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1 INTRODUCTION

The mechanical behaviour of soils may be modelled at various degrees of accuracy.
Hooke's law of linear, isotropic elasticity, for example, may be thought of as the simplest
available stress-strain relationship. As it involves only two input parameters, i.e. Young's
modulus, E, and Poisson's ratio, v, it is generally too crude to capture essential features
of soil and rock behaviour. For modelling massive structural elements and bedrock
layers, however, linear elasticity tends to be appropriate. An overview of the applicability
of the material models is given in Appendix B.

1.1 ON THE USE OF DIFFERENT MODELS

Linear Elastic model (LE)

The Linear Elastic model is based on Hooke's law of isotropic elasticity. It involves two
basic elastic parameters, i.e. Young's modulus E and Poisson's ratio v. Although the
Linear Elastic model is not suitable to model soil, it may be used to model stiff volumes in
the soil, like concrete walls, or intact rock formations.

Mohr-Coulomb model (MC)

The linear elastic perfectly-plastic Mohr-Coulomb model involves five input parameters,
i.e. E and v for soil elasticity; ¢ and c for soil plasticity and ) as an angle of dilatancy.
This Mohr-Coulomb model represents a 'first-order' approximation of soil or rock
behaviour. It is recommended to use this model for a first analysis of the problem
considered. For each layer one estimates a constant average stiffness or a stiffness that
increases linearly with depth. Due to this constant stiffness, computations tend to be
relatively fast and one obtains a first estimate of deformations.

Hardening Soil model (HS)

The Hardening Soil model is an advanced model for the simulation of soil behaviour. As
for the Mohr-Coulomb model, limiting states of stress are described by means of the
friction angle, ¢, the cohesion, ¢, and the dilatancy angle, ¢). However, soil stiffness is
described much more accurately by using three different input stiffnesses: the triaxial
loading stiffness, Esg, the triaxial unloading stiffness, E,,, and the oedometer loading
stiffness, Eyeq. As average values for various soil types, E,r ~ 3E5q and E,eqg ~ Esp are
suggested as default settings, but both very soft and very stiff soils tend to give other
ratios of E,eq/Esg, Which can be entered by the user.

In contrast to the Mohr-Coulomb model, the Hardening Soil model also accounts for
stress-dependency of stiffness moduli. This means that all stiffnesses increase with
pressure. Hence, all three input stiffnesses relate to a reference stress, usually taken as
100 kPa (1 bar).

Besides the model parameters mentioned above, initial soil conditions, such as
pre-consolidation, play an essential role in most soil deformation problems. This can be
taken into account in the initial stress generation.
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Hardening Soil model with small-strain stiffness (HSsmall)

The Hardening Soil model with small-strain stiffness (HSsmall) is a modification of the
above Hardening Soil model that accounts for the increased stiffness of soils at small
strains. At low strain levels most soils exhibit a higher stiffness than at engineering strain
levels, and this stiffness varies non-linearly with strain. This behaviour is described in the
HSsmall model using an additional strain-history parameter and two additional material
parameters, i.e. G{Jef and vp.7. G{,ef is the small-strain shear modulus and g 7 is the
strain level at which the shear modulus has reduced to about 70% of the small-strain
shear modulus. The advanced features of the HSsmall model are most apparent in
working load conditions. Here, the model gives more reliable displacements than the HS
model. When used in dynamic applications, the Hardening Soil model with small-strain
stiffness also introduces hysteretic material damping.

Soft Soil model (SS)

The Soft Soil model is a Cam-Clay type model especially meant for primary compression
of near normally-consolidated clay-type soils. Although the modelling capabilities of this
model are generally superseded by the Hardening Soil model, the Soft Soil model is
better capable to model the compression behaviour of very soft soils.

Soft Soil Creep model (SSC)

The Hardening Soil model is generally suitable for all soils, but it does not account for
viscous effects, i.e. creep and stress relaxation. In fact, all soils exhibit some creep and
primary compression is thus followed by a certain amount of secondary compression.

The latter is most dominant in soft soils, i.e. normally consolidated clays, silts and peat,
and PLAXIS thus implemented a model under the name Soft Soil Creep model. The Soft
Soil Creep model has been developed primarily for application to settlement problems of
foundations, embankments, etc. For unloading problems, as normally encountered in
tunnelling and other excavation problems, the Soft Soil Creep model hardly supersedes
the simple Mohr-Coulomb model. As for the Hardening Soil model, proper initial soil
conditions are also essential when using the Soft Soil Creep model. This also includes
data on the pre-consolidation stress, as the model accounts for the effect of
over-consolidation. Note that the initial over-consolidation ratio also determines the initial
creep rate.

Jointed Rock model (JR)

The Jointed Rock model is an anisotropic elastic-plastic model, especially meant to
simulate the behaviour of rock layers involving stratification and particular fault directions.
Plasticity can only occur in a maximum of three shear directions (shear planes). Each
plane has its own strength parameters ¢ and c. The intact rock is considered to behave
fully elastic with constant stiffness properties E and v. Reduced elastic properties may
be defined for the stratification direction.

Modified Cam-Clay model (MCC)

The Modified Cam-Clay model is a well known model from international soil modelling
literature; see for example Muir Wood (1990). It is meant primarily for the modelling of
near normally-consolidated clay-type soils. This model has been added to PLAXIS to
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allow for a comparison with other codes.

NGI-ADP model (NGI-ADP)

The NGI-ADP model is an anisotropic undrained shear strength model. The soil shear
strength is defined by means of s, values for active, passive and direct simple shear
stress states. The model may be used for onshore and offshore applications in undrained
clays and silts.

Sekiguchi-Ohta model (Sekiguchi-Ohta)

The Sekiguchi-Ohta model is a Cam-Clay type of model with anisotropic yield contour
defined by KZ.. Two versions of the model exist: The inviscid model is a time
independent model which has similarities with the Soft Soil model. The viscid model is
time-dependent and has similarities with the Soft Soil Creep model. Both models have
been developed in Japan. These models were previously available as user-defined
models, but have become standard models in PLAXIS nowadays.

Hoek-Brown model (HB)

The Hoek-Brown model is an isotropic elastic perfectly-plastic model for weathered rock
based on the 2002 edition of the Hoek-Brown failure criterion. This non-linear
stress-dependent criterion describes shear failure and tensile failure by a continuous
function, and is familiar to most geologists and rock engineers. Besides the elastic
parameters (E and v), the model involves practical rock parameters such as the uni-axial
compressive strength of the intact rock (o), the GeologicalStrength Index (GS/), and the
disturbance factor (D).

Analyses with different models

The Mohr-Coulomb model may be used for a relatively quick and simple first analysis of
the problem considered.

In many cases, even if good data on dominant soil layers is limited, it is recommended to
use the Hardening Soil model or the HS small model in an additional analysis. No doubt,
one seldomly has test results from both triaxial and oedometer tests, but good quality
data from one type of test can be supplemented by data from correlations and/or in situ
testing.

Finally, a Soft Soil Creep analysis can be performed to estimate creep, i.e. secondary
compression in very soft soils.

1.2 LIMITATIONS

The PLAXIS code and its soil models have been developed to perform calculations of
realistic geotechnical problems. In this respect PLAXIS can be considered as a
geotechnical simulation tool. The soil models can be regarded as a qualitative
representation of soil behaviour whereas the model parameters are used to quantify the
soil characteristics. Although much care has been taken for the development of the
PLAXIS code and its soil models, the simulation of reality remains an approximation,
which implicitly involves some inevitable numerical and modelling errors. Moreover, the
accuracy at which reality is approximated depends highly on the expertise of the user
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regarding the modelling of the problem, the understanding of the soil models and their
limitations, the selection of model parameters, and the ability to judge the reliability of the
computational results.

Some of the limitations in the currently available models are listed below:

Linear Elastic model

Soil behaviour is highly non-linear and irreversible. The linear elastic model is insufficient
to capture the essential features of soil. The use of the linear elastic model may, however,
be considered to model strong massive structures in the soil or bedrock layers. Stress
states in the linear elastic model are not limited in any way, which means that the model
shows infinite strength. Be careful using this model for materials that are loaded up to
their material strength.

Mohr-Coulomb model

The linear elastic perfectly-plastic Mohr-Coulomb model is a first order model that
includes only a limited number of features that soil behaviour shows in reality. Although
the increase of stiffness with depth can be taken into account, the Mohr-Coulomb model
does neither include stress-dependency nor stress-path dependency nor strain
dependency of stiffness or anisotropic stiffness. In general, effective stress states at
failure are quite well described using the Mohr-Coulomb failure criterion with effective
strength parameters ¢' and c'. For undrained materials, the Mohr-Coulomb model may
be used with the friction angle ¢ set to 0° and the cohesion ¢ set to ¢, (S,), to enable a
direct control of undrained shear strength. In that case note that the model does not
automatically include the increase of shear strength with consolidation.

Hardening Soil model

Although the Hardening Soil model can be regarded as an advanced soil model, there
are a number of features of real soil behaviour the model does not include. Itis a
hardening model that does not account for softening due to soil dilatancy and de-bonding
effects. In fact, it is an isotropic hardening model so that it models neither hysteretic and
cyclic loading nor cyclic mobility. Moreover, the model does not distinguish between large
stiffness at small strains and reduced stiffness at engineering strain levels. The user has
to select the stiffness parameters in accordance with the dominant strain levels in the
application. Last but not least, the use of the Hardening Soil model generally results in
longer calculation times, since the material stiffness matrix is formed and decomposed in
each calculation step.

Hardening Soil model with small-strain stiffness

As the Hardening Soil model with small-strain stiffness (HSsmall) incorporates the
loading history of the soil and a strain-dependent stiffness, it can, to some extent, be
used to model cyclic loading. However, it does not incorporate a gradual softening during
cyclic loading, so is not suitable for cyclic loading problems in which softening plays a
role. In fact, just as in the Hardening Soil model, softening due to soil dilatancy and
debonding effects are not taken into account. Moreover, the HSsmall does not
incorporate the accumulation of irreversible volumetric straining nor liquefaction
behaviour with cyclic loading. The use of the HSsmall will generally result in calculation
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times that are even longer than those of the Hardening Soil model.

Soft Soil model

The same limitations (including the ones for the Soft Soil Creep model) hold in the Soft
Soil model. The utilization of the Soft Soil model should be limited to the situations that
are dominated by compression. It is not recommended for use in excavation problems,
since the model hardly supercedes the Mohr-Coulomb model in unloading problems.

Soft Soil Creep model

All above limitations also hold true for the Soft Soil Creep model. In addition this model
tends to over-predict the range of elastic soil behaviour. This is especially the case for
excavation problems, including tunnelling. Care must also be taken with the generation of
initial stresses for normally consolidated soils. Although it would seem logical to use OCR
= 1.0 for normally consolidated soils, such use would generally lead to an over-prediction
of deformations in problems where the stress level is dominated by the initial self-weight
stresses. Therefore, for such problems it is recommended to use a slightly increased
OCR-value to generate the initial stress state. In fact, in reality most soils tend to show a
slightly increased pre-consolidation stress in comparison with the initial effective stress.
Before starting an analysis with external loading it is suggested to perform a single
calculation phase with a short time interval and without loadingto verify the surface
settlement rate based on common practice.

Jointed Rock model

The Jointed Rock model is a first order anisotropic model that includes a limited number
of features that rock behaviour shows in reality. Plasticity can only occur in @ maximum of
three shear directions (shear planes). Each plane has its own shear strength parameters
p; and ¢; and tensile strength f;. Hence, the maximum shear stress is linearly dependent
on the normal stress, and not curved as in reality. The intact rock is considered to behave
fully elastic with constant stiffness properties E and v. Reduced elastic properties may be
defined for the stratification direction. Note that failure is limited to the predefined shear
plane directions. It is possible that realistic potential failure mechanisms are not captured
by the model because of the elastic behaviour in any other direction than the three shear
planes.

Modified Cam-Clay model

The same limitations (including those in the Soft Soil Creep model) hold in the Modified
Cam-Clay model. Moreover, the Modified Cam-Clay model may allow for unrealistically
high shear stresses. This is particularly the case for overconsolidated stress states where
the stress path crosses the critical state line. Furthermore, the Modified Cam-Clay model
may give softening behaviour for such stress paths. Without special regularization
techniques, softening behaviour may lead to mesh dependency and convergence
problems of iterative procedures. Moreover, the Modified Cam-Clay model cannot be
used in combination with Safety analysis by means of phi-c reduction.
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NGI-ADP model (NGI-ADP)

The NGI-ADP model is an undrained shear strength model particularly meant to model
undrained clays and silts. It can be used in a drained or effective stress analysis, but note
that the shear strength is not automatically updated with changes of effective stress. Also
note that the NGI-ADP model does not include a tension cut-off.

Hoek-Brown model (HB)

The Hoek-Brown model is an isotropic continuum model particularly meant to model
weathered rock. Hence, the model is not suitable for stratified or jointed rock sections
with a significant anisotropic stiffness or with one or more dominant sliding directions. For
such behaviour, the Jointed Rock model is available.

Interfaces

Interface elements are generally modelled by means of the bilinear Mohr-Coulomb
model. When a more advanced model is used for the corresponding cluster material data
set, the interface element will only pick up the relevant data (c, ¢, v, E, v) for the
Mohr-Coulomb model, as described in the Reference Manual. In such cases the interface
stiffness is set equal to the elastic soil stiffness. Hence, E = E,, where E,, is stress level
dependent, following a power law with E,, proportional to o,,. For the Soft Soil model,
Soft Soil Creep model and Modified Cam-Clay model the power m is equal to 1 and E,,
is largely determined by the swelling constant «*.

Undrained behaviour

In general, care must be taken in undrained conditions, since the effective stress path
that is followed in any of the models may deviate significantly from reality. Although
PLAXIS has options to deal with undrained behaviour in an effective stress analysis, the
use of undrained shear strength (¢, or ;) may be preferred over the use of effective
strength properties (¢' and ¢') in such cases. Please note that direct input on undrained
shear strength does not automatically include the increase of shear strength with
consolidation. If, for any reason, the user decides to use effective strength properties in
undrained conditions, it is strongly recommended to check the resulting mobilised shear
strength using the corresponding option in the PLAXIS Output program.
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2 PRELIMINARIES ON MATERIAL MODELLING

A material model is described by a set of mathematical equations that give a relationship
between stress and strain. Material models are often expressed in a form in which
infinitesimal increments of stress (or 'stress rates') are related to infinitesimal increments
of strain (or 'strain rates'). All material models implemented in PLAXIS are based on a
relationship between the effective stress rates, ', and the strain rates, . In the following
section it is described how stresses and strains are defined in PLAXIS. In subsequent
sections the basic stress-strain relationship is formulated and the influence of pore
pressures in undrained materials is described. Later sections focus on initial conditions
for advanced material models.

This Material Models Manual is a general manual for all PLAXIS programs and uses the
coordinate system as used in most programs (Figure 2.1). Please note that the new
PLAXIS 3D uses a different coordinate system where z is the vertical axis. Users should
realize this when reading this manual.

2.1 GENERAL DEFINITIONS OF STRESS
Stress is a tensor which can be represented by a matrix in Cartesian coordinates:

Oxx Oxy Oxz

o= (2.1)

Oyx Oyy Oyz
Ozx Ozy Ozz

In the standard deformation theory, the stress tensor is symmetric such that oy, = oy ,
Oyz = 0zy and ozx = 0x. In this situation, stresses are often written in vector notation,
which involve only six different components:

_ T
g= (Uxx Oyy Ozz Oxy Oyz sz) (2.2)

According to Terzaghi's principle, stresses in the soil are divided into effective stresses,
o', and pore pressures, g,

oc=0'+0, (2.3)

Pore pressures are generally provided by water in the pores. Water is considered not to

4%y

—» 0 xx

z Oz7 Ozx

Figure 2.1 General three-dimensional coordinate system and sign convention for stresses
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sustain any shear stresses. As a result, effective shear stresses are equal to total shear
stresses. Positive normal stress components are considered to represent tension,
whereas negative normal stress components indicate pressure (or compression).
Moreover, water is considered to be fully isotropic, so all pore pressure components are
equal. Hence, pore pressure can be represented by a single value, py:

= (Pw pu Pu 000)7 (2.4)

Material models for soil and rock are generally expressed as a relationship between
infinitesimal increments of effective stress and infinitesimal increments of strain. In such a
relationship, infinitesimal increments of effective stress are represented by stress rates
(with a dot above the stress symbol):

L T A . . T 2.5)
9 =\ 0xx Oyy Ozz Oxy Oyz Ozx (2.
It is often useful to apply principal stresses rather than Cartesian stress components
when formulating material models. Principal stresses are the stresses in such a
coordinate system direction that all shear stress components are zero. Principal stresses

are, in fact, the eigenvalues of the stress tensor. Principal effective stresses can be
determined in the following way:

det (g' — g'l) =0 (2.6)

where [ is the identity matrix. This equation gives three solutions for ¢, i.e. the principal
effective stresses (0'1, o'2, 0'3). In PLAXIS the principal effective stresses are arranged
in algebraic order:

o'y <o <0a'3 (2.7)

Hence, o'y is the largest compressive principal stress and o'z is the smallest compressive
principal stress. In this manual, models are often presented with reference to the principal
stress space, as indicated in Figure 2.2.

In addition to principal stresses it is also useful to define invariants of stress, which are
stress measures that are independent of the orientation of the coordinate system. Two
useful stress invariants are:

1

p = 5 (J'XX +0'yy + U'ZZ) (2.8a)

3
q= \/2 (o' — a'yy)2+(0'yy — 0'22)2 +(0"22 — 0'xx)2 + 6 (0%, + 0%, + 0%,))

(2.8b)

where p' is the isotropic effective stress, or mean effective stress, and q is the equivalent

shear stress. The equivalent shear stress, g, has the important property that it reduces to
g = |o'y — o's| for triaxial stress states with o' = o'3.
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PRELIMINARIES ON MATERIAL MODELLING

_0-'1 A

_o-‘l = _0-'2 = _0-‘3

> -0"3

-0y
Figure 2.2 Principal stress space

Principal effective stresses can be written in terms of the invariants:

2 2
o'y=p+ gqsm (6 — §7r> (2.9a)
2 .
ogr=p'+ gqsm(a) (2.9b)
2 2
's=p'+=qgsin| 0+ — 2.9c¢
o'3=p+ 3q ( 37T> (2.9¢)
in which 6 is referred to as Lode 's angle (a third invariant), which is defined as:
0= 1 arcsin (g J—i) (2.10)
3 2 q

with

Jz=(0xx = P)(0"yy = P)(0'zz = P) = (0"xx — P')U}Z/z

- (a'yy — p') ng —(0'2z — p')a,z(y + 20y 0,02 (2.11)

2.2 GENERAL DEFINITIONS OF STRAIN

Strain is a tensor which can be represented by a matrix with Cartesian coordinates as:

Exx Exy Exz
E=| Eyx Eyy Eyz (2.12)
€zx €zy €zz
Strains are the derivatives of the displacement components, i.e. g = V2(Qu;/0f + Ou;/0i),
where i and j are either X, y or z. According to the small deformation theory, only the
sum of complementing Cartesian shear strain components ¢; and ¢j; result in shear
stress. This sum is denoted as the shear strain . Hence, instead of ey, €yx, €yz, €2y, €2x
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and e, the shear strain components vyy, 7y and vz are used respectively. Under the
above conditions, strains are often written in vector notation, which involve only six
different components:

€= <5xx Eyy €2z Yxy Vyz ’sz) T (2.13)
e = U (2.14a)
Jx
auy
Epyy= —— 2.14b
Y ( )
auy
€77 = 2.14c
2= 5 ( )
ouy ou
Txy = Exy tEyx = 87; + 87;/ (2.14d)
ou, 0u,
=€yy+tEy=—+ 2.14e
Vyz yz zy 0z 8}/ ( )
0 0
'sz = EZX +€XZ = aL:j + 6LIZX (214f)

Similarly as for stresses, positive normal strain components refer to extension, whereas
negative normal strain components indicate compression.

In the formulation of material models, where infinitesimal increments of strain are
considered, these increments are represented by strain rates (with a dot above the strain
symbol).

£= (5xx Eyy €zz VYxy Vyz ’sz) (2.15)

In analogy to the invariants of stress, it is also useful to define invariants of strain. A strain
invariant that is often used is the volumetric strain, ¢,,, which is defined as the sum of all
normal strain components in a standard calculation according to small deformation
theory:

Ev=¢Exx+Eyy +Ezz =1 +E2 +€3 (2.16)
In Updated mesh calculations the volumetric strain is calculated as:
Ev =Exx +Eyy +Ezz + ExxEyy + ExxEzz + EyyEzz + ExxEyyEzz (2.17)

The volumetric strain is defined as negative for compaction and as positive for dilatancy.

Another invariant is the deviatoric strain (g4), which is calculated as:

2 1
Eq = \/9 [(SXX - 5}/}’)2 + (5}/}’ - 522)2 + (8zz - 5Xx)2] + 5(%%, + ry}%z + 'Ygx) (2.18)
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For triaxial conditions i.e. €2 = 3 the deviatoric strain, reduces to:

2
gq = —le1 —e3] (2.19)
3
where €1 and e3 are the major and minor principal strains components respectively.
Furthermore, when volumetric strains are negligibble (¢, = 0), then ez = — Y21, so
€q = |e1]

For elastoplastic models, as used in PLAXIS, strains are decomposed into elastic and
plastic components:

e=ef+¢f (2.20)

Throughout this manual, the superscript e will be used to denote elastic strains and the
superscript p will be used to denote plastic strains.

2.3 ELASTIC STRAINS

Material models for soil and rock are generally expressed as a relationship between
infinitesimal increments of effective stress (‘effective stress rates’) and infinitesimal
increments of strain ('strain rates'). This relationship may be expressed in the form:

o= M:e (2.21)

where M is a material stiffness matrix. Note that in this type of approach, pore-pressures
are explicitly excluded from the stress-strain relationship.

Soil - Linear elastic - <MoMName=
N =)

‘ General ‘ Parameters ‘Grnundwater IThermaI IIntErfaces I Initial |

Froperty Unit Value
Stiffness
E kjm2 0.000
v (nu) 0.000
Alternatives
G Khlfmz2 0.000
Eoed khjm2 0.000
Velocities
, mfs 0,000

v mfs 0,000

Advanced

[ Next ] [ OK ] [ Cancel ]

Figure 2.3 Parameters tabsheet for the Linear Elastic model

The simplest material model in PLAXIS is based on Hooke's law for isotropic linear
elastic behaviour. This model is available under the name Linear Elastic model, but it is
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also the basis of other models. Hooke's law can be given by the equation:

[ & 1 1—-v V' 0 0 0 [ Ex |
&'y vl =v 0 0 0 Eyy
O-_uzz ) EI. | V' V' 1— 1 0 | 0 0 ézz (2.22)
G| =2)(1+r)| 0 0 0 v 0 0 |5,
'y 0 0 0 0o T-v o0 |4
| ' | 0 0 0 0 0 J-v||dx

The elastic material stiffness matrix is often denoted as D°. Two parameters are used in
this model, the effective Young's modulus, E', and the effective Poisson's ratio, »'. In the
remaining part of this manual effective parameters are denoted without dash ('), unless a
different meaning is explicitly stated. The symbols E and v are sometimes used in this
manual in combination with the subscript ur to emphasize that the parameter is explicitly
meant for unloading and reloading. A stiffness modulus may also be indicated with the
subscript ref to emphasize that it refers to a particular reference level (y,ef)(see next
page).

According to Hooke's law, the relationship between Young's modulus E and other
stiffness moduli, such as the shear modulus G, the bulk modulus K, and the oedometer
modulus Eyeg, is given by:

G= £ (2.23a)
2(1+v)
K=———E——— (2.23b)
3(1 —2v)
Eoeq = % (2.23c¢)
(1—-2v)(1+v)
Using these auxiliary stiffness parameters, Hooke’s law can be presented in an
alternative form as:
. K 0 .
Pl = (2.24)

gl |03G||&g

During the input of material parameters for the Linear Elastic model or the Mohr-Coulomb
model the values of G and E,ey are presented as auxiliary parameters (alternatives),
calculated from Eq. (2.23). Note that the alternatives are influenced by the input values of
E and v. Entering a particular value for one of the alternatives G or E,eq results in a
change of the E modulus, while v remains the same.

It is possible for the Linear Elastic model and the Mohr-Coulomb model to specify a
stiffness that varies linearly with depth. This can be done by entering a value for Ejn¢
which is the increment of stiffness per unit of depth, as indicated in Figure 2.3.

Together with the input of Ej,. the input of y,s becomes relevant. Above y,er the stiffness
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is equal to E,ef. Below the stiffness is given by:

E(y) = Erer + (Yret — ¥) Einc Y < Vrer (2.25)

The Linear Elastic model is usually inappropriate to model the highly non-linear behaviour
of soil, but it is of interest to simulate structural behaviour, such as thick concrete walls or
plates, for which strength properties are usually very high compared with those of sail.
For these applications, the Linear Elastic model will often be selected together with
Non-porous drainage type in order to exclude pore pressures from these structural
elements.

2.4 UNDRAINED EFFECTIVE STRESS ANALYSIS (EFFECTIVE STIFFNESS
PARAMETERS)

In PLAXIS it is possible to specify undrained behaviour in an effective stress analysis
using effective model parameters. This is achieved by identifying the type of material
behaviour (Drainage type) of a soil layer as Undrained (A) or Undrained (B) (Section 2.5
and Section 2.6). In this section, it is explained how PLAXIS deals with this special
option.

The presence of pore pressures in a soil body, usually caused by water, contributes to the
total stress level. According to Terzaghi's principle, total stresses ¢ can be divided into
effective stresses ¢', active pore pressure paetive and pore water pressures p,, (see also
Eq. 2.3). However, water is supposed not to sustain any shear stress, and therefore the
effective shear stresses are equal to the total shear stresses:

g =g+ M Pactive (2.26a)
where,
1
1
1
m= 0 and Pactive = SePw (2.26b)
0
0
Oxx = 0'xx + SePw (2.26¢)
oy = 0'yy + aSePy (2.26d)
Ozz = 0'zz + & SePy (2.26€)
Oxy = U'xy (2.26f)
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Oyz =0y, (2.269)

Ozx = CTIZX (226h)

where « is Biot's pore pressure coefficient and S, is the effective degree of saturation.
Considering incompressible grains, Biot's coefficient «v is equal to unity (a = 1). The
situation of compressible grains or compressible solid material (o < 1) is explained in
more detail at the end of this section.

Note that, similar to the total and the effective stress components, p,, is considered
negative for pressure.

The product aSepy is termed 'Active pore pressure', Paciive in PLAXIS. A further
distinction is made between steady state pore stress, Psteaqy, and excess pore stress,

Pexcess:

Pw = Psteady + Pexcess (2.27)

Steady state pore pressures are considered to be input data, i.e. generated on the basis
of phreatic levels or by means of a groundwater flow calculation. Excess pore pressures
are generated during plastic calculations for the case of undrained (A) or (B) material
behaviour or during a consolidation analysis. Undrained material behaviour and the
corresponding calculation of excess pore pressures are described below.

Since the time derivative of the steady state component equals zero, it follows:
Pw = Pexcess (2.28)

Hooke's law can be inverted to obtain:

8, 1 —v = 0 0 O'xx
Epy -1 = 0 0 o'y
es, _ A= 1 0 0 0 0'22 (2.29)
¥e, E'lo 0o 02+20 0 0 &y
Yo 0 00 0 2+2/ 0 &)z
RS |0 0 0 O 0 2+20 || &'
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Substituting Eq. (2.26) gives:

(el 1 v 0 0 0 |[éx—apw]

Evy -1 = 0 0 Oy — aPw

es, _ l - = 1 0 0 0 Ozz — Py (2.30)
¥ El o 0 02+20 0 0 Gxy

e 0 0 0 0 2+2/ 0 6z

A8, 0 0 0 O 0 2+2 Gax

Considering slightly compressible water, the rate of excess pore pressure is written as:

Qagy

Dexcoss = ————+———— 2.31a
pe cess nCW + (a - n)CS ( )
Co= (2.31b)
Kw
’
Cs = K (2.31c)

in which K, is the bulk modulus of the water, K is the bulk modulus of the solid material,
Cy is the compressibility of the water, Cs is the compressibility of the solid material and n
is the soil porosity.

1+e

n (2.32)

where €y is the initial void ratio as specified in the general soil properties.

The inverted form of Hooke's law may be written in terms of the total stress rates and the
undrained parameters E, and v:

[ ce ] (1 w0 0 0 | [éw]
é}‘fy —vy, 1 -y 0 0 0 Tyy
s, _ l —vy —vy 1 0 0 0 027 (2.33)
3, E, 0 242, O 0 Gy
7'/;;'2 0O 0 O 0 2+2y, O Oyz

5] 0 0 O 0 0 2+2u | | 0|

where:
Ey=2G(1+1): vy = vtoBl=20). g _ a (2.34)
3 —aB(1 —2v) a+n(K+a—1>
Kw

where B is Skempton's B-parameter.

Hence, the special option for undrained behaviour in PLAXIS (Undrained (A) or
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Undrained (B)) is such that the effective parameters G and v' are transformed into
undrained parameters E, and v, according to Eq. (2.34). Note that the index u is used to
indicate auxiliary parameters for undrained soil. Hence, E, and v, should not be
confused with E,- and v, as used to denote unloading / reloading.

Fully incompressible behaviour is obtained for v, = 0.5. However, taking v, = 0.5 leads to
singularity of the stiffness matrix. In fact, water is not fully incompressible, but a realistic
bulk modulus for water is very large. In order to avoid numerical problems caused by an
extremely low compressibility, v, is, by default, taken as 0.495, which makes the
undrained soil body slightly compressible. In order to ensure realistic computational
results, the bulk modulus of the water must be high compared with the bulk modulus of
the soil skeleton, i.e. K, >> nK". This condition is sufficiently ensured by requiring

v < 0.35.

