
Input/Output - MMIO - Interrupts
–Computer Organization–

Lionel Morel

Computer Science and Information Technologies - INSA Lyon

Fall-Winter 2023-24

1 / 39

Von Neumann Architecture (from last time)
CPU Memoryaddress

data
Data

Instructions
A.L.U

data path
registers

control
path

control

2 / 39

msp430 - The ABI - Instruction Set
Mnemonic Description V N Z C

ADC(.B) dst Add C to destination dst + C → dst * * * *

ADD(.B) src,dst Add source to destination src + dst → dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + C → dst * * * *

AND(.B) src,dst AND source and destination src .and. dst → dst 0 * * *

BIC(.B) src,dst Clear bits in destination .not.src .and. dst → dst − − − −

BIS(.B) src,dst Set bits in destination src .or. dst → dst − − − −

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR dst Branch to destination dst → PC − − − −

CALL dst Call destination PC+2 → stack, dst → PC − − − −

CLR(.B) dst Clear destination 0 → dst − − − −

CLRC Clear C 0 → C − − − 0

CLRN Clear N 0 → N − 0 − −

CLRZ Clear Z 0 → Z − − 0 −

CMP(.B) src,dst Compare source and destination dst − src * * * *

DADC(.B) dst Add C decimally to destination dst + C → dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst. src + dst + C → dst (decimally) * * * *

DEC(.B) dst Decrement destination dst − 1 → dst * * * *

DECD(.B) dst Double-decrement destination dst − 2 → dst * * * *

DINT Disable interrupts 0 → GIE − − − −

EINT Enable interrupts 1 → GIE − − − −

INC(.B) dst Increment destination dst +1 → dst * * * *

INCD(.B) dst Double-increment destination dst+2 → dst * * * *

INV(.B) dst Invert destination .not.dst → dst * * * *

JC/JHS label Jump if C set/Jump if higher or same − − − −

JEQ/JZ label Jump if equal/Jump if Z set − − − −

JGE label Jump if greater or equal − − − −

JL label Jump if less − − − −

JMP label Jump PC + 2 x offset → PC − − − −

JN label Jump if N set − − − −

JNC/JLO label Jump if C not set/Jump if lower − − − −

JNE/JNZ label Jump if not equal/Jump if Z not set − − − −

MOV(.B) src,dst Move source to destination src → dst − − − −

NOP No operation − − − −

POP(.B) dst Pop item from stack to destination @SP → dst, SP+2 → SP − − − −

PUSH(.B) src Push source onto stack SP − 2 → SP, src → @SP − − − −

RET Return from subroutine @SP → PC, SP + 2 → SP − − − −

RETI Return from interrupt * * * *

RLA(.B) dst Rotate left arithmetically * * * *

RLC(.B) dst Rotate left through C * * * *

RRA(.B) dst Rotate right arithmetically 0 * * *

RRC(.B) dst Rotate right through C * * * *

SBC(.B) dst Subtract not(C) from destination dst + 0FFFFh + C → dst * * * *

SETC Set C 1 → C − − − 1

SETN Set N 1 → N − 1 − −

SETZ Set Z 1 → C − − 1 −

SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C → dst * * * *

SWPB dst Swap bytes − − − −

SXT dst Extend sign 0 * * *

TST(.B) dst Test destination dst + 0FFFFh + 1 0 * * 1

XOR(.B) src,dst Exclusive OR source and destination src .xor. dst → dst * * * *

Operation

3 / 39

Example of ASM programs - micro-machine vs msp430

Micro-machine
max: *100 -> A

*101 -> B

B-A ?

JR +2 IFN

B -> A

A -> *102

msp430
.section .init9

main:

mov.b &0x1000, r4

mov.b &0x1001, r5

cmp r5, r4

jle end

mov.b r5, r4

end:

mov.b r4, &&0x1001

4 / 39

msp430 - The CPU
015

MDB MAB

16
Zero, Z
Carry, C
Overflow, V
Negative, N

16−bit ALU

dst src

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose

R13 General Purpose

R14 General Purpose

R15 General Purpose

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R3/CG2 Constant Generator

R2/SR/CG1 Status

R1/SP Stack Pointer

R0/PC Program Counter 0

0

16

5 / 39

msp430 - Architecture

ACLK

Bus
Conv.

