The Von Neumann Model
A Programmer’s Perspective
—Computer Organization —

Lionel Morel

Computer Science and Information Technologies - INSA Lyon

Fall-Winter 2025-26

1/55

Outline

Overview
Instruction Set
Micro-Machine
Basic Instructions
Addressing Modes

Control-Flow

2/55

Outline

Overview

3/55

General View

CPU

address

s

data

>

Memory

4/55

Von Neumann Architecture

CPU address
<
control data path data
path
registers COI’]'[I’O[

» At the heart of (nearly) all computers today.

» Contains:

Memory

Data

Instructions

» A unique storage where both instructions and data are stored, called central

memory
> A processor made of:

> An data-path including an Arithmetic and Logical Unit

» A control-path

> An input/output system that interconnects peripherals (not depicted for now)

5/55

Central Memory
» Memory contains a finite number of information
» All these elements are encoded in binary
» An item in memory is accessed through its address

Logical View Physical View
0 16 bits
Address_Bus _.> o h| I T - |° Example OT a mer;;
(8 wires) o ory containing
words of 16 bits
° each.
°
® -
°
s .
°
Control Bus _>_>
—
e
size-1 »
>
width eoee Data Bus
(16 wires)

6/55

Central Memory - Data and addresses

Data is organized in packets of bytes:
> 1 byte = 8 bits
» On an n-bits machines, a word = n

Each byte has an address

» Example: On a 32-bits machine, if A is the address of a word, then
the next word is at address A + 4

7155

Central Memory - Memory Alignement

In most systems a data piece can be stored at specific addresses only:

eg, on a 32-bits machine:

Size Address should be ...
byte ... Wwhatever
half-word ... even
word ... multiple of 4
double ... multiple of 8

0

4

8

ways) correctly placed bytes

- (al
Incorrectly placed half-word
e Correctly placed half-word

-
)(_ Incorrectly placed word

P Correctly placed word

8/55

Central Memory - Interaction with CPU
The CPU:
» Sends address it wants to READ/WRITE on the address bus
» Reads (writes) data it wants to READ (WRITE) from (to) memory on
the data bus
» Manages memory (including the above signals) through control

bus.
Memory
CPU address Data
——————»
control || data path RECEC
path |
— control Instructions
— >

9/55

The CPU - A Von Neumann Machine

CPU address
l— - - -

control data path data” "~~~
path

control
—pp— - - - -

[TTTTTT

The Von Neumann Cycle

forever do{
Fetch Instruction from Memory
Decode Instruction
Execute Instruction

}

10/55

The Processor
Externally
Application Binary Interface describes:
» what are the width of data and address buses
» what types of data are available
» what registers are available to programmers
» what instructions can be used

Internally

» Dedicated Registers

» a DataPath interconnecting these registers with combinatorial logic
1. perform calculations 2. select data to update registers with

» a Control Unit (or path), ie an Algorithmic State Machine, to ...
control the rest

11/55

Today
» We look at the external vision of the CPU: ABI, instructions,
assembler, etc.

Next time

» We will look at the internal construction of the CPU: registers,
datapath, control unit, VN cycle, etc

12/55

Programming Languages

» Architecture-Independent
» Machine details are abstracted away

» Programming concepts may be elaborate (object, data structures,
patterns, etc)

» Examples: C, C++, Java, Python, Ruby, etc.

13/55

Machine Language vs Assembly Language
Machine Language

» A Program is a sequence of binary instructions
> ie Instructions are “just’” sequences of bits, 0s and 1s.

» Each instruction is interpreted by the CPU and triggers internal
changes to it so that the corresponding behavior is actually applied

» Each model of processor has its own machine language.

Assembly Language

» \ery close to the Machine Language
» Instructions are “human-readable”
» 1 instruction in ASM — 1 instruction in machine language

Rmk: Both are specific to a processor family!

14/55

Outline

Instruction Set

15/55

Instruction Set
We want to look at the code actually executed by the processor

= Binary/Assembly

Definition 1: Instruction Set

£ set of instructions that programs can use to make
the processor perform the required actions.

