1

G
2

C
3

D
2

D1

23

7 85 6

U
2

23

7 85 6

U
1

Q
1

1 2

S1

1 2

S2

R33 R31

R26R27R34

R29

R32

R30

R19

R18

R20

R13

R14

R15

R16

R23

R8

R3

R10

R1

R2

R5

R9

R4

R11

R12

R17

1
PW

R2
2

1

PWR1

2

80
79
78
77
76

757473727170696867666564636261

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26

60595857565554535251

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

LED1

R6
LED2

R7

R28

C
4

D3

X1

X2

C
15

1
2

BB3

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

C
5

C
7

1
2

BB1

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

1
2

BB2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

BANDP$4

TIPP$1

RINGP$2

1
2

H
1

3
4

5
6

7
8

11
11

12
12

13
13

14
14

1
1

2
2

15
15

16
16

44

55

66

77

8
8

9
9

10
10

3
3

IN
N

ER_G
N

D
IN

N
ER_G

N
D

C
11

C
16

C
17

R24
R25

1 2 3

V
C

C
_2

R21

R22

C14

C20

135

246
79

810
111315

121416
1719

RF1

1820

135

246
79

810
111315

121416
1719

RF2

1820

G
N

D

S0

S0

S1

S1

S2

S2

S3

S3

S5

S5

S6

S6

S7

S7

S8

S8

S9

S9

S10
S10

S11
S11

S12
S12

S13
S13

S14

S14

S4

S4

S15

S15

S16

S16

S17

S17

S18

S18

S19

S19

S20

S20

C
O

M
3

C
O

M
3

C
O

M
2

C
O

M
2

C
O

M
1

C
O

M
1

C
O

M
0

C
O

M
0

U
C

B0SD
A

U
C

B0SD
A

U
C

B0SD
A

U
C

B0SC
L

U
C

B0SC
L

U
C

B0SC
L

D
V

C
C

_4618

D
V

C
C

_4618

D
V

C
C

_4618

D
V

C
C

_4618

D
V

C
C

_4618

D
V

C
C

_4618

D
V

C
C

_4618

SIM
O

1

SIMO1

SIM
O

1
SO

M
I1

SO
M

I1

SOMI1

U
C

LK1

UCLK1

U
C

LK1

S21

S21

G
D

O
2

G
D

O
2

GDO2

G
D

O
0

G
D

O
0

GDO0

P3.0

P3.0

P3.0

U
TXD

1

U
TXD

1

U
RXD

1

U
RXD

1

P7.5

P7.5

2013_P1.2
2013_P1.3
2013_P1.4
2013_P1.5

SC
L

SD
A

2013_P2.7
2013_P2.6

SBW
TC

K

SBW
TC

K

SBW
TD

IO

SBW
TD

IO

P6.0

P6.0

P6.0

P6.1

P6.1

P6.1

P6.2

P6.2

P6.2
P6.5

P6.5

P6.5

LC
D

C
A

P

LC
D

C
A

P

P10.7

P10.7

P5.1

P5.1

V
EREF+

V
EREF+

RESETC
C

RESETC
C

RESETCC

V
REG

_EN

V
REG

_EN

VREG_EN

FIFO

FIFO

FIFO

FIFO
P

FIFO
P

FIFOP

PC
_G

N
D

2013_P1.1
2013_P1.0

P2.0

P2.0

P2.2

P2.2

P2.6

P2.6

U
C

B0C
LK

U
C

B0C
LK

U
C

B0C
LK

P3.4

P3.4

P3.5

P3.5
P3.5

P3.7

P3.7

P5.6

P5.6

P7.4

P7.4

P7.6

P7.6

P7.7

P7.7

V
REF

V
REF

P5.0

P5.0

P10.6

P10.6

P6.4

P6.4

P6.4

P6.6

P6.6

P6.3

P6.3

P6.3

P6.7

P6.7

P6.7

V
EREF-

V
EREF-

SW
1

SW1

SW
1

SW
2

SW2

SW
2

P2.1

P2.1

P2.3

P2.3

P2.3

P2.7

P2.7

U
C

A
0TXD

U
C

A
0TXD

U
C

A
0TXD

U
C

A
0RXD

U
C

A
0RXD

U
C

A
0RXD

P3.6

P3.6

P5.7

P5.7

P5.5

P5.5

P4.2

P4.2

P4.2

P7.0

P7.0

UCA0SIMO

U
C

A
0SIM

O

UCA0SOMI

U
C

A
0SO

M
I

UCA0CLK

U
C

A
0C

LK

P4.7

P4.7

P4.6

P4.6

LC
L_PW

R1

LC
L_PW

R1

FET_PW
R1

FET_PW
R1

FET_PW
R2

FET_PW
R2

LC
L_PW

R2

LC
L_PW

R2

A
V

C
C

_4618

A
V

C
C

_4618

0.1uF
10uF

0.1uF

0.1uF

0.1uFG
N

D

G
N

D

V
C

C

0.1uF

G
N

D G
N

D

0.1uF

G
N

D

V
C

C

G
N

D

M
SP430F2013PW

GND

G
N

D

G
N

D

AL60P

470n

G
N

D

10uF

15p

G
N

D

V
C

C

0.1uF

G
N

D

G
N

D

10uF

1N
4148

1N4148

PS8802

PS8802

M
M

BT5088G
N

D

G
N

D

V
C

C

G
N

D
G

N
D

10k 470k

4701k3k3

1k0

150k

10

47k

470

5M1

5M1

5M1

5M1

470

10

47k

10

1k

2k2

100

2k2

2k2

100k

100k

470

G
N

D

VCC_2013

G
N

D

470

G
N

D

470

22k

10uF

1N4148

10uF

10uF
10uF

V
C

C

V
C

C

1uF

22nF
3.3nF

1.4k
15.4k

0-D
N

P

0-D
N

P

DNP

470n

GND

G
N

D

G
N

D

3

1.1 Vous avez dit microcontrôleur?

Le MSP430FG4618 est un microcontrôleur, c’est à dire un System-on-Chip : une même puce qui contient à la
fois un processeur, de la mémoire, et des contrôleurs de périphériques. Si on zoome sur l’intérieur de la puce,
on a donc affaire à l’architecture illustrée ci-dessous.

Extrait de la documentation : datasheet-msp430g4618.pdf page 5

Les flèches repérées MAB et MDB sont respectivement le Memory Address Bus et le Memory Data Bus
(les mêmes que dans la micro-machine). Ce sont eux qui relient le processeur au reste-du-monde, comme
dans toute machine de von Neumann qui se respecte.
Vous pouvez constater qu’ici, le reste du monde ne se limite pas à la mémoire comme dans notre micro-
machine... Nous allons détailler tout cela.

Exercice 5 Repérez sur ce diagramme le processeur, la RAM, la mémoire flash. Vérifiez que vous connais-
sez le sens des acronymes RISC, CPU, RAM, ADC, DAC. Sinon, ouvrez le glossaire qui est tout au début de
msp430x4xx.pdf (p. 4). Demandez des explications à un enseignant si nécessaire. Ignorez les autres acronymes
pour le moment.

Exercice 6 Branchez maintenant la sonde JTAG sur la carte. Vous devriez pouvoir choisir sans difficulté entre
les deux connecteurs JTAG en regardant la figure de la page 2.