Peripheral

MAB 16-Bit

MDB 16-Bit

MCLK

SMCLK

Clock
System

Peripheral PeripheralPeripheral

Peripheral Peripheral PeripheralRAM
Flash/

RISC CPU
16-Bit

J
T
A

G
 in

te
rf

a
c
e

ACLK

SMCLK

ROM

JTAG

SMCLK

ACLK

Quartz

MAB 16-Bit

Peripheral

MDB 8-Bit

6 / 39

msp430 - Experimental Platform

7 / 39

Mechanisms

▶ I/O Controller
▶ Memory-Mapped I/O
▶ Polling
▶ Interrupts

8 / 39

Input/Output as seen from the CPU
A peripheral is seen as a set of registers that can be used to exchange
information between CPU and peripheral
▶ State registers (Read-only)
▶ Control registers (Write-only)
▶ Data registers (Read-Write)

CPU

State reg.

Configuration reg.

Data reg.

Peripheral controller Peripheral

Outside
world

(optionnal)

9 / 39

Input/Output as seen from the CPU
A peripheral is seen as a set of registers that can be used to exchange
information between CPU and peripheral
▶ State registers (Read-only)
▶ Control registers (Write-only)
▶ Data registers (Read-Write)

CPU

State reg.

Configuration reg.

Data reg.

Peripheral controller Peripheral

Outside
world

(optionnal)

What happens on this side is
not always apprehendable by
the programmer.

What happens on this side
conforms to the usual CPU-
memory split.

9 / 39

msp430 - I/O register example - Timer_A (1/4)
Consider the Timer_A peripheral:

10 / 39

msp430 - I/O registers example - Timer_A (2/4)

CPU
State reg.
Configuration reg.
Data reg.

Peripheral controller Peripheral

Outside world

(optionnal)

11 / 39

msp430 - I/O registers example - Timer_A (3/4)

For each “register” associated to
a peripheral, the documentation
tells you:
▶ its size
▶ the size and meaning of

each bitfield
▶ their initial value (at boot)
▶ if you can read and/or write

them

12 / 39

msp430 - I/O registers example - Timer_A (4/4)

13 / 39

I/O registers

▶ Hey!!! But ...
▶ ... these are no CPU registers
▶ So we can’t write:

mv #42, TACTL

like we write mv #42, R5

▶ ... So how do we access those ????

14 / 39

Memory-Mapped I/O

▶ Devices and memory share the same address space
▶ Some parts of the memory address space correspond to real

memory cells
▶ Some parts of the memory address space correspond to peripheral

controllers’ registers.
▶ Any CPU instruction that can access memory can be used to

transfer data to/from an I/O device

15 / 39

Memory-Mapped I/O - How it works

CPU

State reg.

Configuration reg.

Data reg.

Peripheral controller Peripheral

Outside
world

(optionnal)

data bus

address bus memory

valid addresses are :
— 0x42
— 0x43

valid addresses are :
— from ... 0x0800
— to ... 0x5000

16 / 39

Memory-Mapped I/O - How it works

CPU

State reg.

Configuration reg.

Data reg.

Peripheral controller Peripheral

Outside
world

(optionnal)

data bus

address bus memory

0x1000

0x1000

0x1000

valid addresses are :
— 0x42
— 0x43

valid addresses are :
— from ... 0x0800
— to ... 0x5000

OK, 0x1000 ∈ [0x0800,
0x5000]. So that’s for me to
talk.

OK, 0x1000 /∈ [0x42, 0x43].
So that’s NOT for me to talk.

16 / 39

Memory-Mapped I/O - How it works

CPU

State reg.

Configuration reg.

Data reg.

Peripheral controller Peripheral

Outside
world

(optionnal)

data bus

address bus memory

valid addresses are :
— 0x42
— 0x43

valid addresses are :
— from ... 0x0800
— to ... 0x5000

0x42

0x42

0x42

OK, 0x42 /∈ [0x0800,
0x5000]. So that’s NOT for
me to talk.

