Input/Output - MMIO - Interrupts
—Computer Organization—

Lionel Morel

Computer Science and Information Technologies - INSA Lyon

Fall-Winter 2024-25

1/40

Von Neumann Architecture (from last time)

CPU address
con‘g[rhol | data path RECECERE
pa — =

— control
I\

Memory

Data

Instructiong

2/40

msp430 - The ABI - Instruction Set

Mnemonic

Description

Operation

ADC(.B)
ADD(.B)
ADDC(.B)
AND(.B)
BIC(.B)
BIS(.B)
BIT(.B)
BR

CALL
CLR(.B)
CLRC
CLRN
CLRZ
CMP(.B)
DADC(.B)
DADD(.B)
DEC(.B)
DECD(.B)
DINT
EINT

dst
src,dst
src,dst
src,dst
src,dst
src,dst
src,dst
dst
dst
dst

src,dst
dst
src,dst
dst
dst

Add C to destination

Add source to destination

Add source and C to destination
AND source and destination
Clear bits in destination

Set bits in destination

Test bits in destination

Branch to destination

Call destination

Clear destination

Clear C

Clear N

Clear Z

Compare source and destination
Add C decimally to destination

Add source and C decimally to dst.

Decrement destination
Double-decrement destination
Disable interrupts

Enable interrupts

dst + C — dst

src + dst — dst

src + dst + C — dst

src .and. dst — dst
.not.src .and. dst — dst
src .or. dst — dst

src .and. dst

dst — PC

PC+2 — stack, dst — PC
0 — dst

0—-C

0—=N

0—-2

dst - src

dst + C — dst (decimally)
src + dst + C — dst (decimally)
dst-1—dst

dst -2 — dst

0—GIE

1—GIE

e oa .

3/40

Example of ASM programs - micro-machine vs msp430

Micro-machine msp430
max: *100 -> A .section .init9
*101 -> B
B-A ? main:
JR +2 IFN mov.b &0x1000, r4
B -> A mov.b &0x1001, r5
A -> *102 cmp r5, r4
jle end
mov.b r5, r4
end:
mov.b r4, &&0x1001

4/40

msp430 - The CPU

MDB MAB
15 0

ROPC Program Counter |0

R1/SP Stack Pointer 0]

R2/SRICG1 Status

R3/CG2 Constant Generator

General Purpose

RS General Purpose

R6 General Purpose

R7 General Purpose

R8 General Purpose

RO General Purpose

R10 General Purpose

R11 General Purpose

Ri2 General Purpose

R13 General Purpose

General Purpose

—>

Negative, N

5/40

msp430 - Architecture

|
SMCLK
Qu_Hanz Scy:/lsotg:n > ACLK ';_:I‘%S,\r}l/ RAM Peripheral[—|Peripheral[—| Peripheral
| > SMCLK —1 — ACLK
I MCLK NN NN AN AN AN
I
= 81 [maB16-Bt| | B T _MAB16-Bit>
e H o7 - I Lo
RISCCPU| |&
I 16-Bit E
O}
| = L MDB 8-Bit
-Bi —
| S [mpBteBt) Bus K~ .
|
JTAG| AVAAVER VAV A4 A4 A
| ACLK —® — — —1
| SMCLK —¥ Peripheral [|Peripheral Peripheral||Peripheral[| Peripheral
I
- - O T

e e e e e e e e e e — — — —— — ———)

6/40

msp430 - Experimental Platform

D 9

|

¥ @ i
g B
; ||'|i||
O UYUBRE@ D

7/40

Mechanisms

» /O Controller

» Memory-Mapped I/O
» Polling

> Interrupts

8/40

Input/Output as seen from the CPU
A peripheral is seen as a set of registers that can be used to exchange
information between CPU and peripheral

» State registers (Read-only)
» Control registers (Write-only)
» Data registers (Read-Write)

Peripheral controller Peripheral

State reg.
Configuration reg.