Consequently, for material behaviour Undrained (A) or Undrained (B), a bulk modulus for
water is automatically added to the stiffness matrix. The bulk modulus of water is
obtained in two ways: either automatically from Eq. (2.35), or manually as specified by
the user. For o < 1, manual input of K, is always required.

& 3w ) . 0495 —v
noo(1-2u)1+v) 1+

300K" > 30K" (For a = 1) (2.35)

Hence, K, /nis larger than 30K", at least for »' < 0.35 and a = 1. The bulk stiffness of
water K, calculated in this way, is a numerical value related to the soil stiffness. It is
lower than or equal to the real bulk stiffness of pure water, KO (2 - 108 kN/m?). In
retrospect it is worth mentioning here a review about the Skempton B-parameter.

Skempton B-parameter

When the Drainage type is set to Undrained (A) or Undrained (B), PLAXIS automatically
assumes an implicit undrained bulk modulus, K, for the soil as a whole (soil skeleton +
water) and distinguishes between total stress rates, effective stress rates and rates of
EXCess pore pressure:

Total stress: p =K,

Qag,

Excess pore pressure: [ =Bp=— X
p p Pexcess 1 nCu + (@—n) C.

Effective stress: p'=(1—-—aB)p=K'e,

Note that for Undrained (A) or Undrained (B) effective stiffness parameters should be
entered in the material data set, i.e. E' and v' and not E, and v, or the respective
stiffness parameters in advanced models; the latter should be done for Undrained (C)
behaviour in a total stress analysis (Section 2.7). The undrained bulk modulus is
automatically calculated by PLAXIS using Hooke's law of elasticity:

_2G(1 +w) _F
Ki=30 —2m) "G 20

When using the Standard setting, v, = 0.495 and « = 1, whereas when using the Manual
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setting with input of Skempton's B-parameter and Biot's pore pressure coefficient, v, is
calculated as:

- 3v'+aB(1 — 21
Y7 3—aB(1—2v)

If the value of Skempton's B-parameter is unknown, but the degree of saturation, S is
known instead, and automatic determination of K,, is selected, the bulk stiffness of the
pore fluid can be estimated from:

_ KvoyKair
SKair + (1 — S)KL

(2.36)

w

Where K2 (2 - 108 kN/m?) is the bulk modulus of pure water and Kz is the bulk modulus
of air which is about 100 kPa under atmospheric pressure.

The value of Skempton's B-parameter is calculated from the ratio of the bulk stiffnesses
of the soil skeleton and the pore fluid, as already defined in Eq. (2.34):

«

()
a+n| —+a—1
Kw

The rate of excess pore pressure is calculated from the (small) volumetric strain rate,
according to:

B=

. Qgy
- 2.37
pexcess nCW + (a - n) Cs ( )
The types of elements used in PLAXIS are sufficiently adequate to avoid mesh locking
effects for nearly incompressible materials.

This special option to model undrained material behaviour on the basis of effective model
parameters is available for most material models in PLAXIS. This enables undrained
calculations to be executed with effective stiffness parameters, with explicit distinction
between effective stresses and (excess) pore pressures. However, shear induced
(excess) pore pressure may not be sufficiently included.

Such an analysis requires effective soil parameters and is therefore highly convenient
when such parameters are available. For soft soil projects, accurate data on effective
parameters may not always be available. Instead, in situ tests and laboratory tests may
have been performed to obtain undrained soil parameters. In such situations measured
undrained Young's moduli can be easily converted into effective Young's moduli based on
Hooke's law:

2(1+0)
3

For advanced models there is no such direct conversion possible. In that case it is
recommended to estimate the required effective stiffness parameter from the measured
undrained stiffness parameter, then perform a simple undrained test to check the
resulting undrained stiffness and adapt the effective stiffness if needed. The Soil test
facility (Reference Manual) may be used as a convenient tool to perform such test.

E = E, (2.38)
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Biot pore pressure coefficient o

In general, for geotechnical applications, the compressibility of the soil skeleton is much
higher than the compressibility of the individual grains, so deformations of the grains
themselves can be ignored. However, in the case of very deep soil layers at very high
pressures, the stiffness of the soil or rock matrix comes close to the stiffness of the solid
material of which the soil grains or the rock is composed of, and, therefore, the
compressibility of the solid material cannot be ignored. This has consequences for the
division of total stress into effective stress and pore pressure. Considering compressible
solid material, Terzaghi's effective stress definition changes into:

a'=0— aSempy (2.39)

Where « is Biot's pore pressure coefficient, S, is the effective degree of saturation, mis
a vector with unity values (1) for the normal components and 0-values for the shear
components, and p,, is the pore water pressure. The alpha coefficient is defined as:

Kl

a=1- (2.40)

S

Where K' is the effective bulk modulus of the soil matrix and Kj is the bulk modulus of
the solid material. Indeed, for incompressible solid material (K5 = co) Terzaghi's original
stress definition is retained. A lower value of o implies that for a given value of total stress
and pore water pressure, the resulting effective stress is higher than when considering
incompressible solid material (o = 1).

In the case of undrained soil behaviour (Undrained A or B in PLAXIS), Biot's pore
pressure coefficient also affects the undrained Poisson's ratio v, that is automatically
calculated by PLAXIS based on a manual input of K, parameter (see Eq. (2.34)).

The default value of Biot's pore pressure coefficient is 1.0 (incompressible grains), but
users may change this value in material data sets for soil and interfaces in the range
[0.001, 1.0].

2.5 UNDRAINED EFFECTIVE STRESS ANALYSIS WITH EFFECTIVE STRENGTH
PARAMETERS (UNDRAINED A)

In principle, undrained effective stress analysis as described in Section 2.4 can be used
in combination with effective strength parameters ¢' and ¢' to model the material's
undrained shear strength (Undrained (A)). In this case, the development of the pore
pressure plays a crucial role in providing the right effective stress path that leads to failure
at a realistic value of undrained shear strength (c, or s,). However, note that most soll
models are not capable of providing the right effective stress path in undrained loading.
As a result, they will produce the wrong undrained shear strength if the material strength
has been specified on the basis of effective strength parameters. Another problem is that
for undrained materials effective strength parameters are usually not available from soil
investigation data. In order to overcome these problems, some models allow for a direct
input of undrained shear strength. This approach is described in Section 2.6.

If the user wants to model the material strength of undrained materials using the effective
strength parameters ¢' and c', this can be done in PLAXIS in the same way as for
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drained materials. However, in this case the Drainage type must be set to Undrained (A).
As a result, PLAXIS will automatically add the stiffness of water to the stiffness matrix
(see Section 2.4) in order to distinguish between effective stresses and (excess) pore
pressures (= effective stress analysis). The advantage of using effective strength
parameters in undrained loading conditions is that after consolidation a qualitatively
increased shear strength is obtained, although this increased shear strength could also
be quantitatively wrong, for the same reason as explained before.

MC failure line

q
A /

Shear strength A A (4) MC model

Shear strength: Increase ,
A

model

Su o
reality (3) consolidation

reality (2)
(1) MC model
Cls 90' p’

Figure 2.4 lllustration of stress paths; reality vs. Mohr-Coulomb model

Figure 2.4 illustrates an example using the Mohr-Coulomb model. When the Drainage
type is set to Undrained (A), the model will follow an effective stress path where the mean
effective stress, p', remains constant all the way up to failure (1). It is known that
especially soft soils, like normally consolidated clays and peat, will follow an effective
stress path in undrained loading where p' reduces significantly as a result of shear
induced pore pressure (2). As a result, the maximum deviatoric stress that can be
reached in the model is over-estimated in the Mohr-Coulomb model. In other words, the
mobilized shear strength in the model supersedes the available undrained shear strength.

If, at some stress state, the soil is consolidated, the mean effective stress will increase
(). Upon further undrained loading with the Mohr-Coulomb model, the observed shear
strength will be increased (4) compared to the previous shear strength, but this increased
shear strength may again be unrealistic, especially for soft soils.

On the other hand, advanced models do include, to some extent, the reduction of mean
effective stress in undrained loading, but even when using advanced models it is
generally advised to check the mobilised shear strength in the Output program against
the available (undrained) shear strength when this approach is followed.

Note that whenever the Drainage type parameter is set to Undrained (A), effective values
must be entered for the stiffness parameters (Young's modulus E' and Poisson ratio v' in
case of the Mohr-Coulomb model or the respective stiffness parameters in the advanced
models).

Care must be taken when using Undrained (A) together with a non-zero dilatancy angle
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1. The use of a positive dilatancy angle may lead to unrealistically large tensile pore
stresses and, as a result, an unrealistically large shear strength. The use of a negative
dilatancy angle may lead to unrealistically high pore pressure and unrealistic liquefication
type of behaviour. Hence, for Undrained (A) it is recommended to use ¢ = 0.

2.6 UNDRAINED EFFECTIVE STRESS ANALYSIS WITH UNDRAINED STRENGTH
PARAMETERS (UNDRAINED B)

For undrained soil layers with a known undrained shear strength profile, PLAXIS offers
for some models the possibility of an undrained effective stress analysis, as described in
Section 2.4, with direct input of the undrained shear strength, i.e. setting the friction angle
to zero and the cohesion equal to the undrained shear strength (¢ = ¢, = 0°; ¢ = S,)
(Drainage type = Undrained (B)). Also in this case, distinction is made between pore
pressures and effective stresses. Although the pore pressures and effective stress path
may not be fully correct, the resulting undrained shear strength is not affected, since it is
directly specified as an input parameter.

The option to perform an undrained effective stress analysis with undrained strength
properties is only available for the Mohr-Coulomb model, the Hardening Soil model, the
HS small model and the NGI-ADP model. Since most soils show an increasing shear
strength with depth, it is possible to specify the increase per unit of depth in PLAXIS in
the Advanced subtree in the Parameters tabsheet of the Soil window.

Note that if the Hardening Soil model or the HS small model is used with ¢ = 0°, the
stiffness moduli in the model are no longer stress-dependent and the model exhibits no
compression hardening, although the model retains its separate unloading-reloading
modulus and shear hardening. Also note that a direct input of undrained shear strength
does not automatically give the increase of shear strength with consolidation.

Also note that a direct input of undrained shear strenght does not automatically give the
increase of shear strength with consolidation.

Further note that whenever the Drainage type parameter is set to Undrained (B), effective
values must be entered for the stiffness parameters (Young's modulus E' and Poisson
ratio ' in case of the Mohr-Coulomb model or the respective stiffness parameters in the
advanced models).

2.7 UNDRAINED TOTAL STRESS ANALYSIS WITH UNDRAINED PARAMETERS
(UNDRAINED C)

If, for any reason, it is desired not to use the Undrained (A) or Undrained (B) options in
PLAXIS to perform an undrained effective stress analysis, one may simulate undrained
behaviour using a conventional total stress analysis with all parameters specified as
undrained. In that case, stiffness is modelled using an undrained Young's modulus E,
and an undrained Poisson ratio v, and strength is modelled using an undrained shear
strength s, and ¢ = ¢, = 0°. Typically, for the undrained Poisson ratio a value close to
0.5 is selected (between 0.495 and 0.499). A value of 0.5 exactly is not possible, since
this would lead to singularity of the stiffness matrix.

In PLAXIS it is possible to perform a total stress analysis with undrained parameters if the
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Mohr-Coulomb model or the NGI-ADP model is used. In this case, one should select
Undrained (C) as the Drainage type. The disadvantage of the undrained total stress
analysis is that no distinction is made between effective stresses and pore pressures.
Hence, all output referring to effective stresses should now be interpreted as total
stresses and all pore pressures are equal to zero.

Note that a direct input of undrained shear strength does not automatically give the
increase of shear strength with consolidation. In fact, it does not make sense to perform a
consolidation analysis since there are no pore pressures to consolidate. Also note that
the Koy-value to generate initial stresses refers to total stresses rather than effective
stresses in this case. This type of approach is not possible for most advanced models.

Overview of models and allowable drainage types

Material model Drainage type

Drained
Undrained (A)
Undrained (C)

Linear Elastic model

Non-porous

Drained

Undrained (A)
Mohr-Coulomb model Undrained (B)
Undrained (C)

Non-porous

Drained

Hardening Soil model Undrained (A)
Undrained (B)

Drained
HS small model Undrained (A)
Undrained (B)

Drained
Undrained (A)

Soft Soil model

Drained

Undrained (A)

Soft Soil Creep model

Drained
Jointed Rock model

Non-porous
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Drained
Undrained (A)

Modified Cam-Clay model

Drained
NGI-ADP model Undrained (B)

Undrained (C)

Drained
Hoek-Brown model

Non-porous

Drained

Undrained (A)

Sekiguchi-Ohta model

Drained

User-defined soil models Undrained (A)

Non-porous

2.8 THE INITIAL PRE-CONSOLIDATION STRESS IN ADVANCED MODELS

When using advanced models in PLAXIS an initial pre-consolidation stress has to be
determined. In the engineering practice it is common to use a vertical pre-consolidation
stress, op, but PLAXIS needs an equivalent isotropic pre-consolidation stress, pgq to
determine the initial position of a cap-type yield surface. If a material is over-consolidated,
information is required about the Over-Consolidation Ratio (OCR), i.e. the ratio of the
greatest effective vertical stress previously reached, o, (see Figure 2.5), and the in-situ

effective vertical stress, o'?,y (note that in PLAXIS 3D the vertical (effective) stress is o?z).

g,
OCR=—*- (2.41)
yy

a. Using OCR b. Using POP
Figure 2.5 lllustration of vertical pre-consolidation stress in relation to the in-situ vertical stress

It is also possible to specify the initial stress state using the Pre-Overburden Pressure
(POP) as an alternative to prescribing the over-consolidation ratio. The Pre-Overburden
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Pressure is defined by:
POP = |0, — 09| (2.42)
These two ways of specifying the vertical pre-consolidation stress are illustrated in Figure

2.5.

The vertical pre-consolidation stress o, is used to compute the equivalent isotropic
pre-consolidation stress, p;"q, which determines the initial position of a cap-type yield
surface in the advanced soil models. The calculation of pgq is based on the stress state:

o'y =0p and o'2=0'3 = Kjop (2.43)

Where KJ° is the Kp-value associated with normally consolidated states of stress, which
is an input parameter for the advanced soil models except for the Modified Cam-Clay
model.

For the Modified Cam-Clay model, KJ is automatically determined based on the
parameter M as entered by the user. The exact relationship between M and Kj° can be
formulated as (Brinkgreve, 1994):

M=3 (1 —l'((g’c)2 . (1 —K()nc)(-| _2Vur)(>\*//€*—1)
(1+2K§°)2  (1+2K5°)(1 — 2uu) X" /" — (1 = K§°)(1 + vur)

(2.44)

For more details about the Modified Cam-Clay model see Chapter 10.

The stress state at pre-consolidation stress level is expressed in (p, q):
1
P=-3 (1+2K5°) op and qg=(1-K§%op (2.45)
Depending on the model used, the equivalent isotropic pre-consolidation stress is

calculated as:

Hardening Soil model and Hardening Soil model with small-strain stiffness:

2
Pt = 1/(p)? + q—z (where «a is an internal model parameter) (2.46)
«

Soft Soil model, Soft Soil Creep model and Modified Cam-Clay model:

q2

— (where M is an internal model parameter)
M=(p'+ ccoty)

Py =p+
(2.47)
Note that OCR and POP are only taken into account in the Ky-procedure (initial
calculation phase). Gravity loading does not consider OCR or POP, and always gives a

normally-consolidated stress state. If an advanced soil model (involving pre-consolidation
stress) is activated in a later calculation phase, i.e.

. The corresponding soil cluster is activated for the first time, or

. The material data of a soil is changed from a 'simple'soil model without
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pre-consolidation stress to an 'advanced'soil model with the pre-consolidation stress
as a state parameter,

then the stress state at the beginning of that phase is assumed to be
normally-consolidated, i.e. the pre-consolidation stress is initiated in accordance with the
current stress state. If, in such a case, an over-consolidated stress state is to be
modelled, the over-consolidation has to be simulated by applying and removing an
overburden load.

2.9 ON THE INITIAL STRESSES

In overconsolidated soils the coefficient of lateral earth pressure for the initial stress state
is larger than for normally consolidated soils. This effect is automatically taken into
account for advanced soil models when generating the initial stresses using the
Ko-procedure. The procedure that is followed here is described below. The procedure is
described for the lateral stress in x-direction (o'xx based on Kp x), but a similar procedure
is followed for the lateral stress in z-direction (o', based on Ky ;).

0 P -0'xx

Figure 2.6 Overconsolidated stress state obtained from primary loading and subsequent unloading

Consider a one-dimensional compression test, preloaded to o'y, = 0p and subsequently
unloaded to o'y = a‘(y’y. During unloading the sample behaves elastically and the
incremental stress ratio is, according to Hooke's law, given by (see Figure 2.6):

AO.'XX = K(?CO'p — O-ISX = K67COCRO-’§)/}/ _ 0')O(X = VUI’ (2 48)
Ad'yy,  op—0, (OCR—1)0"),  1—wu '

where K is the stress ratio in the normally consolidated state. Hence, the default stress
ratio of the overconsolidated soil sample is given by:

10

Kox = % = K{°OCR — —(OCR — 1) (2.49)
yy — Vur

When using POP as an alternative way to define overconsolidation, the default initial
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horizontal stress is defined by:

0%, = K, — 1 Yo pop (2.50)

— Vur

The use of a small Poisson's ratio will lead to a relatively large ratio of lateral stress and
vertical stress, as generally observed in overconsolidated soils. Note that Eq. (2.49) and
Eq. (2.50) are only valid in the elastic domain, because the formulas are derived from
Hooke's law of elasticity. If a soil sample is unloaded by a large amount, resulting in a
high degree of over-consolidation, the stress ratio will be limited by the Mohr-Coulomb
failure condition.

Note that the above initial stress ratio's are only suggested (default) values, and may be
overruled by the user if more precise data are available or if other values seem more
appropriate.
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3 LINEAR ELASTIC PERFECTLY PLASTIC MODEL (MOHR-COULOMB MODEL)

Soils behave rather non-linear when subjected to changes of stress or strain. In reality,
the stiffness of soil depends at least on the stress level, the stress path and the strain
level. Some such features are included in the advanced soil models in PLAXIS. The
Mohr-Coulomb model however, is a simple and well-known linear elastic perfectly plastic
model, which can be used as a first approximation of soil behaviour. The linear elastic
part of the Mohr-Coulomb model is based on Hooke’s law of isotropic elasticity (Section
3.1). The perfectly plastic part is based on the Mohr-Coulomb failure criterion, formulated
in a non-associated plasticity framework.

Plasticity involves the development of irreversible strains. In order to evaluate whether or
not plasticity occurs in a calculation, a yield function, f, is introduced as a function of
stress and strain. Plastic yielding is related with the condition f = 0. This condition can
often be presented as a surface in principal stress space. A perfectly-plastic model is a
constitutive model with a fixed yield surface, i.e. a yield surface that is fully defined by
model parameters and not affected by (plastic) straining. For stress states represented by
points within the yield surface, the behaviour is purely elastic and all strains are
reversible.

3.1 LINEAR ELASTIC PERFECTLY-PLASTIC BEHAVIOUR

The basic principle of elastoplasticity is that strains and strain rates are decomposed into
an elastic part and a plastic part:

e=c%+¢f e=e%+¢€l (3.1)
Hooke's law is used to relate the stress rates to the elastic strain rates. Substitution of Eq.
(3.1) into Hooke's law Eq. (2.22) leads to:

o'= D%°® = D% — €P) (3.2)

According to the classical theory of plasticity (Hill, 1950), plastic strain rates are
proportional to the derivative of the yield function with respect to the stresses. This
means that the plastic strain rates can be represented as vectors perpendicular to the
yield surface. This classical form of the theory is referred to as associated plasticity.
However, for Mohr-Coulomb type yield functions, the theory of associated plasticity
overestimates dilatancy. Therefore, in addition to the yield function, a plastic potential
function g is introduced. The case g # f is denoted as non-associated plasticity. In
general, the plastic strain rates are written as:

99

P =)
Jo'

(3.3)

in which A is the plastic multiplier. For purely elastic behaviour X is zero, whereas in the
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case of plastic behaviour X is positive:

;

A=0 for: f<0 or: a—f D% <0 (Elasticity) (3.4a)
. =
ofT . "

A>0 for: f=0 and: = D¢ >0 (Plasticity) (3.4b)
. =

Ep

< > < > £

Figure 3.1 Basic idea of an elastic perfectly plastic model

These equations may be used to obtain the following relationship between the effective
stress rates and strain rates for elastic perfectly-plastic behaviour (Smith & Giriffiths,
1982; Vermeer & Borst, 1984):

.
5= (p°-2peP99 pe) (3.52)
= di agl agli
where:
.
g= 9 ped9 (3.5b)
dg' = Od'

The parameter « is used as a switch. If the material behaviour is elastic, as defined by
Eq. (3.4a), the value of o is equal to zero, whilst for plasticity, as defined by Eq. (3.4b),
the value of « is equal to unity.

The above theory of plasticity is restricted to smooth yield surfaces and does not cover a
multi surface yield contour as present in the full Mohr-Coulomb model. For such a yield
surface the theory of plasticity has been extended by Koiter (1960) and others to account
for flow vertices involving two or more plastic potential functions:

Jd91 o 092

P =\
Jda' Jc'

+ o (3.6)

Similarly, several quasi independent yield functions (f, f, ...) are used to determine the
magnitude of the multipliers (A1, A2, ...).
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3.2 FORMULATION OF THE MOHR-COULOMB MODEL

The Mohr-Coulomb yield condition is an extension of Coulomb's friction law to general
states of stress. In fact, this condition ensures that Coulomb's friction law is obeyed in
any plane within a material element.

The full Mohr-Coulomb yield condition consists of six yield functions when formulated in
terms of principal stresses (see for instance Smith & Griffiths,1982):

1 1 .

fia = > (o' — 0'3)+ E(a‘z +0'3)sing — ccosp < 0 (3.7a)
1 1 .

f1b = E (0"3 — 0"2)+ 5(0”3 +0"2)S|n§0 — C COSQO S 0 (37b)
1 1 .

ba = > (0'3 — o'1)+ 5(0'3+a'1)sm<p —ccosp <0 (3.7¢)
1 1 .

fp = 5 (0'1 — o'3) + 5(0'1 +0'3)sinp — ccosy < 0 (3.7d)
1 1 .

f3a = > (0" — 0'2)+ E(17'1 +0'2)sing — ccosp < 0 (3.7e)
1 1 .

fap = E (0’2 —o'1)+ 5(0'2+U'1)Sln(p —ccosy <0 (3.7f)

The two plastic model parameters appearing in the yield functions are the well-known
friction angle ¢ and the cohesion ¢. The condition f; = 0 for all yield functions together
(where f; is used to denote each individual yield function) represents a fixed hexagonal
cone in principal stress space as shown in Figure 3.2.

SRSRIR,

SEKSKSIKS,
»m‘\‘is&\\ N

FEREN

N

05
Figure 3.2 The Mohr-Coulomb yield surface in principal stress space (¢ = 0)
In addition to the yield functions, six plastic potential functions are defined for the
Mohr-Coulomb model:
1

1 .
J1a = 5 (0"2 — 0"3) + 5(0"2 + O"3)S|n1/} (3.82)
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1 1 .

g1b = 5(0"3—0"2)+ 5(0"3+U'2)Sln¢ (38b)
1 , 1 s

Goa = 5(03—0'1)+§(0'3+01)Sln1/) (3-8¢)
1 , 1 Dy

Qop = 5(0'170'3)+ E(O’1+O’3)S|n¢) (3.8d)
1 N Dy

033 = E (0'1 70’2)+ 5(0’1 +02)Sln1/) (3.8e)
1 .

g3p = E (o' —a'y) + E(J'2+0'1)Slnt/) (3.8f)

The plastic potential functions contain a third plasticity parameter, the dilatancy angle .
This parameter is required to model positive plastic volumetric strain increments
(dilatancy) as actually observed for dense soils. A discussion of all of the model
parameters used in the Mohr-Coulomb model is given in the next section.

When implementing the Mohr-Coulomb model for general stress states, special treatment
is required for the intersection of two yield surfaces. Some programs use a smooth
transition from one yield surface to another, i.e. the rounding-off of the corners (see for
example Smith & Griffiths,1982). In PLAXIS, however, the exact form of the full
Mohr-Coulomb model is implemented, using a sharp transition from one yield surface to
another. For a detailed description of the corner treatment the reader is referred to the
literature (Koiter, 1960; van Langen & Vermeer, 1990).

For ¢ > 0, the standard Mohr-Coulomb criterion allows for tension. In fact, allowable
tensile stresses increase with cohesion. In reality, soil can sustain none or only very small
tensile stresses. This behaviour can be included in a PLAXIS analysis by specifying a
tension cut-off. In this case, Mohr circles with positive principal stresses are not allowed.
The tension cut-off introduces three additional yield functions, defined as:

fa=c'1—0:; <0 (3.9a)
fs=0'2—0; <0 (3.9b)
fe=0'3—0:; <0 (8.9¢)

When this tension cut-off procedure is used, the allowable tensile stress, oy, is, by
default, taken equal to zero, but this value can be changed by the user. For these three
yield functions an associated flow rule is adopted.

For stress states within the yield surface, the behaviour is elastic and obeys Hooke's law
for isotropic linear elasticity, as discussed in Section 2.3. Hence, besides the plasticity
parameters ¢, ¢, and v, input is required on the elastic Young's modulus E and Poisson's
ratio v. The model described here is officially called the linear elastic perfectly plastic
model with Mohr-Coulomb failure criterion. For simplicity, this model is called the
Mohr-Coulomb model in PLAXIS.
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3.3 BASIC PARAMETERS OF THE MOHR-COULOMB MODEL

The linear elastic perfectly-plastic Mohr-Coulomb model requires a total of five
parameters, which are generally familiar to most geotechnical engineers and which can
be obtained from basic tests on soil samples. These parameters with their standard units
are listed below:

E : Young's modulus [kN/m?]
v . Poisson's ratio [-]
c Cohesion [kN/m?]
%) Friction angle [°]
" Dilatancy angle [°]
ot . Tension cut-off and tensile strength [kN/m?]
Soil - Mehr-Coulomb - <NoName>
0 B &
Parameters | Groundwater | Thermal | Interfaces | mnital |
Property Unit Value
Stiffness
€ S SR
V() 0.000
Alternatives
G kNfm2 0.000
Egud Khijm2 0.000
Strength
ot Khijm2 0.000
o (phi) @ 0,000
w (psi) ° 0.000
Velocities
v, mfs 0.000
vy mfs 0.000
Advanced
[ Next ][ oK ][ Cancel ]

Figure 3.3 Parameter tabsheet for Mohr-Coulomb model

Instead of using the Young's modulus as a stiffness parameter, alternative stiffness
parameters can be entered (Section 2.3). These parameters with their standard units are

listed below:
G . Shear modulus [kN/m?]
Eoed : Oedometer modulus [kN/m?]

Parameters can either be effective parameters (indicated by a prime sign (')) or undrained
parameters (indicated by a subscript u), depending on the selected drainage type.
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- Inthe case of dynamic applications, alternative and/or additional parameters may be
u used to define stiffness based on wave velocities. These parameters are listed below:

Vo : Compression wave velocity [m/s]

Vs . Shear wave velocity [m/s]

Young's modulus (E)

PLAXIS uses the Young's modulus as the basic stiffness modulus in the elastic model
and the Mohr-Coulomb model, but some alternative stiffness moduli are displayed as
well. A stiffness modulus has the dimension of stress. The values of the stiffness
parameter adopted in a calculation require special attention as many geomaterials show
a non-linear behaviour from the very beginning of loading. In triaxial testing of soil
samples the initial slope of the stress-strain curve (tangent modulus) is usually indicated
as Eq and the secant modulus at 50% strength is denoted as Esq (see Figure 3.4). For
materials with a large linear elastic range it is realistic to use Eg, but for loading of soils
one generally uses Esg. Considering unloading problems, as in the case of tunnelling
and excavations, one needs an unload-reload modulus (E,,) instead of Esg.

For soils, both the unloading modulus, E,,, and the first loading modulus, Esg, tend to
increase with the confining pressure. Hence, deep soil layers tend to have greater
stiffness than shallow layers. Moreover, the observed stiffness depends on the stress
path that is followed. The stiffness is much higher for unloading and reloading than for
primary loading. Also, the observed soil stiffness in terms of a Young's modulus may be
lower for (drained) compression than for shearing. Hence, when using a constant
stiffness modulus to represent soil behaviour one should choose a value that is
consistent with the stress level and the stress path development. Note that some
stress-dependency of soil behaviour is taken into account in the advanced models in
PLAXIS which are described in subsequent chapters. For the Mohr-Coulomb model,
PLAXIS offers a special option for the input of a stiffness increasing with depth (see
Section 3.4). Note that for material data sets where the drainage type is set to Undrained
(A) or Undrained (B), Young's modulus has the meaning of an effective Young's modulus,
whilst PLAXIS automatically takes care of the incompressibility (Section 2.4).

Poisson's ratio (v)

Standard drained triaxial tests may yield a significant rate of volume decrease at the very
beginning of axial loading and, consequently, a low initial value of Poisson's ratio (1p).
For some cases, such as particular unloading problems, it may be realistic to use such a
low initial value, but in general when using the Mohr-Coulomb model the use of a higher
value is recommended.

