
Function Calls
–Computer Organization–

Lionel Morel

Computer Science and Information Technologies - INSA Lyon

Fall-Winter 2024-25

1 / 36

Introduction

▶ SW we have looked at so far is basically one main function
▶ Exception with ITs
▶ Most programs we write use functions
▶ Goal of this chapter: Understand how functions work

2 / 36

Why Use functions?

▶ Organize code, name instruction blocks
▶ Avoid code duplication, encourage code reuse
▶ Improve readbility
▶ Limit over-nesting control structures
▶ Allow local thinking with local variables
▶ Allow building libraries (encourage code reuse ... more)
▶ Prepare for Object-Oriented-Programming

3 / 36

Example (cont’d)
int PP(int x){

int z,p;
z = x+1;
p = z+2;
return (p);

}

main(){
int i,j,k;
i = 0;
j = i+3;
j = PP(i+1);
k = PP(2 * (i+5));

}

▶ main is the caller.
▶ it calls PP which is the callee.
▶ PP computes an integer output, the

result of the function.
▶ variables z and p are local variables

of PP.
▶ Every time PP is called it’s the same

code that is executed, but with
different instances of z and p every
time.

4 / 36

Example (cont’d)

int PP(int x){
int z,p;
z = x+1;
p = z+2;
return (p);

}

main(){
int i,j,k;
i = 0;
j = i+3;
j = PP(i+1);
k = PP(2 * (i+5));

}

i==0 && j == 3 && k==??

i==0 && j == 4 && k=??

i==0 && j==4 && k == 13

5 / 36

Example (cont’d)

6 / 36

Problems we need to solve

□ Problem #1: Jump from main to PP ... and then come back
□ Problem #2: How do we make it work with call cascades (eg main

calls P, P calls Q, etc)?
□ Problem #3: How do we make it work with recursive functions (P

calls itself)?
□ Problem #4: Deal with local variables (the call to PP should not

break anything in main)?
□ Problem #5: How do we pass parameters from main to PP?
□ Problem #6: How do we get the return value from PP to main?

7 / 36

Problem #1:
“Marty We have to go back ... to the future”

▶ Calling PP is “just” jumping to the address of labelPP.
▶ We need to keep track of the instruction immediatly following the call

to PP
▶ This is called the return address

8 / 36

Call and Return

call labelPP

▶ Pre-condition:
▶ PC contains the address of the call labelPP instruction

▶ Semantics:
▶ Assume PC contains the address of the call instruction
▶ save←− PC+δ for later on ... into a dedicated location
▶ NB: δ = number of bytes taken by the call instruction itself
▶ change PC to address of labelPP

9 / 36

Call and Return

ret

▶ Pre-condition:
▶ at least one call has been executed

▶ Semantics:
▶ copy the “saved return address” back to PC

10 / 36

Call and Return: example

0x20
0x22
0x24
0x26

some instruction
call myProcedure
some other instruction
yet another one

0x80
0x82
0x84

myProcedure:
...
ret

call:
1/ save 0x24
2/ jump to 0x80

ret:
1/ jump back to 0x24

First implementation: save Return Address into specific RA register

11 / 36

Problems we need to solve

□✓ Problem #1: Jump from main to PP ... and then come back
□ Problem #2: How do we make it work with call cascades (eg main

calls P, P calls Q, etc)?
□ Problem #3: How do we make it work with recursive functions (P

calls itself)?
□ Problem #4: Deal with local variables (the call to PP should not

break anything in main)?
□ Problem #5: How do we pass parameters from main to PP?
□ Problem #6: How do we get the return value from PP to main?

12 / 36

Problem #2: Call Cascades

main(){

}

a1;
a2;
P();
a3;
a4;

P(){

}

b1;
b2;
Q();
b3;
b4;

Q(){

}

c1;
c2;
c3;
c4;
c5;

▶ RA doesn’t resolve the problem
▶ We would need several RA registers ...
▶ ... and we don’t know how many exactly in general.

13 / 36

Problem #3: Recursive Calls

int fact(int x){

if (x==0) { return 1;}

else {return x * fact(x-1);}

}

int main(){

int n,y;

printf("give␣me␣a␣number,␣I’ll␣give␣you␣its␣factorial\n");

scanf("%d", n);

y = fact(n);

return 0;

}

▶ Even worse ...
▶ Number of calls to fact depends on the value of n
▶ Can’t ever be predicted until user enters it, at execution;
▶ Code needs to be prepared before that, at compilation. 14 / 36

Solution: Use a stack

Definition (Stack)
A Stack is an abstract data type that allows to store items of data. It
provides two main operations:
▶ push, which adds an element on TOP of the stack;
▶ pop, which removes an element from the TOP of the stack.