(optionnal)

«—» Outside
world

CPU

9/40

Input/Output as seen from the CPU
A peripheral is seen as a set of registers that can be used to exchange
information between CPU and peripheral

» State registers (Read-only)
» Control registers (Write-only)
» Data registers (Read-Write)

\
ripheral controller Peripheral .
(optionnal)
Sth .
! Outside
CPU [Cpnfiguration reg. world
[}
(fatareg. |
I
0]0) 0} a
What happens on this side ot always apprehendable b

conforms to the usual CPU- e progra
memory split.

9/40

msp430 - I/O register example - Timer_A (1/4)

Consider the Timer_A peripheral:

15.1 Timer_A Introduction

Timer_A is a 16-bit timer/counter with three or five capture/compare registers.
Timer_A can support multiple capture/compares, PWM outputs, and interval
timing. Timer_A also has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

1 Asynchronous 16-bit timer/counter with four operating modes

[J Selectable and configurable clock source

[d Three or five configurable capture/compare registers

1 Configurable outputs with PWM capability

1 Asynchronous input and output latching

1 Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 15-1.

10/40

msp430 - I/O registers example - Timer_A (2/4

CPU

Peripheral

(optionnal)
l@» Outside world

Table 15-3.Timer_A3 Registers

=

Register Short Form Register Type Address Initial State
Timer_A control TACTU Read/write 0160h Reset with POR
Timer0_A3 Control TAOCTL

Timer_A counter TAR/ Read/write 0170h Reset with POR
Timer0_A3 counter TAOR

Timer_A capture/compare control 0 TACCTLO/ Read/write 0162h Reset with POR
Timer0_A3 capture/compare control 0 TAOCCTL

Timer_A capture/compare 0 TACCRO/ Read/write 0172h Reset with POR
Timer0_A3 capture/compare 0 TAOCCRO

Timer_A capture/compare control 1 TACCTL1/ Read/write 0164h Reset with POR
Timer0_A3 capture/compare control 1 TAOCCTL1

Timer_A capture/compare 1 TACCR1/ Read/write 0174h Reset with POR
Timer0_A3 capture/compare 1 TAOCCR1

Timer_A capture/compare control 2 TACCTLY Read/write 0166h Reset with POR
Timer0_A3 capture/compare control 2 TAOCCTL2

Timer_A capture/compare 2 TACCR2/ Read/write 0176h Reset with POR
Timer0_A3 capture/compare 2 TAOCCR2

Timer_A interrupt vector TAIV/ Read only 012Eh Reset with POR
Timer0_A3 interrupt vector TAOIV

11/40

msp430 - I/O registers example - Timer_A (3/4

For each “register” associated to
a peripheral, the documentation
tells you:

> its size

» the size and meaning of
each bitfield

» their initial value (at boot)

» if you can read and/or write
them

TACTL, Timer_A Control Register

15 " 13 12 " 10 o s
‘ Unes meses |
w-0) -0)) -0 -0)) =)
7 3 s 4 3 2 ' 3
1Dx nex Unused | TACLR TaE TFG
-0) o) -0 -0) wi0) -0 =)
Unused Bits Unused
1510
TASSELx Bits Timer_A clock source select
98 00 TACLK
01 ACLK
10
11 Inverted TACLK
1Dx Bits Input divider. These bits select the divider for the input clock.
76 00 N
o1 2
10 M4
"B
Mex Bits Mode control. Setting MCx = 00h when Timer_A is not in use conserves
54 power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TACCRO
10 Continuous mode: the timer counts up to OFFFFh
11 Up/down mode: the timer counts up to TAGCRO then down to 0000h
Unssed Bt Unused
TACLR B2 Timer_A clear. Setting this bi resets TAR, the clock divider, and the count
direction. The TACLR bit is automatically reset and s always read as zero.
TAIE Bit1 Timer_Ainterrupt enable. This bit enables the TAIFG interrupt request.
0 interrupt disabled
1 Interrupt enabled
TAIFG Bit0 Timer Ainterrupt flag

