Function Calls
—Computer Organization—

Lionel Morel

Computer Science and Information Technologies - INSA Lyon

Fall-Winter 2025-26

1/35



Introduction

» SW we have looked at so far is basically one main function
» Exception with ITs
» Most programs we write use functions

» Goal of this chapter: Understand how functions are managed by
HW.

2/35



Why Use functions? A Programmer’s Perspective

» Organize code, name instruction blocks

» Avoid code duplication, encourage code reuse

» Improve readability

» Limit over-nesting control structures

» Allow local thinking with local variables

» Allow building libraries (encourage code reuse ... more)
» Prepare for Object-Oriented-Programming

3/35



Example (cont'd)
int PP(int x){

int z,p;
Z = xX+1;
p = z+2;
return (p);
3
main(){
int i,j,k;
i=0;
j = i+3;
j = PP(i+1);
k = PP(2 * (i+5));

\4

main is the caller.
it calls PP which is the callee.

PP computes an integer output, the
result of the function.

variables z and p are local variables
of PP.

Every time PP is called it's the same
code that is executed, but with
different instances of z and p every
time.

4/35



Example (cont'd)

int PP(int x){

int z,p;
z = x+1;
P = z+2;
return (p);
}
main(){
int 1i,j,k;
i=0;
j = i+3;
j = PP(i+l)g
k = PP(2 * (i+5))

— )

i==0 6§ | == 3 &§& k==2?

i==0 66 | == 4 && k=27

i==0 6§ j==4 &§& k == 13

5/35



Example (cont'd)

W ~NO O R ®NE

B R R e
2N RO

int PP(int x){

int z,p;

z = x+1;

P = Z+2;

return (p);
}
main(){

int i,j,k;

i=9;

J = i+3;

J = PP(i+1);

k = PP(2 * (it+5));
A

~ main

SuB.W
MOV.W
MOV.W
ADD.W
MOV.W
MOV.W
ADD.W
MOV.W
MOV.W
ADD.W
RET

SuB.W
MOV.W
MOV.W
ADD.W
MOV.W
MOV.W
ADD.W
CALL
MOV.W
MOV.W
ADD.W
ADD.W
CALL
MOV.W
MOV.B
ADD.W
RET

#6, RL
R12, @R1
OR1, R12
#1, R12
R12, 4(R1)
4(R1), R12
#2, R12
R12, 2(R1)
2(R1), R12
#6, RL

#6, RL
#0, 4(R1)
4(R1), R12
#3, R12
R12, 2(R1)
4(R1), R12
#1, R12
#pP

R12, 2(R1)
4(R1), R12
#5, R12
R12, R12
#pP

R12, @R1
#0, R12
#6, R1

Warning: code generated by godbolt. Does not correspond to gcc’s

ABI

6/35



Problems we need to solve

U
U

0

Problem #1: Jump from main to PP ... and then come back

Problem #2: How do we make it work with call cascades (eg main
calls P, P calls Q, etc)?

Problem #3: How do we make it work with recursive functions (P
calls itself)?

Problem #4: Deal with local variables (the call to PP should not
break anything in main)?

Problem #5: How do we pass parameters from main to PP?
Problem #6: How do we get the return value from PP to main?

7/35



Problem #1:
“Marty .... We have to go back ... to the future”

» Calling PP is “just” jumping to the address of 1abelPP.

» We need to keep track of the instruction immediatly following the call
to PP

» This is called the return address

nriT
UL i

07 |2kl 198550 122

8/35



Call and Return

call labelPP

» Pre-condition:
» PC contains the address of the call labelPP instruction

» Semantics:
» Assume PC contains the address of the call instruction
> save «+— PC+¢ for later on ... into a dedicated location
» NB: § = number of bytes taken by the call instruction itself
» change PC to address of 1abelPP

9/35



Call and Return

ret

» Pre-condition:
> at least one call has been executed
» Semantics:
> copy the “saved return address” back to PC

10/35



Call and Return: example

0x20 some instruction
0x22 call myProcedure 0x80 myProcedure:
0x24 some other instruction 0x82
0x26 yet another one 0x84 ret
call:
1/ save 0x24 ret:
2/ jump to 0x80 1/ jump back to 0x24

11/35



Call and Return: example

0x20 some instruction

0x22 call myProcedure 0x80 myProcedure:
0x24 some other instruction 0x82
0x26 yet another one 0xB4 ret

call:

1/ save 0x24 ret:

2/ jump to 0x80 1/ jump back to 0x24

[ First implementation: save Return Address into specific RA register

11/35



Problems we need to solve

I Problem #1: Jump from main to PP ... and then come back

(] Problem #2: How do we make it work with call cascades (eg main
calls P, P calls Q, etc)?

