
The Von Neumann Model
A Programmer’s Perspective
–Computer Organization –

Lionel Morel

Computer Science and Information Technologies - INSA Lyon

Fall-Winter 2023-24

1 / 46

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

2 / 46

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

3 / 46

General View

CPU Memory
address

data

4 / 46

Von Neumann Architecture
CPU

Memory

address

data

Data

Instructions

A.L.U

data path
registers

control
path

control

▶ At the heart of (nearly) all computers today.
▶ Contains:

▶ A unique storage where both instructions and data are stored, called central
memory

▶ A processor made of:
▶ An data-path including an Arithmetic and Logical Unit
▶ A control-path

▶ An input/output system that interconnects peripherals (not depicted for now)
5 / 46

Central Memory
▶ Memory contains a finite number of information
▶ All these elements are encoded in binary
▶ An item in memory is accessed through its address

Logical View
0

size-1

width

Physical View
16 bits

15 1 0

00Address Bus
(8 wires)

Control Bus

Data Bus
(16 wires)

28

Example of a mem-
ory containing 28

words of 16 bits
each.

6 / 46

Central Memory - Data and addresses

▶ Data is organized in packets of bytes:
▶ 1 byte = 8 bits
▶ 2 bytes (16 bits) = half-word
▶ 4 bytes (32 bits) = word
▶ 8 bytes (64 bits) = double word

▶ Each byte has an address.
▶ Example: if A is the address of a word, then the next word is at address A + 4

7 / 46

Central Memory - Memory Alignement

In most systems a data piece can be stored at specific addresses only:

Size Address should be ...
byte ... whatever

half-word ... even
word ... multiple of 4

double ... multiple of 8

0
4
8

(always) correctly placed bytes
Incorrectly placed half-word
Correctly placed half-word
Incorrectly placed word

Correctly placed word

8 / 46

Central Memory - Interaction with CPU
The CPU:
▶ Sends address it wants to READ/WRITE on the address bus
▶ Reads (writes) data it wants to READ (WRITE) from (to) memory on

the data bus
▶ Manages memory (including the above signals) through control

bus.

CPU

Memory

address

data

Data

Instructions

A.L.U

data path
registers

control
path

control

9 / 46

The CPU - A Von Neumann Machine
CPU address

data

A.L.U

data path
registers

control
path

control

The Von Neumann Cycle

forever do{
Fetch Instruction from Memory
Decode Instruction
Execute Instruction

}

10 / 46

The Processor
Externally
Application Binary Interface describes:
▶ what are the width of data and address buses
▶ what types of data are available
▶ what registers are available to programmers
▶ what instructions can be used

Internally
▶ Dedicated Registers
▶ a DataPath interconnecting these registers with combinatorial logic

1. perform calculations 2. select data to update registers with
▶ a Control Unit (or path), ie an Algorithmic State Machine, to ...

control the rest
11 / 46

Today
▶ We look at the external vision of the CPU: ABI, instructions,

assembler, etc.

Next time
▶ We will look at the internal vision of the CPU: registers, datapath,

control unit, VN cycle, etc

12 / 46

Programming Languages

▶ Architecture-Independent
▶ Machine details are abstracted away
▶ Programming concepts may be elaborate (object, data structures,

patterns, etc)
▶ Examples: C, C++, Java, Python, Ruby, etc.

13 / 46

Machine Language vs Assembly Language
Machine Language
▶ A Program is a sequence of binary instructions
▶ ie Instructions are “just” sequences of bits, 0s and 1s.
▶ Each instruction is interpreted by the CPU and triggers internal

changes to it so that the corresponding behavior is actually applied
▶ Each model of processor has its own machine language.

Assembly Language
▶ Very close to the Machine Language
▶ Instructions are “human-readable”
▶ 1 instruction in ASM → 1 instruction in machine language
▶ Some humans write/read them

Rmk: Both are specific to a processor family! 14 / 46

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

15 / 46

Instruction Set
We want to look at the code actually executed by the processor

⇒ Binary/Assembly

Each processor implements a specific Instruction Set, ie a set of
instructions that programs can use to make the processor perform the
required actions.

ISA (Instruction Set Architecture)
Examples:
▶ IA32 or IA64: Intel’s 32-bits or 64 bits Instruction Set
▶ ARM
▶ MSP430
▶ RISCV

16 / 46

Instruction Set Architecture

The ISA defines:
▶ The types of data that can be manipulated (typically ints of various

sizes, Boolean fields, floats)
▶ Instructions to ...
▶ ... manipulate this data
▶ ... access memory
▶ ... control the flow of execution
▶ ... help synchronize different execution threads (see Operating

Systems)
▶ ... handle Input/Output devices

17 / 46

An Example ISA - the msp430

▶ It’s a 16-bits machine, ie:
▶ Addresses are on 16 bits
▶ You have 16 registers R0 to R15
▶ NB: Registers R0 to R3 are reserved, don’t use them!