This is a LIFO (for Last In, First Out) data structure.

15 / 36

Stack: usage

initial state

push e1

e1

push e2

e1
e2

pop r1

e1

e2 r1

16 / 36

The stack in hardware
Memory

0

size-1

SP

Memory
0

size-1

SP

Push

▶ A dedicated area in memory
▶ a dedicated CPU register : SP for

Stack Pointer
▶ two CPU instructions: pop and push

▶ WARNING: often stack grows
towards address 0x00

17 / 36

msp430: the stack

▶ SP dedicated register
▶ SP always points to the TOP of

the stack (ie last element that was pushed)

▶ on push, SP moves towards
address 0

▶ on pop, SP moves towards
address 0xffffffff

▶ NB1: 0xxxh means “address 0x0xxx”
▶ NB2: 0xxxh - 6 means “address 0x0xxx

minus 2 ” (two bytes further down in memory)

18 / 36

msp430: the PUSH instruction

19 / 36

msp430: the POP instruction

20 / 36

msp430: the CALL instruction

21 / 36

msp430: the RET instruction

22 / 36

DEMO: let’s follow the call to PP

23 / 36

Problems we need to solve

□✓ Problem #1: Jump from main to PP ... and then come back
□✓ Problem #2: How do we make it work with call cascades (eg main

calls P, P calls Q, etc)?
□✓ Problem #3: How do we make it work with recursive functions (P

calls itself)?
□ Problem #4: Deal with local variables (the call to PP should not

break anything in main)?
□ Problem #5: How do we pass parameters from main to PP?
□ Problem #6: How do we get the return value from PP to main?

24 / 36

Problem #4, #5 and #6:
Local variables, Parameter and function results

Now that we have a stack:
▶ We can use it to store all these variables and values
▶ But not always: we may use registers for that too
▶ This is defined in the ABI (Application Binary Interface)
▶ The ABI is defined :

▶ partly by CPU designers,
▶ partly by the compiler
▶ (and sometimes also by the OS)

25 / 36

Stack Frame & the Frame Pointer

▶ A Stack Frame is a piece of the frame that is used to store and
acces all information relating to the local environment of one
function:
▶ local variables,
▶ parameters
▶ return values

▶ The Frame Pointer can be used to designate a limit to this frame.
▶ In some architectures, there even is a dedicated register, called FP

26 / 36

msp430: the “frame pointer”
▶ The processor documentation doesn’t explicitely define one register

for that
▶ This convention is left to the compiler to define
▶ Example, with gcc:

mspgcc’s ABIa

Register usage

• If you intend to interface assembly routines with your C code, you need to know how GCC uses the registers. This
section describes how registers are allocated and used by the compiler. (You can override GCC’s settings by issuing
-ffixed-regs=...)
• r0, r2, and r3 - are fixed registers and not used by the compiler in any way. They cannot be used for temporary
register arguments either.
• r1 - is the stack pointer. The compiler modifies it only in the function prologues and epilogues, and when a
function call with a long argument list occurs. Do not modify it yourself under any circumstances!!!
• r4 - is the frame pointer. This can be used by the compiler, when va_args is used. When va_args is not used,
and optimization is switched on, this register is eliminated by the stack pointer.

ahttp://mspgcc.sourceforge.net/manual/c1225.html

27 / 36

http://mspgcc.sourceforge.net/manual/c1225.html

The frame pointer

SP

local variables

return address
parameters
...
return value

FP
▶ Exact shape and order

depends on convention
▶ See demo for gcc and

msp430

28 / 36

msp430 - calling convention

Function calling conventions Fixed argument lists
Function arguments are allocated left to right. They are assigned from r15 to r12. If more parameters are passed than
will fit in the registers, the rest are passed on the stack. This should be avoided since the code takes a performance
hit when using variables residing on the stack.
[...]
Return values
The various functions types return the results as follows:

▶ char, int and pointer functions return their values r15
▶ long and float functions return their values in r15:r14
▶ long long functions return their values r15:r14:r13:r12

If the returned value wider than 64 bits, it is returned in memory.

29 / 36

Problems we need to solve

□✓ Problem #1: Jump from main to PP ... and then come back
□✓ Problem #2: How do we make it work with call cascades (eg main

calls P, P calls Q, etc)?
□✓ Problem #3: How do we make it work with recursive functions (P

calls itself)?
□✓ Problem #4: Deal with local variables (the call to PP should not

break anything in main)?
□✓ Problem #5: How do we pass parameters from main to PP?
□✓ Problem #6: How do we get the return value from PP to main?