The selection of a Poisson's ratio is particularly simple when the elastic model or
Mohr-Coulomb model is used for gravity loading under conditions of one-dimensional
compression. For this type of loading PLAXIS should give realistic ratios of Ky = o'/ 0,

As both models will give the well-known ratio of o'/ 0,' = v / (1 — v) for one-dimensional
compression it is easy to select a Poisson's ratio that gives a realistic value of Ky. Hence,
v is evaluated by matching Kp. In many cases one will obtain v values in the range
between 0.3 and 0.4. In general, such values can also be used for loading conditions
other than one-dimensional compression. Please note that in this way it is not possible to
create Ky values larger than 1, as may be observed in highly overconsolidated stress
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o1 — o3|

\

strain (1)

Figure 3.4 Definition of Eq, Eso and E,r for drained triaxial test results

states. For unloading conditions, however, it is more appropriate to use values in the
range between 0.15 and 0.25.

Further note that for material data sets where the drainage type is set to Undrained (A) or
Undrained (B), Poisson's ratio has the meaning of an effective Poisson's ratio, whilst
PLAXIS automatically takes care of the incompressibility (Section 2.4). To ensure that the
soil skeleton is much more compressible than the pore water, the effective Poisson's ratio
should be smaller than 0.35 for Undrained (A) or Undrained (B) materials.

Cohesion (c) or undrained shear strength (s,)

The cohesive strength has the dimension of stress. In the Mohr-Coulomb model, the
cohesion parameter may be used to model the effective cohesion ¢' of the soil (cohesion
intercept), in combination with a realistic effective friction angle ¢' (see Figure 3.5a). This
may not only be done for drained soil behaviour, but also if the type of material behaviour
is set to Undrained (A), as in both cases PLAXIS will perform an effective stress analysis.
Alternatively, the cohesion parameter may be used to model the undrained shear strength
s, of the soil, in combination with ¢ = ¢, = 0 when the Drainage type is set to Undrained
(B) or Undrained (C) In that case the Mohr-Coulomb failure criterion reduces to the
well-known Tresca criterion. PLAXIS allows for an increase of shear strength with depth
using the s, jnc parameter (Section 3.4).

The disadvantage of using effective strength parameters ¢' and ¢' in combination with the
drainage type being set to Undrained (A) is that the undrained shear strength as obtained
from the model may deviate from the undrained shear strength in reality because of
differences in the actual stress path being followed. In this respect, advanced soil models
generally perform better than the Mohr-Coulomb model, but in all cases it is
recommended to compare the resulting stress state in all calculation phases with the
present shear strength in reality (|o1 — 03] < 28,).

On the other hand, the advantage of using effective strength parameters is that the
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change in shear strength with consolidation is obtained automatically, although it is still
recommended to check the resulting stress state after consolidation.

The advantage of using the cohesion parameter to model undrained shear strength in
combination with ¢ = 0 (Undrained (B) or Undrained (C)) is that the user has direct
control over the shear strength, independent of the actual stress state and stress path
followed. Please note that this option may not be appropriate when using advanced soil
models.

PLAXIS can handle cohesionless sands (¢ = 0), but some options may not perform well.
To avoid complications, non-experienced users are advised to enter at least a small value
in soil layers near the ground surface (use ¢ > 0.2 kPa). Please note that a positive value
for the cohesion may lead to a tensile strength, which may be unrealistic for soils. By
default,the Tension cut-off option is used to reduce the tensile strength.

PLAXIS offers a special option for the input of layers in which the cohesion increases with
depth (see Section 3.4).

Friction angle (o)

The friction angle ¢ (phi) is entered in degrees. In general the friction angle is used to
model the effective friction of the soil, in combination with an effective cohesion ¢' (Figure
3.5a). This may not only be done for drained soil behaviour, but also if the type of
material behaviour is set to Undrained (A), since in both cases PLAXIS will perform an
effective stress analysis. Alternatively, the soil strength is modelled by setting the
cohesion parameter equal to the undrained shear strength of the soil, in combination with
¢ = 0 (Undrained (B) or Undrained (C)) (Figure 3.5b). In that case the Mohr-Coulomb
failure criterion reduces to the well-known Tresca criterion.

shear
stress
—o1 ¥ ©=0
—o3
—o2 c=sy
normal normal
—03 —02 —oq stress —03 —02 —01 Sitress

a. Using effective strength parameters (Mohr- b. Using undrained strength parameters
Coulomb) (Tresca)

Figure 3.5 Stress circles at yield; one touches Coulomb's envelope.

High friction angles, as sometimes obtained for dense sands, will substantially increase
plastic computational effort. Moreover, high friction may be subjected to strain-softening
behaviour, which means that such high friction angles are not sustainable under (large)
deformation. Hence, high friction angles should be avoided when performing preliminary
computations for a particular project *. The friction angle largely determines the shear
strength as shown in Figure 3.5 by means of Mohr's stress circles. A more general
representation of the yield criterion is shown in Figure 3.6. The Mohr-Coulomb failure
criterion proves to be better for describing soil strength for general stress states than the

* Typical effective friction angles are in the order of 20 - 30 degrees for clay and silt (the more plastic the clay,
the lower the friction), and 30 - 40 degrees for sand and gravel (the denser the sand, the higher the friction).

40 Material Models Manual | PLAXIS 2015



//\\\

I;//

/\\\Q
Y
7

7,
o

5%

7z

SN
=

==

=

i
7

i

7
57
Y

Y

77
7y
2y

),

77
oz
i

7
%
%

Soostts

5

/ §

004
05 004
o
3%
5
',"'

40,
oo
R
L3
%88
5%
"::f'c'

AL
ZZ
rodt

L
&
5
R
XY
QR
3¢
5

R
2
S ":
0002520 %
S5
Cx
X

'f‘:‘

—03

—07

Figure 3.6 Failure surface in principal stress space for cohesionless soil

Drucker-Prager approximation.

Dilatancy angle (1))

The dilatancy angle, ¢ (psi), is specified in degrees. Apart from heavily over-consolidated
layers, clay soils tend to show little dilatancy (¢ =~ 0). The dilatancy of sand depends on
both the density and the friction angle. In general the dilatancy angle of soils is much
smaller than the friction angle. For quartz sands the order of magnitude is ¢ ~ ¢ — 30°.
For p-values of less than 30°, however, the angle of dilatancy is mostly zero. A small
negative value for 1) is only realistic for extremely loose sands. In the Hardening Soil
model or Hardening Soil model with small-strain stiffness the end of dilatancy, as
generally observed when the soil reaches the critical state, can be modelled using the
Dilatancy cut-off. However, this option is not available for the Mohr-Coulomb model. For
further information about the link between the friction angle and dilatancy, see Bolton
(1986).

A positive dilatancy angle implies that in drained conditions the soil will continue to dilate
as long as shear deformation occurs. This is clearly unrealistic, as most soils will reach a
critical state at some point and further shear deformation will occur without volume
changes. In undrained conditions a positive dilatancy angle, combined with the restriction
on volume changes, leads to a generation of tensile pore stresses. In an undrained
effective stress analysis therefore the strength of the soil may be overestimated.

When the soil strength is modelled as undrained shear strength, s, and ¢ =0,
(Undrained (B) or Undrained (C)) the dilatancy angle is automatially set to zero. Great
care must be taken when using a positive value of dilatancy in combination with drainage
type set to Undrained (A). In that case the model will show unlimited soil strength due to
tensile pore stresses. These tensile pore stresses can be limited by setting the cavitation
cut-off.
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Shear modulus (G)

The shear modulus, G, has the dimension of stress. According to Hooke's law, the
relationship between Young's modulus E and the shear modulus is given by (see Eq.
2.23a):

(3.10)

Entering a particular value for one of the alternatives G or Eeq results in a change of the
E modulus whilst v remains the same.

Oedometer modulus (Eyeq)

The oedometer modulus, E,eq, Or constrained modulus, has the dimension of stress.
According to Hooke's law, the relationship between Young's modulus E and the
oedometer modulus is given by (see Eqg. 2.23c).
1—-v)E
Eped = ¥ (3.11)
(1 -2v)(1+v)

Entering a particular value for one of the alternatives G or E,¢q results in a change of the
E modulus whilst v remains the same.

o Compression wave velocity V,

The compression wave velocity, Vp, in a confined one-dimensional soil is a function of
stiffness, Eqeq, and the mass density, p, as:

where Epeg = ———— and

V. = Eoed
P (1 +v)(1—20)

(1-v)E o= Yunsat (3.12)

in which yunsat is the total unsaturated unit weight and g is the gravity acceleration (9.8
m/s?).

W Shear wave velocity Vs

The shear wave velocity, Vs, in a confined one-dimensional soil is a function of shear
stiffness, G, and the mass density, p, as:

Vs = G where G = _E and p = Junsat (3.13)
D 2(1 + v) g

in which yunsat is the total unsaturated unit weight and g is the gravity acceleration (9.8
m/s?).

3.4 ADVANCED PARAMETERS OF THE MOHR-COULOMB MODEL
The advanced features comprise the increase of stiffness and cohesive strength with
depth and the use of a tension cut-off. In fact, the latter option is used by default, but it

may be deactivated here, if desired. These parameters are defined in the Advanced
subtree in the Parameters tabsheet of the Soil window.
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Increase of stiffness (Ej,)

In real soils, the stiffness depends significantly on the stress level, which means that the
stiffness generally increases with depth. When using the Mohr-Coulomb model, the
stiffness is a constant value. In order to account for the increase of the stiffness with
depth the Ejnc-value may be used, which is the increase of the Young’s modulus per unit
of depth (expressed in the unit of stress per unit depth). At the level given by the y,r
parameter, and above, the stiffness is equal to the reference Young’s modulus, E,f, as
entered in the Parameters tabsheet. Below, the stiffness is given by:

E(y) = Erer + (Vrer — ¥)Einc (Y < Vrer) (3.14)

where y represents the vertical direction. The actual value of Young's modulus in the
stress points is obtained from the reference value and E;,.. Note that during calculations
a stiffness increasing with depth does not change as a function of the stress state.

Increase of cohesion or shear strength with depth (Cj,c or S, jnc)

PLAXIS offers an advanced option for the input of clay layers in which the cohesion, c, (or
undrained shear strength, s,) increases with depth. In order to account for the increase
of the cohesion with depth the c¢j,c-value may be used, which is the increase of cohesion
per unit of depth (expressed in the unit of stress per unit depth). At the level given by the
Yrer parameter, and above, the cohesion is equal to the (reference) cohesion, Crf, as
entered in the Parameters tabsheet. Below, the cohesive strength is given by:

C(y) = Cref + (yref - y)Cinc (y < Yref) (3.15a)

SulY) = Suset + (Vret — ¥)Suinc (¥ < Yret) (3.15b)

where y represents the vertical direction. Note that when using effective strength
properties (' > 0) it is generally not necessary to use an increase of cohesion with
depth, since the friction together with the initial effective stress will result in an increasing
shear strength with depth.

Tension cut-off

In some practical problems an area with tensile stresses may develop. According to the
Coulomb envelope shown in Figure 3.5 this is allowed when the shear stress (radius of
Mohr circle) is sufficiently small. However, the soil surface near a trench in clay
sometimes shows tensile cracks. This indicates that soil may also fail in tension instead
of in shear. Such behaviour can be included in a PLAXIS analysis by selecting the
tension cut-off. In this case Mohr circles with positive principal stresses are not allowed.
When selecting the tension cut-off the allowable tensile strength may be entered. For the
Mohr-Coulomb model the tension cut-off is, by default, selected with a tensile strength of
zero.
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3.5 ON THE USE OF THE MOHR-COULOMB MODEL IN DYNAMIC CALCULATIONS

When using the Mohr-Coulomb model in dynamic calculations, the stiffness parameters
need to be selected such that the model correctly predicts wave velocities in the soil
(Equations (3.12) and (3.13)). This generally requires a much larger small strain stiffness
rather than a stiffness at engineering strain levels. When subjected to dynamic or cyclic
loading, the Mohr-Coulomb model may generate plastic strains if stress points reach the
Mohr-Coulomb failure criterion, which will lead to damping in dynamic calculations.
However, it should be noted that the stress cycles within the Mohr-Coulomb failure
contour will only generate elastic strains and no (hysteretic) damping, nor accumulation of
strains or pore pressure or liquefaction. In order to simulate the soil's damping
characteristics in cyclic loading, Rayleigh damping may be defined.

44 Material Models Manual | PLAXIS 2015



vie| 4 THE HOEK-BROWN MODEL (ROCK BEHAVIOUR)
The material behaviour of rock differs from the behaviour of soils in the sense that it is
generally stiffer and stronger. The dependency of the stiffness on the stress level is
almost negligible, so stiffness of rocks can be considered constant. On the other hand,
the dependency of the (shear) strength on the stress level is significant. In this respect,
heavily jointed or weathered rock can be regarded a frictional material. A first approach is
to model the shear strength of rock by means of the Mohr-Coulomb failure criterion.
However, considering the large range of stress levels where rock may be subjected to, a
linear stress-dependency, as obtained from the Mohr-Coulomb model, is generally not
sufficient. Furthermore, rock may also show a significant tensile strength. The
Hoek-Brown failure criterion is a better non-linear approximation of the strength of rocks.
It involves shear strength as well as tensile strength in a continuous formulation. Together
with Hooke's law of isotropic linear elastic behaviour it forms the Hoek-Brown model for
rock behaviour. The 2002 edition of this model (Hoek, Carranza-Torres & Corkum, 2002)
has been implemented in PLAXIS to simulate the isotropic behaviour of rock-type
materials. The implementation of the model, including the material strength factorization,
is based on Benz, Schwab, Vermeer & Kauther (2007). More background information on
the Hoek-Brown model and the selection of model parameters can be found in Hoek
(2006). For anisotropic behaviour of stratified rock reference is made to Chapter 5.

4.1 FORMULATION OF THE HOEK-BROWN MODEL
The generalized Hoek-Brown failure criterion can be formulated as a non-linear

relationship between the major and minor effective principal stresses (considering tension
positive and pressure negative):

U1'=03'—ch(mb03 +S>a (41)

Oci

where my, is a reduced value of the intact rock parameter m;, which also depends on the
Geological Strength Index (GSI) and the Disturbance Factor (D):

GSI - 100
my=miexp| ———— 4.2
o p<2814D> (“2)
S and a are auxiliary material constants for the rock mass, that can be expressed as:
GSI—100

s=exp| —— 4.3
oS ) “3)

1 1 —GSI —20
a=—+—-|exp| — | —exp| — 4.4
2+6{p<15> p<3>] o

o¢ is the uni-axial compressive strength of the intact rock material (defined as a positive
value). From this value, the uni-axial compressive strength of the specific rock under
consideration, o, can be obtained by:

0 = 0482 (4.5)
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The tensile strength of the specific rock under consideration, o, can be obtained by:

SO
ot =
mp

(4.6)
The Hoek-Brown failure criterion is illustrated in Figure 4.1.

c,[kPa]
300

200

100

5‘5 50 100 150 200 o,[kPa]

Figure 4.1 Hoek-Brown failure criterion in principal stresses

In the framework of plasticity theory, the Hoek-Brown failure criterion is reformulated into
the following yield function:

fug=0'1 —o's + ?(0"3) where ?(0"3) =0gi (mb 70_(;3 + S) a (4.7)
For general three-dimensional stress states, more than one yield function is required to
deal with the corners of the yield contour, similar as for the full Mohr-Coulomb criterion.
Defining pressure as negative and considering ordering of principal stresses such that
o'y < og'2 < g's, the full criterion can be captured by two yield functions:

fHB,13 =0'1—o0'3+ ?(0'3) where ?(0'3) = Ogj (mb _000:3 + S) a (4.8a)

fHB,12 =0'1—0'2+ ?(0'2) where ?(0'2) =O0g¢j (mb _O'(Z,"z + S) a (4.8b)
The full Hoek-Brown failure contour (f; = 0) in principal stress space is illustrated in Figure
4.2.

In addition to the two yield functions, two corresponding plastic potential functions are
defined for the Hoek-Brown model:

1 +sin
9HB13 = St — (wrmb> S3 (4.92)
1 —sinYmop
1 +sin
grB12 = St — (m) S (4.9)
1 — siNYmop
where S; are the transformed stresses, defined as:
— S .
S,-=L+—2 for i=1,2,3 (4.10)
Mpoci My
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Figure 4.2 The Hoek-Brown failure contour in principal stress space
Ymop 1S the mobilized dilatancy angle, varying with ¢'3 from its input value at (o'3 = 0)
down to zero at —o'3 = oy, and beyond:

Drmob = @w >0 (0> -0 >0y) (4.11)
P

Moreover, in order to allow for plastic expansion in the tensile zone, an increased artificial
value of the mobilised dilatancy is used:

73 one .
wmob=¢+?t(90 =) (o1 > 0'3 > 0) (4.12)
The evolution of the mobilized dilatancy angle as a function of ¢'s is visualized in Figure
4.3.
7/)m0b
——_|90°

|

|

|

| ¥

|

I

ot 0 oy —o'3

Figure 4.3 Evolution of mobilized dilatancy angle

Regarding the elastic behaviour of the Hoek-Brown model, Hooke's law of isotropic linear
elastic behaviour, as described in Section 2.3, is adopted. This part of the model involves
Young's modulus, E, representing the in-situ stiffness of the jointed rock mass before
failure, and Poisson's ratio, v/, describing transverse straining.

4.2 CONVERSION OF HOEK-BROWN TO MOHR-COULOMB

In order to compare the Hoek-Brown failure criterion with the well-known Mohr-Coulomb
failure criterion for practical applications involving a particular stress range, a balanced fit
can be made for confining stresses in the range (considering tension positive and
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compression negative):

—0t < 0'3 < —03,max

This gives the following expressions for the Mohr-Coulomb effective strength parameters
" and ¢' (Carranza-Torres, 2004):

' a—1
sin ' = 6amy(s + myo'sp) (4.13)
2(1+a)(2 + a) + 6amy(s + Mpo'an)?

C'=UCI[1+2a s+(1 = a)mpo'sn] (S + Mpo'an)? at (4.14)

a—1
(1+a)@2+a) Gamb (8 + mMpo'sn)
1+a(2+a

where '3 = —0'3max/0ci- The upper limit of the confining stress, o'3 max, depends on the
application.

4.3 PARAMETERS OF THE HOEK-BROWN MODEL

The Hoek-Brown model involves a total of 8 parameters, which are generally familiar to
geologists and mining engineers. These parameters with their standard units are listed

below:
E . Young's modulus [kN/m?]
v . Poisson's ratio [-]
Og¢i . Uni-axial compressive strength of the intact rock (>0) [kN/m?]
m; . Intact rock parameter [-]
GSI . Geological Strength Index [-]
D . Disturbance factor [-]
VYmax : Dilatancy angle (at '3 = 0) °]
oy . Absolute value of confining pressure '3 at which [kN/m?]

=0

Hint: Note that it is common in rock mechanics to express E, o and oy, in the unit

MPa (megaPascal = MN/m?), whereas the input values in PLAXIS are given
in standard units as defined in the project properties.

Young's modulus (E):

Young's modulus E is assumed to be a constant value for the considered rock layer. This
modulus can be estimated on the basis of the rock quality parameters in the Hoek-Brown
model (Hoek, Carranza-Torres & Corkum, 2002):

GSI—10>

E(GPa)=<1—9> e 1o< 40 (4.15)
2)\ p*
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ameters | Groundwater = | Thermal | Interfaces = [ mnital |

Property Unit  Value

£ oyme | 1826612}
V' () 0.000
Hoek-Brown parameters
kNjm2 0.000
m; 0.000
GSL 0.000
D 0.000
Dilatation angle
0.000
kNfm2 0.000

Advanced

[ wet J[ ok ][ conel |

Figure 4.4 Parameter tabsheet for Hoek-Brown model

with prer = 10% kPa and considering a maximum result of the square root of 1.

Note that the input of Young's modulus in PLAXIS is generally in kN/m?
(= kPa = 10~% GPa), which means that the value obtained from the above formula must
be multiplied by 106.

In principle, Young's modulus can be measured from axial compression tests or direct
shear tests on rock samples. However, this modulus is more applicable to the intact rock
material, and should be reduced to obtain a representative stiffness of the in-situ rock
mass. Note that, in contrast to most soils, the initial stiffness, E;, is a good representation
of the rock behaviour in the elastic range.

Poisson's ratio (v):

Poisson's ratio, v, is generally in the range [0.1, 0.4]. Typical values for particular rock
types are listed in Figure 4.5.

Uni-axial compressive strength of intact rock (o;):

The uni-axial strength of intact rock o can be determined in laboratory testing, e.g. axial
compression. Laboratory testing is often conducted on intact rock so that (GS/ = 100
and D = 0 hold). Typical values are shown in Table 4.1 (Hoek, 1999).

Intact rock parameter (m;):
The intact rock parameter is an empirical model parameter that depends on the rock

type. Typical values are given in Figure 4.6.

Geological Strength Index (GSI):

The GSI parameter can be selected on the basis of the chart depicted in Figure 4.7.

Disturbance factor (D):

The Disturbance factor, D, is a parameter that depends on the amount of disturbance of
the rock as a result of mechanical processes in open excavations, tunnels or mines, such
as blasting, tunnel boring, machine driven or manual excavation. No disturbance is

PLAXIS 2015 | Material Models Manual 49



MATERIAL MODELS MANUAL
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B 1 | |
Tuff | ‘I |* T ‘ | | | |
0 0.1 0.2 0.3 0.4 0.5
Poisson's ratio v
Figure 4.5 Typical Poisson's ratio values
Table 4.1 Intact uniaxial compressive strength
Grade Term Uniaxial Field estimate of strength Examples
Comp.
Strength
(MPa)
R6 Extremely > 250 Specimen can be chipped with a Fresh basalt, chert,
strong geological hammer diabase, gneiss,
granite, quartzite
R5 Very strong 100 — 250 Specimen requires many blows of a  Amphibolite, sandstone,
geological hammer to fracture it basalt, gabbro, gneiss,
granodiorite, limestone,
marble, rhyolite, tuff
R4 Strong 50 — 100 Specimen requires more than one blow  Limestone, marble,
of a geological hammer to fracture it phyllite, sandstone,
schist, shale
R3 Medium 25 - 50 Cannot be scraped or peeled with  Claystone, coal,
strong a pocket knife, specimen can be concrete, schist, shale,
fractured with a single blow from a siltstone
geological hammer.
R2 Weak 5-25 Can be peeled with a pocket knife with ~ Chalk, rocksalt, potash.
difficulty, shallow indentation made by
firm blow with point of a geological
hammer.
R1 Very weak 1-5 Crumbles under firm blows with point  Highly ~weathered or
of a geological hammer, can be peeled  altered rock.
by a pocket knife.
RO Extremely 0.25 -1 Indented by thumbnail Stiff fault gouge
weak

50 Material Models Manual | PLAXIS 2015




'?YOCk Class Group _ Texture i _
pe Coarse | Medium Fine Very fine
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Figure 4.6 Values for the constant m; for intact rock after Hoek (1999)

GEOLOGICAL STRENGTH INDEX

From the description of structure and surface conditions of
the rock mass, pick an appropriate box in this chart Esti-
mate the average value of the Geological Strength Index
(GS!) from the contours. Do not attempt to be too precise.
Quoting a range of GSI from 36 to 42 is more realistic than
stating that GSI = 38. It is also important to recognize that
the Hoek-Brown criterion should only be applied to rock
masses where the size of the individual blocks or pieces is
small compared with the size of the excavation under con-
sideration. When individual block sizes are more than ap-
proximately one quarter of the excavation dimension, failure
will generally be structurally controlled and the Hoek-Brown
criterion should not be used

ery rough, fresh unweathered surfaces
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Slickensided, highly weathered surfaces with

compact coatings of fillngs of angular

Smooth, moderately weathered and altered
fragments
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SURFACE CONDITIONS
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Ve
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POOR

VERY POOR

STRUCTURE DECREASING SURFACH

m
2

UALITY

g

INTACT OR MASSIVE - intact rock specimens %
\ or massive in situ rock with very few widely NIA NA NA
spaced discontinuities e

BLOCKY - very well interlocked undisturbed
rock mass consisting of cubical blocks formed
by three orthogonal discontinuity sets

VERY BLOCKY - interlocked, partially disturbed
rock mass with multfaceted angular blocks
formed by four or more discontinuity sets

40
BLOCKY/DISTURBED - folded and/or faulted
with angular blocks formed by many intersect-
ing discontinuity sets

30

DECREASING INTERLOCKING OF ROCK PIECES

DISINTEGRATED - poorly interlocked, heavily
broken rock mass with a mixture of angular and
rounded rock pieces

<&

FOLIATED/LAMINATED - Folded and tectoni-

cally sheared foliated rocks. Schistosity prevails NA NA 10

over any other discontinuity set, resulting in

complete lack of blockiness F
/

Figure 4.7 Selection of Geological Strength Index, Hoek (1999)
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equivalent to D = 0, whereas severe disturbance is equivalentto D = 1. For more
information see Hoek (2006).

Dilatancy (1) and o,,):

Rocks may show dilatant material behaviour when subjected to shear under relatively low
confining stress. At larger confining stress, dilatancy is suppressed. This behaviour is
modelled by means of a specified value of v for o3 = 0, with a linear decrease down to
zero for o'3 = oy, Where o, is an additional input parameter (Figure 4.3).

4.4 ON THE USE OF THE HOEK-BROWN MODEL IN DYNAMIC CALCULATIONS

When using the Hoek-Brown model in dynamic calculations, the stiffness need to be
selected such that the model correctly predicts wave velocities in the soil (Equation
(3.13)). When subjected to dynamic or cyclic loading, the Hoek-Brown model may
generate plastic strains if stress points reach the Hoek-Brown failure criterion, which will
lead to damping in dynamic calculations. However, it should be noted that the stress
cycles within the Hoek-Brown failure contour will only generate elastic strains and no
(hysteretic) damping, nor accumulation of strains or pore pressure or liquefaction. In
order to simulate the rock's damping characteristics in cyclic loading, Rayleigh damping
may be defined.
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5 THE JOINTED ROCK MODEL (ANISOTROPY)

Materials may have different properties in different directions. As a result, they may
respond differently when subjected to particular conditions in one direction or another.
This aspect of material behaviour is called anisotropy. When modelling anisotropy,
distinction can be made between elastic anisotropy and plastic anisotropy. Elastic
anisotropy refers to the use of different elastic stiffness properties in different directions.
Plastic anisotropy may involve the use of different strength properties in different
directions, as considered in the Jointed Rock model. Another form of plastic anisotropy is
kinematic hardening. The latter is not considered in PLAXIS.

major joint
direction

Figure 5.1 Visualization of concept behind the Jointed Rock model

The Jointed Rock model is an anisotropic elastic perfectly-plastic model, especially
meant to simulate the behaviour of stratified and jointed rock layers. In this model it is
assumed that there is intact rock with an optional stratification direction and major joint
directions. The intact rock is considered to behave as a transversely anisotropic elastic
material, quantified by five parameters and a direction. The anisotropy may result from
stratification or from other phenomena. In the major joint directions it is assumed that
shear stresses are limited according to Coulomb's criterion. Upon reaching the maximum
shear stress in such a direction, plastic sliding will occur. A maximum of three sliding
directions ('planes') can be defined, of which the first plane is assumed to coincide with
the direction of elastic anisotropy. Each plane may have different shear strength
properties. In addition to plastic shearing, the tensile stresses perpendicular to the three
planes are limited according to a predefined tensile strength (tension cut-off).

The application of the Jointed Rock model is justified when families of joints or joint sets
are present. These joint sets have to be parallel, not filled with fault gouge, and their
spacing has to be small compared to the characteristic dimension of the structure.

Some basic characteristics of the Jointed Rock model are:
. Anisotropic elastic behaviour for intact rock Parameters Eq,Ez,v1,102,Go
. Shear failure according to Coulomb in 3 directions, i  Parameters ¢;, ¢; and 1);

. Limited tensile strength in three directions, i Parameters oy
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5.1 ANISOTROPIC ELASTIC MATERIAL STIFFNESS MATRIX

The elastic material behaviour in the Jointed Rock model is described by an elastic
material stiffness matrix, Dx. In contrast to Hooke's law, the Dx-matrix as used in the
Jointed Rock model is transversely anisotropic. Different stiffnesses can be used normal
to and in a predefined direction (‘plane 1'). This direction may correspond to the
stratification direction or to any other direction with significantly different elastic stiffness
properties.

Consider, for example, a horizontal stratification, where the stiffness in z- direction, E,, is
different from the stiffness in the rock as a continuum, Ej. In this case the 'plane 1'
direction is parallel to the x-yplane and the following constitutive relations exist (See:
Zienkiewicz & Taylor: The Finite Element Method, 4th Ed.):

Oxx V10yy V2027

o= 22X N 5.1a
= E E E, (5.1a)
V10 xx dyy V20 zz
Eyy = — —_ — 5.1b
” E,  E B (5.1b)
. VO xx V2(l7yy Ozz
€2z = + — 5.1c
2z E E, 3 (5.1c)
. 21 +v
’7)(}/ = ua-xy (5.1d)
E;
. dyz
= 2= 5.1e
Vyz G ( )
. o
Yaox = Gi: (5.1f)

The inverse of the anisotropic elastic material stiffness matrix, (Q*)”, follows from the
above relations. This matrix is symmetric. The regular material stiffness matrix Q* can
only be obtained by numerical inversion.