1.2 Zoom sur le processeur

Si on se rapproche encore, on tombe sur l’architecture suivante :

4

Extrait de la documentation : msp430x4xx.pdf page 44

015

MDB MAB

16
Zero, Z
Carry, C
Overflow, V
Negative, N

16−bit ALU

dst src

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose

R13 General Purpose

R14 General Purpose

R15 General Purpose

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R3/CG2 Constant Generator

R2/SR/CG1 Status

R1/SP Stack Pointer

R0/PC Program Counter 0

0

16

Commentaire Attention, ce schéma ne montre que la vue ISA (instruction-set architecture), c’est à
dire du point de vue de l’utilisateur du processeur. Elle cache les détails de microarchitecture que le
programmeur n’a pas besoin de connaître : l’automate de contrôle, le registre d’instruction, etc.
Les seuls éléments représentés sur le schéma sont donc ceux qui sont accessibles au programmeur :
les 16 registres architecturaux, les drapeaux, ainsi que l’unité arithmétique et logique. Remarquez au
passage que les 4 premiers registres sont spécialisés pour un usage particulier : (R0 est le compteur
ordinal, etc. À l’inverse les 12 autres registres sont généraux, on (le programmeur) peut y mettre ce qu’on
veut.

Exercice 7 Sur le schéma de la page 4, indiquez où se trouvent nos 16 registres, ainsi que l’automate de
contrôle.

Exercice 8 Explicitez l’acronyme ALU.

Exercice 9 Tiens, il manque les flèches sur les fils entre ALU et les drapeaux. Ajoutez-les.

5

Exercice 10 Allez lire la page https://fr.wikipedia.org/wiki/Registre_de_processeur et résumez, en une
phrase, la différence entre un registre spécialisé et un registre général.

2 Prise en main des outils : mspdebug

Pour que la suite marche il faut avoir tapé une fois dans votre terminal la ligne suivante (attention, par défaut il
faudra répéter cette commande à chaque ouverture d’un nouveau terminal) :

source /opt/msp430-toolchain/env.sh

Pour communiquer avec notre MSP430 au travers de l’interface USB/JTAG, on va utiliser un programme appelé
mspdebug. Cet outil va nous permettre de charger des programmes dans la mémoire, d’observer et de contrôler
l’exécution du programme, d’inspecter le contenu du CPU et de la mémoire, etc.

Exercice 11 Branchez la carte, et lancez mspdebug en tapant la ligne commande suivante :

mspdebug -j -d /dev/ttyUSB0 uif

L’argument uif est le nom du driver à utiliser, ici celui de notre boîtier JTAG.
Vous devez obtenir une série d’informations techniques compliquées, puis une liste des commandes dispo-
nibles, et enfin un prompt de la forme (mspdebug) en début de ligne. Commencez par effacer complètement les
mémoires de la puce en tapant dans mspdebug la commande erase .

On va maintenant se servir de mspdebug pour allumer et éteindre la diode LED4. Comme illustré par la fi-
gure p. 4, tous nos périphériques sont «mappés» sur des adresses mémoire : en écrivant les bonnes valeurs
aux bonnes adresses, on peut contrôler ces périphériques.
Par exemple, pour activer cette diode, il faut tout d’abord écrire la valeur 2 à l’adresse 50. Ensuite, on allumera la
diode en écrivant la valeur 2 à l’adresse 49, et on l’éteindra en écrivant 0 à l’adresse 49. Admettons ces valeurs
pour l’instant, nous les expliquerons dans un moment.

Exercice 12 Toujours dans mspdebug, tapez help mw et lisez l’aide de la commande memory write. Remar-

quez au passage que vous pouvez aussi taper help tout court pour obtenir la liste des commandes disponibles,

et help bidule pour obtenir de l’aide sur la commande bidule.

Exercice 13 Faites s’allumer et s’éteindre la diode quelques fois.

6

À savoir : le JTAG

L’acronyme JTAG désigne une méthode permettant de lire ou d’écrire n’importe quel bit de mémoire
d’un circuit séquentiel. Cette méthode nécessite «seulement» des modifications mineures à l’intérieur du
circuit, ainsi qu’une poignée de signaux connectés au monde extérieur (de deux à cinq fils, suivant les
variantes du protocole).

Le principe de base est simple : il s’agit de considérer virtuellement l’ensemble du circuit (ici le MSP 430)
comme un seul gros automate, selon la figure suivante que vous connaissez maintenant bien.

T

R
eg

is
tre

d’
ét

at

Ck

reset

F/
s′

/
1000

s

//
1000

s

/ y

/x

Dans cette figure, le registre d’état est un énorme registre (1000 bits sur notre exemple) qui contient le
registre de l’automate de contrôle, mais aussi tous les registres de la partie «datapath» : les registres de
la boîte à registres, tous les registres de pipeline, la valeur des flags etc. Tout l’état du processeur, quoi.
Si vous n’avez pas compris ce paragraphe, faites-le vous expliquer par un enseignant.
On ajoute (de manière automatique) à chaque flip-flop de cet immense registre un tout petit peu de
circuiterie pour faire de l’ensemble des 1000 registres binaires un unique immense registre à décalage.
C’est une transformation automatique qui est décrite par la figure ci-dessous :

Le registre d’état de la figure ci-dessus, avant...

R

R

R

... et après sa transformation en JTAG

R
1

0

test

R
1

0

test

R
1

0

test

TestDataOut
TestDataIn

7

Le JTAG, suite

Avec tout cela, le circuit fonctionne normallement lorsque test est à 0. Et on peut, en 1000 cycles, mettre
le circuit dans un état quelconque. Il suffit de mettre test à 1, et de pousser l’état qu’on veut dans le grand
registre à décalage ainsi obtenu. Dans le même temps, l’état précédent du circuit sort sur testOut : on
peut également, toujours en 1000 cycles d’horloge, lire l’état complet du processeur. C’est ce qu’on va
faire dans ce TP pour contrôler l’exécution de notre programme en pas-à-pas, mais aussi pour observer
quand on le désire les valeurs des registres.
Mais pourquoi cela s’appele JTAG? Parce que cela sert surtout à tester chaque puce, y compris les plus
complexes comme votre Pentium, avant de le mettre en boîte. En effet, lors du processus de fabrication,
il arrive souvent qu’une poussière malencontreuse rende un transistor inopérant. Comment détecter cette
situation pour jeter les puces défectueuses au plus tôt?
Bien sûr, on pourrait lui faire booter Linux puis Windows et jouer un peu à Quake dessus, et on se dirait
qu’on a tout testé. Mais cela prendrait de longues minutes par puce, et le temps c’est de l’argent.
Voici une technique qui permet de tester toute la puce en quelque centaines de milliers de cycles seule-
ment (comptez combien de cycles à 4GHz il faut pour booter Linux en 20s).

— On met test à 1, puis on pousse un état connu, pas forcément utile, dans le processeur.

— Puis on met test à 0, et on fait tourner le processeur pendant quelques centaines de cycles.

— Il fait sans doute n’importe quoi, mais ce n’est pas grave.

— On remet test à 1, et on sort l’état complet du processeur (tout en poussant un nouvel état).

— On compare l’état obtenu avec l’état (obtenu par simulation) dans lequel doit être le processeur si
chacune de ses portes fonctionne correctement. S’il y a une différence, on le jette !

— Et on recommence plusieurs fois, avec des états construits pour faire fonctionner tous les transistors
de l’énorme fonction T – pas forcément des états dans lequel le processeur peut se trouver en
fonctionnement normal.

Tout ceci est même normalisé par le Joint Test Action Group : JTAG.
Et le rapport avec notre interface JTAG? Eh bien, une fois qu’on a ce mécanisme en place, on peut même
s’en servir pour débugger : on peut aller observer ou changer la valeur de n’importe quel registre du
processeur en quelque dizaines de milliers de cycle. Il suffit de lire l’état, changer les bits qu’on veut, et
réécrire l’état modifié. C’est comme cela que vous pourrez, dans ce TP, observer dans mspdebug ce qui
se passe à l’intérieur de votre MSP430.
Il y a même une boîte nommée JTAG interface qui permet, à travers le JTAG, d’observer aussi tout le
contenu de la RAM et des périphériques.
Bien sûr, le nombre des registres et l’ordre dans lequel ils sont chaînés dépend du microcontrôleur utilisé,
c’est pourquoi on doit passer les bons argumentsà mspdebug.