OK, 0x42 ∈ [0x42, 0x43]. So
that’s for me to talk.

16 / 39

msp430 - Memory Layout
Most peripherals on the msp430
can be accessed through MMIOs

▶ The address space is
logically split amongst the
different peripherals

▶ Here the address space is
216 bytes large.

▶ But the “real” memory is
split between:
▶ RAM from 0x1100 to 0x30ff
▶ Flash from 0x3100 to 0xffbf
▶ Notation Warning:

30FFh ≡ 0x30FF

FFC0h

Flash/ROM

RAM

16-Bit Peripheral Modules

8-Bit Peripheral Modules

Special Function Registers

FFFFh

FFDFh

01FFh

0100h

00FFh

0010h

000Fh

0000h

Word/Byte

Word/Byte

Word

Byte

Byte

Word/Byte

AccessAddress

30FFh

1100h

3100h

Reserved No access

Interrupt Vector Table

FFBFh

17 / 39

msp430 - MMIO

The TACTL registers is
accessed (in R/W mode)
by using address 0x0160

mv #42, &0x0160

(Warning: the #42 value
here is probably meaning-
less for TACTL ... and
your lecturer is lazy)

18 / 39

Different Types of Peripherals
▶ So far, we have talked about a specific “Timer” peripherals
▶ Depending on the platform, many different types of peripherals might

be avaible
▶ eg, on our msp430:

▶ Clock modules
▶ Flash-Memory controller
▶ Hardware multiplier
▶ DMA controllers
▶ Watchdog Timer
▶ Real Time Clock
▶ USART peripheral serial (UART or SPI modes)
▶ LCD controller
▶ DAC and ACD
▶ etc.
▶ General Purpose Input-Output devices, GPIOs

19 / 39

GPIO: Definition - Inside the msp430 chip
▶ General-Purpose Input/Output
▶ One pin that can be configured by software as Input or Output
▶ Pins are grouped by packs of 8, called ports
▶ P1.7, ..., P1.0 are the eight pins grouped inside port P1
▶ On our board, P1.0 is the pin connected to the switch button 1
▶ P1.1 is the pin connected to the switch button 2
▶ P1 is controlled through 3 8bits registers:

▶ P1IN used to read data from the 8 pins
▶ P1OUT used to write data to the 8 pins
▶ P1DIR used to configure the 8 pins as inputs or outputs

These are memory-mapped too!!
20 / 39

msp430 - Buttons and LEDs - Outside the msp430 chip

That’s the pin
connecting the
button to the chip

That’s the
physical
button

That’s the
physical
LEDs

That’s the pins
connecting the
button to the chip

21 / 39

Polling1

Definition
= SW regularly sampling the activity of a HW element

▶ Sometimes called “Busy-wait” synchronization
▶ Example: let’s switch the led ON when the button has been pressed

mov.b #2, &49

1In French: Attente Active
22 / 39

Polling - Limits

▶ As the name suggests, software keeps the CPU “busy waiting for
something to happen”

▶ So while we’re waiting, the CPU doesn’t do anything else!
▶ What if we integrated dealing with outside events right within the

CPU?

23 / 39

Interrupts - HW Principle

▶ We need a mechanism for:
▶ A device to signal it wants the attention of the CPU
▶ The CPU to stop what it’s doing
▶ When over, the CPU needs to move back to what it was doing before

▶ This requires:
▶ A mechanism for the device to raise a flag
▶ The CPU to check for those flags regularly
▶ The CPU to be able to jump from the currenly executed code to a piece of code

dedicated to handling that device’s requests
▶ The CPU to be able to jump back to what the CPU was doing previously

In a sense, the CPU incorporates the busy-wait procedure ... Much more
efficient... !!

24 / 39

Interrupts - HW Principle

CPU

Interrupt
controller

Periph Periph

Periph PeriphPeriph

IRQ

system bus

25 / 39

Interrupts: SW side
myisr:

/* instructions dealing */

/* with your device */

mov.b #42, 0x31

...

