
The Von Neumann Model
A Programmer’s Perspective
–Computer Organization –

Lionel Morel

Computer Science and Information Technologies - INSA Lyon

Fall-Winter 2024-25

1 / 54

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

2 / 54

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

3 / 54

General View

CPU Memory
address

data

4 / 54

Von Neumann Architecture
CPU

Memory

address

data

Data

Instructions

A.L.U

data path
registers

control
path

control

▶ At the heart of (nearly) all computers today.
▶ Contains:

▶ A unique storage where both instructions and data are stored, called central
memory

▶ A processor made of:
▶ An data-path including an Arithmetic and Logical Unit
▶ A control-path

▶ An input/output system that interconnects peripherals (not depicted for now)
5 / 54

Central Memory
▶ Memory contains a finite number of information
▶ All these elements are encoded in binary
▶ An item in memory is accessed through its address

Logical View
0

size-1

width

Physical View
16 bits

15 1 0

00Address Bus
(8 wires)

Control Bus

Data Bus
(16 wires)

28

Example of a mem-
ory containing 28

words of 16 bits
each.

6 / 54

Central Memory - Data and addresses

▶ Data is organized in packets of bytes:
▶ 1 byte = 8 bits
▶ On an n-bits machines, a word ≜ n

▶ Each byte has an address.
▶ Example: On a 32-bits machine, if A is the address of a word, then the next

word is at address A + 4

7 / 54

Central Memory - Memory Alignement

In most systems a data piece can be stored at specific addresses only:

Example, on a
32-bits machine:

Size Address should be ...
byte ... whatever

half-word ... even
word ... multiple of 4

double ... multiple of 8

0
4
8

(always) correctly placed bytes
Incorrectly placed half-word
Correctly placed half-word
Incorrectly placed word

Correctly placed word

8 / 54

Central Memory - Interaction with CPU
The CPU:
▶ Sends address it wants to READ/WRITE on the address bus
▶ Reads (writes) data it wants to READ (WRITE) from (to) memory on

the data bus
▶ Manages memory (including the above signals) through control

bus.

CPU

Memory

address

data

Data

Instructions

A.L.U

data path
registers

control
path

control

9 / 54

The CPU - A Von Neumann Machine
CPU address

data

A.L.U

data path
registers

control
path

control

The Von Neumann Cycle

forever do{
Fetch Instruction from Memory
Decode Instruction
Execute Instruction

}

10 / 54

The Processor
Externally
Application Binary Interface describes:
▶ what are the width of data and address buses
▶ what types of data are available
▶ what registers are available to programmers
▶ what instructions can be used

Internally
▶ Dedicated Registers
▶ a DataPath interconnecting these registers with combinatorial logic

1. perform calculations 2. select data to update registers with
▶ a Control Unit (or path), ie an Algorithmic State Machine, to ...

control the rest
11 / 54

Today
▶ We look at the external vision of the CPU: ABI, instructions,

assembler, etc.

Next time
▶ We will look at the internal construction of the CPU: registers,

datapath, control unit, VN cycle, etc

12 / 54

Programming Languages

▶ Architecture-Independent
▶ Machine details are abstracted away
▶ Programming concepts may be elaborate (object, data structures,

patterns, etc)
▶ Examples: C, C++, Java, Python, Ruby, etc.

13 / 54

Machine Language vs Assembly Language
Machine Language
▶ A Program is a sequence of binary instructions
▶ ie Instructions are “just” sequences of bits, 0s and 1s.
▶ Each instruction is interpreted by the CPU and triggers internal

changes to it so that the corresponding behavior is actually applied
▶ Each model of processor has its own machine language.

Assembly Language
▶ Very close to the Machine Language
▶ Instructions are “human-readable”
▶ 1 instruction in ASM → 1 instruction in machine language

Rmk: Both are specific to a processor family!
14 / 54

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

15 / 54

Instruction Set
We want to look at the code actually executed by the processor

⇒ Binary/Assembly

Each processor implements a specific Instruction Set, ie a set of
instructions that programs can use to make the processor perform the
required actions.

ISA (Instruction Set Architecture)
Examples:
▶ IA32 or IA64: Intel’s 32-bits or 64 bits Instruction Set
▶ ARM
▶ MSP430
▶ RISCV

16 / 54

Instruction Set Architecture

The ISA defines:
▶ The types of data that can be manipulated (typically ints of various

sizes, Boolean fields, floats)
▶ Instructions to ...
▶ ... manipulate this data
▶ ... access memory
▶ ... control the flow of execution
▶ ... help synchronize different execution threads (see Operating

Systems)
▶ ... handle Input/Output devices

17 / 54

An Example ISA - the msp430

▶ It’s a 16-bits machine, ie:
▶ Addresses are on 16 bits
▶ You have 16 registers R0 to R15
▶ NB: Registers R0 to R3 are reserved, don’t use them!