0 Nointernupt pending
1 Interrupt pending

12/40

msp430 - I/O registers example - Timer_A (4/4)

TAR, Timer_A Register

15 14 13 12 1 10 9 8
‘ TARX ‘
rw—(0) w—(0) w—(0) rw—(0) rw-(0) rw-(0) rw—(0) rw—(0)

7 6 5 4 3 2 1 0
‘ TARx ‘
rw—(0) w—(0) rw—{0) w—(0) rw=(0) rw—{0) rw-(0) rw—(0)
TARx Bits Timer_A register. The TAR register is the count of Timer_A.

15-0

13/40

/O registers

> Hey!!l But ...
» ... these are no CPU registers
» So we can'’t write:

like we write

» ... So how do we access those ????

14/40

Memory-Mapped I/0

» Devices and memory share the same address space

» Some parts of the memory address space correspond to real
memory cells

» Some parts of the memory address space correspond to peripheral
controllers’ registers.

» Any CPU instruction that can access memory can be used to
transfer data to/from an 1/O device

15/40

Memory-Mapped I/O - How it works

Peripheral controller Peripheral .
State reg. (optionnal)
: ; Outside
Configuration reg. [—>
world
Data reg.

valid addresses are :
— 0x42

CPU — 0x43

data bus

address bus memory

valid addresses are :
— from ... 0x0800
— to ... 0x5000

16/40

Memory-Mapped I/O - How it works

CPU

0x1000

0x1000

Peripheral controller Peripheral

Configuration reg.

address bus

data bus

0x1000

Data reg.

valid addresses are :
— 0x42
— 0x43

memory

valid addresses are :
— from ... 0x0800
— to ... 0x5000

OK, 0x1000 < [0x0800,

0x5000]. So that's for me to

talk.

(optionnal)

le—> Qutside
world

OK, 0x1000 ¢ [0x42, 0x43].

So that's NOT for me to talk.

16/40

Memory-Mapped I/O - How it works

CPU

0x42

0x42

Peripheral controller Peripheral

Configuration reg.

address bus

data bus

0x42

Data reg.

valid addresses are :
— 0x42
— 0x43

that’s for me to talk.

memory

valid addresses are :
— from ... 0x0800
— to ... 0x5000

OK, 0x42 ¢ [0x0800,

0x5000]. So that's NOT for

me to talk.

(optionnal)

le—> Qutside
world

OK, 0x42 € [0x42, 0x43]. So

16/40

msp430 - Memory Layout

Address Access
Most peripherals on the msp430 S
can be accessed through MMIOS Frcon Interrupt Vector Table Word/Byte
FFBFh
» The address space is Flash/ROM Word/Byte
logically split amongst the 3100h
H H 30FFh
different peripherals fau Word/Byto
» Here the address space is 1100h
216 bytes large' Reserved No access
> But the “real” memory is -
Sp“t betWeen: 16-Bit Peripheral Modules Word
» RAM from 0x1100 to 0x30ff 0100h
> Flash.from 0x3_100 to Oxffbf 00FFh & Bt Periphoral Modules Byte
> Notation Warning: 0010h
30FFh = Ox30FF 2222: Special Function Registers Byte

17/40

msp430 - MMIO

Table 15-3.Timer_A3 Registers

Register Short Form Register Type Addggss Initial State
Timer_A control TACTU Read/write 0160h

TimerQ_A3 Control TAQCTL

Timer_A counter TAR/ Read/write 0170h Reset with POR
Timer0_A3 counter TAOR

Timer_A capture/compare control 0 TACCTLO/ Read/write 0162h Reset with POR
Timer0_A3 capture/compare control 0 TAOCCTL

Timer_A capture/compare 0 TACCRO/ Read/write 0172h Reset with POR
Timer0O_A3 capture/compare 0 TAOCCRO