3 Assemblage et exécution d’un programme

Exercice 14 Créez un nouveau répertoire TPMSP430, et retapez dans un fichier ex14.s le programme sui-
vant :

.section .init9

main:
/* initialisation de la diode rouge */
mov.b #2, &50

/* eteindre */
mov.b #0, &49

/* allumer */
mov.b #2, &49

loop:
jmp loop

8

Dans ce programme,

— .section .init9 est une commande à destination de msp430-gcc pour lui indiquer où placer ce code –
voir l’encadré ci-dessous.

— mov.b est l’instruction assembleur qui réalise une copie (move) d’un octet (b pour byte).

— en assembleur msp430, #17 désigne la valeur 17, alors que &17 désigne la case mémoire d’adresse 17.

— donc mov.b #2, &49 est une instruction assembleur qui réalise une copie de la valeur constante 2 vers
la case mémoire d’adresse 49. Attention, les arguments sont dans l’ordre inverse de la commande mw de
mspdebug... Moyen mnémotechnique : en assembleur MSP430, la virgule se lit «to».

— jmp est une instruction MSP430 de saut (pour jump)

— main: et loop: sont des définitions d’étiquettes (label). Une étiquette désigne un emplacement dans notre
programme, qu’on peut utiliser par exemple comme destination dans les instruction de saut (ou autres).
Pour un saut absolu comme notre jmp loop, GCC utilisera dans le langage machine l’adresse réelle de
l’étiquette. Pour un saut relatif, il calculera la distance de saut (aka déplacement ou offset) en faisant une
soustraction entre l’adresse de départ et l’adresse de destination.

— Ici, remarquez qu’on finit notre programme par une boucle infinie dont il ne sortira pas : cela assure que
notre pointeur de programme ne part pas se balader au hasard dans la mémoire...

Exercice 15 Traduisez ce programme en un exécutable en langage machine avec la commande suivante :
msp430-gcc -mmcu=msp430fg4618 -mdisable-watchdog -o prog.elf ex14.s

Les deux options sont importantes. La première, -mmcu=msp430fg4618, indique la puce exacte ciblée. La se-
conde, -mdisable-watchdog, débranche le watchdog, un composant matériel qui fait rebooter le système lors-
qu’il est inactif trop longtemps. Allez lire le premier paragraphe de la page wikipedia «watchdog timer» et vous
comprendrez par quel mécanisme votre téléphone reboote lorsqu’il ralentit trop.
Attention, si on fait une faute de frappe dans cette option, il n’y aura pas de message d’erreur mais le programme
fera n’importe quoi, puisqu’il rebootera sans fin.

À savoir : assemblage et éditions de liens

Pour passer d’un programme en langage assembleur à un programme exécutable, il faut réaliser deux
opérations :

1) l’assemblage consiste à convertir un fichier texte contenant des instructions vers un fichier binaire
contenant les même instructions, mais en langage machine. L’outil qui fait ça, l’assembleur, est
typiquement nommé as (et dans notre cas msp430-as), et permet de passer d’un fichier bidule.s
à un fichier bidule.o.
Mais ce n’est pas fini : le programme consiste peut-être en plusieurs morceaux, qu’il faut maintenant
coller ensemble.

2) l’édition de liens consiste à coller ensemble plusieurs fichiers machin.o, et à placer chacun d’entre
eux aux bonnes adresses, par exemple pour s’assurer qu’ils ne se marchent pas les uns sur
les autres. L’outil qui fait ça, l’éditeur de liens, est typiquement nommé ld , et produit un fichier
truc.elf

Invoquer ces différents outils comme il faut avec les bonnes options est compliqué et souvent source
d’erreur. Heureusement, il existe aussi une commande générique gcc qui est beaucoup plus simple
d’usage, et qui se charge d’appeler as et ld dans le bon ordre et avec les bons arguments. Ainsi, vous
pouvez obtenir directement un exécutable avec la commande donnée.

Exercice 16 Désassemblez le programme obtenu par
msp430-objdump -d prog.elf

Cherchez, dans la sortie de cette commande, votre main, et répondez aux questions suivantes :

— Quel est le code binaire de l’instruction jmp loop?

— A quelle adresse cette instruction est-elle assemblée?

— Est-ce un saut relatif ou un saut absolu?

— D’où viennent toutes ces instructions supplémentaires, autour de votre programme?

9

Exercice 17 Depuis mspdebug, transférez votre programme sur la carte en utilisant la commande
prog prog.elf , puis lancez-le avec la commande run . Constatez que la diode reste toujours allumée (c’est

normal, on ne l’éteint jamais). Interrompez l’exécution en appuyant sur Ctrl+C.

4 Exécution d’un programme pas à pas

À partir d’ici, il est productif d’avoir deux terminaux ouverts : l’un dans lequel mspdebug reste ouvert, l’autre dans
lequel vous exécutez vos msp430-gcc. Cela permet de conserver l’historique des commandes passées dans
mspdebug.

Exercice 18 Copiez ex14.s en un nouveau fichier ex18.s, déplacez les instructions d’allumage et d’extinction
à l’intérieur de la boucle infinie : le but est de faire clignoter la diode. Assemblez par msp430-gcc, puis dans
mspdebug chargez votre programme par prog et exécutez-le de nouveau par run.
Si tout va bien, on dirait que la diode reste encore toujours allumée. C’est peut-être que vous vous êtes trompés.
C’est peut-être aussi qu’elle clignote bien, mais trop rapidement pour notre œil. En effet, la fréquence du CPU
est de 1MHz, et chaque instruction prend une poignée de cycles d’horloge, donc notre boucle tout entière tourne
à plus de 100kHz.
Interrompez de nouveau l’exécution, et au lieu de la relancer avec run , utilisez cette fois la commande step
qui exécute une seule instruction machine (faites donc help run et help step au passage).
Constatez qu’en exécutant ainsi le programme en mode pas-à-pas, on arrive maintenant à voir ce qui se passe.
Décidez ainsi si la diode clignote ou si vous vous êtes plantés. Auquel cas, corrigez.

5 Programmation en assembleur : variables et boucles

Vous allez maintenant devoir modifier votre programme un peu plus sérieusement. Pour la syntaxe de l’assem-
bleur MSP430, aidez-vous des explications qui sont données dans les deux encadrés page 12 et page 13.

Débuggage : points d’arrêts

Pour la mise au point, utilisez mspdebug. En plus des commande qu’on a vues jusqu’ici, vous aurez peut-
être besoin de la commande md (memory display) pour lire la mémoire, et de setbreak pour mettre
des points d’arrêt. Pour plus de détails, help md et help setbreak.

Exercice 19 Introduisons d’abord les registres et les opérations logiques. Modifiez le programme comme suit :

.section .init9
main:

mov.b #2, &50 /* initialisation de la diode */
mov #2, r15 /* valeur initiale de la valeur de la diode */

loop:
mov.b r15, &49 /* transferer r15 vers la diode */
xor #2, r15 /* que fait cette ligne? */
jmp loop

La nouveauté est l’utilisation de l’un des registres visibles sur le dessin de la page 5. L’instruction xor #2, r15
met dans r15 le ou-exclusif (xor), bit à bit, de r15 et de la valeur 2. Remarquez que nous travaillons sur r15 avec
des instruction sans le suffixe .b : ces instructions travaillent sur 16 bits, pas juste 8. Essayez de prédire ce
que fait ce programme. Executez ce programme pas-à-pas, et observez dans la fenêtre mspdebug la valeur du
registre r15 au cours de l’exécution.