30 / 36

Demo - the stack

at the start of
main

SP = 0x3100

31 / 36

Demo - the stack

at the start of
main

just before
call to PP

(PC=0x314a)

SP = 0x3100

SP = 0x30fa

code of main
(upto call to

PP)

31 / 36

Demo - the stack

at the start of
main

just before
call to PP

(PC=0x314a)

SP = 0x3100

SP = 0x30fa

code of main
(upto call to

PP)
call pushes
0x314e (ie

return
address)

SP = 0x30f8

call 0x3172

0x314e

31 / 36

Demo - the stack

at the start of
main

just before
call to PP

(PC=0x314a)

SP = 0x3100

SP = 0x30fa

code of main
(upto call to

PP)
call pushes
0x314e (ie

return
address)

SP = 0x30f8

call 0x3172

0x314e

save the
(previous)

stack frame
pointer.

SP = 0x30f6

0x314e
0x3102

push R4

31 / 36

Demo - the stack

at the start of
main

just before
call to PP

(PC=0x314a)

SP = 0x3100

SP = 0x30fa

code of main
(upto call to

PP)
call pushes
0x314e (ie

return
address)

SP = 0x30f8

call 0x3172

0x314e

save the
(previous)

stack frame
pointer.

SP = 0x30f6

0x314e
0x3102

push R4

0x314e
0x3102

MOV SP, R4
INCD R4
ADD -6, SP

SP = 0x30f0

R4 = 0x30f8
R4 - 2
R4 - 4

0x30f8

31 / 36

Demo - the stack

at the start of
main

just before
call to PP

(PC=0x314a)

SP = 0x3100

SP = 0x30fa

code of main
(upto call to

PP)
call pushes
0x314e (ie

return
address)

SP = 0x30f8

call 0x3172

0x314e

save the
(previous)

stack frame
pointer.

SP = 0x30f6

0x314e
0x3102

push R4

0x314e
0x3102

MOV SP, R4
INCD R4
ADD -6, SP

SP = 0x30f0

R4 = 0x30f8
R4 - 2
R4 - 4

0x314e
0x3102

MOV R15, -4(R4)

0x1

R4

because we called
PP with i=1

0x30f8

31 / 36

Demo - the stack

at the start of
main

just before
call to PP

(PC=0x314a)

SP = 0x3100

SP = 0x30fa

code of main
(upto call to

PP)
call pushes
0x314e (ie

return
address)

SP = 0x30f8

call 0x3172

0x314e

save the
(previous)

stack frame
pointer.

SP = 0x30f6

0x314e
0x3102

push R4

0x314e
0x3102

MOV SP, R4
INCD R4
ADD -6, SP

SP = 0x30f0

R4 = 0x30f8
R4 - 2
R4 - 4

0x314e
0x3102

MOV R15, -4(R4)

0x1

0x314e
0x3102

MOV -4(R4), R15

0x1

R4

because we called
PP with i=1

0x30f8

31 / 36

Demo - the stack

at the start of
main

just before
call to PP

(PC=0x314a)

SP = 0x3100

SP = 0x30fa

code of main
(upto call to

PP)
call pushes
0x314e (ie

return
address)

SP = 0x30f8

call 0x3172

0x314e

save the
(previous)

stack frame
pointer.

SP = 0x30f6

0x314e
0x3102

push R4

0x314e
0x3102

MOV SP, R4
INCD R4
ADD -6, SP

SP = 0x30f0

R4 = 0x30f8
R4 - 2
R4 - 4

0x314e
0x3102

MOV R15, -4(R4)

0x1

0x314e
0x3102

MOV -4(R4), R15

0x1

R4

INC R15
MOV R15, -6(R4)

0x314e
0x3102

0x1

0x2

R4 = 0x30f8
R4 - 2
R4 - 4
R4 - 6
R4 - 8

because we called
PP with i=1 Value of z

0x30f8

31 / 36

Demo - the stack (cont’d)

0x314e
0x3102

0x1

0x2

R4 = 0x30f8
R4 - 2
R4 - 4
R4 - 6
R4 - 8

MOV -8(R4), R15 // copy z to R15
INCD R15 // R15 <– R15 + 2
MOV R15, -6(R4) // copy R15 to stack

0x4

32 / 36

Demo - the stack (cont’d)

0x314e
0x3102

0x1

0x2

R4 = 0x30f8
R4 - 2
R4 - 4
R4 - 6
R4 - 8

MOV -8(R4), R15 // copy z to R15
INCD R15 // R15 <– R15 + 2
MOV R15, -6(R4) // copy R15 to stack

0x4 MOV -6(R4), R15

The stack is unchanged
R15 contains our result.