In general, the stratification plane will not be parallel to the global x-yplane, but the above
relations will generally hold for a local (n,s,t) coordinate system where the stratification
plane is parallel to the s-t-plane. The orientation of this plane is defined by the dip angle
(or shortly dip) and strike (see Section 5.3). As a consequence, the local material
stiffness matrix has to be transformed from the local to the global coordinate system.
Therefore we consider first a transformation of stresses and strains:

Cryz = :H;1gnst (5.2a)

—1
Enst = ﬁséxyz §xyz = :RE Enst (52b)
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where
R non 2nyn, 2n,n;, 2n,n,
s S5 S5 255 2sys; 25,S;
(A R 21ty 2t t, 2t, (5.3)
T | NySx NySy N;S; NxSy + NySx NySz + NzSy NySx + NSy
Sxtx Syty Sztz S)(ty + Sytx Sytz + Szty S)(tz + Szt)(
nety nyty nzt; net, +nyty Nyt + nzty Nzt + Nyt
and
n n n? nyny, nyn; nyn,
s s5 s SxSy SySz SxSz
2 2 12 tt, t,t, fts
R=| * v Z ¥ Y (5.4)
—_—e

2n,Sx 2nySy 2N;S; NySy + NySx NyS; + N;Sy N;Sx + NxS;

2sxty 2syt, 28,1, Skl + Syly  Syl; + Szt  Sxly + Szly

2nyte 2nyty 2nzt; nety + nyte Nyt + Nzt Npt + Nty

Ny, Ny, Nz, Sx, Sy, Sz, Iy, t, and t; are the components of the normalized n, s and
t-vectors in global (x,y,z)-coordinates (i.e. 'sines' and 'cosines'; see Section 5.3). For
plane strain condition n, = s, =ty =t, =0and f; = 1.

It further holds that:

R =R R =R (5.5)

s

A local stress-strain relationship in (n,s,t)-coordinates can be transformed to a global
relationship in (x,y,z)-coordinates in the following way:

Tnst =D Y siEnst
Ipst = Qc,gxyz = Qggxyz =D nst—R Exyz (5.6)

Enst = =R€§xyz
Hence,

= Q— D* R ¢ (5.7)

Oxyz = =nst —«¢ Exyz

Using to above condition (Eq. 5.5):

R'D" Re, =D ¢ or D =R"D* R (5.8)

Ixyz = 8, Zpst ZeExyz =xyz =XYZ =xyz  —e =nst =¢
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Actually, not the D*-matrix is given in local coordinates but the inverse matrix (Q*_1).

x« —1
Enst = Qnst T pst

x —1 . —
Qnst = :Ragxyz = E‘:Xyz B Q B nyz - B Q nst :Ro_gxyz (59)
Enst = :R5§xyz
Hence,
D '-R"D" 'R or o, =AD" A | (5.10)
=Xyz —o —=nst —0o =Xyz —o —=nst —0c

Instead of inverting the (stt)q-matrix in the first place, the transformation is considered
first, after which the total is numerically inverted to obtain the global material stiffness
matrix Q}*{yz

5.2 PLASTIC BEHAVIOUR IN THREE DIRECTIONS

A maximum of 3 sliding directions (sliding planes) can be defined in the Jointed Rock
model. The first sliding plane corresponds to the direction of elastic anisotropy. In
addition, a maximum of two other sliding directions may be defined. However, the
formulation of plasticity on all planes is similar. On each plane a local Coulomb condition
applies to limit the shear stress, |7|. Moreover, a tension cut-off criterion is used to limit
the tensile stress on a plane. Each plane, i, has its own strength parameters ¢;, ¢;, ¥;
and oy .

In order to check the plasticity conditions for a plane with local (n, s, t)-coordinates it is
necessary to calculate the local stresses from the Cartesian stresses. The local stresses
involve three components, i.e. a normal stress component, o, and two independent
shear stress components, 75 and ;.

0;=T]c (5.11)

where
_ (Un - T1>T (5.12a)
= (axx Oyy Ozz Oxy Oyz JZX>T (5.12b)

LT = transformation matrix (3x6), for plane i

As usual in PLAXIS, tensile (normal) stresses are defined as positive whereas
compression is defined as negative.

Consider a plane strain situation as visualized in Figure 5.2. Here a sliding plane is
considered under an angle a4 (= dip) with respect to the x-axis. In this case the
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a sliding plane

a

Figure 5.2 Plane strain situation with a single sliding plane and vectors n, s
transformation matrix LT becomes:

2 20 -2s¢c 0 O
TT=|sc -sc0-s2+c2 0 0 (5.13)
0 0 O 0 —C —S§
where

S = Sin ay
C = COS a4

In the general three-dimensional case the transformation matrix is more complex, since it
involves both dip and strike (see Section 5.3):

n nf, n 2neny 2n,n;, 2n,ny

T = | NeSe NySy NSy NSy +NySx N28, + NySy NySx + NySs (5.14)

nete nyty nzt; nyte+ nety Nyt +nzty Nzt + Nity
Note that the general transformation matrix, LT, for the calculation of local stresses
corresponds to rows 1, 4 and 6 of QU (see Eq. 5.3).
After having determined the local stress components, the plasticity conditions can be

checked on the basis of yield functions. The yield functions for plane i are defined as:

ff =|1s|+ ontan i — ¢ (Coulomb) (5.15a)
f' = 0n — ori(or; < cicoty;) (Tension cut-off) (5.15b)

Figure 5.3 visualizes the full yield criterion on a single plane.
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Ot,i

Figure 5.3 Yield criterion for individual plane

The local plastic strains are defined by:

0ag°
Agf.’ = Aji (5.16)
where g; is the local plastic potential function for plane j:
=|7j|+ ontany; — ¢ (Coulomb) (5.17a)
g =on—o0y (Tension cut-off) (5.17b)

The transformation matrix, T, is also used to transform the local plastic strain increments
of plane j, Agj’, into global plastic strain increments, AgP:

AeP = le;f (5.18)

The consistency condition requires that at yielding the value of the yield function must
remain zero for all active yield functions. For all planes together, a maximum of 6 yield
functions exist, so up to 6 plastic multipliers must be found such that all yield functions
are at most zero and the plastic multipliers are non-negative.

np T c np T t

off og; off 0g;
o= 3" <> TIDT L -3 <M > T/DT,—L (5.19a
! ! ; / oo I 9o /=Z1 / oo e ( )

T n, T

890 P aft gt
fl = 1@ <A > IDT L -y < AI> DT,—  (5.19b
Z a Z ] do a ( )

j=1
This means finding up to 6 values of A\; > 0 such that all f; < 0 and \;f; = 0.

When the maximum of 3 planes are used, there are 2% = 64 possibilities of (combined)
yielding. In the calculation process, all these possibilities are taken into account in order
to provide an exact calculation of stresses.

5.3 PARAMETERS OF THE JOINTED ROCK MODEL

Most parameters of the Jointed Rock model coincide with those of the isotropic
Mohr-Coulomb model. These are the basic elastic parameters and the basic strength
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parameters.

Elastic parameters as in Mohr-Coulomb model (see Section 3.3):
E; : Young's modulus for rock as a continuum [kN/m?]

1 . Poisson's ratio for rock as a continuum [-]

Anisotropic elastic parameters 'Plane 1' direction (e.g. stratification direction):

E> : Young's modulus perpendicular on 'Plane 1' direction [kN/m?]
Go . Shear modulus perpendicular on 'Plane 1' direction [kN/m?]
Vo . Poisson's ratio perpendicular on 'Plane 1' direction [-]

Strength parameters in joint directions (Plane i=1, 2, 3):

Ci : Cohesion [kN/m?]
Wi . Friction angle °]
i . Dilatancy angle ]
Ot . Tensile strength [kN/m?]

Definition of joint directions (Plane i=1, 2, 3):

n : Number of joint directions (1 < n < 3) [-]

o : Dip (—180 < g < 180) [°]

Y, . Strike (—180 < ay; < 180) (ag, = 90 in PLAXIS 2D) °]
Elastic parameters

The elastic parameters Ey and vy are the (constant) stiffness (Young's modulus) and
Poisson's ratio of the rock as a continuum according to Hooke's law, i.e. as if it would not
be anisotropic.

Elastic anisotropy in a rock formation may be introduced by stratification. The stiffness
perpendicular to the stratification direction is usually reduced compared with the general
stiffness. This reduced stiffness can be represented by the parameter E,, together with a
second Poisson's ratio, v2. In general, the elastic stiffness normal to the direction of
elastic anisotropy is defined by the parameters E; and vs.

Elastic shearing in the stratification direction is also considered to be 'weaker' than elastic
shearing in other directions. In general, the shear stiffness in the anisotropic direction can
explicitly be defined by means of the elastic shear modulus Gs. In contrast to Hooke's
law of isotropic elasticity, G» is a separate parameter and is not simply related to Young's
modulus by means of Poisson's ratio (see Eq. 5.1d and e).

If the elastic behaviour of the rock is fully isotropic, then the parameters Eo and v» can be
simply set equal to E; and v4 respectively, whereas Gz should be set to 12E1 /(1 + v1).
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Soil - Jointed rock - <NoMame>
DB a
General | Parameters | Groundwater * | Thermal | Interfaces | Initial |
Property Unit Value
Stiffness
E Kfmz 0.000
vy (nu) 0.000
E, kMfm2 0,000
v (nu) 0.000
G, kMfm2 0,000
Strength
Mumber of planes 1 plane
Plane 1
Cref kM/fm2 0.000
@ (phi) ° 0.000
w (psi) e 0.000
a; (alpha 1) = 0,000
= Advanced
Tension cut-off
Tensile strength kMfm2 0.000
Advanced
[ MNext ] [ OK ] [ Cancel ]

Figure 5.4 Parameters for the Jointed Rock model (PLAXIS 3D)

Strength parameters

Each sliding direction (plane) has its own strength properties ¢;, ¢; and o;; and dilatancy
angle v;. The strength properties ¢; and ¢; determine the allowable shear strength
according to Coulomb's criterion and o; determines the tensile strength according to the
tension cut-off criterion. The latter is displayed after pressing Advanced button. By
default, the tension cut-off is active and the tensile strength is set to zero. The dilatancy
angle, v, is used in the plastic potential function g, and determines the plastic volume
expansion due to shearing.

Definition of joint directions

It is assumed that the direction of elastic anisotropy corresponds with the first direction
where plastic shearing may occur ('‘plane 1'). This direction must always be specified. In
the case the rock formation is stratified without major joints, the number of sliding planes
(= sliding directions) is still 1, and strength parameters must be specified for this direction
anyway. A maximum of three sliding directions can be defined. These directions may
correspond to the most critical directions of joints in the rock formation.

The sliding directions are defined by means of two parameters: The Dip angle («1) (or
shortly Dip) and the Strike (). The definition of both parameters is visualized in Figure
5.5.

Consider a sliding plane, as indicated in Figure 5.5. The sliding plane can be defined by
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the vectors (s, ), which are both normal to the vector n. The vector nis the 'normal’ to the
sliding plane, whereas the vector s is the 'fall line' of the sliding plane (dip) and the vector
t is the 'horizontal line' of the sliding plane (strike). The sliding plane makes an angle a4
with respect to the horizontal plane, where the horizontal plane can be defined by the
vectors (s*, ), which are both normal to the vertical axis. The angle «; is the dip, which is
defined as the positive 'downward' inclination angle between the horizontal plane and the
sliding plane. Hence, a1 is the angle between the vectors s* and s, measured clockwise
from s* to s when looking in the positive f-direction. The dip ought to be entered in the
range [0°, 90°], but negative values as well as values larger than 90° can also be entered.

z

a2

al

Figure 5.5 Definition of dip angle and strike

The orientation of the sliding plane is further defined by the strike, ap, which is defined in
PLAXIS as the orientation of the vector t with respect to the x-direction. The strike is
defined as the positive angle from the x-direction, measured clockwise to the t-axis. The
dip direction is entered in the range [-180°, 180°].

From the definitions as given above, it follows for PLAXIS 3D that:

Ny —sinaq sinas

n=|n,|=|—sinajcosas (5.20a)
n, COS (v
Sx — COS (1 SiNap

S=|s,|=| —COSayCOS (5.20b)
S, —sin oy
by COS an

t=1t =] —sina (5.20c)
tz 0
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whereas for PLAXIS 2D «p is taken by definition as cco = 90°, such that:

-nx- -—Sinoq

n=|n, [=| cosay (5.21a)
nz| | 0
-SX- -—cosm

s=|s,|=| —siny (5.21b)
82| | 0
I 0

t=1t|=]0 (5.21¢)
t, 1

Figure 5.6 shows some examples of how sliding planes occur in a 3D models for different
values of oy and ap. As it can be seen, for plane strain conditions (the cases considered
in PLAXIS 2D) only a4 is required. By default, az is fixed at 90°.
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THE JOINTED ROCK MODEL (ANISOTROPY)

PLAXIS 3D Qo =0°

a1 = 30°

Qp = 0° X
a1 = 30°

Qo = 90°

PLAXIS 2D y

ag
Q= 30°
Qo = 90°
X

Figure 5.6 Examples of failure directions defined by a1 and a»
5.4 ON THE USE OF THE JOINTED ROCK MODEL IN DYNAMIC CALCULATIONS

When using the Jointed Rock model in dynamic calculations, the stiffness need to be
selected such that the model correctly predicts wave velocities in the soil (Equation
(3.13)). When subjected to dynamic or cyclic loading, the Jointed Rock model may
generate plastic strains if stress points reach the Coulomb failure criterion, which will lead
to damping in dynamic calculations. However, it should be noted that stress cycles within
the Coulomb failure contour will only generate elastic strains and no (hysteretic) damping,
nor accumulation of strains or pore pressure or liquefaction. In order to simulate the
rock's damping characteristics in cyclic loading, Rayleigh damping may be defined.

Hint: A slightly modified version of the Jointed Rock model with generalised

Mohr-Coulomb failure criterion in addition to the individual failure directions is
available as user-defined soil model. Contact Plaxis for more information.
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Hint: In a geological context, strike is defined as the angle from the North to the
strike of the dipping plane (positive towards East direction), whereas in
PLAXIS definition strike is defined from the global x — direction to the strike
of the dipping plane (with the same positive rotation direction). If we define
the angle from the North direction to the x — direction of the PLAXIS model

as declination, then strike in PLAXIS is the geological strike minus
declination.

Moreover, there might be confusion between true strike and its opposite
direction (180° direction). Hence, care must be taken when translating strike
from geological data into PLAXIS input.
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6 THE HARDENING SOIL MODEL (ISOTROPIC HARDENING)

In contrast to an elastic perfectly-plastic model, the yield surface of a hardening plasticity
model is not fixed in principal stress space, but it can expand due to plastic straining.
Distinction can be made between two main types of hardening, namely shear hardening
and compression hardening. Shear hardening is used to model irreversible strains due to
primary deviatoric loading. Compression hardening is used to model irreversible plastic
strains due to primary compression in oedometer loading and isotropic loading. Both
types of hardening are contained in the present model.

The Hardening Soil model is an advanced model for simulating the behaviour of different
types of sail, both soft soils and stiff soils, Schanz (1998). When subjected to primary
deviatoric loading, soil shows a decreasing stiffness and simultaneously irreversible
plastic strains develop. In the special case of a drained triaxial test, the observed
relationship between the axial strain and the deviatoric stress can be well approximated
by a hyperbola. Such a relationship was first formulated by Kondner (1963) and later
used in the well-known hyperbolic model (Duncan & Chang, 1970). The Hardening Soil
model, however, supersedes the hyperbolic model by far: Firstly by using the theory of
plasticity rather than the theory of elasticity, secondly by including soil dilatancy and
thirdly by introducing a yield cap. Some basic characteristics of the model are:

. Stress dependent stiffness according to a power law  Input parameter m

. Plastic straining due to primary deviatoric loading Input parameter Eggf

. . L . . f
Plastic straining due to primary compression Input parameter E/2,,

. Elastic unloading / reloading Input parameters £, vy,

. Failure according to the Mohr-Coulomb failure criterion Parameters ¢, ¢ and 1

A basic feature of the present Hardening Soil model is the stress dependency of soil
stiffness. For oedometer conditions of stress and strain, the model implies for example
the relationship Eeq = E0, (o/p™")™. In the special case of soft soils it is realistic to
use m = 1. In such situations there is also a simple relationship between the modified
compression index \*, as used in models for soft soil and the oedometer loading

modulus (see also Section 9.8).

A
(1+ep)

ref
Eref - P A =
oed A*

where p'® is a reference pressure. Here we consider a tangent oedometer modulus at a
particular reference pressure p™®. Hence, the primary loading stiffness relates to the
modified compression index A* or to the standard Cam-Clay compression index .

Similarly, the unloading-reloading modulus relates to the modified swelling index x* or to
the standard Cam-Clay swelling index «. There is the approximate relationship:

ref
ref 2p % _
Eur ~ T % K=

(1 + eo)

This relationship applies in combination with the input value m = 1.
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6.1 HYPERBOLIC RELATIONSHIP FOR STANDARD DRAINED TRIAXIAL TEST

A basic idea for the formulation of the Hardening Soil model is the hyperbolic relationship
between the vertical strain, £1, and the deviatoric stress, g, in primary triaxial loading.
Here standard drained triaxial tests tend to yield curves that can be described by:

L
Ei1-4q/qa

Where q, is the asymptotic value of the shear strength and E; the initial stiffness. E; is
related to Esq by:

— forr g < g (6.1)

2E;
= 50 (6.2)
2 — R
This relationship is plotted in Figure 6.1. The parameter Esq is the confining stress
dependent stiffness modulus for primary loading and is given by the equation:
€CoS ¢ — o'z sin
Eso = E5Y ( o “”)"’ (6.3)
ccosyp + P sing

where Eggf is a reference stiffness modulus corresponding to the reference confining
pressure p®’. In PLAXIS, a default setting p® = 100 stress units is used. The actual
stiffness depends on the minor principal stress, ¢'s, which is the confining pressure in a
triaxial test. Please note that ¢'3 is negative for compression. The amount of stress
dependency is given by the power m. In order to simulate a logarithmic compression
behaviour, as observed for soft clays, the power should be taken equal to 1.0. Janbu
(1963) reports values of m around 0.5 for Norwegian sands and silts, whilst von Soos
(1990) reports various different values in the range 0.5 < m < 1.0.

The ultimate deviatoric stress, gf, and the quantity g, in Eq. (6.1) are defined as:

2siny and: g, g

=(ccotyp — o'g) —— =
qr = ( ® 03)1—sin<p R

(6.4)
Again it is remarked that ¢'3 is usually negative. The above relationship for gy is derived
from the Mohr-Coulomb failure criterion, which involves the strength parameters ¢ and .
As soon as g = gy, the failure criterion is satisfied and perfectly plastic yielding occurs as
described by the Mohr-Coulomb model.

The ratio between @y and g, is given by the failure ratio R¢, which should obviously be
smaller than or equal to 1. In PLAXIS, R; = 0.9 is chosen as a suitable default setting.

For unloading and reloading stress paths, another stress-dependent stiffness modulus is
used:

ccosp —o'ssing
Eur = EL?’( o )”’ (6.5)
ccosp + p sing

where ngf is the reference Young's modulus for unloading and reloading, corresponding
to the reference pressure p®. In many practical cases it is appropriate to set E/¢' equal
to 3ELS'; this is the default setting used in PLAXIS.
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Figure 6.1 Hyperbolic stress-strain relation in primary loading for a standard drained triaxial test

6.2 APPROXIMATION OF HYPERBOLA BY THE HARDENING SOIL MODEL

For the sake of convenience, restriction is made here to triaxial loading conditions with
o'p = 0'3 and ¢'1 being the major compressive stress. In fact, for general states of stress,
g can be replaced by q where:

_ 3+siny

g=01+(a—1)02' — aos' with :
3 — siny

(refer Section 6.5 for more details). Moreover, it is assumed that g < gy, as also indicated
in Figure 6.1. It should also be realised that compressive stress and strain are considered
negative. For a more general presentation of the Hardening Soil model the reader is
referred to Schanz, Vermeer & Bonnier (1999). In this section it will be shown that this
model gives virtually the hyperbolic stress strain curve of Eq. (6.1) when considering
stress paths of standard drained triaxial tests. Let us first consider the corresponding
plastic strains. This stems from a shear hardening yield function of the form:

f=Ff—~P (6.6)
where f is a function of stress and 4 is a function of plastic strains:
29 29
Ei 11— q/qa Eur

with g, qa, Ej and E,, as defined by Eq. (6.1) to Eq. (6.5), whilst the superscript p is used
to denote plastic strains. For hard soils, plastic volume changes (c£) tend to be relatively
small and this leads to the approximation P = —25?. The above definition of the
strain-hardening parameter v will be referred to later.

f= AP = —(2F — eP) ~ —2eP (6.7)

An essential feature of the above definitions for f is that it matches the well-known
hyperbolic law Eq. (6.1). For checking this statement, one has to consider primary
loading, as this implies the yield condition f = 0. For primary loading, it thus yields 7 = f
and it follows from Eq. (6.6) that:

eﬁ’z%?:l 9__49 6.8)

Ei1—-q/qa E,
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In addition to the plastic strains, the model accounts for elastic strains. Plastic strains
develop in primary loading alone, but elastic strains develop both in primary loading and
unloading / reloading. For drained triaxial test stress paths with o'> = o'3 = constant, the
elastic Young's modulus E,, remains constant and the elastic strains are given by the
equations:

e e
—&{=— —&5=—€3=—Vyr— (6.9)
Eur Eur
where v, is the unloading / reloading Poisson's ratio. Here it should be realised that
restriction is made to strains that develop during deviatoric loading, whilst the strains that
develop during the very first stage of the test (isotropic compression with consolidation)
are not considered.

For the deviatoric loading stage of the triaxial test, the axial strain is the sum of an elastic
component given by Eq. (6.9) and a plastic component according to Eq. (6.8). Hence, it
follows that:

p 1 q

EP i UL A
g1 = —¢ef — ¢} E1-q/a (6.10)

This relationship holds exactly in absence of plastic volume strains, i.e. when £5 = 0.

In reality, plastic volumetric strains will never be precisely equal to zero, but for hard soils
plastic volume changes tend to be small when compared with the axial strain so that this
formulation yields a hyperbolic stress-strain curve under triaxial testing conditions.

For a given constant value of the hardening parameter, +”, the yield condition f = 0, can
be visualised in p'- g-plane by means of a yield locus. Hence, +” is associated with
mobilised friction. When plotting such yield loci, one has to use Eq. (6.7) as well as Egs.
(6.3) and (6.5) for Esg and E,, respectively. Because of the latter expressions, the shape
of the yield loci depends on the exponent m. For m = 1, straight lines are obtained, but
slightly curved yield loci correspond to lower values of the exponent. Figure 6.2 shows
the shape of yield loci for increasing values of vP considering m = 0.5, being typical for
hard soils. Hence, " can be regarded as the plastic shear strain related to the mobilised
shear resistance.
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Figure 6.2 Successive yield loci for various constant values of the hardening parameter +°
6.3 PLASTIC VOLUMETRIC STRAIN FOR TRIAXIAL STATES OF STRESS

Having presented a relationship for the plastic shear strain, v°, attention is now focused
on the plastic volumetric strain, 5. As for all plasticity models, the Hardening Soil model
involves a relationship between rates of plastic strain, i.e. a relationship between £° and
4P. This shear hardening flow rule has the linear form:

0 = sinpAP (6.11)

Clearly, further detail is needed by specifying the mobilised dilatancy angle ¢,,. For the
present model, the following is considered (see also Figure 6.3):

For sinpm < 3/4singp : Ym=0

(6.12)

i ; : sinpm, — sin
For singm > 3/4sinpand ) >0 S'n¢m=max( iN@m — Sin ey 0)

1 —singmsin e,
For siNgm > 3/4sinpand ¢ <0 b=
|f§0=0 wm=0

where ¢, is the critical state friction angle, being a material constant independent of
density, and ¢, is the mobilised friction angle:

singm, = 71793 (6.13)
o'y+0's—2ccoty

The above equations are a small adaptation from the well-known stress-dilatancy theory
by Rowe (1962), as explained by Schanz & Vermeer (1996). The mobilised dilatancy
angle, ¥, follows Rowe's theory for larger values of the mobilised friction angle, as long
as this results in a positive value of ¥,. For small mobilised friction angles and for
negative values of 1, as computed by Rowe's formula (as long as the dilatancy angle ¢
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Figure 6.3 Plot of mobilized dilatancy angle 1), and mobilized friction angle ¢m for Hardening Soil
model

is positive), ¥, is taken zero. Furthermore, in all cases when ¢ = 0, ¥, is set equal to
zero.

The essential property of the stress-dilatancy theory is that the material contracts for
small stress ratios pm < ¢, Whilst dilatancy occurs for high stress ratios ¢, > @c,. At
failure, when the mobilised friction angle equals the failure angle, ¢, it is found from Eg.

(6.12) that:
sing = ¥~ SNPev (6.14a)
1 —sinysinggy,
or equivalently:
. siny — sin
Sin oy = S P ST (6.14b)
1 —singsiny

Hence, the critical state angle can be computed from the failure angles ¢ and . PLAXIS
performs this computation automatically and therefore users do not need to specify a
value for ¢, . Instead, one has to provide input data on the peak friction angle, ¢, and
the peak dilatancy angle, 1.

The shear hardening process will continue with the mobilization of the shear strength,
until the maximum shear strength according to the Mohr-Coulomb model failure criterion
is reached.

6.4 PARAMETERS OF THE HARDENING SOIL MODEL

Some parameters of the present hardening model coincide with those of the
non-hardening Mohr-Coulomb model. These are the failure parameters ¢, ¢ and .
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Soil - Hardening soil - <NoMName>
OB A
Generall Parameters ‘Groundwaber |Thermal I].nberfaoes I].nmal |
Property Unit Value
Stiffness
Eoed ref kNfm2 0.000
By kifm2 0.000
power (m) 0,5000
Alternatives
Use alternatives O
C, 10.00E9
Cg 10.00ES
i 0.5000
Strength
ot khlfmz 0,000
@' (ohi) g 0.000
w {psi) ° 0.000
Advanced
[ Next ] [ OK ] [ Cancel ]

Figure 6.4 Parameters for the Hardening Soil model

Failure parameters as in Mohr-Coulomb model (see Section 3.3):

c . (Effective) cohesion [kN/m?]
%) . (Effective) angle of internal friction [°]
W : Angle of dilatancy [°]
ot : Tension cut-off and tensile strength [KkN/m?3]

Basic parameters for soil stiffness:

ELef : Secant stiffness in standard drained triaxial test [kN/m?]
Egg’; : Tangent stiffness for primary oedometer loading [kN/m?]
Eref : Unloading / reloading stiffness (default E/¢'= 3E[¢") [kN/m?]
m . Power for stress-level dependency of stiffness [-]

Advanced parameters (it is advised to use the default setting):

Vur . Poisson's ratio for unloading-reloading (default v, = [-]
0.2)
p'ef . Reference stress for stiffnesses (default p®" = 100 [kN/m?]
kN/m?)
Kg° . Kp-value for normal consolidation (default KJ'° = []
1 —siny)
R . Failure ratio g / q5 (default Ry = 0.9) (see Figure 6.1) []
Otension . Tensile strength (default osension = 0 stress units) [kN/m?]
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Cinc . As in Mohr-Coulomb model (default Cj,c = 0) [kN/m?]

Instead of entering the basic parameters for soil stiffness, alternative parameters can be
entered. These parameters are listed below:

Ce : Compression index []
Cs : Swelling index or reloading index [-]
Cinit . Initial void ratio [-]

Stiffness moduli ELS', E®' & E!¢" and power m

The advantage of the Hardening Soil model over the Mohr-Coulomb model is not only the
use of a hyperbolic stress-strain curve instead of a bi-linear curve, but also the control of
stress level dependency. When using the Mohr-Coulomb model, the user has to select a
fixed value of Young's modulus whereas for real soils this stiffness depends on the stress
level. It is therefore necessary to estimate the stress levels within the soil and use these
to obtain suitable values of stiffness. With the Hardening Soil model, however, this
cumbersome selection of input parameters is not required.

Instead, a stiffness modulus ELS" is defined for a reference minor principal effective stress
of —a's = p'®. This is the secant stiffness at 50 % of the maximum deviatoric stress, at a
cell pressure equal to the reference stress p"® (Figure 6.5). As a default value, the
program uses p"¢ = 100 kN/m?.

op—os3] A

" A .

strain (1)

Figure 6.5 Definition of £ and E¢' for drained triaxial test results

As some PLAXIS users are familiar with the input of shear moduli rather than the above
stiffness moduli, shear moduli will now be discussed. Within Hooke's law of isotropic
elasticity conversion between E and G goes by the equation E=2 (1 +v) G. As E,,is a
real elastic stiffness, one may thus write E,; = 2 (1 + v) Gyr, where G, is an elastic
shear modulus. Please note that PLAXIS allows for the input of E,, and v, but not for a
direct input of G,. In contrast to E,,, the secant modulus Es is not used within a
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concept of elasticity. As a consequence, there is no simple conversion from Esg to Gsp.

In contrast to elasticity based models, the elastoplastic Hardening Soil model does not
involve a fixed relationship between the (drained) triaxial stiffness Esg and the oedometer
stiffness Eyeq for one-dimensional compression. Instead, these stiffnesses can be
inputted independently. Having defined Esg by Eq. (6.3), it is now important to define the
oedometer stiffness. Here we use the equation:

CcCOSs
Eveq = ET, 0 m (6.15)

91 ccosy +p® sing

where E,qq is a tangent stiffness modulus obtained from an oedometer test, as indicated
in Figure 6.6.

Hence, E/¥, is a tangent stiffness at a vertical stress of —¢'y = ‘73 = p'®. Note that we
basically use o'y rather than o' and that we consider primary Ioac?mg.