▶ We’ll look at the core ISA:
▶ Computational instructions
▶ Control-flow instructions
▶ Memory-access instructions

▶ We will look at:
▶ Syntax (how do you write the instruction?)
▶ Semantics (what does the instruction do?)
▶ Encoding (how is the instruction seen by the processor?)

18 / 46

msp430 - Available registers

▶ Basic local memory for the CPU to compute
with

▶ ie they are INSIDE the CPU!
▶ Noted R0 to R15
▶ The ABI says:

▶ R0, R1, R2 and R3 have dedicated functions.
▶ R4 to R15 are working registers for general use.

19 / 46

Instructions

An instruction can be characterized by:
▶ the type of operations it implements: computational, control-flow,

memory
▶ its format: one, two or three operands, addressing modes allowed

Addressing Modes
Generally speaking, defines how the instructions identify their operands.

20 / 46

Two major styles of ISA

Register-memory Architectures
▶ Allows all operations to be performed on memory as well as

registers.
▶ msp430, Motorala 68000, x86

Load-Store Architectures
▶ explicit memory acces instructions (typically load from- and and

store to- memory)
▶ register-only ALU instructions
▶ eg ARM, MIPS, RISCV, the micro-machine

21 / 46

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

22 / 46

The micro-machine (1/3)
In the first lab sessions, we’ll look at a home-made processor.
▶ 8-bits instructions
▶ 8-bits signed integers only
▶ 2 8-bits registers, named A and B

Computation instructions with 1 or 2 operands

B -> A 21 -> B
B + A -> A B xor -42 ->

A
not B -> A lsr A -> A
A xor 12 -> A B - A -> A;

WARNING: some instructions that would seem “intuitive” are actually
forbidden... eg: A+B -> B is incorrect ... B+A -> B is correct. 23 / 46

The micro-machine (2/3)

Memory reads and writes

*A -> A *A -> B
A -> *A B -> *A
*cst -> A *cst -> B
A -> *cst B -> *cst

*A means: “the content of memory at the address contained in
register A”.

24 / 46

The micro-machine (3/3)
Unconditional absolute branch

JA 42

continues execution at address 42.

Conditional relative branch

JR offset JR offset IFZ
(executed if Z=1)

JR offset IFC JR offset IFN
(executed if C=1) (executed if N=1)

25 / 46

The micro-machine how-to

▶ During the first lab, you will explore the syntax and semantics and
Assemble instructions yourself, ie write machine-language from a
given assembly language program.

▶ Later on, you will have a tool to do that for you. This tool is called an
Assembler.

26 / 46

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

27 / 46

Basic Instructions

▶ Perform a logical or integer operation on its arguments
▶ These operations include:

▶ ADD(-ition), SUB(-straction)
▶ SLL, SLT, SRL, SRA: Shift Left/Right Logical/Arithmetic
▶ XOR, OR, AND, NOT: Boolean operations
▶ Double or single-operand
▶ Some instructions modify the Status Bits, aka FLAGS.

28 / 46

Micro-machine - logical and integer operations

Computation instructions with 1 or 2 operands

B -> A 21 -> B
B + A -> A B xor -42 ->

A
not B -> A lsr A -> A
A xor 12 -> A B - A -> A;

29 / 46

msp430 - Double-Operand instructions
Syntax and Semantics
operation Xs, Xd

implements

src operation dst → dst
or operation src → dst
or src operation dst

Encoding

30 / 46

msp430 - Single-Operand
Syntax and Semantics
operation Xs/d

implements

operation src/dst

Encoding

31 / 46

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

32 / 46

Addressing Modes

▶ So far, we used only registers in computation. But we need to get
data from memory as well.

▶ in register-memory architectures, arithmetic and logical instructions
can work indifferently on registers and memory

▶ in load-store architectures, arithmetic and logical instructions only
work on register. Dedicated instructions are available to copy data
from memory to registers (LOAD) and reversly (STORE)

33 / 46

msp430 - addressing modes
An example of a register-memory architecture.

34 / 46

Micro-machine - memory instructions

An example of a load-store architecture.

Memory reads and writes

*A -> A *A -> B
A -> *A B -> *A
*cst -> A *cst -> B
A -> *cst B -> *cst

*A means: “the content of memory at the address contained in
register A”.

35 / 46

Outline

Overview

Instruction Set

Micro-Machine

Basic Instructions

Addressing Modes

Control-Flow

36 / 46

Control-Flow Instructions

▶ The general execution model is sequential
▶ Instructions are executed by the processor one after the other, in

the order they are written in the binary program.
▶ Algorithms are usually more complex than that.

They usre control structures such as if-then-else, for and while
loops, etc.

▶ At the machine level, these control structures are built using:
▶ basic blocks: “A sequence of contiguous instructions that contains no jumps or

labels.”
▶ control-flow instructions: instructions that allow to jump or branch to any

address in the code. Essentially, jumping from the end of a block to start of
another one.