(1 Problem #3: How do we make it work with recursive functions (P
calls itself)?

[1 Problem #4: Deal with local variables (the call to PP should not
break anything in main)?

[J Problem #5: How do we pass parameters from main to PP?

[J Problem #6: How do we get the return value from PP to main?

12/35



Problem #2: Call Cascades

mazn(){ (gﬁ Q()1{
al; ; cl;
a2; b2; c2;
P(); Q(); 3;
a3; b3; c4;

a4; b4; c5;
} } }

> RA doesn’t resolve the problem

» We would need several RA registers ...
» ... and we don’t know how many exactly in general.

13/35



Problem #3: Recursive Calls

int fact(int x){
if (x==0) { return 1;}
else {return x * fact(x-1);}

}

int mainQ{
int n,y;
printf("give_me _a_number, I’1ll, give_ you_ its.factorial\n");
scanf("%d", n);
y = fact(n);
return 0;

}

» Even worse ...

» Number of calls to fact depends on the value of n

» Can’t ever be predicted until user enters it, at execution,;
» Code needs to be prepared before that, at compilation.

14/35



Solution: Use a stack

Definition 1: Stack
£ abstract data type that allows to store items of data. It provides

two main operations:
» push, which adds an element on TOP of the stack;

» pop, which removes an element from the TOP of the stack.
This is a LIFO (for Last In, First Out) data structure.

15/35



Stack: usage

push el

initial state

el

push e2

e

el

7% pop r1

N

el

ECanP

16/35



The stack in hardware

SP_,

size-1

Memory
0

—
—~—

—
—~—

SP_,

size-1

Memory
0

—
—~—

—
—~—

» A dedicated area in memory

» a dedicated CPU register : SP for
Stack Pointer

» two CPU instructions: pop and push

» WARNING: often stack grows
towards address 0x00

17/35



msp430: the stack

3.22 Stack Pointer (SP)

s used by the CPU 0 store the ret

Figure 3-3. Stack Pointer
15

oo -]

Figure 3-4.Stack Usage

rsoms ooz pophs

‘The special cases of using the SP as an argument to the PUSH and POP.
instructions are described and shown in Figure 3-5.

Figure 3-5. PUSH SP - POP SP Sequence

PusHSP PoPSP
P —f | L1
5Py sP,
The stack poiier apopse
PUSH SP nsiucion instrucio. The POP SP nstcton places SP1 itothe

stack pointer SP (SP2-SP1)

v

SP dedicated register

SP always points to the TOP of
the stack (ie last element that was pushed)
on push, SP moves towards
address 0

on pop, SP moves towards
address Oxffffffff

NB1: Oxxxh means “address 0x0xxx”

NB2: Oxxxh - 6 means “address 0x0xxx
minus 6 ” (six bytes further down in memory)

18/35



msp430: the PUSH instruction

Instruction Set
PUSH[.W] Push word onto stack
PUSH.B Push byte onto stack
Syntax PUSH src  or PUSHW  src
PUSH.B src
Operation SP-2-8P
src —» @SP
Description The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).
Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUQFF, and GIE are not affected.
Example The contents of the status register and R8 are saved on the stack.
PUSH SR ; save status register
PUSH R8 ; save R8
Example The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

19/35



msp430: the POP instruction

* POPLW]
* POPB
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Pop word from stack to destination
Pop byte from stack to destination

@SP ->temp
SP+2 —>SP
temp —> dst

MoV @SP+,dst or MOVW  @SP+dst
MOv.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

The contents of RAM byte LEO is restored from the stack.
POP.B LEO ; The low byte of the stack is moved to LEO.
The contents of R7 is restored from the stack.

POP.B R7 i The low byte of the stack is moved to R7,
 the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack

POP.B O(R7)  :The low byte of the stack is moved to the
 the byte which is pointed to by R7
:Example: R7 =203h
; Mem(R7) = low byte of system stack
:Example:  R7 =20Ah
; Mem(R7) = low byte of system stack
POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

20/35



msp430: the CALL instruction

CALL
Syntax

Operation

Description

Status Bits

Example

Subroutine

CALL dst

dst > tmp dst is evaluated and stored
SP-2 -> SP

PC -> @SP PC updated to TOS

tmp -> PC dst saved to PC

A subroutine call is made to an address anywhere in the 64K address space.

All_addressing modes can be used] The return address (the address of the
following instruction) is stored on the stack.\The call instruction is a wor

instruction.