/* go back to "wherever */

/* we were before" */

reti

.section .init9

main:

/* init the red LED */

mov.b #1, &50

/* turn it off */

mov.b #0, &49

/* turn it on */

mov.b #2, &49

loop:

jmp loop

Principle
▶ For each device, an identifier exists called “Inverrupt Vector”
▶ This IV is associated to an Interrupt Routine, here named myisr
▶ When IV is received, the currently-executing instruction Ii is

finished, and the CPU goes to execute myisr
▶ When myisr executes reti, program resumes at instruction Ii+1 26 / 39

Interrupts - Working Principle and Vocabulary (1/2)

The device
▶ Emits a request towards the Interrupt Controller (IC)

The IC
▶ Sorts requests
▶ Raises an Interrupt Request (IRQ) to the CPU.
▶ This is a dedicated signal wire between IC and CPU

27 / 39

Interrupts - Working Principle and Vocabulary (2/2)

The CPU
▶ Receives IRQ with identifier, named Interrupt Vector (IV)

▶ BTW: Expects an Interrupt Service Routine (ISR) to be associated to that IV

▶ Saves the address of the instruction to come back to
[Some Place] ← PC+4

▶ Jumps to the ISR
▶ Executes it

▶ Fetch, Decode, Execute, ...,
▶ “Well that’s just code!”

▶ When end of ISR is reached, it should include a special instruction
to bring the CPU back to where it was before

▶ This instruction is called a Return from interrupt, in msp430 reti

28 / 39

Interrupts in the Micro-Machine: Principle
▶ Only one device: a special button called “Signal”
▶ No Interrupt Vector (IRQ is enough in this case)
▶ The Interrupt Service Routine is located at 0xAO

MA (Memory Address)

MDO (Memory Data Out)

MDI (Memory Data In)

ceM (clockEnable Memory)

Memory

Data

Instructions

CPU

A.L.U

data path
registers

control
path

Interrupt
ControllerBTN

Other
Periph

IRQ IntAck

29 / 39

Interrupts in the Micro-Machine: New Datapath
MA

MDO

MDI

ceM

ceRegB

MDI ceRegA
Reg A

Reg B

ALU

Reg A

Reg B

3

arg1

arg2

Reg A

Reg B

arg1S

0
1

Reg A

arg2S

0
1

MDO

arg2S
opcode

progFetch

0
1

MA

+offset

1

JR
JA

1
0

0
1

Reg Cst

ceCst

MDI

IR 5

2

4

destS

arg1s
arg2s
offset
cond

opcode

ceIR

MDI

Instruction Register

1
0

Mem2Reg
ceDest destS

ceDest destS

IRQ

1
0

1
0

A0
SavedPC

ceSave

ceInterrupt
restore

PC Saved
Flags

ceSave

restore

0
1

Reg Flags
ZCN

ceFlags

cePC

hard-coded address
of the ISR!

Control Unit

progFetch

ceFlags

ceDest

JR
JA

cePC
ceIR

ceM
Mem2Reg
ceCst

C
N

cond

opcode
2

4

Z

ceSave
restore

NB: 4 new outputs for our
Control Unit.