▶ We’ll look at the core ISA:
▶ Computational instructions
▶ Control-flow instructions
▶ Memory-access instructions

▶ We will look at:
▶ Syntax (how do you write the instruction?)
▶ Semantics (what does the instruction do?)
▶ Encoding (how is the instruction seen by the processor?)

18 / 54

msp430 - Available registers

▶ Basic local memory for the CPU to compute
with

▶ ie they are INSIDE the CPU!
▶ Noted R0 to R15
▶ The ABI says:

▶ R0, R1, R2 and R3 have dedicated functions.
▶ R4 to R15 are working registers for general use.

19 / 54

Instructions

An instruction can be characterized by:
▶ the type of operations it implements: computational, control-flow,

memory
▶ its format: one, two or three operands, addressing modes allowed

Addressing Modes
Generally speaking, defines how the instructions identify their operands.

20 / 54

Two major styles of ISA

Register-memory Architectures
▶ Allows all operations to be performed on memory as well as

registers.
▶ msp430, Motorala 68000, x86

Load-Store Architectures
▶ explicit memory acces instructions (typically load from- and and

store to- memory)
▶ register-only ALU instructions
▶ eg ARM, MIPS, RISCV, the micro-machine

21 / 54

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

22 / 54

The micro-machine (1/3)
In the first lab sessions, we’ll look at a home-made processor.
▶ 8-bits instructions
▶ 8-bits signed integers only
▶ 2 8-bits registers, named A and B

Computation instructions with 1 or 2 operands

B -> A 21 -> B
B + A -> A B xor -42 -> A

not B -> A lsr A -> A
A xor 12 -> A B - A -> A;

WARNING: some instructions that would seem “intuitive” are actually
forbidden... eg: A+B -> B is incorrect ... B+A -> B is correct. 23 / 54

The micro-machine (2/3)

Memory reads and writes

*A -> A *A -> B
A -> *A B -> *A
*cst -> A *cst -> B
A -> *cst B -> *cst

*A means: “the content of memory at the address contained in
register A”.

24 / 54

The micro-machine (3/3)
Unconditional absolute branch

JA 42

continues execution at address 42.

Conditional relative branch

JR offset JR offset IFZ
(executed if Z=1)

JR offset IFC JR offset IFN
(executed if C=1) (executed if N=1)

25 / 54

The micro-machine how-to

▶ During the first lab, you will explore the syntax and semantics and
Assemble instructions yourself, ie write machine-language from a
given assembly language program.

▶ Later on, you will have a tool to do that for you. This tool is called an
Assembler.

26 / 54

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

27 / 54

Basic Instructions

▶ Perform a logical or integer operation on its arguments
▶ These operations include:

▶ ADD(-ition), SUB(-straction)
▶ SLL, SLT, SRL, SRA: Shift Left/Right Logical/Arithmetic
▶ XOR, OR, AND, NOT: Boolean operations
▶ Double or single-operand
▶ Some instructions modify the Status Bits, aka FLAGS.

28 / 54

Micro-machine - logical and integer operations

Computation instructions with 1 or 2 operands

B -> A 21 -> B
B + A -> A B xor -42 ->

A
not B -> A lsr A -> A
A xor 12 -> A B - A -> A;

29 / 54

msp430 - Double-Operand instructions

Syntax and Semantics
operation Xs, Xd

implements

src operation dst → dst
or operation src → dst
or src operation dst

30 / 54

msp430 - Single-Operand

Syntax and Semantics
operation Xs/d

implements

operation src/dst

31 / 54

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

32 / 54

Addressing Modes
▶ So far, we used only registers in computation. But we need to get

data from memory as well.

Definitiona: Addressing Modes
≜ ways that machine language instructions in a given
architecture identify their operand(s). An addressing mode
specifies how to calculate the effective memory address of
an operand by using information held in registers and/or
constants contained within a machine instruction or
elsewhere.

ahttps://en.wikipedia.org/wiki/Addressing_mode

33 / 54

https://en.wikipedia.org/wiki/Addressing_mode

Addressing Modes (cont’d)

Definition: Register-Memory Architecture
≜ ISA in which arithmetic and logical instructions can work
indifferently on registers and memory

Definition: Load-Store Architecture
≜ ISA in which arithmetic and logical instructions only work
on registers. Dedicated instructions are available to copy
data from memory to registers (LOAD) and reversly
(STORE)