Exercice 20 Ajoutez au programme précédent ce qu’il faut pour que, tout en faisant clignoter la diode, il compte
les tours de boucle 1 dans le registre r14). Vérifiez que r14 augmente bien dans mspdebug.

Exercice 21 Question difficile, n’hésitez pas à appeler à l’aide. Modifiez votre programme afin de ralentir
suffisamment la boucle infinie pour pouvoir observer le clignotement à l’oeil nu. Pour cela, vous allez rajouter, à
l’intérieur de la boucle existante, une seconde boucle qui ne fait rien sauf perdre du temps. Ce sera l’équivalent
assembleur d’une boucle for(i=2000; i>0; i--){} Partant d’une certaine valeur, par exemple 20000, stockée

10

dans un registre, par exemple R13, elle décrémente ce registre à chaque tour. Pour sortir de la boucle il faut un
saut conditionnel, par exemple JNZ (vous pouvez utiliser le fait quer le drapeau Z est mis à jour par l’instruction
SUB qui décrémente votre registre). Attention, 20000 tient sur 16 bits mais pas sur 8 bits : utilisez des instructions
sans l’extension .b.

11

Survol de la syntaxe assembleur du msp430

On vous présente ici la syntaxe que vous allez devoir utiliser en TP. Elle est en général insensible à la
casse (majuscules ou minuscules, c’est pareil). Ne touchez pas aux registres R0 à R3, ils sont spéciaux,
voir le dessin de la page 5.

Opérations La plupart des instructions est de la forme OPCODE SRC, DST . OPCODE est l’opération sou-
haitée, par exemple ADD, XOR, MOV, etc. La liste complète est donnée page suivante. SRC et DST indiquent
les opérandes (source et destination) sur lesquels travailler. La destination est aussi le second opérande
de l’opération, ainsi la virgule peut souvent se lire «to». Par exemple ADD #1, R5 peut se lire «ADD
1 to R5» et, en C++, s’écrirait R5=R5+1;. Une instruction spéciale est l’instruction MOV, par exemple
MOV R7, R5 , qui peut se lire «MOV R7 to R5» et s’écrirait en C++ R5=R7; a

En détail, chaque opérande est de l’une des formes suivantes :
— un nom de registre : R7, R15... (utilisez les numéros, pas de «SP» ni «PC» etc.)
— une constante immédiate, à préfixer par # : #42, #0xB600...
— le contenu d’une case mémoire désignée par son addresse, à préfixer b par & : &1234, &0x3100...
— le contenu d’une case mémoire dont l’adresse est la valeur contenue dans un registre, alors ce

registre est préfixé par @. Par exemple MOV R7, @R5 , s’écrirait en C++ ainsi : *R5=R7;
Par exemple, l’instruction ADD &1000, R5 calcule la somme de R5 et de la valeur contenue dans la
case d’adresse 1000, et range le résultat dans R5. Attention, certaines combinaisons n’ont pas de sens,
et seront rejetées par l’assembleur avec un message d’erreur. Par exemple l’instruction MOV R8, #36 ne
veut rien dire.
Certaines instructions travaillent sur un seul opérande, et ont donc une syntaxe légèrement différente. Par
exemple INV DST inverse chacun des bits de DST, ou CLR DST met DST à zéro. Reportez-vous à la
liste page suivante pour plus de détails, et/ou à la doc : msp430x4xx.pdf pages 56 et suivantes.

Drapeaux Certaines instructions, notamment les opérations arithmétiques et logiques, modifient les
drapeaux Z, N, C, V :

— Z est le Zero bit. Il passe à 1 lorsque le résultat d’une opération est nul, et il passe à 0 lorsqu’un
résultat est non-nul.

— N est le Negative bit. Il passe à 1 lorsque le résultat d’une opération est négatif (en complément à
deux) et il passe à 0 lorsqu’un résultat est non-négatif.

— C est le Carry bit. Il passe à 1 lorsqu’un calcul produit une retenue sortante, et il passe à 0 lorsqu’un
calcul ne produit pas de retenue sortante.

— V est le Overflow bit. Il est mis à 1 lorsque le résultat d’une opération arithmétique déborde de la
fourchette des valeurs signées (en complément à deux), et à 0 sinon.

La liste page suivante détaille l’effet de chaque instruction sur les quatre drapeaux : un tiret lorsque le
drapeau n’est pas affecté, un 1 ou un 0 lorsque le drapeau passe toujours à une certaine valeur, et une
étoile lorsque l’effet sur le drapeau dépend du résultat.

Sauts conditionnels Les instructions de branchement sont de la forme JMP label . Regardez par
exemple le programme page 8. Le saut peut être soit inconditionnel (instruction JMP), soit soumis à une
condition sur les drapeaux. Par exemple, l’instruction JNZ label est un Jump if Non-Zero : elle sautera
vers label si et seulement si le bit Z est faux.

Opérandes «word» ou «byte» Chaque instruction peut travailler sur des mots de 16 bits (par dé-
faut), ou sur des octets (il faut pour cela remplacer OPCODE par OPCODE.B) . Par exemple, l’instruction
MOV.B R10, &42 copie les 8 bits de poids faible de R10 vers l’octet situé à l’adresse 42, alors que

l’instruction MOV R10, &42 copie tout le contenu de R10 vers les deux octets situés aux adresses 42 et
43 c.

a. Et donc en termes Unix c’est cp, pas mv.
b. Si par mégarde on écrit mov 42, R5 au lieu d’écrire mov #42, R5 alors non seulement ça ne cause aucun message

d’erreur, mais surtout le programme fera n’importe quoi. Vous voila prévenu. Et si vous voulez savoir ce qui se passe dans ce
cas, assemblez puis désassemblez, puis cherchez dans la doc ce qu’on vous a caché.

c. Précision : les 8 bits de poids faible vont en 42, et les 8 bits de poids fort vont en 43. On dit que le msp430 est de
type little-endian. Allez lire https://fr.wikipedia.org/wiki/Endianness si c’est la première fois que vous voyez ce mot.

12

Liste compacte des instructions MSP430

Mnemonic Description V N Z C

ADC(.B) dst Add C to destination dst + C → dst * * * *

ADD(.B) src,dst Add source to destination src + dst → dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + C → dst * * * *

AND(.B) src,dst AND source and destination src .and. dst → dst 0 * * *

BIC(.B) src,dst Clear bits in destination .not.src .and. dst → dst − − − −

BIS(.B) src,dst Set bits in destination src .or. dst → dst − − − −

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR dst Branch to destination dst → PC − − − −

CALL dst Call destination PC+2 → stack, dst → PC − − − −

CLR(.B) dst Clear destination 0 → dst − − − −

CLRC Clear C 0 → C − − − 0

CLRN Clear N 0 → N − 0 − −

CLRZ Clear Z 0 → Z − − 0 −

CMP(.B) src,dst Compare source and destination dst − src * * * *

DADC(.B) dst Add C decimally to destination dst + C → dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst. src + dst + C → dst (decimally) * * * *