Each processor implements a specific Instruction Set.
Examples:
> |A32 or IA64: Intel’s 32-bits or 64 bits Instruction Set
» ARM
» MSP430
» RISCV

16/55

Instruction Set Architecture

The ISA defines:

» The types of data that can be manipulated (typically ints of various
sizes, Boolean fields, floats)

» Instructions to ...

> ... manipulate this data

> ... access memory

» ... control the flow of execution
>

... help synchronize different execution threads (see Operating
Systems)

» ... handle Input/Output devices

17/55

An Example ISA - the MSP430

> It's a 16-bits machine, ie:

» Addresses are on 16 bits

> You have 16 registers R; to Ris

P although registers Ry to Rs are reserved, don’t use them!

» We'll look at the core ISA:

» Computational instructions

» Control-flow instructions

» Memory-access instructions
» We will look at:

» Syntax (how do you write the instruction?)

» Semantics (what does the instruction do?)

» Encoding (how is the instruction seen by the processor?)

18/55

MDB - Memory Data Bus Memory Address Bus - MAB

4 15 0 I

msp430 - Available registers o =)

RIUSP Stack Pointer |0

R2SRICG1 Status

R3/CG2 Gonstant Generator

R4 General Pupose

» Basic local memory for the CPU to compute
with

> ie they are INSIDE the CPU!

» Noted Rp to Ris

» The ABI says:
» Ry, Ry, R> and R3 have dedicated functions.
» R, to Rys are working registers for general use.

19/55

Instructions

An instruction can be characterized by:

> the type of operations it implements: computational, control-flow,
memory

> its format: one, two or three operands, addressing modes allowed

Addressing Modes
Generally speaking, defines how the instructions identify their operands.

20/55

Load-Store vs Reg-mem

Load-Store Architectures Register-memory
> explicit memory acces Architectures
instructions (typically load > Allows all operations to be
from- and and store to- performed on memory as
memory) well as registers.
> register-only ALU > msp430, Motorala 68000,
instructions x86

» eg ARM, MIPS, RISCV, the
micro-machine

21/55

CISC vs RISC

RISC
Reduced Instruction Set
Computer
» uniform length for all
instructions
» Load-Store
» Instructions are simpler

» PowerPC, ARM, RISC-V,
micro-machine

CISC
Complex Instruction Set
Computer

>

>
>

v

varying length for
instructions

register-memory

Instructions are more
complex

aka “Not-Load-Store” :)
x86, msp430

22/55

Outline

Micro-Machine

23/55

The micro-machine (1/3)
In the first lab sessions, we’ll look at a home-made processor.
» 8-bits instructions
> 8-bits signed integers only
» 2 8-bits registers, named A and B

Computation instructions with 1 or 2 operands

B > A 21 -> B
B+A ->A B xor -42 -> A
not B -> A Isr A > A

A xor 12 -> A B - A > A,

. J

WARNING: some instructions that would seem “intuitive” are actually
forbidden... eqg: A+B -> Bis incorrect ... B+A -> B is correct. 24/55

The micro-machine (2/3)

Memory reads and writes

*A -> A *A -> B
A -> *A B -> *A
*cst -> A *cst -> B
A -> *cst B -> *cst

*A means: “the content of memory at the address contained in
register A”.

25/55

The micro-machine (3/3)

Unconditional absolute branch

JA 42

continues execution at address 42.

Conditional relative branch

JR offset JR offset IFZ
(executed if Z=1)

JR offset IFC JR offset IFN

(executed if C=1) (executed if N=1)

26/55

The micro-machine how-to

» During the first lab, you will explore the syntax and semantics and
Assemble instructions yourself, ie write machine-language from a
given assembly language program.

» Later on, you will have a tool to do that for you. This tool is called an
Assembler.