When undrained behaviour is considered in the Hardening Soil model the Drainage type
should preferably be set to Undrained (A). Alternatively, Undrained (B) can be used in
case the effective strength properties are not known or the undrained shear strength is
not properly captured using Undrained (A). However, it should be noted that the material
loses its stress-dependency of stiffness in that case. Undrained (C) is not possible since
the model is essentially formulated as an effective stress model.

Alternative stiffness parameters

When soft soils are considered, the stiffness parameters can be calculated from the
compression index, swelling index and the initial void ratio’. The relationship between
these parameters and the compression index, Cg, is given by:

2.3(1 + €init) Pref

Cs = (6.16)
Erd

-01 A

ref
i S

.El

Figure 6.6 Definition of £¢/; in oedometer test results

T In the PLAXIS material database, these alternative parameters depend on the initial void ratio. In reality, these
parameters depend on the actual void ratio, which is not a constant.
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The relationship between the E/¢" and the swelling index, Cs, is given by:

2301+ einir) (1 +v) (1 — 20) Prer

Cs ~ 6.17
: (1 — V) ELKo (®17)
Regardless the previous value of Esg, a new value will be automatically assigned
according to:
Elel = 1.25E (6.18)

Although for Soft soils, ELS' could be as high as 2E/¢, this high value could lead to a
limitation in the modeling; therefore a lower value is used. Changing the value of Cs will

change the stiffness parameter E,;.

Note that the value of the power for stress-level dependency of stiffness (m) is
automatically setto 1.

Advanced parameters

Realistic values of v, are about 0.2 and this value is thus used as a default setting, as
indicated in Figure 6.4. Note that in the Hardening Soil model, v, is a pure elastic
parameter.

In contrast to the Mohr-Coulomb model, K is not simply a function of Poisson's ratio,
but an independent input parameter. As a default setting PLAXIS uses the correlation
K¢ =1 —siny. ltis suggested to maintain this value as the correlation is quite realistic.
However, users do have the possibility to select different values. Not all possible input
values for Kj° can be accommodated for. Depending on other parameters, such as Es’gf,
E'e’, E¢" and v, there happens to be a certain range of valid KJ°-values. K} values
outside this range are rejected by PLAXIS. On inputting values, the program shows the

nearest possible value that will be used in the computations.

Dilatancy cut-off

After extensive shearing, dilating materials arrive in a state of critical density where
dilatancy has come to an end, as indicated in Figure 6.7. This phenomenon of soil
behaviour can be included in the Hardening Soil model by means of a dilatancy cut-off. In
order to specify this behaviour, the initial void ratio, ej;, and the maximum void ratio,
€max, of the material must be entered as general parameters. As soon as the volume
change results in a state of maximum void, the mobilised dilatancy angle, ¢, is
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automatically set back to zero, as indicated in Figure 6.7.

Sinpm — SiN ¢y

1 —sinpm sin gy
. sinp — sin
where: SiN ¢, = <P—¢ (6.19a)
1 —singsiny
for € > emax : Ym=0 (6.19b)

The void ratio is related to the volumetric strain, €, by the relationship:

- 1+e
— (e, — Mt =In<> 6.20
( v ) 1 — Ejnit (6.20)

where an increment of ¢, is positive for dilatancy.

//dilatancy cut - off OFF

Ev -7
_~ dilatancy cut - off ON

\ maximum porosity reached

>
>

€1

Figure 6.7 Resulting strain curve for a standard drained triaxial test when including dilatancy cut-off

The initial void ratio, ejnjt, is the in-situ void ratio of the soil body. The maximum void ratio
is the void ratio of the material in a state of critical void (critical state). As soon as the
maximum void ratio is reached, the dilatancy angle is set to zero. The minimum void
ratio, emin, Of a soil can also be input, but this general soil parameter is not used within
the context of the Hardening Soil model.

Please note that the selection of the dilatancy cut-off and the input of void ratios are done
in the General tabsheet (Figure 6.8) of the Soil window and not in the Parameters
tabsheet. The selection of the Dilatancy cut-off is only available when the Hardening Soil
model or the Hardening Soil model with small-strain stiffness has been selected. By
default, the Dilatancy cut-off is not active. Note that the dilatancy cut-off does not help in
limiting the shear strength when using the Undrained (A) drainage type with a positive
dilatancy angle. This is because the void ratio remains constant for undrained materials.
Therefore, it is strongly recommended to set ¢ = 0 for undrained material behaviour
(Undrained A).
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Soil - Hardening soil - <NoName>

o

General ‘Paramebers I Flow parameters | Interfaces IIHihal ‘

Property
Material set
Identification
Material mode

Drainage type

Unit WValue

I
Hardening soil

Drained

Colour RGE 161, 225, 232

Comments

General properties
kNjm3 0.000
kMjm3

7 st
Tat 0.000
=l Advanced
Void ratio
Dilatancy cut-off O
e . 0.5000
€ i 0.000
€ 933.0
Damping

Rayleigh o 0.000

Rayleigh B 0,000

Lomee Jloc |

Cancel ]

Figure 6.8 General tabsheet

6.5 ON THE CAP YIELD SURFACE IN THE HARDENING SOIL MODEL

Shear hardening yield surfaces as indicated in Figure 6.2 do not explain the plastic
volume strain that is measured in isotropic compression which is mostly observed in
softer types of soil. A second type of yield surface must therefore be introduced to close
the elastic region for compressive (compaction hardening) stress paths. Without such a
cap type yield surface it would not be possible to formulate a model with independent
input of both Eggf and Eg‘;&. The triaxial modulus largely controls the shear yield surface
and the oedometer modulus controls the cap yield surface. In fact, ELZ' largely controls
the magnitude of the plastic strains that are associated with the shear yield surface.
Similarly, E[g’d is used to control the magnitude of plastic strains that originate from the
yield cap. In this section the yield cap will be described in detail. To this end we consider
the definition of the cap yield surface:

_q
= W +

where M is an auxiliary model parameter that relates to Kj'° as will be discussed later.
Further more we have p' = (01 + 0’2 + 0'3)/3 and q = 0'1 + (o — 1)0'2 — ao'3 with
a=(3+sinyp)/(3 —siny). qis a special stress measure for deviatoric stresses. In the
special case of triaxial compression (—c'y > —0's = —0'3) it yields g = —(¢'y — o'3) and
for triaxial extension (—o'y = —0's > —0'3) g reduces to q = —a(o'y — o'3). The
magnitude of the yield cap is determined by the isotropic pre-consolidation stress pp. In a
(P, 9) plane, the yield cap (f. = 0) is a part of an ellipse with its centre point in the origin

fo () — P (6.21)
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(Figure 6.9). The hardening law relating g, to volumetric cap strain £5° is:
) K/K—1Kp +ccot<p>_].
pc _ Rs/Ke p m
gy = 6.22
Y K p"® + ccoty Pe (6.22)

in which K¢ is the reference bulk modulus in unloading / reloading:
Eref
ur

Kref —
S 3(1—2uy)

(6.23)

and Ks/K: is the ratio of bulk moduli in isotropic swelling and primary isotropic
compression.

The volumetric cap strain is the plastic volumetric strain in isotropic compression. In
addition to the well known constants m and p™® there is another model constant Ks/K-.
Both M (Eq. (6.21)) and Ks/K; (Eqg. (6.22)) are cap parameters, but these are not used
as direct input parameters. Instead, there is a relationship of the form:

M — Kfe (default : K = 1 — sin )

and the ratio Ks/K; can be approximated as:

Eref Kne
K./K. ~ ur 0
s/Ke E’ (1 +2K5)(1 — 2vy)

such that K°, E[¢" and E'¢/, can be used as input parameters that determine the
magnitude of M and Ks/K; respectively.

The ellipse on which the yield cap is located has length p, on the p-axis and Mp, on the
g-axis. Hence, Pp determines its magnitude and M its aspect ratio. High values of M lead
to steep caps underneath the Mohr-Coulomb line and correspondingly small Kj°-values,
whereas small M-values define caps that are much more pointed around the p-axis
leading to large Kj°-values. The ellipse is used both as a yield surface and as a plastic
potential (associated plasticity). Input data on initial pp-values is provided by means of
the PLAXIS procedure for initial stresses. Here, pp is either computed from the input
over-consolidation ratio (OCR) or the pre-overburden pressure (POP) (see Section 2.9).

q

Mpp

elastic region

ccoty Po P

Figure 6.9 Yield surfaces of Hardening Soil model in p - g-plane. The elastic region can be further
reduced by means of a tension cut-off
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Figure 6.10 Representation of total yield contour of the Hardening Soil model in principal stress
space for cohesionless soil

For understanding the yield surfaces in full detail, one should consider both Figure 6.9
and Figure 6.10. The first figure shows simple yield lines, whereas the second one
depicts yield surfaces in principal stress space. Both the shear locus and the yield cap
have the hexagonal shape of the classical Mohr-Coulomb failure criterion. In fact, the
shear yield locus can expand up to the ultimate Mohr-Coulomb failure surface. The cap
yield surface expands as a function of the pre-consolidation stress pp.

6.6 STATE PARAMETERS IN THE HARDENING SOIL MODEL

In addition to the output of standard stress and strain quantities, the Hardening Soil
model provides output (when being used) on state variables such as the hardening
parameter v* and the isotropic pre-consolidation stress pp. These parameters can be
visualised by selecting the State parameters option from the stresses menu. An overview
of available state parameters is given below:

pcd . Equivalent isotropic stress [kN/m?]
=2
P =\ 1z + ()
PP : Isotropic preconsolidation stress [kN/m?]
OCR . Isotropic over-consolidation ratio (OCR = pP/p®9) []
~P : Hardening parameter (equivalent mobilised plastic [-]
shear strain)
E. . Current stress-dependent elastic Young's modulus [-]
c . Current depth-dependent cohesion [-]
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6.7 ON THE USE OF THE HARDENING SOIL MODEL IN DYNAMIC CALCULATIONS

When using the Hardening Soil model in dynamic calculations, the elastic stiffness
parameter ELC?’ needs to be selected such that the model correctly predicts wave
velocities in the soil. This generally requires an even larger small strain stiffness rather
than just an unloading-reloading stiffness to be entered for £/¢'. When subjected to
dynamic or cyclic loading, the Hardening Soil model will generate plastic strains when
mobilizing the soil's material strength (shear hardening) or increasing the soil's
preconsolidation stress (compaction hardening). However, it should be noted that stress
cycles within the current hardening contours will only generate elastic strains and no
(hysteretic) damping, nor accumulation of strains or pore pressure nor liquefaction. In
order to simulate the soil's damping characteristics in cyclic loading, Rayleigh damping
may be defined. Note that some of the limitations of the Hardening Soil model in dynamic
applications can be overcome by using the HS small model (Chapter 7).
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7 THE HARDENING SOIL MODEL WITH SMALL-STRAIN STIFFNESS (HSSMALL)

The original Hardening Soil model assumes elastic material behaviour during unloading
and reloading. However, the strain range in which soils can be considered truly elastic,
i.e. where they recover from applied straining almost completely, is very small. With
increasing strain amplitude, soil stiffness decays nonlinearly. Plotting soil stiffness
against log(strain) yields characteristic S-shaped stiffness reduction curves. Figure 7.1
gives an example of such a stiffness reduction curve. It outlines also the characteristic
shear strains that can be measured near geotechnical structures and the applicable strain
ranges of laboratory tests. It turns out that at the minimum strain which can be reliably
measured in classical laboratory tests, i.e. triaxial tests and oedometer tests without
special instrumentation, soil stiffness is often decreased to less than half its initial value.

A
JES |<«—|—>| Retaining walls
QL: }4—‘—»{ Foundations
]
2 |« Tunnels
= Very
S
g small omal sorl )
§ aing Small strains Conventional soil testing
=
wn
Larger strains
0 > in v [-
. T, ., . T e Shear strain s [-]

le” le” le le 1e” le

Dynamic methods

I U DR ORI o B

Local gauges

Figure 7.1 Characteristic stiffness-strain behaviour of soil with typical strain ranges for laboratory
tests and structures (after Atkinson & Sallfors (1991))

The soil stiffness that should be used in the analysis of geotechnical structures is not the
one that relates to the strain range at the end of construction according to Figure 7.1.
Instead, very small-strain soil stiffness and its non-linear dependency on strain amplitude
should be properly taken into account. In addition to all features of the Hardening Soil
model, the Hardening Soil model with small-strain stiffness offers the possibility to do so.

The Hardening Soil model with small-strain stiffness implemented in PLAXIS is based on
the Hardening Soil model and uses almost entirely the same parameters (see Section
6.4). In fact, only two additional parameters are needed to describe the variation of
stiffness with strain:

- the initial or very small-strain shear modulus Gy

. the shear strain level 7o 7 at which the secant shear modulus Gs is reduced to about
70% of Gy
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7.1 DESCRIBING SMALL-STRAIN STIFFNESS WITH A SIMPLE HYPERBOLIC LAW

In soil dynamics, small-strain stiffness has been a well known phenomenon for a long
time. In static analysis, the findings from soil dynamics have long been considered not to
be applicable.

Seeming differences between static and dynamic soil stiffness have been attributed to the
nature of loading (e.g. inertia forces and strain rate effects) rather than to the magnitude
of applied strain which is generally small in dynamic conditions (earthquakes excluded).
As inertia forces and strain rate have only little influence on the initial soil stiffness,
dynamic soil stiffness and small-strain stiffness can in fact be considered as synonyms.

Probably the most frequently used model in soil dynamics is the Hardin-Drnevich
relationship. From test data, sufficient agreement is found that the stress-strain curve for
small strains can be adequately described by a simple hyperbolic law. The following
analogy to the hyperbolic law for larger strains by Kondner (1963) (see previous Section)
was proposed by Hardin & Drnevich (1972):

% = ! (7.1)
Go N

Yr

1+

where the threshold shear strain ~, is quantified as:

Tmax
Vr=—" (7.2)
r Go
with Tmax being the shear stress at failure. Essentially, Egs. (7.1) and (7.2) relate large
(failure) strains to small-strain properties which often work well.

More straightforward and less prone to error is the use of a smaller threshold shear
strain. Santos & Correia (2001), for example suggest to use the shear strain v, = 9.7 at
which the secant shear modulus Gg is reduced to about 70 % of its initial value. Eq. (7.1)
can then be rewritten as:

% = v where a = 0.385 (7.3)
Go 4, al -t

Y0.7

In fact, using a = 0.385 and v = .7 gives Gs/Gp = 0.722. Hence, the formulation
"about 70%" should be interpreted more accurately as 72.2%.

Figure 7.2 shows the fit of the modified Hardin-Drnevich relationship (Eqg. 7.3) to
normalized test data.
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Figure 7.2 Results from the Hardin-Drnevich relationship compared to test data by Santos & Correia
(2001)

7.2 APPLYING THE HARDIN-DRNEVICH RELATIONSHIP IN THE HS MODEL

The decay of soil stiffness from small strains to larger strains can be associated with loss
of intermolecular and surface forces within the soil skeleton. Once the direction of loading
is reversed, the stiffness regains a maximum recoverable value which is in the order of
the initial soil stiffness. Then, while loading in the reversed direction is continued, the
stiffness decreases again. A strain history dependent, multi-axial extension of the
Hardin-Drnevich relationship is therefore needed in order to apply it in the Hardening Soil
model. Such an extension has been proposed by Benz (2006) in the form of the
small-strain overlay model. Benz derives a scalar valued shear strain ~ys; by the
following projection:

HAé||
o = \/§}L 7.4
Yhist ael (7.4)

where Ag is the actual deviatoric strain increment and H is a symmetric tensor that
represents the deviatoric strain history of the material. Whenever a strain reversal is
detected the tensor H is partially or fully reset before the actual strain increment Ae is
added. As the criterion for strain reversals serves a criterion similar as in Simpson's brick
model (1992): All three principal deviatoric strain directions are checked for strain
reversals separately which resembles three independent brick models. When there is no
principal strain rotation, the criterion reduces to two independent brick-models. For
further details on the strain tensor H and its transformation at changes in the load path it
is referred to Benz (2006). B

The scalar valued shear strain v = ypis; calculated in Eq. (7.4) is applied subsequently
used in Eq. (7.3). Note that in both, Egs. (7.3) and (7.4), the scalar valued shear strain is
defined as:

3
v = §5q (7.5)

where ¢4 is the second deviatoric strain invariant. In triaxial conditions ~ can therefore be
expressed as:

Y = Eaxial — Elateral (7.6)
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Within the HS small model, the stress-strain relationship can be simply formulated from
the secant shear modulus (Eq. 7.3) as:

Gov

1+0.385—
Y0.7

7= Gy = (7.7)
Taking the derivative with respect to the shear strain gives the tangent shear modulus:
Go

(1 + o.3857) 2
Y0.7

G =

(7.8)

This stiffness reduction curve reaches far into the plastic material domain. In the
Hardening Soil model and HS small model, stiffness degradation due to plastic straining
is simulated with strain hardening. In the HS small model, the small-strain stiffness
reduction curve is therefore bound by a certain lower limit, determined by conventional
laboratory tests:

. The lower cut-off of the tangent shear modulus G; is introduced at the unloading
reloading stiffness G, which is defined by the material parameters E,, and v;:

Gt Z Gur Whel’e Gur = i and G[ = i (79)
2(1 + vur) 2(1 + vyr)

. The cut-off shear strain vt o5 can be calculated as:

1 Go
o= [ 22— 7.10
Yeut—off 0385 ( Gor )70.7 (7.10)

Within the HS small model, the quasi-elastic tangent shear modulus is calculated by
integrating the secant stiffness modulus reduction curve over the actual shear strain
increment. An example of a stiffness reduction curve used in the HS small model is
shown in Figure 7.3.
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Figure 7.3 Secant and tangent shear modulus reduction curve
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Moreover, the tangent shear modulus G; and corresponding Young's modulus E;
(considering a constant Poisson's ratio v,,), is stress-dependent, and follows the same
power law as formulated in Equation (6.5). For primary loading situations, the model uses
the same hardening plasticity formulations as the Hardening Soil model, where E,; is
replaced by E; as described above.

7.3 VIRGIN (INITIAL) LOADING VS. UNLOADING/RELOADING

Masing (1926) described the hysteretic behaviour of materials in unloading / reloading
cycles in the form of the following rules:

. The shear modulus in unloading is equal to the initial tangent modulus for the initial
loading curve.

. The shape of the unloading and reloading curves is equal to the initial loading curve,
but twice its size. In terms of the above introduced threshold shear strain 7 7,
Masing's rule can be fulfilled by the following setting in the Hardin-Drnevich relation:

70.7re—loading = 2 70.7virgin—loading (7-1 1)

The HS small model adopts Masing's rule. However, instead of doubling the threshold
shear strain, hardening plasticity accounts for more rapidly decaying small-strain stiffness
during virgin loading. Figure 7.4 and Figure 7.5 illustrate Masing's rule and the secant
stiffness reduction in virgin loading and unloading / reloading.

q [kN/m]
A

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

00
Figure 7.4 Hysteretic material behaviour
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Figure 7.5 Stiffness reduction in initial- or primary loading and in unloading / reloading

7.4 MODEL PARAMETERS

Compared to the standard Hardening Soil model, the Hardening Soil model with
small-strain stiffness requires two additional stiffness parameters as input: G{)e’ and 0.7
All other parameters, including the alternative stiffness parameters, remain the same as
in the standard Hardening Soil model. Gif" defines the shear modulus at very small
strains e.g. ¢ < 10~° at a reference minor principal stress of —o'3 = p'®'.

Poisson's ratio v, is assumed a constant, as everywhere in PLAXIS, so that the shear
modulus Ggef can also be calculated from the very small strain Young's modulus as

G = El"/(2(1 + vur)). The threshold shear strain o7 is the shear strain at which the
secant shear modulus G is decayed to 0.72266“. The threshold shear strain g7 is to
be supplied for virgin loading. In summary, the input stiffness parameters of the
Hardening Soil model with small-strain stiffness are listed below:

m . Power for stress-level dependency of stiffness [-]
ELef . Secant stiffness in standard drained triaxial test [kN/m?]
Eggfj . Tangent stiffness for primary oedometer loading [kN/m?]
Eref . unloading / reloading stiffness from drained triaxial test  [kN/m?]
Vur . Poisson's ratio for unloading-reloading [-]
G(’)ef . reference shear modulus at very small strains [kN/m?]
(e < 1079)
Y0.7 . threshold shear strain at which G5 = 0.722Gy [-]

Figure 7.6 illustrates the model's stiffness parameters in a drained triaxial test: Esg, E,r,
and Eg = 2Gy (1 + vy). For the order of strains at which E,, and Gy are defined and
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THE HARDENING SOIL MODEL WITH SMALL-STRAIN STIFFNESS (HSSMALL)

determined, one may refer to e.g. Figure 7.1 and Figure 7.3.

Eo

€1
Figure 7.6 Stiffness parameters Esg, Eyr, and Eg = 2Go(1 + vyr) of the Hardening Soil model with
small-strain stiffness in a triaxial test

Figure 7.7 illustrates the model's stiffness parameters in a stress-controlled drained cyclic
shear test.

Ty [KN/M?]

00002/ 00004 00006 00008
Yy [

-0.0008

Figure 7.7 Stiffness parameters in cyclic shear test

A first estimation of the HSsmall parameters for quartz sand based on the relative density
(RD) is given in Brinkgreve, Engin & Engin (2010).
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7.5 ON THE PARAMETERS Gy AND 7

A number of factors influence the small-strain parameters Gy and ~p.7. Most importantly
they are influenced by the material's actual state of stress and void ratio e. In the
HSsmall model, the stress dependency of the shear modulus Gy is taken into account
with the power law:

O \ccosyp+p™ sing

which resembles the ones used for the other stiffness parameters. The threshold shear
strain 7.7 is taken independently of the mean stress.

Assuming that within a HSsmall (or HS) computation void ratio changes are rather small,
the material parameters are not updated for changes in the void ratio. Knowledge of a
material's initial void ratio can nevertheless be very helpful in deriving its small-strain
shear stiffness Gy. Many correlations are offered in the literature (Benz, 2006). A good
estimation for many soils is for example the relation given by Hardin & Black (1969):

G =33 297~ &)’

[MPa] for p™® =100 [kPa] (7.13)
Alpan (1970) empirically related dynamic soil stiffness to static soil stiffness (Figure 7.8).
The dynamic soil stiffness in Alpan's chart is equivalent to the small-strain stiffness Gy or
Ey. Considering that the static stiffness Eg4sic defined by Alpan equals approximately the
unloading / reloading stiffness E, in the HS small model, Alpan's chart can be used to
guess a soil's small-strain stiffness entirely based on its unloading / reloading stiffness
E,r. Although Alpan suggests that the ratio Ey/E,, can exceed 10 for very soft clays, the
maximum ratio Eq/E,r or Go/Gyr permitted in the HSsmall model is limited to 10.

100 ;
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T
~ Granular -
1 l
10 102 103 10*
Static moduls of elasticity (Es) [kg/cm?]
Figure 7.8 Relation between dynamic (Ey = £Ep) and static soil stiffness (Es ~ E, ) after
Alpan(1970)

In the absence of test data, correlations are also available for the threshold shear strain
~o.7. Figure 7.9 for example gives a correlation between the threshold shear strain and
the Plasticity Index. Using the original Hardin-Drnevich relationship, the threshold shear
strain .7 might be also related to the model's failure parameters. Applying the
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Figure 7.9 Influence of plasticity index (PI) on stiffness reduction after Vucetic & Dobry (1991)

Mohr-Coulomb failure criterion in Egs. (7.2) and (7.3) yields:
1 .
V0.7 & ﬁ[20'(1 +¢0s(2¢") — a'1(1 + Kp) sin(2¢")] (7.14)
0

where Kj is the earth pressure coefficient at rest and o'y is the effective vertical stress
(pressure negative).

7.6 MODEL INITIALIZATION

Stress relaxation erases a soil's memory of previous applied stress. Soil aging in the form
of particle (or assembly) reorganization during stress relaxation and formation of bonds
between them can erase a soil's strain history. Considering that the second process in a
naturally deposited soil develops relatively fast, the strain history should start from zero
(H = 0) in most boundary value problems. This is the default setting in the HS small
model.

However, sometimes an initial strain history may be desired. In this case the strain history
can be adjusted by applying an extra load step before starting the actual analysis. Such
an additional load step might also be used to model overconsolidated soils. Usually the
over-consolidation's cause has vanished long before the start of calculation, so that the
strain history should be reset afterwards. Unfortunately, strain history is already triggered
by adding and removing a surcharge. In this case the strain history can be reset
manually, by using the Reset small strain option in the calculation phases window. Also,
when resetting displacements to zero, the strain history tensor is reset and the influence
of strains from previous calculation phases is ignored.

When using the HS small model, caution should be given to nil-steps. The strain
increments in nil-steps are purely derived from the small numerical unbalance in the
system which is due to the accepted tolerated error in the computation. The strain
increment direction in nil-steps is therefore arbitrary. Hence, a nil-step may function as
randomly reverse load step which is in most cases not desired.
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7.7 STATE PARAMETERS IN THE HS SMALL MODEL

In addition to the output of standard stress and strain quantities, the HS small model
provides output on State variables. These parameters can be visualised by selecting the
State parameters option from the stresses menu. An overview of available state
parameters in addition to those listed for the Hardening Soil model is given below:

Exx — Ev : Strain history parameter used in strain-dependent [-]
stiffness formulation

Eyy — €v . Strain history parameter used in strain-dependent [-]
stiffness formulation

€22 — Ey . Strain history parameter used in strain-dependent [-]
stiffness formulation

Exy : Strain history parameter used in strain-dependent [-]
stiffness formulation

Eyz . Strain history parameter used in strain-dependent [-]
stiffness formulation

Ezx : Strain history parameter used in strain-dependent [-]
stiffness formulation

GE' . Reference secant shear modulus at reference stress []
level

G/Gyr . Ratio of elastic tangent shear modulus over []

unloading-reloading shear modulus

7.8 ON THE USE OF THE HS SMALL MODEL IN DYNAMIC CALCULATIONS

In contrast to the Hardening Soil model, the HS small model shows hysteresis in cyclic
loading (Figure 7.6). The amount of hysteresis depends on the magnitude of the
corresponding strain amplitude. However, note that the model does not generate
accumulated strains with multiple loading cycles, nor does it generate pore pressures
with undrained behaviour. When the HS small model is used wave velocities are not
shown because they vary due to the stress-dependent stiffness.

When applied in dynamic calculations, the hysteretic behaviour of the HS small model
leads to damping. The amount of hysteretic damping depends on the applied load
amplitude and corresponding strain amplitudes. The maximum amount of hysteretic
damping obtained with the HS small model depend on the ratio of Gy and

Gur = Eur/2(1 + vyr). Alarger ratio leads to a larger maximum amount of hysteretic
damping. For more information about the hysteretic damping in the HS small model
reference is made to Brinkgreve, Kappert & Bonnier (2007).
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7.9 OTHER DIFFERENCES WITH THE HARDENING SOIL MODEL

The mobilised dilatancy angle

The shear hardening flow rule of both the Hardening Soil model and the Hardening Soil
model with small-strain stiffness have the linear form:

0 = sinpyAP (7.15)

The mobilised dilatancy angle ¥, in compression however, is defined differently. The HS
model assumes the following:

For sinypm < 3/4sinp Ym=0

i ; . sin g, — sin
For sinp, > 3/4sinpandy >0  sinyy, = max( Nym — SN ey 0)

1 —singmsinge,’
(7.16)

For sinp,m > 3/4sinpand ¢y <0 ¢y =1
Ing=O 'll)m=0

where ¢, is the critical state friction angle, being a material constant independent of
density, and ¢, is the mobilised friction angle:
Sin o = 1798 (7.17)
o'y+0's—2ccoty

Um

-2

Figure 7.10 Plot of mobilized dilatancy angle 1»m and mobilized friction angle ¢m for HS small model

For small mobilised friction angles and for negative values of 1, as computed by Rowe's
formula, ¢m in the Hardening Soil model is taken zero. Bounding the lower value of ¢,
may sometimes yield too little plastic volumetric strains though. Therefore, the Hardening
Soil model with small-strain stiffness adapts an approach by Li & Dafalias (2000)
whenever ¥, as computed by Rowe's formula, is negative. In that case, the mobilised
dilatancy in the Hardening Soil model with small-strain stiffness is calculated by the
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following equation:

siny, = (7.18)

1 (2.
— | -M exp 15 M Qa
10

_"i)

5(1 +2Kp)
Eq. (7.18) is a simplified version of the void ratio dependent formulation by Li & Dafalias
(2000).

The mobilised dilatancy as a function of ¢, for the HS small model is visualised in Figure
7.10.

where M is the stress ratio at failure and n = max(

+
=
TR ~———
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8 THE SOFT SOIL MODEL

As soft soils we consider near-normally consolidated clays, clayey silts and peat. A
special feature of such materials is their high degree of compressibility. This is best
demonstrated by oedometer test data as reported for instance by Janbu in his Rankine
lecture (1985). Considering tangent stiffness moduli at a reference oedometer pressure
of 100 kPa, he reports for normally consolidated clays Ey ey = 1 to 4 MPa, depending on
the particular type of clay considered. The differences between these values and
stiffnesses for NC-sands are considerable as here we have values in the range of 10 to
50 MPa, at least for non-cemented laboratory samples. Hence, in oedometer testing
normally consolidated clays behave ten times softer than normally consolidated sands.
This illustrates the extreme compressibility of soft soils.

A feature of soft soils is the linear stress-dependency of soil stiffness. According to the
Hardening Soil model we have:

_0"1

Eoed = Engd( pref )m

at least for ¢ = 0 and '3 = Kj°0¢" and a linear relationship is obtained for m = 1. Indeed,
on using an exponent equal to unity, the above stiffness law reduces to:

Eoeq = %‘*1 where \* =

For this special case of m = 1, the Hardening Soil model yields £ = A\*¢'1 /o'1, which can
be integrated to obtain the well-known logarithmic compression law ¢ = —\* In(—o'4) for
primary oedometer loading.