DEC(.B) dst Decrement destination dst − 1 → dst * * * *

DECD(.B) dst Double-decrement destination dst − 2 → dst * * * *

DINT Disable interrupts 0 → GIE − − − −

EINT Enable interrupts 1 → GIE − − − −

INC(.B) dst Increment destination dst +1 → dst * * * *

INCD(.B) dst Double-increment destination dst+2 → dst * * * *

INV(.B) dst Invert destination .not.dst → dst * * * *

JC/JHS label Jump if C set/Jump if higher or same − − − −

JEQ/JZ label Jump if equal/Jump if Z set − − − −

JGE label Jump if greater or equal − − − −

JL label Jump if less − − − −

JMP label Jump PC + 2 x offset → PC − − − −

JN label Jump if N set − − − −

JNC/JLO label Jump if C not set/Jump if lower − − − −

JNE/JNZ label Jump if not equal/Jump if Z not set − − − −

MOV(.B) src,dst Move source to destination src → dst − − − −

NOP No operation − − − −

POP(.B) dst Pop item from stack to destination @SP → dst, SP+2 → SP − − − −

PUSH(.B) src Push source onto stack SP − 2 → SP, src → @SP − − − −

RET Return from subroutine @SP → PC, SP + 2 → SP − − − −

RETI Return from interrupt * * * *

RLA(.B) dst Rotate left arithmetically * * * *

RLC(.B) dst Rotate left through C * * * *

RRA(.B) dst Rotate right arithmetically 0 * * *

RRC(.B) dst Rotate right through C * * * *

SBC(.B) dst Subtract not(C) from destination dst + 0FFFFh + C → dst * * * *

SETC Set C 1 → C − − − 1

SETN Set N 1 → N − 1 − −

SETZ Set Z 1 → C − − 1 −

SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C → dst * * * *

SWPB dst Swap bytes − − − −

SXT dst Extend sign 0 * * *

TST(.B) dst Test destination dst + 0FFFFh + 1 0 * * 1

XOR(.B) src,dst Exclusive OR source and destination src .xor. dst → dst * * * *

Operation

Remarque chacune de ces instructions est documentée en détail dans la doc (msp430x4xx.pdf, section
3.4). Il faut s’y reporter si vous avez besoin de précisions.

13

6 Memory-mapped IO

À savoir : Les entrées-sorties

Du point de vue du processeur, un périphérique se présente comme un ensemble de registres (au sens
du cours d’AC), qui permettent d’échanger de l’information entre le CPU et le périphérique.
On peut distinguer informellement trois sortes de registres dans un périphérique :

— les registres d’état du périphérique fournissent de l’information sur l’état du périphérique : est-il actif,
est-il prêt, a-t-il quelquechose à dire, etc. Ils sont typiquement accessibles en lecture seulement : le
processeur peut lire leur contenu, mais pas le modifier.

— les registres de contrôle ou de configuration du périphérique sont utilisés par le CPU pour configurer
et contrôler le périphérique. Ils seront typiquement accessibles en lecture-écriture, ou parfois en écriture
seulement.

— les registres de données du périphérique permettent de lui envoyer des données (en écrivant dedans
depuis le CPU) ou de recevoir des données de la part d’un périphérique (en lisant dedans).

CPU

reg. d’état

reg. de configuration

reg. de données

Contrôleur de périphérique Périphérique

Monde
extérieur

(optionnel)

Tout cela est assez informel. Dans certains cas, un même registre peut appartenir à plusieurs de ces
catégories, par exemple s’il contient à la fois des informations d’état (en lecture seule) et des information
de configuration (en lecture/écriture).

La circuiterie contenant ces registres est appelée le contrôleur du périphérique. La plupart des boites
sur la figure de la page 4 sont des contrôleurs de périphériques. Physiquement parlant, le contrôleur est
parfois situé sur le périphérique lui-même, par exemple un contrôleur de disque dur. Parfois au contraire
il est placée plus près du processeur (ceux de la page 4 sont tous intégrés sur la même puce). et reliée
ensuite au périphérique proprement dit par un moyen quelconque. Par exemple, votre carte vidéo est
reliée à votre écran par un câble VGA ou HDMI. L’architecture générique est illustrée ci-dessous :

Les registres matériels doivent pouvoir être accédés individuellement par le CPU. Comme pour les
cases mémoire, on leur donne donc chacun une adresse distincte. Certains processeurs distinguent les
adresses de mémoire et les adresses de registres matériels ; ils offrent alors des instructions distinctes
pour accéder aux uns et aux autres. À l’inverse, la majorité des processeurs, dont notre MSP430, uti-
lisent un unique espace d’adressage : certaines adresses correspondent à de la mémoire, et d’autres
à des registres matériels. Les entrées-sorties se font alors avec les mêmes instructions que les accès
mémoire classiques. De plus, les contrôleurs de périphériques et la mémoire se partagent les mêmes
bus d’adresse et de donnée : à nouveau, voir la figure de la page 4.
On parle alors d’entrées/sorties «projetées en mémoire», ou Memory-Mapped Input/Output.

14

Utile pour le TP : le plan mémoire du msp430

Du point de vue du CPU, la mémoire principale et les périphériques se présentent tous comme des
cases mémoire. Certains registres matériels font 16 bits, et occupent donc deux adresses consécutives
(à gauche sur le schéma ci-dessous). Certains autres registres ne font que 8 bits, et occupent une seule
adresse. Vous aurez aussi remarqué que la «mémoire» est elle-même composée d’une région de RAM
(en lecture-écriture) et d’une région de mémoire flash (en lecture seule).
Pour s’y retrouver, la documentation technique nous indique le «plan d’adressage» (en VO, la memory
map) c’est à dire une cartographie l’espace d’adressage de la machine :

FFC0h

Flash

RAM

16-Bit Peripheral Modules

8-Bit Peripheral Modules

Special Function Registers

FFFFh

FFDFh

01FFh

0100h

00FFh

0010h

000Fh

0000h

Word/Byte

Word/Byte

Word

Byte

Byte

Word/Byte

AccessAddress

30FFh

1100h

3100h

Reserved No access

Interrupt Vector Table

FFBFh

Exercice 22 Pour allumer notre diode on écrivait aux adresses 50 et 49. Traduisez-les en hexa (de tête !) et
placez-les sur le plan mémoire.

Exercice 23 Cherchez la diode LED4 sur le schéma de la page 3. Comment s’appelle la broche du processeur
auquel elle est reliée? La partie intéressante commence par P (comme Port d’entrée-sortie).

Ces broches sont des general purpose input/outputs, ou GPIO. Comme écrit en introduction du chapitre 11
de msp430x4xx.pdf, MSP430 devices have up to ten digital I/O ports implemented, P1 to P10. Each port has
eight I/O pins. Every I/O pin is individually configurable for input or output direction, and each I/O line can be
individually read from or written to.
Ces registres font 8 bits, ainsi les GPIO sont groupés par paquets de 8, juste parce qu’il sont mappés sur des
cases mémoire de 8 bits. La notation P5.1 se lit «le bit numéro 1 du port 5».
Chaque GPIO peut être configuré en entrée (I) ou en sortie (O). Ce choix se fait (bit à bit) par écriture dans un
registre de contrôle. Pour le port 5 ce registre s’appelle P5DIR et est mappé à l’adresse 50. Vous reconnaissez
le 50?
Les 8 bits de chaque port sont numérotés de 0 à 7. La valeur 2 qu’on écrivait à l’adresse 50 levait le bit numéro
1, dont la valeur en binaire est 21 = 2. Si on voulait lever le bit 3 on écrirait la valeur 23 = 8. Si on voulait lever à
la fois le bit 1 et le bit 3, on écrirait la valeur binaire 00001010, soit 0x0A, ou 10 en décimal.

15

Extrait de la documentation : msp430x4xx.pdf page 409 Digital I/O Operation

11-3Digital I/O

11.2 Digital I/O Operation

The digital I/O is configured with user software. The setup and operation of the
digital I/O is described in the following sections. Each port register is an 8-bit
register and is accessed with byte instructions. Registers for P7/P8 and
P9/P10 are arranged such that the two ports can be addressed at once as a
16-bit port. The P7/P8 combination is referred to as PA and the P9/P10
combination is referred to as PB in the standard definitions file. For example,
to write to P7SEL and P8SEL simultaneously, a word write to PASEL would
be used. Some examples of accessing these ports follow:

BIS.B #01h,&P7OUT ; Set LSB of P7OUT.