27/55

Outline

Basic Instructions

28/55

Basic Instructions

» Perform a logical or integer operation on its arguments
» These operations include:
» ADD(-ition), SUB(-straction)
SLL, SLT, SRL, SRA: Shift Left/Right Logical/Arithmetic
XOR, OR, AND, NOT: Boolean operations
Double or single-operand
Some instructions modify the Status Bits, aka FLAGS.

vvyyvyy

29/55

Micro-machine - logical and integer operations

Computation instructions with 1 or 2 operands

B > A 21 -> B

B+A ->A B xor -42 ->
A

not B -> A Isr A > A

A xor 12 -> A B - A -> A,

30/55

msp430 - Double-Operand instructions

Syntax and Semantics
[operation Xg, Xy]

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
implements MOV(.B) src,dst sic—dst - - - -
ADD(.B) src,dst SIC + dst — dst * * * *

BDDC(.B) src,dst src+dst+C— dst
SUB(.B) src,dst dst+.notsrc+1— dst

Src operation ast — dst SURC(.5) sre,dst dsts notsio + G o dst

CMP(.B) src,dst dst-src

or Operation src — dst‘ DADD(.B) src,dst src+ dst+C — dst (decimally)

BIT(.B) src,dst src.and. dst o
3 BIC(.B) src,dst .notsrc.and.dst— dst - - - -
or Src operation dst S
XOR(.B) sre,dst src.xor. dst— dst
AND(.B) _ src,dst src.and. dst— dst [

31/55

msp430 - Single-Operand

Syntax and Semantics

[operation X4

implements

operation src/dst

Mnemonic S-Reg, Operation Status Bits
D-Reg v N
RRC(.B) dst C—-MSB-.....LSB- C *
RRA(.B) dst MSB - MSB -...LSB - C 0
PUSH(.B) src SP-2- SP, src - @SP - -
SWPB dst Swap bytes - -
CALL dst 8P -2- SP,PC+2 - @SP - -
dst » PC
RETI TOS - SR, SP+2 8P
TOS - PC,SP +2 » SP
SXT dst Bit7 - Bit8........ Bit 15 0

32/55

Outline

Addressing Modes

33/55

Addressing Modes

» So far, we used only registers in computation. But we need to get
data from memory as well.

Definition?: Addressing Modes

£ ways that machine language instructions in a given
architecture identify their operand(s). An addressing mode
specifies how to calculate the effective memory address of
an operand by using information held in registers and/or
constants contained within a machine instruction or
elsewhere.

4https://en.wikipedia.org/wiki/Addressing_mode

34/55

https://en.wikipedia.org/wiki/Addressing_mode

Addressing Modes (cont’d)

Definition: Register-Memory Architecture

£ |SA in which arithmetic and logical instructions can work
indifferently on registers and memory

Definition: Load-Store Architecture

£ |SA in which arithmetic and logical instructions only work
on registers. Dedicated instructions are available to copy
data from memory to registers (LOAD) and reversly
(STORE)

35/55

Addressing Modes for accessing instruction operands

WARNING: the exact syntax depends on ISA

Register
mov ri, rj \ rj =i
Immediate
mov $12, rj (=12
Absolute or direct
mov ri, ADDRESS mem[ADDRESS] :=ri
mov ADDRESS, ri ri := mem[ADDRESS]

36/55

Addressing Modes for accessing instruction operands

WARNING: the exact syntax depends on ISA

Indirect

mov ri, (ADDRESS) | mem[mem[ADDRESS]] := ri
Indirect register + offset

mov offset(ri), rj | rj := mem[ri+offset]
Indirect register + auto-increment/decrement

mov (ri)+, rj rj == mem[ri], ri :=ri + 1

mov (ri)-, rj rj :=mem[ri], ri :=ri-1
Other modes may be available depending on ISA

37/55

msp430 - addressing modes
An example of a register-memory architecture.

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/~ Indirect register @Rn Rn is used as a pointer to the

mode operand.

1/- Indirect @Rn+ Rnis used as a pointer to the

autoincrement operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/- Immediate mode #N The word following the instruction

contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

38/55

Micro-machine - memory instructions

An example of a load-store architecture.
Memory reads and writes

*A -> A *A -> B
A -> *A B -> *A
*cst -> A *cst -> B
A -> *cst B -> *cst

*A means: “the content of memory at the address contained in
register A”.