Status bits are not affected.

Examples for all addressing modes are given.

CALL

CALL

CALL

CALL

CALL

#EXEC ; Call onlabel EXEC or immediate address (e.g. #0A4h)
;SP-2 - SP, PC+2 - @SP, @PC+ —» PC

EXEC ; Gall on the address contained in EXEC
; 8P-2 - SP, PC+2 — @SP, X(PC) - PC
; Indirect address

&EXEC ; Call on the address contained in absolute address
s EXEC
1 8P-2 - SP, PC+2 — @SP, X(0) —» PC
; Indirect address

R5 ; Call on the address contained in R5
;SP-2 - SP, PC+2 — @SP, R5 —» PC
; Indirect R5

@R5 : Call on the address contained in the word

21/35



msp430: the RET instruction

*RET Return from subroutine
Syntax RET
Operation C@ SP— PC j
SP+2 =8P
Emulation MOV @SP+,PC
Description The return address pushed onto the stack by a CALL instruction is moved to

the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.

22/35



DEMO: let’s follow the call to PP

23/35



Problems we need to solve

I Problem #1: Jump from main to PP ... and then come back

I Problem #2: How do we make it work with call cascades (eg main
calls P, P calls Q, etc)?

VI Problem #3: How do we make it work with recursive functions (P
calls itself)?

[1 Problem #4: Deal with local variables (the call to PP should not
break anything in main)?

[J Problem #5: How do we pass parameters from main to PP?

[J Problem #6: How do we get the return value from PP to main?

24/35



Problem #4, #5 and #6:
Local variables, Parameter and function results

Now that we have a stack:
» We can use it to store all these variables and values
» But not always: we may use registers for that too
» This is defined in the ABI (Application Binary Interface)

» The ABI is defined :
» partly by CPU designers,
> partly by the compiler
> (and sometimes also by the OS)

25/35



Stack Frame & the Frame Pointer

» A Stack Frame is a piece of the frame that is used to store and
acces all information relating to the local environment of one
function:
> local variables,

» parameters
» return values

» The Frame Pointer can be used to designate a limit to this frame.
» In some architectures, there even is a dedicated register, called FP

26/35



msp430: the “frame pointer”
» The processor documentation doesn’t explicitely define one register
for that
» This convention is left to the compiler to define
» Example, with gcc:

s ™)

mspgcc’s ABI?
Register usage

e If you intend to interface assembly routines with your C code, you need to know how GCC uses the registers. This
section describes how registers are allocated and used by the compiler. (You can override GCC's settings by issuing
-ffixed-regs=...)

e r0, r2, and r3 - are fixed registers and not used by the compiler in any way. They cannot be used for temporary
register arguments either.

e r1 - is the stack pointer. The compiler modifies it only in the function prologues and epilogues, and when a
function call with a long argument list occurs. Do not modify it yourself under any circumstances!!!

e r4 - is the frame pointer. This can be used by the compiler, when va_args is used. When va_args is not used,
and optimization is switched on, this register is eliminated by the stack pointer.

4http://mspgcc.sourceforge.net/manual/c1225.html

27/35


http://mspgcc.sourceforge.net/manual/c1225.html

The frame pointer

SP_,

FP_,

—_

local variabled

return addresd

parameters

return value

—_

» Exact shape and order
depends on convention

» See demo for gcc and
msp430

28/35



msp430 - calling convention

Function calling conventions Fixed argument lists

Function arguments are allocated left to right. They are assigned from r15 to r12. If more parameters are passed than
will fit in the registers, the rest are passed on the stack. This should be avoided since the code takes a performance
hit when using variables residing on the stack.

[-]
Return values
The various functions types return the results as follows:

P char, int and pointer functions return their values r15
» long and float functions return their values in r15:r14
» long long functions return their values r15:r14:r13:r12
If the returned value wider than 64 bits, it is returned in memory.

29/35



Problems we need to solve

I Problem #1: Jump from main to PP ... and then come back

I Problem #2: How do we make it work with call cascades (eg main
calls P, P calls Q, etc)?

VI Problem #3: How do we make it work with recursive functions (P
calls itself)?

VI Problem #4: Deal with local variables (the call to PP should not
break anything in main)?

I Problem #5: How do we pass parameters from main to PP?

VI Problem #6: How do we get the return value from PP to main?