; P8OUT is unchanged

MOV.W #05555h,&PAOUT ; P7OUT and P8OUT written

; simultaneously

CLR.B &P9SEL ; Clear P9SEL, P10SEL is unchanged

MOV.W &PBIN,&0200h ; P9IN and P10IN read simultaneously

; as 16-bit port.

11.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the
corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low

Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

11.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding
I/O pin when the pin is configured as I/O function and output direction.

Bit = 0: The output is low

Bit = 1: The output is high

11.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O
pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that
are selected for other module functions must be set as required by the other
function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

16

Exercice 24 Retrouvez l’adresse de P5DIR dans le tableau de la page 413 de msp430x4xx.pdf. On trouve en
bas de la p. 409 qu’un bit à 1 configure le port en sortie alors qu’un bit à 0 le configure en entrée. Ainsi au reset
du MSP430 toutes les IO sont configurées en entrées et la puce ne risque pas d’agir sur son environnement tant
qu’elle n’est pas programmée pour.

Exercice 25 Qu’est-ce qui est mappé à l’adresse 49? Voici en principe démystifiés les deux mw du début du
TP. Si ce n’est pas encore tout clair, posez des questions...

Exercice 26 Et maintenant passons aux deux autres diodes LED1 et LED2 : cherchez-les sur le schéma de
la page 3, trouvez à quel bit de quel port elles sont reliées, enfin allumez-les séparément puis toutes les deux
ensemble (faites vos tests en utilisant des mw dans mspdebug plutôt que des itérations de compilation / prog /
run...)

Exercice 27 Le buzzer (cherchez-le sur les schémas) se commande comme une diode : pour jouer une note,
il suffit de le faire «clignoter» à la bonne fréquence. Essayez de jouer une note. Vous pouvez faire monter et
descendre la note pour faire des bruits de sirènes... faites un concours de sons et lumières.
Vous voudrez peut-être définir l’équivalent assembleur d’une procédure : l’instruction CALL #toto fait un saut à
l’étiquette toto, tout comme JMP toto (mais attention, il faut un # devant l’étiquette). En plus l’adresse suivant
l’instruction CALL est mémorisée : ainsi, l’instruction RET, à placer à la fin du code de votre procédure, transfère
l’éxécution après le CALL. Et si vous voulez passer un paramètre à votre procédure, vous le passez dans un
registre...

7 S’il reste du temps

Exercice 28 Écrivez (et testez) un programme qui lit un argument dans R15, et le sort en binaire sur nos deux
diodes : une diode clignote comme une horloge, et une autre diode s’allume pour les bits à 1 (en commençant
par les bits de poids faible).

Exercice 29 Écrivez une procédure qui divise R14 par R15 et renvoie le résultat dans R15.

17

Partie II: MSP430 - Pile, appels de fonctions, interruptions

Le mécanisme des interruptions matérielles est un rouage essentiel dans le fonctionnement des ordinateurs.
L’objectif de ce dernier TP est de le mettre en œuvre sur la plateforme MSP430. En particulier, on va s’intéresser
aux notions suivantes : requête d’interruption (IRQ), vecteur d’interruption, priorités, masquage d’interruption,
routine de traitement d’interruption (ISR), sauvegarde de contexte, acquittement d’interruption.
Nous en avons vu une implémentation matérielle lors du dernier TP micromachine. Il utilisait un mécanisme
appelé branch and link, dans lequel l’adresse de retour était stockée dans un registre du processeur. Dans le
MSP430, l’adresse de retour est stockée sur une pile, ce qui permet par exemple à une routine de traitemement
d’interruption d’être elle-même interrompue par une interruption plus prioritaire. Nous allons d’abord observer ce
mécanisme de pile et les instructions associées.
Mais avant ça, on va prendre en main les boutons, sans s’occuper des interruptions.

1 Boutons et attente active

Exercice 30 Ressortez un programme qui fait clignoter une LED. Testez-le.

Exercice 31 Sur la carte (voir schéma dans le sujet de TP précédent) trouvez à quelles broches du msp430
sont connectés les deux boutons-poussoirs S1 et S2. Identifiez le port GPIO correspondant Px.

Exercice 32 Relisez l’encadré page 16 pour vous rafraîchir la mémoire sur l’utilisation des entrées-sorties
numériques.

Exercice 33 Au début de votre programme, configurez le port Px pour qu’il agisse comme une entrée (re-
gistre PxDIR). Vous trouverez les adresses des différents registres utiles à la page 413 de la documentation
msp430x4xx.

Exercice 34 Dans mspdebug, utilisez la commande md (au besoin, faites d’abord un help md) pour lire le
registre PxIN :

— quelle est la valeur de PxIN lorsque les deux boutons sont relâchés?

— quelle est la valeur de PxIN lorsque seul le premier bouton est pressé?

— quelle est la valeur de PxIN lorsque seul le second bouton est pressé?

— quelle est la valeur de PxIN lorsque les deux boutons sont pressés?

Exercice 35 Dans la boucle principale de votre programme, remplacez le ralentissement par une attente sur
les boutons. On veut que le bouton soit appuyé puis relâché, comme illustré ci-dessous :

.section .init9

main:
/* initialiser la LED et les boutons */

boucle:

/* attendre qu’un bouton soit appuye’ */

/* attendre que le bouton soit relache’ */

/* inverser la LED */

jmp boucle

18

2 Les instructions call, ret, et un peu de pile

Les appels de fonction (aka «procédure», «méthode», «sous-programme», «routine») sont tellement courants
en pratique que toutes les architectures offrent des instructions dédiées pour les implémenter. Ces instructions
s’appellent par exemple CALL et RET sur msp430 (et sur x86), ou BL et BX sur ARM. Ainsi, CALL #func saute
vers la fonction située à l’adresse (ou à l’étiquette) func, et RET retourne vers la fonction appelante (en fait
l’adresse appelante).
Attention, erreur fréquente ! si par mégarde vous écrivez CALL func au lieu de CALL #func alors votre pro-
gramme sera assemblé sans message d’erreur mais il fera n’importe quoi à l’exécution.

Exercice 36 Lisez les extraits de documentation ci-dessous et page suivante . TOS veut dire top of stack.

Extrait de la documentation : msp430x4xx.pdf page 45 CPU Registers

3-5RISC 16-Bit CPU

3.2.2 Stack Pointer (SP)

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3−3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3−4 shows stack usage.

Figure 3−3.Stack Pointer

0

15 0

Stack Pointer Bits 15 to 1

1

MOV 2(SP),R6 ; Item I2 −> R6

MOV R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h onto TOS

POP R8 ; R8 = 0123h

Figure 3−4.Stack Usage

I3

I1

I2

I3

0xxxh

0xxxh − 2

0xxxh − 4

0xxxh − 6

0xxxh − 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

0123h

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 3−5.

Figure 3−5.PUSH SP - POP SP Sequence

SP1

SPold

SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

19

Extrait de la documentation : msp430x4xx.pdf page 69

Extrait de la documentation : msp430x4xx.pdf page 96

Remarque : Les instructions CALL et RET sont essentiellement des sauts. Les arguments de la fonction/pro-
cédure peuvent être passés soit dans les registres, soit en mémoire. Idem pour l’éventuelle valeur de retour.
Si ce sont des programmeurs différents qui écrivent l’appelant et l’appelé, il faut qu’il y ait entre eux une règle
du jeu commune. Cette règle commune, en général édictée par les concepteurs du système d’exploitation, est
appelée la convention d’appel (ou “ABI” : pour “Application Binary Interface”). Elle sera étudiée plus précisément
en compilation, car elle est aussi indispensable pour permettre la compilation séparée.

Exercice 37 Dans quelle direction grandit la pile du msp430 : vers les adresses croissantes, ou vers les
adresses décroissantes?

Exercice 38 Dans votre programme, à quelle valeur SP est-il initialisé? Cherchez dans le désassemblage
complet du programme l’instruction qui fait cette initialisation.