39/55

Outline

Control-Flow

40/55

Control-Flow Instructions

» The general execution model is sequential

» Instructions are executed by the processor one after the other, in
the order they are written in the binary program.

» Algorithms are usually more complex than that.
They use control structures such as if-then-else, for and while
loops, etc.

» At the machine level, these control structures are built using
control-flow instructions

Definition: Control-Flow Instruction

£ an instruction that allows to jump (or branch) to
any address in the code.

41/55

Jump instructions

\4

“jump” and “branch” are (almost) interchangeable;

» unconditionnal jumps: “goto” some place, whenever we execute
the branch;

» conditionnal jumps: test a condition to decide whether to jump or

not.

42/55

Unconditional Jumps

» Forces a new address addr to PC
» The next instruction executed is the one located at Mem/[addr]

43/55

Conditional Jumps

» Decide whether to branch or not, based on a condition
» Condition can rely on the value of CPU flags
> 1C ="Jump if Carry [flag is set]”
» JZ ="“Jump if Zero [flag is set”
» That’s the case for our micro-machine and msp430 (see later on)
> dire aussi que ¢a nécessite de faire les calculs correspondant a la decision de
branchement avant le jump
» Condition can rely on the value of registers, given as parameter to
the instruction:
> beq rl, r2, label = “branch to label if r1 ==r2”
» bge rl1, r2, label = “branch to label if r1 > r2”
> eg risc-v processor

44 /55

Jumps - Examples

conditional

unconditional

relative

JUMP to PC+12 if Z==

JUMP to PC+12

absolute

JUMP to 0x42 if Z==

JUMP to 0x42

45/55

The micro-machine - Jump Instructions
Unconditional absolute branch

JA 42

continues execution at address 42.

Conditional relative branch

JR offset JR offset IFZ
(executed if Z=1)

JR offset IFC JR offset IFN

(executed if C=1) (executed if N=1)

continues execution at address PC+offset if condition is satisfied.

46/55

Jumps on msp430

15 14 13 12 11 10 8 7 6 5 <4 3
Op-code C 10-Bit PC Offset
Mnemonic S-Reg, D-Reg Operation
JEQ/JZ Label Jump to label if zero bit is set
JNE/JINZ Label Jump to label if zero bit is reset
JcC Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N . XOR. V) =0
JL Label

Jump to label if (N .XOR. V) =1

e ™

47/55

Jumps

absolute + unconditional

micro-machine msp430
relative + conditional YES YES
relative + unconditional VS YES
absolute + conditional NO NO
YES YES

48/55

Labels

» In assembly’, we use labels to have named references on memory

cells

» A label is a string ending with the
» |t can be used to reference:
> a line of program

character

}

int main(){

int a,b;

a=o;

b = 10;

while (a<b){
a++;

}

> a dataitem

SUB.W
MOV.W
MOV.W
BR

ADD.W

cHP.W
MOV.B
ADD.W
RET

#4, R1
#0, 2(R1)
#10, @R1
#.12

#1, 2(R1)
@R1, 2(R1) |{ 3L

#0, R12
#4, R1

3

int X;

int main(){

int a,b,c;
X = p2;

MOV.W
MOV.B
RET

#42, &X
#0, R12

you can observe these on https://gcc.godbolt.org/

49/55

https://gcc.godbolt.org/

Definition

Definition: Basic Block (BB)

£ a sequence of contiguous instructions that
contains no jump instruction or label.

» A BB always starts with a label;
» A BB always finishes with a control-flow instruction
» Inside a BB, there is always exactly ONE control-flow instruction;

50/55

Control structures: if-then-else

if(condition){

Ins1

Ins,

}else{

Ins

Ins,

}

51/55

Control structures: if-then-else

if(condition){

In$1

Ins,

}else{

Ins

Ins,,

}

then:

else:

endif:

First, associate a label to
each block

51/55

Control structures: if-then-else

if(condition){

Ins1

Ins,

then:

\

}else{

Ins

Ins,,

’\els:

}

endif:

,;; asm instructions

; for Insq
. to Ins,

;. asm instructions

5 for Insy
,; to Ins,,

First, associate a label to
each block

Then generate the asm code
for each of the "then" and
‘else" block.