Timer_A capture/compare control 1 TACCTLA/ Read/write 0164h Reset with POR
Timer0_A3 capture/compare control 1 TAOCCTL1

Timer_A capture/compare 1 TACCR1/ Read/write 0174h Reset with POR
Timer0_A3 capture/compare 1 TAOCCR1

Timer_A capture/compare control 2 TACCTL2/ Read/write 0166h Reset with POR
Timer0_A3 capture/compare control 2 TAQOCCTL2

Timer_A capture/compare 2 TACCR2/ Read/write 0176h Reset with POR
Timer0_A3 capture/compare 2 TAOCCR2

Timer_A interrupt vector TAIV/ Read only 012Eh Reset with POR
Timer0_A3 interrupt vector TAQIV

The TACTL registers is
accessed (in R/W mode)
by using address 0x0160

mv #42, &0x0160

(Warning: the #42 value
here is probably meaning-
less for TACTL!)

18/40

Different Types of Peripherals

» So far, we have talked about a specific “Timer” peripherals

» Depending on the platform, many different types of peripherals might
be avaible

> eg, on our msp430:

Clock modules

Flash-Memory controller

Hardware multiplier

DMA controllers

Watchdog Timer

Real Time Clock

USART peripheral serial (UART or SPI modes)

LCD controller

DAC and ACD

etc.

General Purpose Input-Output devices, GPIOs

VVYyVVVYVVYVYYVYYVYY

19/40

GPIO: Definition - Inside the msp430 chip

» General-Purpose Input/Output

» One pin that can be configured by software as Input or Output
» Pins are grouped by packs of 8, called ports

» P1.7, ..., P1.0 are the eight pins grouped inside port P1

» On our board, P1.0 is the pin connected to the switch button 1

» P1.1 is the pin connected to the switch button 2
» P1 is controlled through 3 8bits registers:

» P1IN used to read data from the 8 pins

» P10UT used to write data to the 8 pins

> P1DIR used to configure the 8 pins as inputs or outputs

Port Register Short Form Address Register Type Initial State

P1 Input P1IN 020h Read only -
Output P1OUT 021h Read/write Unchanged
Direction P1DIR 022h Read/write Reset with PUC

These are memory-mapped too!!

20/40

msp430 - Buttons and LEDs - Outside the msp430 chip

l“n Ro—2[T 1t
= m That's the pin
e
) connecting the
At tote) button to the chip
TdTons TrofTons | an
& L That's the
o physical
= AR button
Pas 4 |reamer .7
F’m: rei] ;”:ﬂﬁ 'Egggc Buzzer
X: o BOCLK
EA’Tﬁ %Z e U3 e (6
g = F=t—— That's the
PA8Z/52/P44/0021L vmm 62 D1 h Slcal
MSP430FG461x _=aFe phy
s ezl 1 LEDs
© e o Tior]
ise,. “: That’s the pins ftBaugh SBLCDA4
snies i, | connecting the
EEPPRREEEREEERDER kL
1N

IAIINARRAR AR

button to the chip |5%

UCAOSOML 45 | prasssucsesan

ucagcL
UCAOSIMQ.

7K TR

21/40

Polling’
Definition
= SW regularly sampling the activity of a HW element

» Sometimes called “Busy-wait” synchronization
» Example: let’s switch the led ON when the button has been pressed

loopl:
mov.b #3, R15 ;; these lines compare
mov.b &32, R14 ;; the bits that are
add.b R15, R14, R14 ;; set to ONE whenever
cmp.b R14, RI15 ;; the button is pressed
jeq loopl ;5 as long as button NOT pressed,
;; actively look for its state
mov.b #2, &49 ;; do this only when out from loop

TIn French: Attente Active 22/40

Polling - Limits

» As the name suggests, software keeps the CPU “busy waiting for
something to happen”

» So while we're waiting, the CPU doesn’t do anything else!