Exercice 39 Sur le plan mémoire du msp430 (cf sujet du TP précédent) repérez l’emplacement de la pile et sa
direction de croissance.

Exercice 40 Ressortez votre boucle de ralentissement et faites-en une procédure pause qui attend environ
une demi-seconde. On doit pouvoir utiliser cette procédure dans un programme de ce genre :

.section .init9

20

main:
/* initialiser la led */

boucle:
call #pause

/* inverser la led */

j boucle

pause:
/* copiez ici le code que vous avez deja */
ret

Exercice 41 L’intérêt d’une procédure est de l’appeler plus d’une fois... Modifiez votre programme pour qu’il
chronomètre la durée d’appui sur le bouton : vous mesurerez ce temps en comptant le nombre de fois que vous
pouvez appeler pause avant que le bouton soit relâché. Une fois que le bouton est relâché, faites clignoter la
LED le même nombre de fois. Vous aurez ainsi deux appels call #pause dans ce programme : l’un pour la
mesure du temps, et l’autre pour ralentir le clignotement.

Exercice 42 Mettez un breakpoint sur pause pour arrêter l’exécution à l’entrée de cette procédure. Observez
la valeur du SP lors des deux appels. Observez la valeur pointée par SP lors des deux appels. Expliquez tout
celà à un enseignant.

Exercice 43 L’intérêt de la pile apparaît lorsque une fonction appelle elle-même une autre fonction. Modifiez
votre programmme pour qu’il utilise une procédure blinkn qui fait clignoter la led n fois, où n est la valeur de
R15 à l’entrée de la routine. Votre programme main appellera blinkn qui appellera lui-même pause. Testez-le.

Exercice 44 Toujours à l’entrée de pause, retrouvez sur la pile pointée par SP les valeurs des adresses de
retour de vos deux call.

3 Boutons et interruptions

Un inconvénient majeur de ce qu’on a fait jusqu’ici c’est que le processeur est entièrement occupé à attendre
que l’on appuie sur un bouton. On parle d’attente active, ou polling en langue de Shakespeare. Pour remédier
à ce problème, on peut configurer le processeur pour qu’il réagisse aux appuis boutons à travers son mécanisme
d’interruption. Entre les appuis boutons, le processeur va ainsi être libre d’exécuter autre chose !

Dans un premier temps, lisez les deux encadrés ci-dessous, pour vous rafraîchir la mémoire sur les différentes
notions mises en jeu et pour commencer à comprendre comment les interruptions sont implémentées matériel-
lement dans le cas du msp430 et de notre carte.

À savoir : scrutation VS interruptions, requêtes (IRQ), vecteur, routine de traitement (ISR)

La communication entre un périphérique et le processeur se fait en général au travers des registres
matériels. Un composant qui veut transmettre une information au programme place cette information
dans un de ses registres, et attend que le processeur vienne lire cette valeur. C’est cette technique,
appelée scrutation (en anglais polling) que vous avez utilisée précédemment pour connaître l’état des
boutons. Un inconvénient majeur de cette approche est son incapacité à passer à l’échelle : pour ne pas
rater un évènement, le programme doit continuellement aller scruter l’état du matériel, ce qui monopolise
le processeur.

L’alternative consiste à mettre en place un mécanisme d’interruptions (cf poly page 73). Dans ce cas, le
composant qui veut transmettre une information au programme place cette information dans l’un de ses
registres, puis envoie au processeur une requête d’interruption (en anglais interrupt request ou IRQ). Se-
lon les architectures, ces requêtes peuvent transiter sur le bus principal ou sur des fils dédiés appelés des
lignes d’interruptions. Dans ce cas-là, soit le processeur dispose d’une entrée pour chaque source d’inter-

21

ruptions, soit comme illustré ci-dessous, les lignes d’interruptions sont concentrées par un périphérique
dédié, appelé le contrôleur d’interruption.

CPU

Interrupt
controller

Periph Periph

Periph PeriphPeriph

IRQ

system bus

Du côté du processeur, la gestion des interruptions est intégrée au cycle de Von Neumann. Lorsqu’il
reçoit une requête, le processeur interrompt automatiquement l’exécution du programme et saute vers
une adresse bien connue, à laquelle il s’attend à trouver une routine de traitement spécifique (en anglais
interrupt service routine ISR, ou interrupt handler). Chaque ligne d’interruption est ainsi associée à une
routine distincte, ce qui permet au programmeur de prévoir un traitement différent pour chaque type
d’évènement. La correspondance {requête n1 → routine r1, requête n2 → routine r2, etc.} est implémentée
par une structure de données appelée la table des vecteurs d’interruption (interrupt vector table ou IVT).
En général il s’agit d’un tableau de pointeurs de fonction, chaque case contenant l’adresse d’une ISR.

Une routine d’interruption est un morceau de code similaire à une fonction, sauf qu’elle est invoquée
automatiquement par le processeur, et non pas par un appel explicite. En plus de traiter l’évènement
proprement dit en allant lire et/ou écrire dans les registres du périphérique concerné, une ISR devra
typiquement accuser réception de l’interruption auprès du périphérique et/ou du contrôleur d’interruption,
pour qu’il cesse d’émettre la demande. Enfin, terminer une ISR revient à restaurer le contexte d’exécution,
c’est à dire reprendre l’exécution du programme interrompu, qui ne se sera aperçu de rien.

22

Utile pour le TP : les interruptions sur le MSP430

Le fonctionnement des interruptions est détaillé au chapitre 2.2 de la documentation (msp430x4xx.pdf
pages 29 et suivantes) et nous en reprenons les grandes lignes ici. Le CPU du MSP430 ne dispose pas
d’une ligne d’interruption distincte pour chaque périphérique, mais d’une seule ligne partagée par tous
les périphériques. Un composant (par exemple le Module 2) qui veut lever une interruption fait passer
son interrupt flag à 1 (dans notre exemple, il s’agit donc du bit M2IFG). Certains modules ont plusieurs
drapeaux, mais le fonctionnement reste similaire (les petits carrés noirs du schéma représentent des bits
accessibles en mémoire dans un registre matériel). Le signal traverse les autres périphériques et atteint
le processeur. Celui-ci perçoit donc une requête d’interruption (IRQ) lorsque :

— au moins un des périphériques a un interrupt flag levé,
— et le bit GIE du registre SR est vrai (bit Global Interrupt Enable du Status Register)

Bus Grant

Module 1 Module 2 Module X Module Y
GIE

CPU

Priority High Low

MAB − 5LSBs

Module 3
M3IFG1

M3IFG2 MXIFG MYIFG

IRQ

M2IFGM1IFG

Interrupt

Pour savoir de qui vient la requête, le processeur passe alors le signal Bus Grant à 1. Mais il se peut
que plusieurs périphériques aient des flags levés, et dans ce cas-là on veut les départager par ordre de
priorité. Chaque module, grâce à la circuiterie illustrée ci-dessous, émet donc son propre numéro si et
seulement si :

— ce module a une interrution en attente (i.e. son interrupt flag est levé),
— et aucun module plus prioritaire n’a d’interruption en attente (cf fil de gauche sur le schéma),
— et le signal Bus Grant venant du CPU est actif (cf fil venant du bas).

Il y a donc bien un et un seul numéro d’IRQ envoyé au processeur (dans notre exemple, le nombre 2 codé
sur cinq bits : 0b00010).

IRQ num = X
5

Module X

MXIFG

MAB

5

Bus Grant

Lorsqu’il reçoit ce numéro, le CPU l’utilise comme indice dans la table des vecteurs, et charge le vecteur
dans PC, ce qui revient à sauter à l’adresse de l’ISR.La table est située en mémoire flash à l’adresse
0xFFC0, donc le vecteur numéro x est le mot d’adresse 0xFFC0+2x .