37 / 46

Labels
▶ In assembly1, we use labels to have named references on memory

cells
▶ A label is a string ending with the “:” character
▶ It can be used to reference:

▶ a line of program

▶ a data item

1you can observe these on https://gcc.godbolt.org/
38 / 46

https://gcc.godbolt.org/

Jump instructions

▶ “jump” and “branch” are (almost) interchangeable;
▶ unconditionnal jumps: “goto” some place, whenever we execute

the branch;
▶ conditionnal jumps: test a condition to decide whether to jump or

not.

39 / 46

Unconditionnal Jumps

▶ Forces a new address addr to PC
▶ The next instruction executed is the one located at Mem[addr]

40 / 46

Conditionnal Jumps

▶ Decide whether to branch or not, based on a condition
▶ Condition can rely on the value of CPU flags

▶ JC = “Jump if Carry [flag is set]”
▶ JZ = “Jump if Zero [flag is set”
▶ That’s the case for our msp430 (see later on)

▶ Condition can rely on the value of registers, given as parameter to
the instruction:
▶ beq r1, r2, label = “branch to label if r1 == r2”
▶ bge r1, r2, label = “branch to label if r1 ≥ r2”
▶ eg risc-v processor

41 / 46

The micro-machine - Jump Instructions
Unconditional absolute branch

JA 42

continues execution at address 42.

Conditional relative branch

JR offset JR offset IFZ
(executed if Z=1)

JR offset IFC JR offset IFN
(executed if C=1) (executed if N=1)

42 / 46

Jumps on msp430

43 / 46

Control structures: if-then-else

if(condition){
Ins1

Insn

...

}else{
Insk

Insm

...

}

44 / 46

Control structures: if-then-else

if(condition){
Ins1

Insn

...

}else{
Insk

Insm

...

}
else:

endif:

First, associate to each
"jump locations" a label

44 / 46

Control structures: if-then-else

if(condition){
Ins1

Insn

...

}else{
Insk

Insm

...

}

;; asm insns
;; for Ins1;; to Insn

;; asm insns
;; for Insk;; to Insm

else:

endif:

First, associate to each
"jump locations" a label

Then generate the asm code
for each of the "then" and
"else" block.

44 / 46

Control structures: if-then-else

if(condition){
Ins1

Insn

...

}else{
Insk

Insm

...

}

;; asm insns
;; for Ins1;; to Insn

;; asm insns
;; for Insk;; to Insm

else:

endif:

unconditionnal
branch to endif

branch to else if
condition is false First, associate to each

"jump locations" a label

Then generate the asm code
for each of the "then" and
"else" block.

Finally, add jump instruc-
tions to evaluate the con-
dition of the IF and decide
which region of code the
CPU should jump to.

44 / 46

Control Structures: while

while(condition){
Ins1

Insn

...

}

Proceed the same way for
while loops....

45 / 46

Control Structures: while

while(condition){
Ins1

Insn

...

}

end:

test:
Proceed the same way for
while loops....
First, associate a label to
each "jump locations" (the
test of the condition and the
region "after the loop is fin-
ished").

45 / 46

Control Structures: while

while(condition){
Ins1

Insn

...

}

;; asm insns
;; for Ins1;; to Insn

end:

test:
Proceed the same way for
while loops....
First, associate a label to
each "jump locations" (the
test of the condition and the
region "after the loop is fin-
ished").

Then generate the asm code
for the body of the loop.

45 / 46

Control Structures: while

while(condition){
Ins1

Insn

...

}

;; asm insns
;; for Ins1;; to Insn

end:

test: branch to else if
condition is false

unconditionnal
branch to test

Proceed the same way for
while loops....
First, associate a label to
each "jump locations" (the
test of the condition and the
region "after the loop is fin-
ished").

Then generate the asm code
for the body of the loop.

Finally, add jump instruc-
tions to evaluate the condi-
tion of the WHILE and de-
cide which region of code
the CPU should jump to.

Note, that at the end of the
loop body, you should al-
ways go back to evaluate
the condition to decide if
you should end the loop...

45 / 46

Next week...
... we’ll look at the internals of the Micro-machine and talk about the Von
Neumann Cycle:

MA

MDO

MDI

ceM

ceRegB

MDI ceRegA
Reg A

Reg B

ALU

Reg A

Reg B

Reg Flags
Z
C

N

3

arg1

arg2

Reg A

Reg B

arg1S

0
1

Reg A

arg2S

0
1

MDO

arg2S
opcode

progFetch

0
1

MA
PC

+offset

1

JR
JA

1
0

0
1

Reg Cst

ceFlags

ceCst

MDI

IR 5

2

4

destS

arg1s
arg2s
offset
cond

opcode

ceIR

MDI

Instruction Register

Control Unit

cePC

progFetch
ceDest

ceFlags
JR
JA

cePC
ceIR

ceM

1
0

Mem2Reg

Mem2Reg

ceDest destS

ceDest destS

ceCst

Z
C
N

cond

opcode
2

4

46 / 46

	Overview
	Instruction Set
	Micro-Machine
	Basic Instructions
	Addressing Modes
	Control-Flow