30/35



Demo - the code

0000312c <main>:
312c:
312e:
3130:
3134:
3138:
313c:
3140:
3144:
3148:
314a:
314e:
3152:
3156:
315a:
315c:
3160:
3164:

04
24
31
84
1f
3f
84
1f
1f
b0
84
1f
3f
5f
b0®
84
31

41
53
50
43
44
50
4f
44
53
12
4f
44
50
02
12
4f
50

fa
£8
£8
03
fa
£8

72
fa
£8
05

72
fc
06

ff
ff
ff
00
ff
ff

31
ff
ff
00

31
ff
00

mov
incd
add
mov
mov
add
mov
mov
inc
call
mov
mov
add
rlam
call
mov
add

rl,r4

r4

#-6, rl

#0, -8(rd)
-8(rd), rl5
#3, rl5
rl5, -6(r4)
-8(rd), rl5
rl5

#0x3172

rl5, -6(r4)
-8(rd), ri1s
#5, r15

#1, rl5
#0x3172

rl5, -4(r4)
#6, rl

;#0xfffa

;r3 As==00, Oxfff8(r4)
;0xf££8(rd)

; #0x0003

;0xfffa(rd)
;0xf££8(r4)

;O0xfffa(rd)
;0xf££8(r4)
; #0x0005

;0xfffc(rd)
; #0x0006

31/35



00003172 <PP>:

3172: 04
3174: 04
3176: 24
3178: 31
317c: 84
3180: 1f
3184: 1f
3186: 84
318a: 1f
318e: 2f
3190: 84
3194: 1f
3198: 31
319c: 34
319e: 30

12
41
53
50
4f
44
53
4f
44
53
4f
44
50
41
41

fa
fc
fc

£8
£8

fa
fa
06

ff
ff
ff

ff
ff

ff
ff
00

push
mov
incd
add
mov
mov
inc
mov
mov
incd
mov
mov
add
pop
ret

Demo - the code (cont'd)

r4

rl, r4

r4

#-6, rl
rl5, -4(r4)
-4(rd), rl5
rl5

rl5, -8(r4)
-8(rd), rl5
rl5

rl5, -6(r4)
-6(rd), rl5
#6, rl

r4

;#0xfffa
;0xfffc(rd)
;0xfffc(rd)

;0xf££8(rd)
;0x£££8(rd)

;0xfffa(rd)
;0xfffa(rd)
; #0x0006

32/35



Demo - the stack

SP = 0x3100 _y,.

at the start of
in

33/35



Demo - the stack

SP = 0x30fa

SP = 0x3100

h i code of maln
at the start o (upto call lo

main
PP)

just before
call to PP
(PC=0x314a)

33/35



Demo - the stack

SP = 0x3100

at the start of
main

SP = 0x30fa

code of maln
(upm call lo

PP)

just before \,

call to PP
(PC=0x314a)

SP = 0x30f8

A

call 0x3172

call pushes
0x314e (ie
return
address)

33/35



Demo - the stack

SP = 0x30fa

SP = 0x3100

h i code of maln
at the start o (upm call to

main
PP)

just before \,

call to PP
(PC=0x314a)

SP = 0x30f8

A

call 0x3172

SP = 0x30f6 03102
0x314e [~ 03Tde "~
call pushes \_/ save the
0x314e (ie push R4 (previous)
return stack frame
address) pointer.

33/35



Demo - the stack

SP = 0x30f6 0x3102

SP = 0x30f8 0317e X340

SP = 0x30fa

SP = 0x3100

code of maln .
ust before \_/
at the start of J \’call 03172 /‘ call pushes save the

to call t
main (upto ca) 0 call to PP 0x314e (ie push R4 (previous)
(PC=0x314a) return stack frame
address) pointer.

MOV SP, R4
INCD R4 /w
ADD -6, SP

SP = 0x30f0
"""" R4 - 4
[~ 037027 R4 -2

0x3018 0x314e R4 = 0x3018

33/35



Demo - the stack

SP = 0x30f6 0x3102

SP = 0x30f8 0317e X340

SP = 0x30fa

SP = 0x3100

de of ]
at the start of code o mam just before \, /‘ call pushes \_/ save the
(upm call to call to PP call 0x3172 ) :
main PP) 0x314e (ie push R4 (previous)
(PC=0x314a) return stack frame
address) pointer.

because we called

MOV SP, R4
INCD R4 /w PP with i=1
ADD -6, SP

SP = 0x30f0
---=-==- R4 - 4 [ 770X e
[~ 037027 R4 -2 [~ 037027
0x3018 0x314e R4 = 0x3018 0x3T4e R4
MOV R15, -4(R4)

33/35



Demo - the stack

SP = 0x30fa

SP = 0x3100

code of maln f
 bel
at the start of \>(upm A S

main call to PP
PP) (PC=0x314a)

MOV SP, R4
INCD R4 /w
ADD -6, SP

SP = 0x30f0
---=-==- R4 - 4 [ 770X e
[~ 037027 R4 -2 [~ 037027

0x3018 0x314e R4 = 0x3018 0x3T4e

MOV R15, -4(R4)

SP = 0x30f8

because we called
PP with i=1

R4

D . A 4

0x314e

0x314e (ie
return
address)

MOV -4(R4), R15

SP = 0x30f6 0x3102

call pushes \_/ save the

push R4 (previous)
stack frame

pointer.