23

Dans la suite, vous allez mettre en oeuvre ce mécanisme d’interruption dans votre programme :

— envoi d’une requête sur appui de bouton

— réception des IRQ côté processeur

— saut vers une ISR

— acquittement de l’interruption

— retour au programme principal

Remarque : tant que l’ensemble ne fonctionnera pas correctement (vers la question 49), vous ne pourrez
pas tester par vous-même que vos réponses sont correctes. Du coup, soit vous comprenez ce que vous
faites et vous avancez jusqu’à la question 49, soit vous avez du mal et alors demandez-nous de l’aide
pour vous débloquer. Mais ne perdez pas trop de temps à patauger.

Exercice 45 Commencez par écrire une routine qui inverse l’état de la LED. Ce sera notre ISR. Utilisez tempo-
rairement une étiquette inutile, par exemple temp_isr: nous verrons plus loin par quoi la remplacer pour que
cette routine soit effectivement invoquée par le processeur en réponse à une interruption.

4 Interruption sur bouton poussoir

La première chose à faire consiste à faire en sorte que lorsqu’on appuie sur un des boutons, une interruption
soit émise vers le processeur.

Exercice 46 Commencez par lire l’encadré page suivante, qui parle de la gestion des interruptions sur les
ports GPIO.

Exercice 47 Dans votre programme, rajoutez les instructions nécessaires pour activer les interruptions du port
1.

24

Extrait de la documentation : msp430x4xx.pdf pages 411 et 412 Digital I/O Operation

11-5Digital I/O

11.2.6 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the
PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector,
and all P2 pins source a different single interrupt vector. The PxIFG register
can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set
when the selected input signal edge occurs at the pin. All PxIFGx interrupt
flags request an interrupt when their corresponding PxIE bit and the GIE bit
are set. Each PxIFG flag must be reset with software. Software can also set
each PxIFG flag, providing a way to generate a software-initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes
set during a Px interrupt service routine or is set after the RETI instruction of
a Px interrupt service routine is executed, the set PxIFGx flag generates
another interrupt. This ensures that each transition is acknowledged.

Note: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P2OUT, or P2DIR can result in setting the
corresponding P1IFG or P2IFG flags.

Note: Length of I/O Pin Interrupt Event

Any external interrupt event should be at least 1.5 times MCLK or longer, to
ensure that it is accepted and the corresponding interrupt flag is set.Digital I/O Operation

11-6 Digital I/O

Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.

Bit = 0: The PxIFGx flag is set with a low-to-high transition

Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PxIESx

Writing to P1IES or P2IES can result in setting the corresponding interrupt
flags.

PxIESx PxINx PxIFGx
 0 → 1 0 May be set
 0 → 1 1 Unchanged
 1 → 0 0 Unchanged
 1 → 0 1 May be set

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.

Bit = 0: The interrupt is disabled

Bit = 1: The interrupt is enabled

11.2.7 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left
unconnected on the PC board, to reduce power consumption. The value of the
PxOUT bit is don’t care, because the pin is unconnected. See chapter System
Resets, Interrupts, and Operating Modes for termination of unused pins.

25

Exercice 48 Par défaut, le processeur n’écoute pas les interruptions. Il faut donc activer les interruptions ex-
plicitement. Le processeur fournit une instruction pour ça, eint. Allez vérifier son comportement et sa syntaxe,
page 80 de la doc. msp430x4xx.

Il reste maintenant à étiquetter convenablement votre traitant d’interruption pour que le compilateur l’associe au
bon vecteur d’interruption.

Exercice 49 En vous aidant de l’encadré page précédente et de l’extrait ci-dessous, déterminez le numéro du
vecteur d’interruption qui nous intéresse (colonne priority dans le tableau).
Dans votre code, remplacez l’étiquette temp_isr par les deux lignes suivantes, où xx est le bon numéro :

.global __isr_xx
__isr_xx:

Extrait de la documentation : msp430x4xx.pdf pages 411 et 412

MSP430FG4619, MSP430FG4618, MSP430FG4617, MSP430FG4616
MSP430CG4619, MSP430CG4618, MSP430CG4617, MSP430CG4616

www.ti.com SLAS508J –APRIL 2006–REVISED JUNE 2015

6.4 Interrupt Vector Addresses
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FFC0h. The
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

Table 6-3. Interrupt Sources, Flags, and Vectors

SYSTEM WORDINTERRUPT SOURCE INTERRUPT FLAG PRIORITYINTERRUPT ADDRESS
Power-Up

External Reset WDTIFG Reset 0FFFEh 31, highestWatchdog KEYV (1) (2)

Flash Memory
NMI NMIIFG (1) (3) (Non)maskable

Oscillator Fault OFIFG(1) (3) (Non)maskable 0FFFCh 30
Flash Memory Access Violation ACCVIFG(1) (4) (2) (Non)maskable

Timer_B7 TBCCR0 CCIFG0(4) Maskable 0FFFAh 29
TBCCR1 CCIFG1 to TBCCR6 CCIFG6,Timer_B7 Maskable 0FFF8h 28TBIFG(1)(4)

Comparator_A CAIFG Maskable 0FFF6h 27
Watchdog Timer+ WDTIFG Maskable 0FFF4h 26

USCI_A0, USCI_B0 Receive UCA0RXIFG, UCB0RXIFG(1) Maskable 0FFF2h 25
USCI_A0, USCI_B0 Transmit UCA0TXIFG, UCB0TXIFG (1) Maskable 0FFF0h 24

ADC12 ADC12IFG (1) (4) Maskable 0FFEEh 23
Timer_A3 TACCR0 CCIFG0(4) Maskable 0FFECh 22

TACCR1 CCIFG1 and TACCR2 CCIFG2,Timer_A3 Maskable 0FFEAh 21TAIFG(1) (4)

I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7(1) (4) Maskable 0FFE8h 20
USART1 Receive URXIFG1 Maskable 0FFE6h 19
USART1 Transmit UTXIFG1 Maskable 0FFE4h 18

I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (1) (4) Maskable 0FFE2h 17
Basic Timer 1, RTC BTIFG Maskable 0FFE0h 16

DMA DMA0IFG, DMA1IFG, DMA2IFG(1) (4) Maskable 0FFDEh 15
DAC12 DAC12.0IFG, DAC12.1IFG(1) (4) Maskable 0FFDCh 14

0FFDAh 13
Reserved Reserved(5) ⋮ ⋮

0FFC0h 0, lowest

(1) Multiple source flags
(2) Access and key violations, KEYV and ACCVIFG, only applicable to FG devices.
(3) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh).

(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
(4) Interrupt flags are located in the module.
(5) The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if

necessary.

Copyright © 2006–2015, Texas Instruments Incorporated Detailed Description 51
Submit Documentation Feedback

Product Folder Links: MSP430FG4619 MSP430FG4618 MSP430FG4617 MSP430FG4616 MSP430CG4619
MSP430CG4618 MSP430CG4617 MSP430CG4616

Exercice 50 Il faut maintenant faire en sorte que votre traitant d’interruption acquite l’interruption. Pour ça,
relisez la partie concernant P1IFG dans l’encadré de la page page précédente.

26

Exercice 51 Avez-vous pensé au retour du traitant d’interruption? Sinon (ou si vous avez utilisé l’instruction
RET) alors allez vite lire l’encadré ci-dessous et corrigez votre programme de façon adéquat.

Extrait de la documentation : msp430x4xx.pdf pages 97

Exercice 52 Dans la boucle principale de votre programme, faites de nouveau clignoter une (autre) diode (ou
mieux : jouez de la musique sur le buzzer) et constatez avec satisfaction que les deux activités (programme
principal et ISR) s’exécutent maintenant en bonne harmonie.

27