For many practical soft-soil studies, the modified compression index A* will be known and
the PLAXIS user can compute the oedometer modulus from the relationship:

ref
Eref _ P
oed — 2\

From the above considerations it would seem that the Hardening Soil model is quite
suitable for soft soils. Indeed, most soft soil problems can be analysed using this model,
but the Hardening Soil model is not suitable when considering very soft soils with a high
compressibility, i.e Eg‘;fj/Eggf < 0.5. For such soils, the Soft Soil model may be used.
Some features of the Soft Soil model are:

. Stress dependent stiffness (logarithmic compression behaviour).

. Distinction between primary loading and unloading-reloading.

. Memory for pre-consolidation stress.

. Failure behaviour according to the Mohr-Coulomb criterion.
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8.1 ISOTROPIC STATES OF STRESS AND STRAIN (¢'y =0'2 = 0'3)

In the Soft Soil model, it is assumed that there is a logarithmic relation between changes
in volumetric strain, ¢,, and changes in mean effective stress, p', which can be
formulated as:

ey —ed=—X*In (p()-FCCOt(p) (virgin compression) (8.1)
p- +ccoty

In order to maintain the validity of Eq. (11.1) a minimum value of p' is set equal to a unit

stress. The parameter \* is the modified compression index, which determines the

compressibility of the material in primary loading. Note that A* differs from the index \ as

used by Burland (1965). The difference is that Eq. (11.1) is a function of volumetric strain

instead of void ratio. Plotting Eq. (11.1) gives a straight line as shown in Figure 11.3.

During isotropic unloading and reloading a different path (line) is followed, which can be
formulated as:

e — % = _k*In (W) (unloading and reloading) (8.2)
p- +ccoty
Again, a minimum value of p' is set equal to a unit stress. The parameter x* is the
modified swelling index, which determines the compressibility of the material in unloading
and subsequent reloading. Note that x* differs from the index « as used by Burland. The
ratio A*/k* is, however, equal to Burland's ratio A/x. The soil response during unloading
and reloading is assumed to be elastic as denoted by the superscript e in Eq. (11.2). The
elastic behaviour is described by Hooke's law. Eq. (11.2) implies linear stress
dependency on the tangent bulk modulus such that:

ur —

E, _p'+ccoty
3(1 — 2vy) K"

(8.3)

in which the subscript ur denotes unloading / reloading. Note that effective parameters
are considered rather than undrained soil properties, as might be suggested by the
subscripts ur. Neither the elastic bulk modulus, K, nor the elastic Young's modulus,
E,r, is used as an input parameter. Instead, v, and «* are used as input constants for
the part of the model that computes the elastic strains.

An infinite number of unloading / reloading lines may exist in Figure 8.1, each
corresponding to a particular value of the isotropic pre-consolidation stress pp. The
pre-consolidation stress represents the largest stress level experienced by the soil.
During unloading and reloading, this pre-consolidation stress remains constant. In
primary loading, however, the pre-consolidation stress increases with the stress level,
causing irreversible (plastic) volumetric strains.
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Figure 8.1 Logarithmic relation between volumetric strain and mean stress

8.2 YIELD FUNCTION

The yield function of the Soft Soil model is defined as:
f=Ff—pp (8.4)
where f is a function of the stress state (p', g) and Pp, the pre-consolidation stress, is a
function of plastic strain such that:
~2
[ S

M?(p' + ccot p) (6.5)

_ 0ex ( <V ) (8.6)
Po=Ppexp( - :

and q is a similar deviatoric stress quantity as defined for the cap yield surface in the
Hardening Soil model: q = o'y +(a — 1)o'2 — ao's where a = (3 + sing) /(3 — sin ).

The yield function (f = 0) describes an ellipse in the p' - g-plane, as illustrated in Figure
8.2. The parameter M in Eq. (8.5) determines the height of the ellipse. The height of the
ellipse is responsible for the ratio of horizontal to vertical stresses in primary
one-dimensional compression.

As a result, the parameter M determines largely the coefficient of lateral earth pressure
Kg°. In view of this, the value of M can be chosen such that a known value of Kj° is
matched in primary one-dimensional compression. Such an interpretation and use of M
differs from the original critical state line idea, but it ensures a proper matching of K.

The tops of all ellipses are located on a line with slope M in the p'- g-plane. In (Burland,
1965) and (Burland, 1967) the M-line is referred to as the critical state line and
represents stress states at post peak failure. The parameter M is then based on the
critical state friction angle. In the Soft Soil model, however, failure is not necessarily
related to critical state. The Mohr-Coulomb failure criterion is a function of the strength
parameters ¢ and ¢, which might not correspond to the M-line. The isotropic
pre-consolidation stress p, determines the extent of the ellipse along p' axis. During
loading, an infinite number of ellipses may exist (see Figure 8.2) each corresponding to a
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c cot © pp

Figure 8.2 Yield surface of the Soft Soil model in p'- g-plane

particular value of pp. In tension (p' < 0), the ellipse extends to ccot ¢ (Eqg. (8.5) and
Figure 8.2). In order to make sure that the right hand side of the ellipse (i.e. the 'cap’) will
remain in the 'compression’ zone (p' > 0) a minimum value of ¢ cot ¢ is adopted for pp.
For ¢ = 0, a minimum value of p, equal to a stress unit is adopted. Hence, there is a
'threshold' ellipse as illustrated in Figure 8.2.

The value of p, is determined by volumetric plastic strain following the hardening relation,
Eq. (8.6). This equation reflects the principle that the pre-consolidation stress increases
exponentially with decreasing volumetric plastic strain (compaction). pg can be regarded
as the initial value of the pre-consolidation stress. The determination of pg is treated in
Section 2.8. According to Eqg. (8.6) the initial volumetric plastic strain is assumed to be
zero.

In the Soft Soil model, the yield function, Eq. (8.4), describes the irreversible volumetric
strain in primary compression, and forms the cap of the yield contour. To model the
failure state, a perfectly-plastic Mohr-Coulomb type yield function is used. This yield
function represents a straight line in p'- g-plane as shown in Figure 8.2. The slope of the
failure line is smaller than the slope of the M-line.

The total yield contour, as shown by the bold lines in Figure 8.2, is the boundary of the
elastic stress area. The failure line is fixed, but the cap may increase in primary
compression. Stress paths within this boundary give only elastic strain increments,
whereas stress paths that tend to cross the boundary generally give both elastic and
plastic strain increments.

For general states of stress (p‘, 5) the plastic behaviour of the Soft Soil model is defined
by the combination of the cap yield function and the Mohr-Coloumb yield functions. The
total yield contour in principal stress space is indicated in Figure 8.3.
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Figure 8.3 Representation of total yield contour of the Soft Soil model in principal stress space

8.3 PARAMETERS OF THE SOFT SOIL MODEL

The parameters of the Soft Soil model include compression and swelling indicies, which
are typical for soft soils, as well as the Mohr-Coulomb model failure parameters. In total,
the Soft Soil model requires the following parameters to be determined:

Basic parameters:

A* . Modified compression index [-]
K* : Modified swelling index [-]
c Effective cohesion [kN/m?]
© . Friction angle [°]
¥ Dilatancy angle [°]
ot . Tensile strength [kN/m?]

Advanced parameters (use default settings):

Vur . Poisson’s ratio for unloading / reloading [-]
Kge . Coefficient of lateral stress in normal consolidation []
M . Kg°-parameter []

Figure 8.4 shows the PLAXIS window for inputting the values of the model parameters.
M is calculated automatically from the coefficient of the lateral earth pressure, K, by
means of Eqg. (8.8). Note that, physically, in the current model M differs from the same
parameter in the Modified Cam-Clay model where it is related to the material friction.
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Soil - Soft soil - <NoMame=

J & [

General | Parameters |Groundwaher - I Thermal I Interfaces | Initial |

Property Unit Value
Stiffness
A* (lambda®) :
K* (kappa®) 0.1000E-9
Alternatives
Use alternatives O
C. 3.450E-9
C. 0.1725E-9
. 0.5000
Strength
C oot kM /mz2 0,000
@' (phi) e 0.000
w (psi) g 0.000
Advanced

[ Next ] [ OK ] [ Cancel ]

Figure 8.4 Parameters tabsheet for the Soft Soil model

Modified swelling index and modified compression index

These parameters can be obtained from an isotropic compression test including isotropic
unloading. When plotting the logarithm of the mean stress as a function of the volumetric
strain for clay-type materials, the plot can be approximated by two straight lines (see
Figure 8.1). The slope of the primary loading line gives the modified compression index,
and the slope of the unloading (or swelling) line gives the modified swelling index. Note
that there is a difference between the modified indices «* and A\* and the original
Cam-Clay parameters x and \. The latter parameters are defined in terms of the void
ratio e instead of the volumetric strain ¢, .

Apart from the isotropic compression test, the parameters x* and Ax can be obtained
from a one-dimensional compression test. Here a relationship exists with the
internationally recognized parameters for one-dimensional compression and swelling, C,
and Cs. These relationships are summarized in Table 8.1.

Table 8.1a Relationship to Cam-Clay parameters

* A * R
1. A* = 2.
1+e " 1+e

Table 8.1b Relationship to internationally normalized parameters

C 2C
3. A= —C 4. kY —Cls
2.3(1 +¢) 231 +¢€)
Remarks on Table 8.1:
. In relations 1 and 2, the void ratio, e, is assumed to be constant. In fact, e will

change during a compression test, but this will give a relatively small difference in
void ratio. For e one can use the average void ratio that occurs during the test or just
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the initial value.

. In relation 4 there is no exact relation between x* and the one-dimensional swelling
index Cs, because the ratio of horizontal and vertical stresses changes during
one-dimensional unloading. For this approximation it is assumed that the average
stress state during unloading is an isotropic stress state, i.e. the horizontal and
vertical stresses are equal.

. In practice, swelling is often assumed to be equivalent to recompression behaviour,
which, may not be right. Hence x* should be based on Cg rather than the
recompression index Cy.

. The factor 2.3 in relation 3 is obtained from the ratio between the logarithm of base
10 and the natural logarithm.

«  Theratio A*/k* (=)\/k) ranges, in general, between 2.5 and 7.

Cohesion

The cohesion has the dimension of stresses. A small effective cohesion may be used,
including a cohesion of zero. Entering a cohesion will result in an elastic region that is
partly located in the 'tension’ zone, as illustrated in Figure 8.2. The left hand side of the
ellipse crosses the p'-axis at a value of ccot . In order to maintain the right hand side of
the ellipse (i.e. the cap) in the 'pressure’ zone of the stress space, the isotropic
pre-consolidation stress p, has a minimum value of ¢ cot . This means that entering a
cohesion larger than zero may result in a state of 'over-consolidation’, depending on the
magnitude of the cohesion and the initial stress state. As a result, a stiffer behaviour is
obtained during the onset of loading. It is not possible to specify undrained shear strength
by means of high cohesion and a friction angle of zero. Input of model parameters should
always be based on effective values. The PLAXIS option to model undrained behaviour
using effective parameters may be used (Undrained (A). Please note that the resulting
effective stress path may not be accurate, which may lead to an unrealistic undrained
shear strength. Hence, when using Undrained (A) as drainage type, the resulting stress
state must be checked against a known undrained shear strength profile.

Friction angle

The effective angle of internal friction represents the increase of shear strength with
effective stress level. It is specified in degrees. Zero friction angle is not allowed. On the
other hand, care should be taken with the use of high friction angles. It is often
recommended to use ¢, i.e. the critical state friction angle, rather than a higher value
based on small strains. Moreover, using a high friction angle will substantially increase
the computational requirements.

Dilatancy angle

For the type of materials, which can be described by the Soft Soil model, the dilatancy
can generally be neglected. A dilatancy angle of zero degrees is considered in the
standard settings of the Soft Soil model.
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Poisson's ratio

In the Soft Soil model, the Poisson's ratio v is the well known pure elastic constant rather
than the pseudo-elasticity constant as used in the linear elastic perfectly-plastic model.
Its value will usually be in the range between 0.1 and 0.2. If the standard setting for the
Soft Soil model parameters is selected, then v, = 0.15 is automatically used. For loading
of normally consolidated materials, Poisson's ratio plays a minor role, but it becomes
important in unloading problems. For example, for unloading in a one-dimensional
compression test (oedometer), the relatively small Poisson's ratio will result in a small
decrease of the lateral stress compared with the decrease in vertical stress. As a result,
the ratio of horizontal and vertical stress increases, which is a well-known phenomenon in
overconsolidated materials. Hence, Poisson's ratio should not be based on the normally
consolidated K'°-value, but on the ratio of the horizontal stress increment to the vertical
stress increment in oedometer unloading and reloading test such that:

A
Yo _ D% (unloading and reloading) 8.7)

1—vy Aoy

Kg°-parameter

The parameter M is automatically determined based on the coefficient of lateral earth
pressure in normally consolidated condition, Kj°, as entered by the user. The exact
relation between M and K gives (Brinkgreve, 1994):

M=3 (1 —I((g’c)2 . (1 —K(?C)“ _2Vur)()\*//€*—1)
(1+2K§9)2  (1+2K5°)(1 — 2uu) X" /6" — (1 = K§°)(1 + vur)

(8.8)

The value of M is indicated in the input window. As can be seen from Eq. (8.8), M is also
influenced by the Poisson's ratio v, and by the ratio A*/x*. However, the influence of
K{ is dominant. Eq. (8.8) can be approximated by:

M ~ 3.0 — 2.8KJ° (8.9)

8.4 STATE PARAMETERS IN THE SOFT SOIL MODEL

In addition to the output of standard stress and strain, the Soft Soil model provides output
(when being used) on state variables such as the hardening parameter v and the
isotropic pre-consolidation stress pp. These parameters can be visualised by selecting
the State parameters option from the stresses menu. An overview of available state
parameters is given below:

pc9 . Equivalent isotropic stress [kN/m?]
~2
q \
p = Ve +(p)?
Py . Isotropic preconsolidation stress [kN/m?]
OCR : Isotropic over-consolidation ratio (OCR = P,/p®9) []
~P . Hardening parameter (equivalent mobilised plastic [-]

shear strain)
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THE SOFT SOIL MODEL

E, : Current stress-dependent elastic Young's modulus [-]

c . Current depth-dependent cohesion [-]

8.5 ON THE USE OF THE SOFT SOIL MODEL IN DYNAMIC CALCULATIONS

When using the Soft Soil model in dynamic calculations, the modified swelling index «*
needs to be selected such that the model correctly predicts wave velocities in the soil.
This generally requires a smaller value than just an unloading-reloading index.

When subjected to dynamic or cyclic loading, the Soft Soil model will generate plastic
strains when the preconsolidation stress is increased. However, it should be noted that
stress cycles within the current hardening contour will only generate elastic strains and
no (hysteretic) damping, nor accumulation of strains or pore pressure, nor liquefaction. In
order to account for the soil damping in cyclic loading, Rayleigh damping may be defined.
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9 SOFT SOIL CREEP MODEL (TIME DEPENDENT BEHAVIOUR)

9.1 INTRODUCTION

Both the Hardening Soil model and the Soft Soil model can be used to model the
behaviour of compressible soft soils, but none of these models are suitable when
considering creep, i.e. secondary compression. All soils exhibit some creep, and primary
compression is thus always followed by a certain amount of secondary compression.
Assuming the secondary compression (for instance during a period of 10 or 30 years) to
be a certain percentage of the primary compression, it is clear that creep is important for
problems involving large primary compression. This is for instance the case when
constructing embankments on soft soils. Indeed, large primary settlements of footings
and embankments are usually followed by substantial creep settlements in later years. In
such cases it is desirable to estimate the creep from FEM-computations.

Foundations may also be founded on initially overconsolidated soil layers that yield
relatively small primary settlements. Then, as a consequence of the loading, a state of
normal consolidation may be reached and significant creep may follow. This is a
treacherous situation as considerable secondary compression is not preceded by the
warning sign of large primary compression. Again, computations with a creep model are
desirable.

Buisman (1936) was probably the first to propose a creep law for clay after observing that
soft-soil settlements could not be fully explained by classical consolidation theory. This
work on 1D-secondary compression was continued by other researchers including, for
example, Bjerrum (1967), Garlanger (1972), Mesri & Godlewski (1977) and Leroueil
(1977). More mathematical lines of research on creep were followed by, for example,
Sekiguchi (1977), Adachi & Oka (1982) and Borja & Kavaznjian (1985). This
mathematical 3D-creep modelling was influenced by the more experimental line of
1D-creep modelling, but conflicts exist.

3D-creep should be a straight forward extension of 1D-creep, but this is hampered by the
fact that present 1D-models have not been formulated as differential equations. For the
presentation of the Soft Soil Creep model we will first complete the line of 1D-modelling
by conversion to a differential form. From this 1D differential equation an extension was
made to a 3D-model. This chapter gives a full description of the formulation of the Soft
Soil Creep model. In addition, attention is focused on the model parameters. Finally, a
validation of the 3D model is presented by considering both model predictions and data
from triaxial tests. Here, attention is focused on constant strain rate triaxial tests and
undrained triaxial creep tests. For more applications of the model the reader is referred to
Vermeer, Stolle & Bonnier (1998), Vermeer & Neher (1999) and Brinkgreve (2004).

Some basic characteristics of the Soft Soil Creep model are:

. Stress-dependent stiffness (logarithmic compression behaviour)
. Distinction between primary loading and unloading-reloading

. Secondary (time-dependent) compression

. Ageing of pre-consolidation stress

. Failure behaviour according to the Mohr-Coulomb criterion
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9.2 BASICS OF ONE-DIMENSIONAL CREEP

When reviewing previous literature on secondary compression in oedometer tests, one is
struck by the fact that it concentrates on behaviour related to step loading, even though
natural loading processes tend to be continuous or transient in nature. Buisman (1936)
was probably the first to consider such a classical creep test. He proposed the following
equation to describe creep behaviour under constant effective stress:

e=¢c— Cglog (;) for.  t>t; (9.1)

C

where ¢ is the strain up to the end of consolidation, t the time measured from the
beginning of loading, . the time to the end of primary consolidation and Cg is a material
constant.

Please note that we do not follow the soil mechanics convention that compression is
considered positive. Instead, compressive stresses and strains are taken to be negative.
For further consideration, it is convenient to rewrite this equation as:

to+ 1t

C

e=¢c;— Cg Iog( ) forr >0 (9.2)

with ' = t — t; being the effective creep time.

Based on the work by Bjerrum on creep, as published for instance in 1967, Garlanger
(1972) proposed a creep equation of the form:

Tc+t

e=¢e.— C, Iog< ) with: C, = Cg(1+¢ey) for: t'>0 (9.3)

Tc
Differences between Garlanger's and Buisman's forms are modest. The engineering
strain ¢ is replaced by void ratio e and the consolidation time . is replaced by the
parameter 7.. Egs. (9.2) and (9.3) are identical when choosing 7. = f.. For the case that
T¢ # I, differences between both formulations will vanish when the effective creep time f'
increases.

For practical consulting, oedometer tests are usually interpreted by assuming t, = 24h.
Indeed, the standard oedometer test is a Multiple Stage Loading Test with loading periods
of precisely one day. Due to the special assumption that this loading period coincides to
the consolidation time {;, it follows that such tests have no effective creep time.

Hence one obtains t' = 0 and the log-term drops out of Eq. (9.3). It would thus seem that
there is no creep in this standard oedometer test, but this suggestion is false. Even highly
impermeable oedometer samples need less than one hour for primary consolidation.
Then all excess pore pressures are zero and one observes pure creep for the other 23
hours of the day. Therefore we will not make any assumptions about the precise values of
7c and f..

Another slightly different possibility to describe secondary compression is the form
adopted by Butterfield (1979):

#
5H=5g—cln (TC+ ) (9.4)

Tc
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where ¢ is the logarithmic strain defined as:

M =1n <V>=In(1+e> (9.5)
Vo 1+eo

with the subscript '0' denoting the initial values. The superscript 'H" is used to denote
logarithmic strain, as the logarithmic strain measure was originally used by Hencky. For
small strains it is possible to show that:

C., _ Cs
(1+6)-In10  In 10

(9.6)

because then logarithmic strain is approximately equal to the engineering strain. Both
Butterfield (1979) and den Haan (1994) showed that for cases involving large strain, the
logarithmic small strain supersedes the traditional engineering strain.

9.3 ON THE VARIABLES 7¢ AND ¢¢

In this section attention will first be focused on the variable .. Here a procedure is to be
described for an experimental determination of this variable. In order to do so we depart
from Eq. (9.4). By differentiating this equation with respect to time and dropping the
superscript 'H' to simplify the notation, one finds:

. c , 1 tr
= or inversely: L Tet (9.7)
Te + t € C

which allows one to make use of the construction developed by Janbu (1969) for
evaluating the parameters ¢ and 7, from experimental data. Both the traditional way,
being indicated in Figure 9.1a, as well as the Janbu method of Figure 9.1b can be used to
determine the parameter ¢ from an oedometer test with constant load.

te Int A1e
o b % e
1
iC
et 7
-~ t
Tc t
a. Creep strain b. Inverse creep strain rate

Figure 9.1 Standard oedometer test

The use of the Janbu method is attractive, because both 7, and c follow directly when
fitting a straight line through the data. In Janbu's representation of Figure 9.1b, 7. is the
intercept with the (non-logarithmic) time axis of the straight creep line. The deviation from
a linear relation for f < t; is due to consolidation.
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Considering the classical literature it is possible to describe the end-of-consolidation
strain e, by an equation of the form:

ec=ce+ei=—aln <U) —(b—a)ln (J”c> (9.8)
[oa) Opo
Note that ¢ is a logarithmic strain, rather than a classical small strain although we
conveniently omit the subscript 'H'. In the above equation o'y represents the initial
effective pressure before loading and ¢' is the final effective loading pressure. The values
opo and opc represent the pre-consolidation pressure corresponding to before-loading
and end-of-consolidation states respectively. In most literature on oedometer testing, one
adopts the void ratio e instead of ¢, and log instead of In, the swelling (recompression)
index Cs instead of a, and the compression index C; instead of b. The above constants a
and b relate to Cs and C; as:

__ G pe_ Co 9.9)
(1+e)-In10 (1+6)-In10
Combining Egs. (9.4) and (9.8) it follows that:
s=59+5°=aln(0>(ba)ln<apc)cln<T0+t> (9.10)
a'o Opo Tc

where ¢ is the total logarithmic strain due to an increase in effective stress from o' to o'
and a time period of f; + t'. In Figure 9.2 the terms of Eq. (9.10) are depictedinanc -Ino
diagram.

-&

Figure 9.2 Idealised stress-strain curve from oedometer test with division of strain increments into
an elastic and a creep component. For t'+t. = 1 day, one arrives precisely on the NC-line

Up to this point, the more general problem of creep under transient loading conditions
has not yet been addressed, as it should be recalled that restrictions have been made to
creep under constant load. For generalising the model, a differential form of the creep
model is needed. No doubt, such a general equation may not contain t' and neither 7, as
the consolidation time is not clearly defined for transient loading conditions.

9.4 DIFFERENTIAL LAW FOR 1D-CREEP

The previous equations emphasize the relation between accumulated creep and time, for
a given constant effective stress. For solving transient or continuous loading problems, it
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is necessary to formulate a constitutive law in differential form, as will be described in this
section. In a first step we will derive an equation for 7. Indeed, despite the use of
logarithmic strain and /n instead of /og, equation (Eq. 9.10) is classical without adding
new knowledge. Moreover, the question on the physical meaning of 7. is still open. In
fact, we have not been able to find precise information on 7¢ in the literature, apart from
Janbu's method of experimental determination.

In order to find an analytical expression for the quantity 7., we adopt the basic idea that
all inelastic strains are time dependent. Hence total strain is the sum of an elastic part ¢
and a time-dependent creep part €. For non-failure situations as met in oedometer
loading conditions, we do not assume an instantaneous plastic strain component, as
used in traditional elastoplastic modelling. In addition to this basic concept, we adopt
Bjerrum's idea that the pre-consolidation stress depends entirely on the amount of creep
strain being accumulated in the course of time. In addition to (9.10) we therefore
introduce the expression:

5=se+sc=a|n<g'>(ba)ln(gpc> (9.11)

Opo
exp( _€C)
Op = 0p0
P P b—a

Please note that £° is negative, so that o, exceeds opo. The longer a soil sample is left to
creep the larger o, grows. The time-dependency of the pre-consolidation pressure oy, is
now found by combining Egs. (9.10) and (9.11) to obtain:

50—sg=—(b—a)|n(ap>=—c|n<7°+t') 9.12)

Opc Tc

where

This equation can now be used for a better understanding of 7¢, at least when adding
knowledge from standard oedometer loading. In conventional oedometer testing the load
is stepwise increased and each load step is maintained for a constant period of {; + t' = T,
where 7 is precisely one day.

In this way of stepwise loading the so-called normal consolidation line (NC-line) with
op = o' is obtained. On entering op = ¢' and t' = 7 — ¢ into Eq. (9.12) it is found that:

(b—a)|n<"'>=c|n(7°”°) for: OCR = 1 (9.13)

Opc Te

It is now assumed that (7c — f;) << 7. This quantity can thus be disregarded with respect
to 7 and it follows that:

"\ b—a b—a
T <") C  or 1= T((’P > c (9.14)
g

Te Opc !

Hence 7. depends both on the effective stress ¢' and the end-of-consolidation
pre-consolidation stress opc. In order to verify the assumption (7¢ — t;) << 7, it should be
realised that usual oedometer samples consolidate for relatively short periods of less
than one hour. Considering load steps on the normal consolidation line, we have OCR=1
both in the beginning and at the end of the load step. During such a load step o
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increases from opo Up to ope during the short period of (primary) consolidation. Hereafter
op increases further from opc up to o' during a relatively long creep period. Hence, at the
end of the day the sample is again in a state of normal consolidation, but directly after the
short consolidation period the sample is under-consolidated with o, < o'. For the usually
very high ratios of (b — a)/c > 15, we thus find very small 7¢-values from Eq. (9.14).
Hence not only t; but also 7, tends to be small with respect to 7. It thus follows that the
assumption (7c — ;) << 7 is certainly correct.

Having derived the simple expression Eq. (9.14) for 7, it is now possible to formulate the
differential creep equation. To this end Eq. (9.10) is differentiated to obtain:
. e - ol c
L Y L. (9.15)
O.I TC + t'

where 7. + t' can be eliminated by means of Eq. (9.12) to obtain:

» b—a
.. . g Cc (o
5=€e+sc=—a—(pc> c

o' Te Up

with:
= exp| —— 9.16
Op = 0po p(b—a) ( )

Again it is recalled that £€ is a compressive strain, being considered negative in this
manual. Eq. (9.14) can now be introduced to eliminate 7, and o, and to obtain:

x N\ b—a
é=ée+é°=aac<0) c (9.17)

9.5 THREE-DIMENSIONAL-MODEL

On extending the 1D-model to general states of stress and strain, the well-known stress
invariants for isotropic stress p and deviatoric stress q are adopted. These invariants are
used to define a new stress measure named p®?:

52

_— 9.18
M?(p' + ccot o) (.18)

peq — pl +
and q is a similar deviatoric stress quantity as defined in the Hardening Soil model and
Soft Soil model.In Figure 9.3 it is shown that the stress measure p® is constant on

ellipses in p - g-plane. In fact we have the ellipses from the Modified Cam-Clay model as
introduced by Roscoe & Burland (1968).

The soil parameter M represents the slope of the so-called ‘critical state line' as also
indicated in Figure 9.3. We use:

M = M (9.19)
3 —sin gy,

where ., is the critical-void friction angle, also referred to as critical-state friction angle.
The equivalent pressure p®9 is constant along ellipsoids in principal stress space. To
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Figure 9.3 Diagram of p®@-ellipse in a p-g-plane

extend the 1D-theory to a general 3D-theory, attention is now focused on normally
consolidated states of stress and strain as met in oedometer testing. In such situations it
yields o> = '3 = KJ°o'¢, and it follows from Eq. (9.18) that:

1+2K5°  3(1- K5°)?
3 M? (1 + 2K{°)

1+2K3°  3(1- K3°)?
3 M? (1 + 2K{°)

peq =o'

Py’ = op (9.20)

where pgq is a generalised pre-consolidation pressure, being simply proportional to the
one-dimensional one op. For known values of KJ'°, p®? can thus be computed from o'y,
and qu can thus be computed from o,. Omitting the elastic strain in the 1D-equation
(Eq. 9.17), introducing the above expressions for p® and pp? and writing ¢, instead of
it is found that:

C peq u e e _Ec
= c where pp = ppg exp (b —Va> (9.21)

For one-dimensional oedometer conditions, this equation reduces to Eq. (9.17), so that
one has a true extension of the 1D-creep model. It should be noted that the subscript '0'
is once again used in the equations to denote initial conditions and that ¢ = 0 for time
t=0.

Instead of the parameters a, b and ¢ of the 1D-model, we will now change to the material
parameters k*, \* and p*, who fit into the framework of critical-state soil mechanics.
Conversion between constants follows the rules:

K"~ 2a b=X\* pwr=c (9.22)

The expression for k* is an approximation. This is a result of the fact that during
unloading and reloading under oedometer conditions the ratio of normal stress
components changes and therefore the changes of p' and o' deviate.

On using these new parameters, Eq. (9.21) changes to become:
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. w( P A - = : e e —&y
—&y = P K with — pp’ = Pg exp( ) ) (029
b

As yet the 3D-creep model is incomplete, as we have only considered a volumetric creep
strain €&, whilst soft soils also exhibit deviatoric creep strains.