34 / 54

Addressing Modes for accessing instruction operands

WARNING: the exact syntax depends on ISA

Register
mov ri, rj rj := ri

Immediate
mov $ 12, rj rj := 12

Absolute or direct
mov ri, ADDRESS mem[ADDRESS] := ri
mov ADDRESS, ri ri := mem[ADDRESS]

35 / 54

Addressing Modes for accessing instruction operands

WARNING: the exact syntax depends on ISA

Indirect
mov ri, (ADDRESS) mem[mem[ADDRESS]] := ri

Indirect register + offset
mov offset(ri), rj rj := mem[ri+offset]

Indirect register + auto-increment/decrement
mov (ri)+, rj rj := mem[ri], ri := ri + 1
mov (ri)-, rj rj := mem[ri], ri := ri - 1

Other modes may be available depending on ISA

36 / 54

msp430 - addressing modes
An example of a register-memory architecture.

37 / 54

Micro-machine - memory instructions

An example of a load-store architecture.

Memory reads and writes

*A -> A *A -> B
A -> *A B -> *A
*cst -> A *cst -> B
A -> *cst B -> *cst

*A means: “the content of memory at the address contained in
register A”.

38 / 54

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

39 / 54

Control-Flow Instructions
▶ The general execution model is sequential
▶ Instructions are executed by the processor one after the other, in

the order they are written in the binary program.
▶ Algorithms are usually more complex than that.

They use control structures such as if-then-else, for and while
loops, etc.

▶ At the machine level, these control structures are built using
control-flow instructions

Definition: Control-Flow Instruction
≜ an instruction that allows to jump (or branch) to
any address in the code.

40 / 54

Jump instructions

▶ “jump” and “branch” are (almost) interchangeable;
▶ unconditionnal jumps: “goto” some place, whenever we execute

the branch;
▶ conditionnal jumps: test a condition to decide whether to jump or

not.

41 / 54

Unconditional Jumps

▶ Forces a new address addr to PC
▶ The next instruction executed is the one located at Mem[addr]

42 / 54

Conditional Jumps
▶ Decide whether to branch or not, based on a condition
▶ Condition can rely on the value of CPU flags

▶ JC = “Jump if Carry [flag is set]”
▶ JZ = “Jump if Zero [flag is set”
▶ That’s the case for our micro-machine and msp430 (see later on)
▶ dire aussi que ça nécessite de faire les calculs correspondant à la decision de

branchement avant le jump
▶ Condition can rely on the value of registers, given as parameter to

the instruction:
▶ beq r1, r2, label = “branch to label if r1 == r2”
▶ bge r1, r2, label = “branch to label if r1 ≥ r2”
▶ eg risc-v processor
▶ TIENS : est-ce que je serais dire les avantages supposés de l’un ou l’autre ?
▶ Et est-ce qu’ils ont des noms dédiés ?

43 / 54

Jumps - Examples

conditional unconditional

relative
JUMP to PC+12 if Z==1 JUMP to PC+12

absolute
JUMP to 0x42 if Z==1 JUMP to 0x42

44 / 54

The micro-machine - Jump Instructions
Unconditional absolute branch

JA 42

continues execution at address 42.

Conditional relative branch

JR offset JR offset IFZ
(executed if Z=1)

JR offset IFC JR offset IFN
(executed if C=1) (executed if N=1)

continues execution at address PC+offset if condition is satisfied.
45 / 54

Jumps on msp430

46 / 54

Jumps

micro-machine msp430

relative + conditional
YES YES

relative + unconditional
YES YES

absolute + conditional
NO NO

absolute + unconditional
YES YES

47 / 54

Labels
▶ In assembly1, we use labels to have named references on memory

cells
▶ A label is a string ending with the “:” character
▶ It can be used to reference:

▶ a line of program

▶ a data item

1you can observe these on https://gcc.godbolt.org/
48 / 54

https://gcc.godbolt.org/

Definition

Definition: Basic Block (BB)
≜ a sequence of contiguous instructions that
contains no jump instruction or label.

▶ A BB always starts with a label;
▶ A BB always finishes with a control-flow instruction
▶ Inside a BB, there is always exactly ONE control-flow instruction;

49 / 54

Control structures: if-then-else

if(){
Ins1

Insn

...

}else{
Insk

Insm

...

}

condition

50 / 54

Control structures: if-then-else

if(){
Ins1

Insn

...

}else{
Insk

Insm

...

}
else:

endif:

First, associate a label to
each block

condition
then:

50 / 54

Control structures: if-then-else

if(){
Ins1

Insn

...