32 / 36

Demo - the stack (cont’d)

0x314e
0x3102

0x1

0x2

R4 = 0x30f8
R4 - 2
R4 - 4
R4 - 6
R4 - 8

MOV -8(R4), R15 // copy z to R15
INCD R15 // R15 <– R15 + 2
MOV R15, -6(R4) // copy R15 to stack

0x4 MOV -6(R4), R15

The stack is unchanged
R15 contains our result.

ADD #6, R1 SP = 0x30f6

0x314e
0x3102

R4 = 0x30f8

32 / 36

Demo - the stack (cont’d)

0x314e
0x3102

0x1

0x2

R4 = 0x30f8
R4 - 2
R4 - 4
R4 - 6
R4 - 8

MOV -8(R4), R15 // copy z to R15
INCD R15 // R15 <– R15 + 2
MOV R15, -6(R4) // copy R15 to stack

0x4 MOV -6(R4), R15

The stack is unchanged
R15 contains our result.

ADD #6, R1 SP = 0x30f6

0x314e
0x3102

R4 = 0x30f8

POP R4

SP = 0x30f8 0x314e

R4 contains
0x3102

32 / 36

Demo - the stack (cont’d)

0x314e
0x3102

0x1

0x2

R4 = 0x30f8
R4 - 2
R4 - 4
R4 - 6
R4 - 8

MOV -8(R4), R15 // copy z to R15
INCD R15 // R15 <– R15 + 2
MOV R15, -6(R4) // copy R15 to stack

0x4 MOV -6(R4), R15

The stack is unchanged
R15 contains our result.

ADD #6, R1

RET

SP = 0x30f6

0x314e
0x3102

R4 = 0x30f8

POP R4

SP = 0x30f8 0x314e

R4 contains
0x3102

just after the
ret instruction

SP = 0x30fa

PC = 0x314e

32 / 36

Demo (factorial) - the code
int fact(int x){

if (x==0) {return 1;}
else {return x * fact(x-1);}

}

int main(){
int n,y;
int z;
n = 5;
y = fact(n);
z = y;
return 0;

}
33 / 36

Demo (factorial) - the code
0000312c <main>:

312c: 04 41 mov r1,r4
312e: 24 53 incd r4
3130: 31 50 fa ff add #-6,r1 ;#0xfffa
3134: b4 40 05 00 mov #5,-8(r4) ;#0x0005, 0xfff8(r4)
3138: f8 ff
313a: 1f 44 f8 ff mov -8(r4),r15 ;0xfff8(r4)
313e: b0 12 5c 31 call #0x315c
3142: 84 4f fa ff mov r15,-6(r4) ;0xfffa(r4)
3146: 94 44 fa ff mov -6(r4),-4(r4) ;0xfffa(r4), 0xfffc(r4)
314a: fc ff
314c: 0f 43 clr r15
314e: 31 50 06 00 add #6,r1 ;#0x0006

34 / 36

Demo (factorial) - the code
0000315c <fact>:

315c: 04 12 push r4
315e: 04 41 mov r1,r4
3160: 24 53 incd r4
3162: 21 83 decd r1
3164: 84 4f fc ff mov r15,-4(r4) ;0xfffc(r4)
3168: 84 93 fc ff tst -4(r4) ;0xfffc(r4)
316c: 02 20 jnz $+6 ;abs 0x3172
316e: 1f 43 mov #1,r15 ;r3 As==01
3170: 10 3c jmp $+34 ;abs 0x3192
3172: 1f 44 fc ff mov -4(r4),r15 ;0xfffc(r4)
3176: 3f 53 add #-1,r15 ;r3 As==11
3178: b0 12 5c 31 call #0x315c
317c: 02 12 push r2
317e: 32 c2 dint
3180: 03 43 nop
3182: 82 4f 32 01 mov r15,&0x0132
3186: 92 44 fc ff mov -4(r4),&0x0138 ;0xfffc(r4)
318a: 38 01
318c: 1f 42 3a 01 mov &0x013a,r15
3190: 32 41 pop r2
3192: 21 53 incd r1
3194: 34 41 pop r4
3196: 30 41 ret

35 / 36

Conclusions

▶ We have seen how a simple CPU works, how it interprets
instructions, how it deals with peripherals, and how we can use it to
program with functions.

▶ We have discussed Instruction Set Architectures, ie the interface
provided by the CPU to programmers, compilers and operating
systems.

▶ Many topics cannot be covered which have been explored by
researchers and industry to try and make these machines more and
more efficient:
▶ Memory hierarchy
▶ Parallelism
▶ Energy consumption

36 / 36