To introduce general creep strains, we adopt the view that creep strain is simply a
time-dependent plastic strain. It is thus logic to assume a flow rule for the rate of creep
strain, as usually done in plasticity theory. For formulating such a flow rule, it is
convenient to adopt the vector notation and considering principal directions:

T T
Q=<0'1 o) 0’3) and §=(E1 o) Es)

where T is used to denote a transpose. Similar to the 1D-model we have both elastic and
creep strains in the 3D-model. Using Hooke's law for the elastic part, and a flow rule for
the creep part, one obtains:

ag°
dd'

E=£%+£°=D7"5+ A (9.24)

where the elasticity matrix and the plastic potential function are defined as:

1 —vy —vyr
Q =—|-vuw 1 —vu and g9°=p*

vy —Vur 1

where E,, relates to the modified swelling index (Eq. (9.27)) Hence we use the equivalent
pressure p®9 as a plastic potential function for deriving the individual creep strain-rate
components. The subscripts 'ur' are introduced to emphasize that both the elasticity
modulus and Poisson's ratio will determine unloading-reloading behaviour. Now it follows
from the above equations that:

eq eq eq eq
éﬁ=é$+ég+é§=/\-(ap +6p +c'9p >=)\~ap =X\« (9.25)
Jdo'y Jdo's Jdo's 6p'
Hence we define oo = 9p®9/0p'. Together with Egs. (9.23) and (9.24) this leads to:
A — kK"
c eq * eq - eq
c-p e 2P0 _prig LI (POt P (9.26)
= o Jdo = a T\ p, Oo'

where:

peq _ peqexp( —53 )
P fold] )\* _ Ii*

or inversely:
eq
-8 =(\* — k*)In (p,;q)
ppo
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9.6 FORMULATION OF ELASTIC 3D-STRAINS

Considering creep strains, it has been shown that the 1D-model can be extended to
obtain the 3D-model, but as yet this has not been done for the elastic strains.

To get a proper 3D-model for the elastic strains as well, the elastic modulus E,, has to
been defined as a stress-dependent tangent stiffness according to:

*

' + ccot
E, =3(1 — 2uy) Ky = —3(1 — 2yu,)<pﬁ‘p) (9.27)

Hence, E,, is not a new input parameter, but simply a variable quantity that relates to the
input parameter x*. On the other hand v, is an additional true material constant.

Hence similar to E,,, the bulk modulus K, is stress dependent according to the rule

Kur = —(p' + ccotp)* /k* where in this context ¢ is again the effective cohesion rather

than the creep parameter. Now it can be derived for the volumetric elastic strain that:
o B P

€= —=—-x*———  orbyintegration: — £ = x* In(

p'+ccot<p>
Kur p'+ccoty

P'o+ccoty
(9.28)

Hence in the 3D-model the elastic strain is controlled by the mean stress p', rather than
by principal stress ¢' as in the 1D-model. However mean stress can be converted into
principal stress. For one-dimensional compression on the normal consolidation line, we
have both 3p' = (1 + 2Kj)o" and 3p's = (1 + 2Kj)c'o and it follows that p'/p'o = o'/ 0.
As a consequence, for ¢ = 0, we derive the simple rule —¢¢ = £* Ino'/c"y, whereas the
1D-model involves —¢€ = alno'/a'y. It would thus seem that x* coincides with a.
Unfortunately this line of thinking cannot be extended toward overconsolidated states of
stress and strain. For such situations, it can be derived that:

P 1+ 1 4

pP1—vy1+2Ky 0

(9.29)

and it follows that:

*E_ 1+vy  K* (i
p'_ 1—vy1+2Ky0'

—€8 =k (9.30)
where Ky depends to a great extent on the degree of over-consolidation. For many
situations, it is reasonable to assume Ky =~ 1 and together with v, =~ 0.2 one obtains
—2¢8 = k*In(0'/c'). Good agreement with the 1D-model is thus found by taking

K* &~ 2a.

9.7 FORMULATION OF FAILURE CONDITION

The creep formulation does not include failure. Therefore, a Mohr-Coulomb type failure
criterion, formulated in a perfect-plasticity framework, is added to the Soft Soil Creep
model, generating plastic strains as soon as the failure condition is met. As soon as the
Mohr-Coulomb failure yield criterion f(g', ¢, ) = 0 is met, instantaneous plastic strain
rates develop according to the flow rule £€° = A\dg/da" with g = g(o",1)). For details see
Chapter 3 on the Mohr-Coulomb model.
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In each stress point, the stresses are calculated according to the creep formulation before
considering the failure criterion. Subsequently, the new stress state is checked against
the failure criterion and corrected, if applicable.

9.8 PARAMETERS OF THE SOFT SOIL CREEP MODEL
In addition to the parameters of theSoft Soil Creep model, the Soft Soil Creep model

involves a creep parameter in the form of the Modified Creep index 1*. In total, the Soft
Soil Creep model requires the following parameters to be determined:

Soil - Soft soil creep - <NoName>
3B
Parameters | Groundwater * | Thermal | Interfaces | Initial |

Property Unit  Value

Stiffness
= lambda®) L.000E-9
«* (kappa™) 0.1000E-8
b= 0.000
Alternatives
Use alternatives D
C. 3.450E-3
C, 0.1723E-9
Cg 0.000
i 0.5000
Strength
Coef ayjm2 0.000
@ (phi) ° 0.000
w (psi) ° 0.000
¥ Advanced

[ omee J[ oc [ cance |

Figure 9.4 Parameters tabsheet for the Soft Soil Creep model

In conclusion, the Soft Soil Creep model requires the following material constants:

Failure parameters as in the Mohr-Coulomb model:

c . Effective cohesion [kN/m?]
® . Friction angle [°]
P . Dilatancy angle [°]

Basic stiffness parameters:

K* . Modified swelling index []
A¥ : Modified compression index [-]
w* . Modified creep index -]

Advanced parameters (it is advised to use the default setting):

Vur : Poisson's ratio for unloading-reloading (default 0.15) [-]
Kg° . 0'xx/0'yy stress ratio in a state of normal consolidation  [-]
M : Kj°-related parameter (see below) [-]
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Instead of defining the stiffness by the basic stiffness parameters, alternative stiffness
parameters can be used. These material constants are given by:

Ce :  Compression index [-]
Cs : Swelling index [-]
C. . Creep index for secondary compression [-]
Cinit :Initial void ratio [-]

Modified swelling index, modified compression index and modified creep
index

These parameters can be obtained from an isotropic compression test including isotropic
unloading. When plotting the logarithm of the mean stress as a function of the volumetric
strain for clay-type materials, the plot can be approximated by two straight lines (see
Figure 8.1). The slope of the primary loading line gives the modified compression index,
and the slope of the unloading (or swelling) line gives the modified swelling index. Note
that there is a difference between the modified indices «* and A\* and the original
Cam-Clay parameters x and A. The latter parameters are defined in terms of the void
ratio e instead of the volumetric strain €,. The parameter p* (Table 9.1b) can be obtained
by measuring the volumetric strain on the long term and plotting it against the logarithm of
time (see Figure 9.1).

In Table 9.1c, the value 2.3 is in fact In10 and stems from the conversion from 'Clog to
natural logarithm. The alternative stiffness parameters can also be calculated from this
table. Since the void ratio e is not a constant, in the conversion from the alternative
parameters to the original model parameters in PLAXIS the void ratio e is defined as the
initial void ratio ej,;. Entering a particular value for one of the alternatives C., Cs or C,
results in a change of \*, k* or u* respectively.

As already indicated in Section 9.6, there is no exact relation between the isotropic
compression index x* and the one-dimensional swelling indices A and Cs, because the
ratio of horizontal and vertical stress changes during one-dimensional unloading. For the
approximation it is assumed that the average stress state during unloading is an isotropic
stress state, i.e. the horizontal and vertical stresses are equal.

For a rough estimate of the model parameters, one might use the correlation

* = Ip(%)/500, the fact that \* /p.* is in the range between 15 to 25 and the general
observation \* /x* is between 2.5 and 7.
Table 9.1a Relationship to Cam-Clay parameters
* _ )\ Ii* K

“1+e “1+e

Table 9.1b Relationship to A,B, C parameters

|A*=b |;<;*z2a |u*=c |
Table 9.1c Relationship to internationally normalized parameters
C 2 C
2\ = c K* o~ L S * (o
2.3(1+e) 231+e M =%301+e

For characterising a particular layer of soft soil, it is also necessary to know the initial
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pre-consolidation pressure op9. This pressure may, for example, be computed from a
given value of the over-consolidation ratio (OCR). Subsequently oo can be used to
compute the initial value of the generalised pre-consolidation pressure p,iq (see Section
2.8).

Poisson’'s ratio

In the case of the Soft Soil Creep model, Poisson's ratio is purely an elasticity constant
rather than a pseudo-elasticity constant as used in the Mohr-Coulomb model. Its value
will usually be in the range between 0.1 and 0.2. If the standard setting for the Soft Soil
Creep model parameters is selected, then the value v, = 0.15 is automatically adopted.
For loading of normally consolidated materials, Poisson's ratio plays a minor role, but it
becomes important in unloading problems. For example, for unloading in a
one-dimensional compression test (oedometer), the relatively small Poisson's ratio will
result in a small decrease of the lateral stress compared with the decrease in vertical
stress. As a result, the ratio of horizontal and vertical stress increases, which is a
well-known phenomenon for overconsolidated materials. Hence, Poisson's ratio should
not be based on the normally consolidated Kj°-value, but on the ratio of difference in
horizontal stress to difference in vertical stress in oedometer unloading and reloading:

Vur Aoy

= (unloading and reloading) (9.31)
1—vy Aoy
K{° - parameter

By default, M is automatically determined based on the coefficient of lateral earth
pressure in normally consolidated condition, Kj°, as entered by the user. The exact
relationship between M and K[ can be formulated as (Brinkgreve, 1994):

V-3 (1—K§°)? . (1= K§°)(1 = 2vur) (A" /K" — 1)
(1+2K§°)2 "~ (1+2K5°) (1 — 2vy) A" /6" — (1 = K§O)(1 + vur)

(9.32)

Hence the user cannot enter directly a particular value of M. Instead he can choose
values for Kj°. Note that the particular selection of M has an influence on lateral
deformation of pseudo-vertical loading problems. For details, see Brinkgreve (2004).

9.9 STATE PARAMETERS IN THE SOFT SOIL CREEP MODELMODEL

In addition to the output of standard stress and strain quantities, the Soft Soil Creep
modelmodel provides output (when being used) on state variables such as the isotropic
pre-consolidation stress p,. These parameters can be viewed by selecting the State
parameters option from the Stresses menu. An overview of available state parameters is

given below:
Peq . Equivalent isotropic stress [-]
Peq = P+ G/ M?(p' + ccote)
Pp . Isotropic pre-consolidation stress []
OCR . Isotropic over-consolidation [-]
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OCR = pp/Peq

9.10 ON THE USE OF THE SOFT SOIL CREEP MODEL IN DYNAMIC
CALCULATIONS

When using the Soft Soil Creep model in dynamic calculations, the modified swelling
index k* needs to be selected such that the model correctly predicts wave velocities in
the soil. This generally requires a smaller value than just an unloading-reloading index.

When subjected to dynamic or cyclic loading, the Soft Soil Creep model will generate
plastic strains when the preconsolidation stress is increased. However, it should be noted
that stress cycles within the current creep contour will only generate elastic strains and no
(hysteretic) damping, nor accumulation of strains or pore pressure, nor liquefaction. In
order to account for the soil damping in cyclic loading, Rayleigh damping may be defined.

9.11 ON THE USE OF THE SOFT SOIL CREEP MODELMODEL IN PRACTICAL
APPLICATIONS

In the Soft Soil Creep model, creep strains are generated as long as there is effective
stress. In oedometer tests and other lab tests, self-weight stresses of the soil sample are
negligible and the effective stress in the sample is dominated by external loading
conditions. However, when it comes to practical applications, the effective stress in the
soil is generally dominated by the initial self- weight stresses. As a consequence, creep
will occur without additional loading.

Following the formulation of the model, the rate at which creep strains occur highly
depends on the over-consolidation ratio as well as the ratio of the (modified) compression
index over the (modified) creep index. Regarding the latter, it should be considered that
natural clays may involve structure (bonding) whilst the Soft Soil Creep model does not
include such effects. This requires the effective stress range in the application to be
taken into account when determining the compression and creep indices from
one-dimensional compression tests. This may also have an effect on the
pre-consolidation stress to be used in the application. Moreover, considering
'normally-consolidated'soft soil deposits in practice, it would seem logical to set the initial
OCR-value equal to 1.0. However, this would lead to unrealistic large creep strain rates
due to the initial stresses, without even considering additional loading.

In order to avoid these unrealistic creep strain rates, it is recommended to set the initial
OCR-value larger than 1.0. A value in the order of 1.2-1.4 will generally work, but in
some cases even higher values might be needed. Please keep in mind that this changes
the pre-consolidation pressure, such that the material becomes lightly over-consolidated
and the pre-consolidation stress may not correspond anymore to what is observed in
compression tests.

The above may be validated from a practical viewpoint by considering that the layer has
aged since its deposition in geological history. Moreover, in particular the top few metres
of an existing soft soil layer have been subjected to various possible external influences
(traffic, weather, temperature changes, changes in saturation, etc.). Accurate
measurements of the pre-consolidation pressure on soil samples that are assumed to be
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'normally-consolidated'would typically show a pre-consolidation pressure that is
noticeably larger than the initial effective stress. However, lab tests are often performed
on soil samples that have been disturbed to a certain extent, and therefore the
measurement of the pre-consolidation stress in practice is often inaccurate.

In conclusion, the determination of model parameters for the Soft Soil Creep model
requires a cautious interpretation of test data, in view of the envisioned practical
application. It is recommended, before commencing any 2D or 3D analysis, to perform a
careful calibration of model parameters. This can be done by performing simulations
using the PLAXIS Soil Test facility in combination with an analysis of a one-dimensional
soil column (based on the in-situ soil layering), in which a realistic time interval is
considered.
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10 MODIFIED CAM-CLAY MODEL

The Modified Cam-Clay model is described in several textbooks on critical state soil
mechanics (for example Muir Wood (1990)). In this chapter a short overview is given of
the basic equations.

10.1 FORMULATION OF THE MODIFIED CAM-CLAY MODEL

In the Modified Cam-Clay model, a logarithmic relation is assumed between void ratio e
and the mean effective stress p' in virgin isotropic compression, which can be formulated
as:

e—e’=-\In <50) (virgin isotropic compression) (10.1)

The parameter )\ is the Cam-Clay isotropic compression index, which determines the
compressibility of the material in primary loading. When plotting relation (Eq. 10.1) in a
e-In p' diagram one obtains a straight line. During unloading and reloading, a different
line is followed, which can be formulated as:

e—eo=—mln<'o0
p

) (isotropic unloading and reloading) (10.2)
The parameter « is the Cam-Clay isotropic swelling index, which determines the
compressibility of material in unloading and reloading. In fact, an infinite number of
unloading and reloading lines exists in p'- e-plane each corresponding to a particular
value of the preconsolidation stress pp.

The yield function of the Modified Cam-Clay model is defined as:

2
Fo 9

The yield surface (f = 0) represents an ellipse in p'- g-plane as indicated in Figure 10.1.
The yield surface is the boundary of the elastic stress states. Stress paths within this

boundary only give elastic strain increments, whereas stress paths that tend to cross the
boundary generally give both elastic and plastic strain increments.

+pP' (P — Pp) (10.3)

In p'- g-plane, the top of the ellipse intersects a line that we can be written as:
q=Mp (10.4)

This line is called the critical state line (CSL) and gives the relation between p'and g in a
state of failure (i.e. the critical state). The constant M is the tangent of the critical state
line and determines the extent to which the ultimate deviatoric stress, q, depends on the
mean effective stress, p'. Hence, M can be regarded as a friction constant. Moreover, M
determines the shape of the yield surface (height of the ellipse) and influences the
coefficient of lateral earth pressure KJ° in a normally consolidated stress state under
conditions of one-dimensional compression.

The preconsolidation stress, pp, determines the size of the ellipse. In fact, an infinite
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Critical State Line
q A ,

e

'dry side’ ,’/ 'wet side’

> p'

Figure 10.1 Yield surface of the Modified Cam-Clay model in p'- g-plane

number of ellipses exist, each corresponding to a particular value of pp.

The left hand side of the yield ellipse (often described as the 'dry side' of the critical state
line) may be thought of as a failure surface. In this region plastic yielding is associated
with softening, and therefore failure. The values of g can become unrealistically large in
this region.

For more detailed information on Cam-Clay type models, the reader is referred to Muir
Wood (1990).

Hint: Note that the Modified Cam-Clay modelmodel as implemented in PLAXIS

gives a Druger-Prager failure state instead of a Mohr-Coulomb modeltype of
failure.

10.2 PARAMETERS OF THE MODIFIED CAM-CLAY MODEL

The Modified Cam-Clay model is based on five parameters:

Vyr: Poisson's ratio

K Cam-Clay swelling index

A Cam-Clay compression index
M: Tangent of the critical state line
Einit: Initial void ratio

Poisson's ratio

Poisson's ratio v, is a real elastic parameter and not a pseudo-elasticity constant as used
in the Mohr-Coulomb model. Its value will usually be in the range between 0.1 and 0.2.
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Soil - Modified Cam-Clay - <NoMame>
B s

| General | Parameters | Groundwater * | Thermal | interfaces * [ itial |

Property Unit value
Stiffness
A (lambda) 1.500E-9
i (kappa) 0.1500E-9
Vi 0.1500
Cinit 0.5000
Strength
M 0.000
Ko™ 1.000

Advanced

Coe J o [ o)

Figure 10.2 Parameters for the Modified Cam-Clay model

Compression index and swelling index

These parameters can be obtained from an isotropic compression test including isotropic
unloading. When plotting the natural logarithm of the mean stress as a function of the
void ratio for clay-type materials, the plot can be approximated by two straight lines. The
slope of the primary loading line gives the compression index and the slope of the
unloading line gives the swelling index. These parameters can be obtained from a
one-dimensional compression test, as discussed in Section 8.3.

Tangent of the critical state line

In order to obtain the correct shear strength, the parameter M should be based on the
friction angle . The critical state line is comparable with the Drucker-Prager failure line,
and represents a (circular) cone in principal stress space. Hence, the value of M can be
obtained from ¢:

M = M (for initial compression stress states) (o1' < 02' = 03')
3 — siny

_ _6sinp (
3 + siny

M ~ +/3siny (for plain strain stress states)

for triaxial extension stress states) (o1' = 02' < 03')

In addition to determining the shear strength, the parameter M has an important influence
on the value of the coefficient of lateral earth pressure, Kj°, in a state of normal
consolidation. In general, when M is chosen such that the model predicts the correct
shearing strength, the resulting value of KJ'° is too high.

10.3 STATE PARAMETERS IN THE MODIFIED CAM-CLAY MODEL

In addition to the output of standard stress and strain, the Modified Cam-Clay model
provides output (when being used) on state variables such as the isotropic
pre-consolidation stress p, and the isotropic over-consolidation ration OCR. These
parameters can be visualised by selecting the State parameters option from the Stresses
menu. An overview of available state parameters is given below:

PLAXIS 2015 | Material Models Manual 119



pcd . Equivalent isotropic stress [kN/m?]

=2

q \J
p = I +(p)?
PP : Isotropic preconsolidation stress [kN/m?]
OCR . Isotropic over-consolidation ratio (OCR = pP/p®9) []

10.4 ON THE USE OF THE MODIFIED CAM-CLAY MODEL IN DYNAMIC
CALCULATIONS

When using the Modified Cam-Clay model in dynamic calculations, the swelling index x
needs to be selected such that the model correctly predicts wave velocities in the soil.
This generally requires a smaller value than just an unloading-reloading index.

When subjected to dynamic or cyclic loading, the Modified Cam-Clay model will generate
plastic strains when the preconsolidation stress is increased. However, it should be noted
that stress cycles within the current creep contour will only generate elastic strains and no
(hysteretic) damping, nor accumulation of strains or pore pressure, nor liquefaction. In

order to account for the soil damping in cyclic loading, Rayleigh damping may be defined.

10.5 WARNING

The Modified Cam-Clay model may allow for extremely large shear stresses. This is
particularly the case for stress paths that cross the critical state line. Furthermore, the
Modified Cam-Clay model may give softening behaviour for particular stress paths.
Without special regularization techniques, softening behaviour may lead to mesh
dependency and convergence problems of iterative procedures. Moreover, the Modified
Cam-Clay model cannot be used in combination with Safety analysis by means of phi-c
reduction. The use of the Modified Cam-Clay model in practical applications is not
recommended.
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11 THE SEKIGUCHI-OHTA MODEL

The Sekiguchi-Ohta model has been developed to formulate a constitutive law for
normally consolidated clay. Particular emphasis is placed on taking the effect of time and
stress-induced anisotropy into consideration. A complete description of the model has
been presented in Sekiguchi & Ohta (1977) and lizuka & Ohta (1987).

11.1  FORMULATION OF THE SEKIGUCHI-OHTA MODEL

The Sekiguchi-Ohta model combines the concepts lying behind the well known Cam Clay
model (Roscoe, Schofield & Thurairajah (1963)) and the rheological model developed by
Murayama & Shibata (1966). The Cam Clay model was further developed by Ohta &
Hata (1973) counting for the stress induced anisotropy for anisotropically consolidated
clays. However due to the fact that this model deals with the stress-strain behaviour of
the soil in equilibrium, the time effect is not considered. The rheological model is further
developed by Sekiguchi (1977) to describe the time-dependent and elastoplastic
behaviour for normally consolidated clays.

11.1.1 ISOTROPIC STATES OF STRESS AND STRAIN (¢'1 = 0'2 = ¢'3)

In the Sekiguchi-Ohta model, it is assumed that there is a logarithmic relation between
changes in volumetric strain, ¢,, and changes in mean effective stress, p', which can be
formulated as:

ey — &) =—-\In ( 'D0> (virgin compression) (11.1)
p

The parameter \* is the modified compression index, which determines the

compressibility of the material in primary loading. Note that A* differs from the index A as

used by Burland (1965). The difference is that Eq. (11.1) is a function of volumetric strain

instead of void ratio. Plotting Eq. (11.1) gives a straight line as shown in Figure 11.3.

During isotropic unloading and reloading a different path (line) is followed, which can be
formulated as:

€€ — e = _k*In ( ,00) (unloading and reloading) (11.2)
p
The parameter x* is the modified swelling index, which determines the compressibility of
the material in unloading and subsequent reloading. Note that x* differs from the index
as used in the Cam-Clay models. The ratio A*/x* is, however, equal to the ratio \/x.
The soil response during unloading and reloading is assumed to be elastic as denoted by
the superscript e in Eq. (11.2). The elastic behaviour is described by Hooke's law. Eq.
(11.2) implies linear stress dependency on the tangent bulk modulus such that:
Eyr e

K = =
731 —2uy) K

(11.3)

in which the subscript ur denotes unloading / reloading. Neither the elastic bulk modulus,
Kyr, nor the elastic Young's modulus, E,,, is used as an input parameter. Instead, v, and
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k* are used as input constants for the part of the model that computes the elastic strains.

»>Inp'

Po

Figure 11.1 Logarithmic relation between volumetric strain and mean stress

An infinite number of unloading / reloading lines may exist in Figure 11.3, each
corresponding to a particular value of the isotropic pre-consolidation stress pp. The
pre-consolidation stress represents the largest stress level experienced by the soil.
During unloading and reloading, this pre-consolidation stress remains constant. In
primary loading, however, the pre-consolidation stress increases with the stress level,
causing irreversible (plastic) volumetric strains.

11.1.2 INVISCID (TIME-INDEPENDENT) FORMULATION

The yield function of the inviscid model in triaxial space is expressed by the following
equation:
f=Mpin(Zy+ D9 (11.4)
Pp p
where M is the critical state frictional parameter, p'is the mean effective stress, p, is the
isotropic hardening stress parameter, § is the relative deviatoric stress and D is the
coefficient of dilatancy.

The isotropic hardening stress parameter of the model is defined as:

(56 - 560)

pp = ppoe  (MD) (11.5)
where MD = \* — k*, 7 is the current plastic volumetric strain and s€0 is the initial plastic

volumetric strain. Hence, the parameter D is an auxiliary parameter implicitly defined as
D=\ —k*)/M.
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11.1.3 VISCID (TIME-DEPENDENT) FORMULATION

The flow function of the visco-plastic (viscid) model is written as:

V f
F=a*In (1 +V°fexp(w*))) —ef=0 (11.6)
« «
where
P
f(o) = (11.7)
P'o P
The flow function F can be transformed to a function of stress and hardening parameter
g as follows:
g(o', h) = f(o") — h(eP, t) =0 (11.8)

where the hardening parameter h is defined as:

*

t[exp(dp) - 1}} (11.9)

The initial time to calculate the hardening parameter h should not be zero, because it is
not determined due to 1/t in Eq. (11.9). To be able to calculate the initial volumetric
visco-plastic strain, it is assumed that the hardening parameter h is equal to zero. Hence,
the initial visco-plastic volumetric strain can be calculated as follows:

h(e”, 1) = o In{

Vo

O[* Evp

heP, t) = a*ln{. [exp( Y )—1}}:0 (11.10)
Vot a®

e = *ln{'::fn}:o (11.11)

e/0 is used as the initial visco-plastic volumetric strain to calculate the current

visco-plastic volumetric strain.

11.2 PARAMETERS OF THE SEKIGUCHI-OHTA MODEL

11.2.1 INVISCID MODEL

The inviscid Sekiguchi-Ohta model requires a total of seven parameters (Figure 11.2).

Basic parameters for soil stiffness:
A* :  Modified compression index [-]
K" :  Modified swelling index [-]

Instead of entering the basic parameters for soil stiffness, alternative parameters can be
entered. These parameters are listed below:

Ce . Compression index [-]

Cr :  Recompression index [-]
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Cinit : Initial void ratio [1]
The relationship of the alternative and the basic parameters for soil stiffness is given in
Table 8.1.

Parameters for soil strength:
M . Slope of the critical state line [-]
Advanced parameters (use default settings):
Vur . Poisson’s ratio for unloading / reloading [-]
Kge . Coefficient of lateral stress in normal consolidation [-1

Figure 11.2 shows the PLAXIS window for inputting the values of the model parameters.

Soil - Sekiguchi-Ohta (Inviscid) - <NoMName>
J B &

General | Parameters ‘Groundwaher 3 | Thermal I Interfaces = I Initial ‘

Property Unit Value

stiffness
A= (ambda®) 0.000
k* (kappa™) 0.000

Alternatives
Use alternatives O
& 0.000
= 0.000

e 0.5000

M 0.000

[ Next ] [ oK ] [ Cancel ] ‘

Figure 11.2 Parameters for the Sekiguchi-Ohta model

Modified compression index and modified swelling index (\* and r*)

These parameters can be obtained from an isotropic compression test including isotropic
unloading. When plotting the logarithm of the mean effective stress as a function of the
volumetric strain for clay type materials, the plot can be approximated by two straight
lines, see Figure 11.3. The slope of the primary loading line gives the modified
compression index \*, and the slope of the unloading (or swelling) line gives the modified
swelling index x*.

Poisson's ratio (v,,)

The poisson's ratio v, is a real elastic parameter and not a pseudo-elasticity constant as
used in the Mohr-Coulomb model. lts value will usually be in the range between 0.1 and
0.2.
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Figure 11.3 Logarithmic relation between volumetric strain and mean stress

Earth pressure coefficient at rest (K;°)

The K parameter is defined as the stress ratio in one-dimensional compression in a
state of normal consolidation:

K(;?C = @
o'y
The Kj° -parameter determines the singular point in the Sekiguchi-Ohta model yield
contour. Hence, K relates to the inclination of the stress path in one-dimensional
compression where «, as described in the Eq. (11.12) is the slope of the KJ° line in the p
- g plane.

o 30— K) (11.12)

1+2K5°

G3

Figure 11.4 The Sekiguchi-Ohta model yield surface in triaxial stress space

Slope of the critical state line (M)

In order to obtain the correct shear strength, the parameter M should be based on the
friction angle ¢. The critical state line is comparable with the Drucker-Prager failure
criteria, and represents a (circular) cone in the principal stress space. Hence, the value of
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M can be obtained from ¢ in a similar way as the Drucker-Prager friction constant « is
obtained from ¢. For details see also the Modified Cam-Clay model in the Material
Models Manual.

Initial overconsolidation ratio (OCR)

The initial overconsolidation ratio OCRj is defined as the highest vertical effective stress
experienced in the past, o', divided by the current stress o',,. A soil which is currently
experiencing its highest stress is said to be normally consolidated and to have an OCR of
1.

Initial pre-overburden pressure (POP;)

The initial pre-overburden pressure POP,, expressed in the unit of stress, is defined as:
POPO = Ulp_ O"yy

where o', is the vertical pre-consolidation stress (the greatest vertical stress reached
previously) and o'y, is the in situ effective vertical stress.

11.2.2 MODEL PARAMETERS OF THE VISCID MODEL

Compared to the inviscid Sekiguchi-Ohta model, the viscid Sekiguchi-Ohta model
requires the coefficient of secondary compression o* and the initial volumetric strain rate
Vo as two additional parameters of input. All other parameters remain the same as in the
inviscid Sekiguchi-Ohta model.