» What if we integrated dealing with outside events right within the
CPU?

23/40

Interrupts - HW Principle

» We need a mechanism for:

> A device to signal it wants the attention of the CPU

» The CPU to stop what it’'s doing

» When over, the CPU needs to move back to what it was doing before
» This requires:

> A mechanism for the device to raise a flag

» The CPU to check for those flags regularly

» The CPU to be able to jump from the currenly executed code to a piece of code
dedicated to handling that device’s requests

» The CPU to be able to jump back to what the CPU was doing previously

In a sense, the CPU incorporates the busy-wait procedure ... Much more
efficient... !!

24/40

Interrupts in the Micro-Machine: Principle
» Only one device: a special button called “Signal”

» No Interrupt Vector (IRQ is enough in this case)

» The Interrupt Service Routine is located at §xA0

CPU

MA (Memory Address)

path

control |{ data path

MDO (Merpory Data Out

Memory

MDI (Mpmpry Data In)

ceM|(clgckEnable Memor!

Data

IRQ

Interrupt
Controller

Ad

Instructions

25/40

Interrupts in the Micro-Machine: New Datapath

Control Unit

f— ceDest
> cePC
> celR
|— ceFlags
— IR
A

celnterrupt

restore

|—» progFetch

ceSave

MA
> ceSave || NB: 4 new outputs for our —
Control Unit. MDO
— restore
— celnterrup¥} oI
— IntAck [—
ceM
—

IntAck
—

26/40

Interrupts in the Micro-Machine: New Control Unit

init

ceDest,cePC,
ceFlags
instribyte
instrCMP NoRegWrite

instr]R
HumpCondTrue

1Bytelnstr
instrMemWrite

MemRead

ceDst,cePC
Mem2Reg

instrMemRead

27/40

Interrupts in the Micro-Machine: New Control Unit

ceSave

celnterrupt
IntAck _ge—

27/40

Interrupts in the Micro-Machine: New Control Unit

init

NoRegWrite
cePC,ceFlags

AN
celR progFetch

ceDest,cePC,
ceFlags

restore
ceFla(c:|s
ceP

instrRETL

MemRead

ceDst,cePC
Mem2Reg

27/40

Putting it all together: the complete Control Unit

restore
ceFla@s
ceP

instrRE

cePC
ceSave

init

celRprogFetch

Bytelnstr
instrALU

ceDest,cePC,
ceFlags
instr1byte
instrCMP

instr]R
1JumpCondTrue

femara

instrMemRead

1Bytelnstr
instrtMemWrite

celnterrupt /

IntAck &

IRQ

28/40

Interrupts - HW Principle

Interrupt Periph Periph
IRQ ntroller P P
cPU system bust t t >
Periph Periph Periph
L |

» CPU can’t have one pin for each separate device.

» We somewhat need to multiplex

29/40

Interrupts: SW side

myisr:
/* instructions dealing */
/* with your device */
mov.b #42, 0x31

/* go back to "wherever */
/* we were before" */
reti

Principle

.section .init9

main:
/% init the red LED */
mov.b #1, &50
/% turn it off */
mov.b #0, &49
/% turn it on */
mov.b #2, &49

loop:
jmp loop

» For each device, an identifier exists called “Inverrupt Vector”
» This IV is associated to an Interrupt Routine, here named myisr

» When IV is received, the currently-executing instruction |; is
finished, and the CPU goes to execute myisr

» When myisr executes reti, program resumes at instruction I; 4

30/40

Interrupts - Working Principle and Vocabulary (1/2)

The device
» Emits a request towards the Interrupt Controller (I1C)

The IC
» Sorts requests
» Raises an Interrupt Request (IRQ) to the CPU.
» This is a dedicated signal wire between IC and CPU

31/40

Interrupts - Working Principle and Vocabulary (2/2)
The CPU

» Receives IRQ with identifier, named Interrupt Vector (V)
> BTW: Expects an Interrupt Service Routine (ISR) to be associated to that IV

» Saves the address of the instruction to come back to
[Some Place] <+ PC+4

» Jumps to the ISR
» Executes it

> Fetch, Decode, Execute, ...
> “Well that’s just code!”