33/35



Demo - the stack

SP = 0x30fa

SP = 0x3100

code of maln
at the start of \’(upto call to

main PP)

MOV SP, R4
INCD R4 /w
ADD -6, SP

SP = 0x30f0
"""" R4 - 4
[~ 037027 R4 -2

0x3018 0x314e R4 = 0x3018

.4

SP = 0x30f8

i f
just before \>cau 0x3172 A

SP = 0x30f6

0x314e

call pushes \_/

call to PP 0x314e (ie push R4
(PC=0x314a) return
address)
because we called
PP with i=1 Value of z
R4-8
"""""""" R4-6
0x1 g 0x1 R4 - 4
F~o312" " 77 0x3102~ ~ R4 -2
0x314e R4 0x314e R4 = 0x30f8
MOV -4(R4), R15 \Nﬁ(

MOV R15, -4(R4)

MOV R15, -6(R4)

0x3102

save the
(previous)
stack frame

pointer.

33/35



Demo - the stack (contd)
Y

MOV -8(R4), R15 // copy z to R15
INCD R15 // R15 <= R15 + 2
MOV R15, -6(R4) // copy R15 to stack

R4 -8 > 0x2
R4 - 6 > Ox4
Ré-4-»["70" "7

R4 -2 - 0x3102

R4 = 0x30f8 —» 0x314e

34/35



Demo - the stack (contd)
Y

MOV -8(R4), R15 // copy z to R15
INCD R15 // R15 <= R15 + 2

MOV R15, -6(R4) // copy R15 to stack The stack is unchanged

R15 contains our result.

R4 -8 0x2
Ra-6-%1 04 MOV -6(R4), R15
R4 - 4 0x

Ri-2 [~ D370~ /
R4 = 0x3018 0x374e

34/35



Demo - the stack (contd)
Y

MOV -8(R4), R15 // copy z to R15

INCD R15 // R15 <= R15 + 2

MOV R15, -6(R4) // copy R15 to stack The stack is unchanged

R15 contains our result. /w
ADD #6, R1 SP = 0x30f6 0x3102

R4 -8 02 ﬁ AN R4 = 03018 > [ T D374
R4 -6 Ox4 MOV -6(R4), R15

R4 -4 oxi
Ri-2 [~ 0037102~ ~ /
R4 = 0:3018 0374

34/35



Demo - the stack (contd)

=

MOV -8(R4), R15 // copy z to R15
INCD R15 // R15 <= R15 + 2

MOV R15, -6(R4) // copy R15 to stack

R4 -8
R4 -6
R4 -4
R4 -2
R4 = 0x30f8

-

POP R4

SP = 0x30f8

R4 contains

The stack is unchanged
R15 contains our result. /w

ADD #6, R1 SP = 0x30f6

ﬁ R4 = 0x308
MOV -6(R4), R15 — >

e

0x3102

34/35



Demo - the stack (contd)
Y

MOV -8(R4), R15 // copy z to R15
INCD R15 // R15 <= R15 + 2
MOV R15, -6(R4) // copy R15 to stack

The stack is unchanged
R15 contains our result. /w

ADD #6, R1 SP = 0x30f6 0x3102

Ri-8>[ 02 __ ﬁ AN R4 = 03018 > [ T D374
Ré-6 - 04 MOV -6(R4), R15

R4 -4 0x1

Ri-2 [T Tl A
R4 = 0x30f8 0x314e

POP R4

SP = 0x30f8

________ SP = 0x30fa

R4 contains \ / et aftar tha 34/35



Conclusions

» We have seen how a simple CPU works, how it interprets
instructions, how it deals with peripherals, and how we can use it to
program with functions.

» We have discussed Instruction Set Architectures, ie the interface
provided by the CPU to programmers, compilers and operating

systems.

» Many topics cannot be covered which have been explored by
researchers and industry to try and make these machines more and

more efficient:

» Memory hierarchy
> Parallelism
> Energy consumption

35/35