51/55

Control structures: if-then-else

if(condition){
Ins1

Ins,
}else{
Ins

then:

\

',',;Sm ’\else'
}

endif:

;; instructions to
;; evaluate condition

[branch to_then if true]

unconditionally
branch to else

,;; asm instructions
,; for Ins,

. to Ins,
unconditionally
branch to endif

;. asm instructions

5 for Insy
,; to Ins,,

unconditionally

branch to endif

First, associate a label to
each block

Then generate the asm code
for each of the "then" and
‘else" block.

Finally, add instructions to
evaluate the condition of
the IF and JUMP to the cor-
rect region accordingly.

51/55

If-Then-Else example

“Write a program that scans through a list of values and counts those

values that are bigger, respectively smaller, than a min value”.
NB: we only look at the code excerpt for one value v.

// begining of code
if(v>min) {
cntBigger++;
Yelse{
cntSmaller++;
}
// rest of code

;; coming from begining of code
;; assume:

;; vinrs

;; min in ré

;; cntBigger in r7

;; cntSmaller in r8

test:

mov r5, rl® ; copy v to ri@®
sub r6, r1® ; ri® <- v-min
jge then ; if v-min>0 goto "then"

; ie if(v>min) then v is to be counted in "biggest" list

jmp else ; if we didn’t take the previous
; then goto else unconditionnally
; ile v is in the "smallest" list
then:
inc r7 ; we are here because v>min
jmp endif
else:
inc r8
endif:
;; moving on to rest of code

52/55

Control Structures: while

while(condition){

Insq

Ins,

}

Proceed the same way for
while loops....

53/55

Control Structures: while

test:

while(condition){

In$1

Ins,

}

end:

Proceed the same way for
while loops....

First, associate a label to
each "jump locations" (the
test of the condition and the
region "after the loop is fin-
ished").

53/55

Control Structures: while

test:

while(condition){

Ins1

Ins,

e

}

end:

,; asm instructions

5 for Insy
,, to Ins,

Proceed the same way for
while loops....

First, associate a label to
each "jump locations" (the
test of the condition and the
region "after the loop is fin-
ished").

Then generate the asm code
for the body of the loop.

53/55

Control Structures: while

test:

while(condition){

In51

Ins,

\

}

end:

instructions to
evaluate condition

Lbranch to end if false]

,; asm instructions

; for Insq
,; to Ins,

unconditionnal branch
to test

Note: at the end of the loop
body, you should always go
back to evaluate the condi-
tion to decide if you should
end the loop...

Proceed the same way for
while loops....

First, associate a label to
each "jump locations" (the
test of the condition and the
region "after the loop is fin-
ished").

Then generate the asm code
for the body of the loop.

Finally, add jump instruc-
tions to evaluate the condi-
tion of the WHILE and de-
cide which region of code
the CPU should jump to.

53/55

Black-board example

int a,b;

b = 10;

a=0;

while(a<b){
a++;

}

init:

test:

end:

;; coming from begining of code
;; assume:
;; ainrs

jmp

b in ré

#10, r6
#0, r5

r6, r5 ; update flags with r5-ré
; ie a-b

end ; 1f a-b>=0 we are finished
; ie a>=b

r5

test

;; we’'re finished

54/55

Next ...

... we’ll look at the internals of the Micro-machine and talk about the Von

Neumann Cycle:

Control Unit

|—» progFetch
— ceDest
— cePC
— celR
—» ceFlags
—> IR

> JA

—» ceM
—» Mem2Reg
— ceCst

Reg A

arg2s

Reg A

Reg B

Zn

MA

MDO

MDI

ceM

55/55

	Overview
	Instruction Set
	Micro-Machine
	Basic Instructions
	Addressing Modes
	Control-Flow