» When end of ISR is reached, it should include a special instruction
to bring the CPU back to where it was before

» This instruction is called a Return from interrupt, in msp430 reti

32/40

msp430: Interrupts

Module X

MAB Bus Grant

33/40

msp430: Interrupts

Module 2 Module X

Bus Grant Bus Grant -

A
v

MAB

34/40

msp430: Interrupts

Module 2

Module X

Bus Grant

Bus Grant >

A

MAB

34/40

msp430: Interrupts

Module 2

Module X

Bus Grant

Bus Grant >

A

MAB

34/40

msp430: Interrupts

Module 2

Module X

Bus Grant

Bus Grant >

A

MAB

34/40

msp430: Interrupts

Module 2

Module X

Bus Grant

Bus Grant

A

MAB

34/40

msp430: Interrupts

Module 2

Module X

Bus Grant

Bus Grant

A

MAB

34/40

msp430: Interrupt Processing (1/5)

Interrupt Acceptance

The interrupt latency is six cycles, starting with the acceptance of an interrupt
request and lasting until the start of execution of the first instruction of the
interrupt-service routine, as shown in Figure 2-6. The interrupt logic executes
the following:

1) Any currently executing instruction is completed.
2) The PC, which points to the next instruction, is pushed onto the stack.
3) The SR is pushed onto the stack.

4) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

5) The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

6) The SR is cleared with the exception of SCGO, which is left unchanged.
This terminates any low-power mode. Because the GIE bit is cleared,
further interrupts are disabled. 35/40

msp430: Interrupt Processing (2/5)

SP —b

Before
Interrupt

Item1

Item2

TOS

SP —»

After
Interrupt

Item1

Item2

PC

SR TOS

36/40

msp430: Interrupt Processing (3/5)

Return From Interrupt

The interrupt handling routine terminates with the instruction:
RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions
and is illustrated in Figure 2-7.

1) The SR with all previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) The PC pops from the stack and begins execution at the point where it was
interrupted.

37/40

msp430: Interrupt Processing (4/5)

SP —»

Before After
Retum From Interrupt
ltem1 ltem1
ltem2 SP —» ltem2
PC PC
SR TOS SR

TOS

38/40

msp430: Interrupt Processing (5/5)

2.24

Interrupt Vectors

programmed by the user with the 16-bit address of the correspondini
service routine JSome devices may contain more interrupt vectors. See the
device-specific data sheet for the complete interrupt vector list.

Table 2—1.Interrupt Sources,Flags, and Vectors

The interrupt vectors and the power-up starting address are located in the

vector 1S
interrupt

INTERRUPT SYSTEM WORD

INTERRUPT SOURCE FLAG INTERRUPT ADDRESS PRIORITY
Power-up, external

reset, watchdog, ‘I?'EDJ\LFG Reset OFFFEh 15, highest
flash password

NMI, oscillator fault, NMIIFG (non)-maskable

flash memory access OFIFG (non)-maskable OFFFCh 14
violation ACCVIFG (non)-maskable

Device-specific OFFFARh 13
Device-specific OFFF8h 12
Device-specific OFFF6&h ih!
Watchdog timer WDTIFG maskable OFFF4h 10
Device-specific OFFF2h 9
Device-specific OFFFOh 8

— e e

[P —

39/40

Ca serait quand méme bien de leur toucher deux mots

» sur la hierarchie mémoire (plutét ici)
» sur le vliw (plutét dans le chapitre sur la construction du proc)

> le pipeline (mais c’est déja un peu le cas dans le chapitre sur la
construction du proc)

40/40