}else{
Insk

Insm

...

}

;; asm instructions
;; for Ins1;; to Insn

;; asm instructions
;; for Insk;; to Insm

else:

endif:

First, associate a label to
each block

Then generate the asm code
for each of the "then" and
"else" block.

condition
then:

50 / 54

Control structures: if-then-else

if(){
Ins1

Insn

...

}else{
Insk

Insm

...

}

;; asm instructions
;; for Ins1;; to Insn

;; asm instructions
;; for Insk;; to Insm

else:

endif:

First, associate a label to
each block

Then generate the asm code
for each of the "then" and
"else" block.

Finally, add instructions to
evaluate the condition of
the IF and JUMP to the cor-
rect region accordingly.

unconditionally
branch to else

;; instructions to
;; evaluate

condition

condition

unconditionally
branch to endif

unconditionally
branch to endif

then:

branch to then if true

50 / 54

If-Then-Else example
“Write a program that scans through a list of values and counts those
values that are bigger, respectively smaller, than a min value”.
NB: we only look at the code excerpt for one value v .

// begining of code
if(v>min){
cntBigger++;
}else{
cntSmaller++;
}
// rest of code

;; coming from begining of code
;; assume:
;; v in r5
;; min in r6
;; cntBigger in r7
;; cntSmaller in r8

test:
mov r5, r10 ; copy v to r10
sub r6, r10 ; r10 <- v-min
jge then ; if v-min>0 goto "then"

; ie if(v>min) then v is to be counted in "biggest" list
jmp else ; if we didn’t take the previous

; then goto else unconditionnally
; ie v is in the "smallest" list

then:
inc r7 ; we are here because v>min
jmp endif

else:
inc r8

endif:
;; moving on to rest of code

51 / 54

Control Structures: while

Ins1

Insn

...

}

Proceed the same way for
while loops....

while(){condition

52 / 54

Control Structures: while

Ins1

Insn

...

}

end:

test: Proceed the same way for
while loops....

First, associate a label to
each "jump locations" (the
test of the condition and the
region "after the loop is fin-
ished").

while(){condition

52 / 54

Control Structures: while

Ins1

Insn

...

}

;; asm instructions
;; for Ins1;; to Insn

end:

test: Proceed the same way for
while loops....

First, associate a label to
each "jump locations" (the
test of the condition and the
region "after the loop is fin-
ished").

Then generate the asm code
for the body of the loop.

while(){condition

52 / 54

Control Structures: while

Ins1

Insn

...

}

;; asm instructions
;; for Ins1;; to Insn

end:

test:

unconditionnal branch
to test

Proceed the same way for
while loops....

First, associate a label to
each "jump locations" (the
test of the condition and the
region "after the loop is fin-
ished").

Then generate the asm code
for the body of the loop.

Finally, add jump instruc-
tions to evaluate the condi-
tion of the WHILE and de-
cide which region of code
the CPU should jump to.

Note: at the end of the loop
body, you should always go
back to evaluate the condi-
tion to decide if you should
end the loop...

branch to end if false

instructions to
evaluate condition

while(){condition

52 / 54

Black-board example

int a,b;
b = 10;
a = 0;
while(a<b){
a++;
}

;; coming from begining of code
;; assume:
;; a in r5
;; b in r6

init:
mov #10, r6
mov #0, r5

test:
cmp r6, r5 ; update flags with r5-r6

; ie a-b
jge end ; if a-b>=0 we are finished

; ie a>=b
inc r5
jmp test

end:
;; we’re finished

53 / 54

Next ...
... we’ll look at the internals of the Micro-machine and talk about the Von
Neumann Cycle:

MA

MDO

MDI

ceM

ceRegB

MDI ceRegA
Reg A

Reg B

ALU

Reg A

Reg B

Reg Flags
Z
C

N

3

arg1

arg2

Reg A

Reg B

arg1S

0
1

Reg A

arg2S

0
1

MDO

arg2S
opcode

progFetch

0
1

MA
PC

+offset

1

JR
JA

1
0

0
1

Reg Cst

ceFlags

ceCst

MDI

IR 5
2

4

destS
arg1s
arg2s

offset
cond
opcodeceIR

MDI

Instruction Register

Control Unit

cePC

progFetch
ceDest

ceFlags
JR
JA

cePC
ceIR

ceM

1
0

Mem2Reg

Mem2Reg

ceDest destS

ceDest destS

ceCst

Z
C
N

cond

opcode
2

4

instrJR

instrJR

54 / 54

	Overview
	Instruction Set
	Micro-Machine
	Basic Instructions
	Addressing Modes
	Control-Flow