ceInterrupt
IntAck

IntAck

30 / 39

Interrupts in the Micro-Machine: New Control Unit

InstrFetch

ceIR,progFetch

RegWrite

ceDest,cePC

NoRegWrite

cePC,ceFlags

MemRead

ceDst,cePC

JRCondFalse
cePC

init

ceFlags

JRCondTrue
cePC,JR

Mem2Reg

InstrDecode

cstFetch

progFetch

IncrPC

cePC

MemWrite

ceM,cePC

ceCST

1ByteInstr
instrALU

instr1byte
instrCMP

2ByteInstr

1ByteInstr
instrMemWrite1ByteInstr

instrMemRead

instrJR
!JumpCondTrue

instrJR
JumpCondTrue

instrMemWrite

instrMemRead

instrJA

DoJA

JA,cePC

!instrCMP
instrALU

instrCMP

31 / 39

Interrupts in the Micro-Machine: New Control Unit

InstrFetch

ceIR,progFetch

RegWrite

ceDest,cePC

NoRegWrite

cePC,ceFlags

MemRead

ceDst,cePC

JRCondFalse
cePC

init

ceFlags

JRCondTrue
cePC,JR

Mem2Reg

JumpToISR

cePC
ceSave

ceInterrupt

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ
IRQ
IRQ

IRQ
IRQ

IRQ

IRQ

cstFetch

progFetch

incrPC

cePC

memWrite

ceM,cePC

ceCST

instr1byte
instrALU

instr1byte
instrCMP

instr2bytes

instr1byte
store

instr1byte
load

instrJR
cond==FALSE

instrJR
cond==TRUE

instr.store

instr.load

MemWrite

ceM,cePC

InstrDecode

DoJA

JA,cePC

IntAck

!instrCMP

!instrCMP instrCMPinstrALU

31 / 39

Interrupts in the Micro-Machine: New Control Unit

InstrFetch

ceIR,progFetch

RegWrite

ceDest,cePC

NoRegWrite

cePC,ceFlags

MemRead

ceDst,cePC

JRCondFalse
cePC

init

ceFlags

JRCondTrue
cePC,JR

Mem2Reg

DoRETi

instrRETi

restore

cstFetch

progFetch

incrPC

cePC

memWrite

ceM,cePC

ceCST

instr1byte
instrALU

instr1byte
instrCMP

instr2bytes

instr1byte
store

instr1byte
load

instrJR
cond==FALSE

instrJR
cond==TRUE

instr.store

instr.load

InstrDecode

MemWrite

ceM,cePC

DoJA

JA,cePC

ceFlags
!instrCMP

!instrCMP instrCMPinstrALU

cePC

31 / 39

Putting it all together: the complete Control Unit

InstrFetch

ceIR,progFetch

RegWrite

ceDest,cePC

NoRegWrite

cePC,ceFlags

MemRead

ceDst,cePC

JRCondFalse
cePC

init

ceFlags

JRCondTrue
cePC,JR

Mem2Reg

JumpToISR

cePC
ceSave

ceInterrupt

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ

IRQ
IRQ
IRQ

IRQ
IRQ

IRQ

IRQ

DoRETi

instrRETi

restore
InstrDecode

cstFetch

progFetch

IncrPC

cePC

MemWrite

ceM,cePC

ceCST

1ByteInstr
instrALU

instr1byte
instrCMP

2ByteInstr

1ByteInstr
instrMemWrite1ByteInstr

instrMemRead

instrJR
!JumpCondTrue

instrJR
JumpCondTrue

instrMemWrite

instrMemRead

instrJA

DoJA

JA,cePC

IntAck

ceFlags

!instrCMP
instrALU

instrCMP

cePC

32 / 39

msp430: Interrupts

Bus Grant

Module 1 Module 2 Module X Module Y
GIE

CPU

Priority High Low

MAB − 5LSBs

Module 3
M3IFG1

M3IFG2 MXIFG MYIFG

IRQ

M2IFGM1IFG

Interrupt

▶ Say Module 2 wants to raise an interrupt.
▶ It raises its Interrupt Flag to 1, ie eet M2IFG bit.
▶ This signal traverses other peripherals and reaches the CPU
▶ CPU perceives an interrupt when:

1. at least one peripheral raises its interrupt flag
2. the CPU’s “Global Interrupt Enable” bit is set in the Status Register.

▶ The CPU then passes the “Bus Grant Signal” to 1 ...
33 / 39

msp430: Interrupts (cont’d)

IRQ num = X
5

Module X

MXIFG

MAB

5

Bus Grant

▶ ... The CPU then passes the “Bus Grant Signal” to 1
▶ The above circuitry (in each module) ensures that exactly one

module with an interrupt flag raised writes its IRQ number to the
Address Bus.

▶ When the CPU reads this on the address bus, it uses it as an index
in its vector table, and reads the address of the corresponding
ISR there. 34 / 39

msp430: Interrupt Processing (1/5)

35 / 39

msp430: Interrupt Processing (2/5)

36 / 39

msp430: Interrupt Processing (3/5)

37 / 39

msp430: Interrupt Processing (4/5)

38 / 39

msp430: Interrupt Processing (5/5)

39 / 39