A* : Modified compression index [-]

K* : Modified swelling index [-]

Vur : Poisson’s ratio for unloading / reloading [-]

Kg° . Coefficient of lateral stress in normal consolidation [-]

M : Slope of the critical state line []
OCRy . Initial overconsolidation ratio [-]
POP, :Initial pre-overburden pressure [kN/m?]
a® : Coefficient of secondary compression [-]

Vo : Initial volumetric strain rate [day ']

Coefficient of secondary compression (o*)
The coefficient of secondary compression a* is defined as:

dey
d(int)

*

at time t; (the end of primary consolidation).

Initial volumetric strain rate ()

The initial volumetric strain rate v, at reference state is expressed as:
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12 THE NGI-ADP MODEL (ANISOTROPIC UNDRAINED SHEAR STRENGTH)

The NGI-ADP model may be used for capacity, deformation and soil-structure interaction
analyses involving undrained loading of clay. The basis of the material model is:

. Input parameters for (undrained) shear strength for three different stress paths/
states (Active, Direct Simple Shear, Passive).

. A yield criterion based on a translated approximated Tresca criterion.

. Elliptical interpolation functions for plastic failure strains and for shear strengths in
arbitrary stress paths.

. Isotropic elasticity, given by the unloading/reloading shear modulus, G,,.

12.1 FORMULATION OF THE NGI-ADP MODEL

The NGI-ADP model is formulated for a general stress state, matching both undrained
failure shear strengths and strains to that of selected design profiles (Andresen & Jostad
(1999), Andresen (2002), Grimstad, Andresen & Jostad (2010)). The model formulation
is presented in steps, starting with 1D anisotropy in triaxial test condition. In Section
12.1.2 a simplified expression for plane strain is presented. Thereafter the formulation is
extended to full 3D stress state. In this formulation compressive stresses are positive.

In the NGI-ADP model the Tresca approximation after Billington (1988) together with a
modified von Mises plastic potential function (von Mises (1913)) is used to circumvent the
possible corner problems. The yield and plastic potential function are independent of the
mean stress hence zero plastic volume strain develops.

12.1.1 1D MODEL PRESENTATION

Under triaxial tests condition two undrained shear strengths can be determined, i.e. s¢
and sE. The test measures the response in vertical stress o', and horizontal stress o'y
for applied shear strain «. The Tresca yield criteria can be modified, Eq. (12.1), to
account for the difference in undrained shear strength in compression and extension:

C E (o] E

— S S S
u—Sul SutSu_g (12.1)
2 >

f=lr—(1—-rK)10—kK

where 7 = 0.5(¢"', — ¢'y) and the initial in situ maximum shear stress 7y is then defined as
70 =0.5(c"'vo — 0'no) = 0.50",0(1 — Kp).

To account for difference in failure shear strain a stress path dependent hardening
parameter is introduced. The stress path dependent hardening is made possible by
different plastic failure shear strain ’yf in compression and extension. The hardening
function is given by:

\P/F

k=2—"——" when? <~ elsex =1 12.2
14++P/4P 7S (12.2)

where 7P and fy,f’ are the plastic shear strain and the failure (peak) plastic shear strain
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respectively.

stress path stress-strain
bes — line SE
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=
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Figure 12.1 Typical stress paths and stress strain curves for triaxial compression and triaxial
extension

12.1.2 THE NGI-ADP MODEL IN PLANE STRAIN
The yield criterion for the NGI-ADP model in plane strain is defined by:

A P A P A P
Oy — O S, — S S, +S S, +S
f= ht /AL (1 - K,)TO - /’iiu Y2 + Txy u DSSU 2 _ K u u - 0
2 2 2s; 2

(12.3)

Restriction to clays with horizontal surfaces are made to simplify the presentation.
Further y is taken as the vertical (depositional) direction. For isotropy in hardening (i.e.
independent of stress orientation) Eq. (12.3) plots as an elliptical shaped curve in a plane
strain deviatoric stress plot. When « equals 1.0, the criterion in Eq. (12.3) reduces to the
formulation given by Davis & Christian (1971). While hardening the yield curves are
characterized by slightly distorted elliptical shapes. The shape is dependent on the
interpolation function used and values of failure strain. The NGI-ADP model uses
elliptical interpolation between failure strain in passive stress state, direct simple shear
and active stress state. In the implementation of the NGI-ADP model the yield surface is
ensured to remain convex by restricting the input.

12.1.3 THE NGI-ADP MODEL IN 3D STRESS SPACE

This section describes the actual implementation of the NGI-ADP model in PLAXIS,
whereas the previous sections should be regarded as an introduction using simplified
formulation. For the general stress condition a modified deviatoric stress vector is defined
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A

0.5(6y, '~ 5,

1.0

78y T/ 8.

Figure 12.2 Typical deviatoric plane strain plot of equal shear strain contours for the NGI-ADP model

as:

r T 0'xx — 0'xxo(1 _“)+“%(3ﬁ_35)_b
Swx . , 2/cA__oPy_ &
N Uyy_Uyy0(1_H)_“g(su_su)_p
K 1A _ Py _ ¢
3 0'2z — 0" 720(1 —li)+li§,(3u —su)—p

zZ
. T sh+ s (12.4)
Sxy Ty 25Dss
éXZ TXZ
2 AL oP
| 5z | Tyz—"L Esﬁs
L 2s; ]

where ¢'xx0, 0'yy0 and o'xxo are the initial stresses and p is the modified mean stress.
The modified mean stress is defined as:

p= (0'xx — 'xxo(1 — K)) + (U'yy - U'yy0(1 — k) +(0'2z — 0'zzx0(1 — K))
3
=p'— (1 —~x)po (12.5)

where p' is the mean stress. Modified second and third deviatoric invariants are defined
accordingly in Egs. (12.6) and (12.7).

~ A A A A A N l\2 I\2 I\2

Jo = =SSy — 582z — 8y S22 + 5, + 85, + 5}, (12.6)
T A A & a2 a a2 & a2 A a2

J3 = 8¢Sy Sz7 + 2545, 5¢z — 5xSy; — Sy Sy, — 52285, (12.7)

The yield criterion is expressed as:

X s+ sh

f=y\/Hw) —k

=0 (12.8)
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where, to approximate the Tresca criterion, the term H(w) is defined as:

5 (1 ) . 27 J2
H(w) = cos® | —arccos(1 — 2ajw) | with w=—=2 (12.9)
6 4 J3

By letting the value of a; go to 1.0 an exact Tresca criterion is obtained. The parameter
aj can be directly linked to the rounding ratio sE/sﬁ. This ratio takes typically a value just
below 1.0 and a value of 0.99 is chosen as an appropriate default. Figure 12.3 shows the
failure criterion of the NGI-ADP model in the w-plane (for Cartesian stresses) with default
rounding ratio. This criterion is continuous and differentiable and it is described by a
single function.

5
yy

(TX)C
(PS)A

PS)P

S22 (TX)E *xx

Figure 12.3 Failure criterion of the NGI-ADP model in the w-plane

The combinations of strength ratios are limited by lower limit for combinations of s$/s/}
and s/ /s].

The value of 'yf is given by elliptical interpolation:

RsRoy/ (B2 — F2)cos2(20) + B2 — RBRacos(20)

PG - — M) oS : 12.10
() B2 — (R — R2)cos?(20) (12.10)
where
PP
Ry =1t Tio (12.11)
2
R P + P
R = tET 10 27"0 (12.12)
Rec =\/"ferfe (12.13)
. PR
Rp = 1.05S'8 (12.14)
Rc

p p o) . . . . L
and ¢ ¢, V1. pss and 7y g are the failure plastic maximum shear strain in triaxial
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compression, direct simple shear and triaxial extension respectively. Note that @ is not the
Lode angle, but is defined as:

cos(20) = \fsyy (12.15)
Jo

A non-associated flow rule is used such that the derivative of the plastic potential g is:

99 =1(7+ op (85) 7)8{2 I (12.16)
do' 2 Oc' \ 0P 08\ U

where T is a modified unit vector:

1

—
Il

st + sl (12.17)

25Dss

sh+sh
2sDss

The increment in plastic shear strain is defined as:
0P = \/H@) (3 (05 — 0e5y) 2+ (0 — 0822+ (fy — et )+

1/2
(dfy) 2 + (dE:) 2 + (d)z) 2) (12.18)
where the plastic strains are defined as:
deP = dAa—gl (12.19)
ag

with d\ being the plastic multiplier. Hence, Eq. (12.18) gives the relation between the
hardening parameter ° and the plastic multiplier d.

12.1.4 THE NGI-ADP MODEL TRACTION CRITERION FOR INTERFACES

For plane strain conditions a traction criterion, corresponding to the plane strain failure
criterion is formulated. This criterion is intended to be used on interface elements in finite
element calculations. The interface strength is controlled by a lower and upper limit,
which are dependent on the direction of the interface, 3.

Let a plane being oriented by the direction (3 to the horizontal. The plane has a tangential
direction t and a normal direction n and the adjacent continuum defines the stresses opp,
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Ot and 7, by

Ott O xx
om | =A| oy (12.20)
Ttn Txy

where A is the transformation matrix.

In a local coordinate system three strains e, €4 and s, are defined in the plane strain
condition. Due to the requirement of no volume change for a perfect plastic mechanism
with shearing in tangential direction, will give that e, = 4 = 0, resulting in:

S (12.21)
a(o'nn - Utt)

The plain strain formulation for the NGI-ADP model is defined as follows:

f= \/ <@cos(2ﬁ) — Tisin(28) — RA> 24 (% <@sm(2ﬁ) + Tmcos(zﬁ))) 2
D

“Rg=0 (12.22)
where
A &P
Ry =¥ (12.23)
A P
Rg =2U ‘; Su (12.24)
Rp =s2%% (12.25)

12.2 PARAMETERS OF THE NGI-ADP MODEL

Stiffness parameters:
Gur/s : Ratio unloading/reloading shear modulus over (plane []
strain) active shear strength
fy,C . Shear strain at failure in triaxial compression [%]
fyF : Shear strain at failure in triaxial extension [%]
S . Shear strain at failure in direct simple shear [%]

Hint: Note that the input value of shear strains is in percent

Strength parameters:
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sh : Reference (plane strain) active shear strength [kN/m?/m]

u,ref
C,TX /oA . A triay ;
sy /st . Ratio triaxial compressive shear strength over (plane [-]
strain) active shear strength (default = 0.99)
Yref . Reference depth [m]
SZ‘,,-,,C . Increase of shear strength with depth [kN/m2/m]
sﬁ / sf,‘ . Ratio of (plane strain) passive shear strength over [-]
(plane strain) active shear strength
70/84 . Initial mobilization (default = 0.7) [-]
sDSS/sA . Ratio of direct simple shear strength over (plain strain)  [-]
active shear strength
Advanced parameter:
v' : Poisson's ratio [-]

Ratio unloading / reloading shear modulus over plane strain active shear
strength (G, /s.})

Ratio unloading / reloading shear stiffness as a ratio of the plane strain active shear
strength. If the shear strength is increasing with depth the constant ratio for Gur/Sﬁ gives
a shear stiffness increasing linearly with depth.

Shear strain at failure in triaxial compression (7;3 )

This parameter V,C (%) defines the shear strain at which failure is obtained in undrained

triaxial compression mode of loading, i.e. 7¢ = 3510 from triaxial testing.

2

Shear strain at failure in triaxial extension (’ny )

This parameter V,E (%) defines the shear strain at which failure is obtained in undrained

triaxial extension mode of loading, i.e. "yF = gsf from triaxial testing.
Shear strain at failure in direct simple shear (vP5°)

This parameter 7,933 (%) defines the shear strain at which failure is obtained in undrained

direct simple shear mode of loading (DSS device).

For near normally consolidated clays, the failure strain in compression loading 7,0 is
generally the lowest value and the failure strain in extension loading ’YF is the highest
value. The failure strain from direct simple shear loading takes an intermediate value, i.e.
7€ < 4PSS < 4E. From laboratory test results reported in literature one find typically v£
in the range 3-8 %, vP5° in the range 2-8 % and ¢ in the range 0.5 - 4 %.

If stress-strain curves from undrained triaxial and/or DSS laboratory tests are available it
is recommended to choose the elastic shear modulus and failure strains such that a good
fit to the curves are obtained. This is in particular important for deformation and SLS

PLAXIS 2015 | Material Models Manual 135



assessments. However, for pure capacity and stability (e.g. factor of safety) analyses the
values for shear strains at failure is not important and one may set all three values equal
to e.g. 5 % for simplicity.

Note that it is the failure strains from triaxial loading that is input because they are the
most readily available. When the NGI-ADP model is used for plane strain conditions the
failure strains will automatically be slightly adjusted for that loading condition. See
Grimstad, Andresen & Jostad (2010) for more details.

; A
Reference active shear strength(s; ;)

The reference active shear strength is the shear strength obtained in (plane strain)
undrained active stress paths for the reference depth y,.f, expressed in the unit of stress.

Ratio triaxial compressive shear strength over active shear
strength(sS ™% /%)

This ratio sf’ TX/S’S‘ defines the shear strength in undrained triaxial compression mode of

loading in relation to the shear strength in plane strain undrained active mode of loading.
The value cannot be changed by the user and is predefined at 0.99 giving practically the
same strengths in triaxial and plane strain conditions.

Reference depth (V)

This is the reference depth e at which the reference active shear strength sf,",ef is

defined. Below this depth the shear strength and stiffness may increase linearly with

increasing depth. Above the reference depth the shear strength is equal to SZ‘ ref-

i A
Increase of shear strength with depth (s, )

This parameter s ;. defines the increase (positive) or decrease (negative) of the

undrained active shear strength with depth, expressed in the unit of stress per unit of

depth. Above the reference depth the shear strength is equal to sj",e,, below the
reference depth the shear strength is defined as:
S0(Y) = 80 rer + Vrer = ¥)Slhino (12.26)

Ratio of passive shear strength over active shear strength (sf / s’j‘ )

This ratio SLF,’/S{,‘ defines the undrained shear strength for (plane strain) passive mode of
loading.

Ratio of direct simple shear strength over active shear strength (s2°5/s/))

This ratio s755/s/} defines the undrained shear strength for direct simple shear mode of
loading. Please note that active / passive strength input is defined for plane strain
conditions. However, it is generally acceptable and only slightly conservative to use the
strength obtained from a triaxial compression test as input for the active plane strain
condition (i.e. s;j‘ = sff’ TX) and the strength obtained from a triaxial extension test as input
for the passive plane strain condition (i.e. 55 = SE’TX). More control over the strength
difference between triaxial and plane strain loading conditions can be obtained by using

the advanced parameter SE'TX/S’,j‘.
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For near normally consolidated clays, the passive strength 85 is generally the lowest
strength value, while the direct simple shear strength takes an intermediate value, i.e.

s} < sPSS < sfi. From laboratory results reported in literature one find typically s/, /s/} in
the range 0.2 - 0.5 and SESS/Sf} in the range 0.3 - 0.8. If direct simple shear strengths
are not available s25° can be estimated from: s255/s = (1 + sf//sf) /2.

Initial mobilization (ry/s.})

The initial mobilization 7o/s is clearly defined for nearly horizontally deposited normally
consolidated or lightly overconsolidated clay layers where the vertical stress is the major
principle stress ¢'1. As defined in Figure 12.4, the initial mobilization can be calculated
from the earth pressure coefficient at rest Ky by the following equation:

70/} = —0.5(1 — Ko)o'yy0/84, where o'y is the initial (in situ) vertical effective stress
(compression negative). A default value 0.7 of 70/s/} is given which represent a typical
value for a near normally consolidated clay deposit (e.g. Ko = 0.55 and

—0'yy0/S) =3.11, 0r Ky = 0.6 and —o'yy0/5; = 3.5).

! oA
0004558y

vy A | T
-Oed/su” =Ko+ G'ypofsy A - v, A
To'sy =-0.5- (1-Kp) - Tyl Su

v A
=0yl S

Figure 12.4 Definition of initial mobilized maximum shear stress 79 = 1/2 |0"yy0 — o'xxo0| for a soil
element in a horizontal deposited layer.

A more detailed evaluation of the initial (in situ) mobilization can be done by assessing
the in situ Ky value and use the relationship: 70/s} = —0.5(1 — Ky)o'vo/S/. Changing
the default value for the initial mobilization should be considered in particular for
over-consolidated materials where Ky generally is higher than 0.6, however the NGI-ADP
model is not intended used for heavily overconsolidated clays and should be used with
care for Ko > 1.0 (i.e. negative 10/s.).

For non-horizontal layering (e.g. sloping ground) a KO procedure is normally not
recommended. In such cases it is recommended to establish the initial stress condition
by gravity loading using a material model suited for such a purpose (e.g. drained
behavior with the Mohr-Coulomb model or the Hardening Soil model). After the
equilibrium initial stresses are established for gravity loading in the first phase, one
should switch to the NGI-ADP model in the relevant clusters for the next phase and run a
NIL step (i.e. without changing the external loads). The hardening parameter of the
NGI-ADP model will then be adjusted such that equilibrium is obtained (f=0). Then in the
third phase the external loading can be applied.
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Poisson's ratio (V')

Similar as in the Mohr-Coulomb model, Poisson's ratio is generally between 0.3 and 0.4
for loading conditions considering effective stress analysis. For unloading conditions a
lower value is more appropriate. See the linear elastic perfectly plastic model
(Mohr-Coulomb model) for more details.

When the Drainage type = Undrained (B) option is used an effective Poisson's ratio
should be entered that is less than 0.35. Excess pore pressures are generated using the
bulk modulus of water as described in Section 2.4. In this case, Undrained (B), the model
will calculate excess pore pressures due to mean stress changes according to (2.37).

When the Undrained (C) drainage option is used a pure total stress analysis is carried out
where no distinction between effective stresses and pore pressures is made and all
stress changes should be considered as changes in total stress. A Poisson's ratio close
to 0.5 should be entered.v = 0.495 is given as default.

12.3 STATE PARAMETERS IN THE NGI-ADP MODEL

In addition to the output of standard stress and strain quantities, the NGI-ADP
modelprovides output (when being used) on state variables such as plastic shear strain
vp and the hardening function r,.. These parameters can be visualised by selecting the
State parameters option from the Stresses menu. An overview of available state
parameters is given below:

Yp . Plastic shear strain []
Tp =
Is : Hardening function []
L, VPhE
1+9P/7f
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13  APPLICATION OF ADVANCED SOIL MODELS

In this chapter, advanced soil models will be utilised in various applications in order to
illustrate the particular features of these models.

13.1 HARDENING SOIL MODEL: RESPONSE IN DRAINED AND UNDRAINED
TRIAXIAL TESTS

In this section, the Hardening Soil model is utilised for the simulations of drained and
undrained triaxial tests. Arbitrary sets of model parameters, Table 13.1, representing
sands of different properties, are considered.

A triaxial test can simply be modelled by means of an axisymmetric geometry of unit
dimensions (1m x 1m), that represent a quarter of the soil specimen, Figure 13.1. These
dimensions are not realistic, but they are selected for simplicity. The dimension of the
model does not influence the results, provided that the soil weight is not taken into
account. In this configuration the stresses and strains are uniformly distributed over the
geometry. The deformation magnitudes in x- and y-direction of the top right hand corner
correspond to the horizontal and vertical strains respectively.

The left hand side and the bottom of the geometry are axes of symmetry. At these
boundaries the displacements normal to the boundary are fixed and the tangential
displacements are kept free to allow for 'smooth' movements. The remaining boundaries
are fully free to move.

The value of the applied loads can be controlled by the load multipliers such as ~MloadA
and X MloadB. However, in PLAXIS 2D, and as described in the Reference Manual, the
load configurations and magnitudes can be specified in the Input program. Then in the
calculation program these loads can be activated or deactivated by means of the Staged
construction option. For this case, and to simulate the confining pressure p', distributed
loads of —100 kN/m? representing the principal stresses o'y (load A) and o'3 (load B) are
applied in the Input program, as shown in Figure 13.1.

Table 13.1 Arbitrary Hardening Soil parameters for sands of different densities

Parameter Loose Medium Dense Unit
EZe" (for prer = 100 kPa) 20000 | 30000 40000 | kN/m?
ET® (for prer = 100 kPa) 60000 | 90000 120000 | kN/m2
Eggﬁ, (for prer = 100 kPa) 20000 | 30000 40000 kN/m?
Cohesion ¢ 0.0 0.0 0.0 kN/m?
Friction angle ¢ 30 35 40 °
Dilatancy angle ¥ 0 5 10 ©
Poisson's ratio v, 0.2 0.2 0.2 -
Power m 0.5 0.5 0.5 -

K{° (using Cap) 0.5 0.43 0.36 -
Tensile strength 0.0 0.0 0.0 kN/m?2
Failure ratio 0.9 0.9 0.9 -
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Figure 13.1 Simplified configuration of a triaxial test

A very course mesh is sufficient for this simple geometry. Initial stresses and steady pore
pressures are not taken into account.
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Figure 13.2 Results of drained triaxial tests using the Hardening Soil model, Principal stress
difference versus axial strain

In the Calculation program, the calculation of all phases can be done by means of the
Staged construction process. In the first phase, the confinement pressure p' is applied by
activating load A and B. In the second phase the displacements are reset to zero and the
sample is vertically loaded up to failure while the horizontal load is kept constant. This
implies modification of load A by double clicking the load in the geometry model. As a
result a load window appears in which the input values of the load can be changed.
(Details of the procedure can be found in the Reference and Tutorial manuals.) The latter
phase is carried out for drained as well as undrained conditions.

These calculations are performed for the three different sets of material parameters,
Table 13.1. The computational results are presented in the figures on the following pages.
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Figure 13.3 Results of drained triaxial tests using the Hardening Soil model, Volumetric strain versus
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Figure 13.4 Results of undrained triaxial tests using the Hardening Soil model, Principal stress
difference versus axial strain

Figure 13.2 shows the principal stress difference versus the axial strain for the drained
condition. This shows a hyperbolic relationship between the stress and the strain, which
is typical for the Hardening Soil model. Obviously, the failure level is higher when the
sand is denser. The Hardening Soil model does not include softening behaviour, so after
reaching failure the stress level does not reduce, at least in the drained tests.

Figure 13.3 shows the axial strain versus the volumetric strain for the drained test. This
graph clearly shows the influence of dilatancy in the denser sands. In contrast to the
Mohr-Coulomb model, the transition from elastic behaviour to failure is much more
gradual when using the Hardening Soil model. In fact, in the Hardening Soil model,
plastic strain occurs immediately after load application.

In the undrained tests, Figure 13.4, the failure level is, in principle, lower than that of the
drained tests. However, for the medium and dense sands the stress level continues to
increase after reaching the failure level due to the fact that dilatancy occurs which causes
reduction of excess pore pressures and thus increase of the effective stresses. This can

be seen in Figure 13.5.

PLAXIS 2015 | Material Models Manual 141



-60

loose
-50

o N
/s N\
"l N
AN

4 AN

0 0.005 0.010 0.015 0.020 0.025 0.030
_81

Pexcess |KPa]

Figure 13.5 Results of undrained triaxial tests using the Hardening Soil model, Excess pore
pressure vs axial strain

-400

-300

-200

oyy [kPa]

0 100 -200
oxx [kPa]

Figure 13.6 Stress paths for drained and undrained triaxial tests using the Hardening Soil model

Figure 13.6 shows the effective stress paths, for the medium sand, during both the
drained and undrained tests. During first phase (isotropic loading), both tests were
drained. In the second phase there is a clear distinction between the two tests. In the
undrained test the effective horizontal stress reduces while the vertical stress increases
due to the development of excess pore pressures. The decrease in horizontal effective
stress is more than when if the Mohr-Coulomb model would have been used. This is
attributed to the plastic compaction (Cap hardening) that occurs in the Hardening Sail
model.
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13.2 APPLICATION OF THE HARDENING SOIL MODEL ON REAL SOIL TESTS

In this section the ability of the Hardening Soil model to simulate laboratory tests on sand
is examined by comparing PLAXIS calculation results with those obtained from laboratory
tests provided by Prof. J. Desrues. Extensive laboratory tests were conducted on loose
and dense Hostun sand. On the basis of these tests the model parameters for the
Hardening Soil model were determined, Table 13.2.

Table 13.2 Hardening Soil parameters for loose and dense Hostun sand

Parameter Loose sand Dense sand Unit
Volumetric weight ~y 17 17.5 KN/m3
EL! (prer = 100 kPa) 20000 37000 kN/m?
E!" (prer = 100 kPa) 60000 90000 kN/m?
E’’ (prer = 100 kPa) 16000 29600 kN/m?
Cohesion ¢ 0.0 0.0 kN/m?
Friction angle ¢ 34 41 °
Dilatancy angle v 0 14 °
Poisson's ratio v, 0.20 0.20 -
Power m 0.65 0.50 -

Kge 0.44 0.34 -
Tensile strength 0.0 0.0 kN/m?2
Failure ratio 0.9 0.9 -

Triaxial test

Standard drained triaxial tests were performed on loose and dense sand specimens. In
PLAXIS the procedure for the simulation of the triaxial tests has been described in
Section 13.1. In the first phase the sample is isotropically compressed up to a confining
pressure of p' = —300 kN/m2. In the second phase the sample is vertically loaded up to
failure while the horizontal stress (confining pressure) is kept constant. The
computational results and the measured data are presented in Figure 13.7, Figure 13.8,
Figure 13.9 and Figure 13.10.

The figures show that the computational results match reasonably with the test data. It
can be seen that the material response (measured and computed) show gradual
transition from elastic to plastic behaviour. As such the relation between the deviatoric
stress and the axial strain can be approximated by a hyperbola.

The failure level is fully controlled by the friction angle (the cohesion is zero). The test
results on dense sand show softening behaviour after the peak load has been reached.
Modelling of the softening behaviour, however, is not incorporated in the Hardening Soil
model, and thus, the deviatoric stress remains constant. It can also be seen from the test
data that the dilatancy reduces during softening. However, in the Hardening Soil model
the dilatancy continues to infinity, unless the dilatancy cut-off option has been used.
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Figure 13.9 Results of drained triaxial tests on dense Hostun sand, principal stress ratio versus axial

strain

Oedometer test

As for the triaxial test, a set of oedometer test on both loose and dense sands, Table
13.2, was conducted. In PLAXIS the oedometer test is simulated as an axisymmetric
geometry with unit dimensions, Figure 13.11. A coarse mesh is sufficient for this case.

The computational results as compared with those obtained from the laboratory tests are
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Figure 13.10 Results of drained triaxial tests on dense Hostun sand, volumetric strain versus axial
strain

Figure 13.11 Simplified configuration of an oedometer test

shown in Figure 13.12 and Figure 13.13.

From a stress free state the loose sand sample is loaded consecutively to 25 kPa, 50
kPa, 100 kPa and 200 kPa with intermediate unloading. The dense sand sample is
loaded to 50 kPa, 100 kPa, 200 kPa and 400 kPa with intermediate unloading.

As it can be seen, the computational results show a reasonable agreement with the test
data. No doubt, distinction should be made between loose and dense soil, but it seems
that for a soil with a certain density the stiffness behaviour under different stress paths
can be well captured with a single set of model parameters. (A small offset of 0.15% has
been applied to the computational results of the loose sample in order to account for the
relative soft response at the beginning of the test.)
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Figure 13.12 Results of oedometer test on loose Hostun sand, axial stress versus axial strain
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Figure 13.13 Results of oedometer test on dense Hostun sand, axial stress versus axial strain

Pressiometer test

In this section the Pressiometer test is simulated and results from PLAXIS and laboratory
experimentation are compared. Laboratory testing results on dense sand with material
parameters listed in Table 13.2 are used.

In the field, the pressiometer with 44 mm in diameter covered with a membrane with 160
mm in height is attached to the Cone penetration shaft. In the laboratory, the
pressiometer is attached to a 44 mm pipe and placed in a circular calibration chamber
with a diameter of 1.2 m and a height of 0.75 m. A large overburden pressure of 500 kPa
is applied at the surface to simulate the stress state at larger depths. In PLAXIS only half
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of the geometry is simulated by an axisymmetric model, Figure 13.14. The overburden
pressure is simulated by load A, and the expansion of the pressiometer is simulated by
imposing a horizontal distributed load, load B. Therefore the initial standard boundary
conditions have to be changed near the pressiometer in order to allow for free horizontal
displacements.
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Figure 13.14 Geometry model for pressiometer test

To allow for a discontinuity in horizontal displacements, a vertical interface along the
shaft of the pressiometer borehole and a horizontal interface just above the pressiometer
are introduced. Both interfaces are set rigid (Rinter = 1.0). Extra geometry lines are
created around the pressiometer to locally generate a finer mesh.

After the generation of initial stresses, the vertical overburden load (load A) is applied
using the standard boundary fixities. From the calculations, the lateral stress around the
pressiometer appears to be 180 kPa. Subsequently, the horizontal fixity near the
pressiometer is removed, in the Input program, and replaced by Load B with a magnitude
of 180 kPa. In the next calculation the pressure (load B) is further increased by use of
Staged construction in an Updated mesh analysis. The results of this calculation are
presented in Figure 13.15 and Figure 13.16.

Figure 13.15 shows details of the deformations and the stress distribution when the
pressure in the pressiometer was 2350 kPa. The high passive stresses appear very
locally near the pressiometer. Just above the pressiometer the vertical stress is very low
due to arching effects. Away from the pressiometer, a normal Ky-like stress state exists.

Figure 13.16 shows a comparison of the numerical results with those obtained from the
laboratory test. In the figure the pressiometer pressure is presented as a function of the
relative volume change. The latter quantity cannot directly be obtained from PLAXIS and
was calculated from the original radius Ry and the lateral expansion uy of the
pressiometer:

AV (Ro+Ux)* — RS
Vo R?
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Figure 13.15 Stress distribution in deformed geometry around the pressiometer at a pressure of
2350 kPa

Up to a pressure of 1600 kPa the results match quite well. Above 1600 kPa there is a
sudden decrease in stiffness in the real test data, which cannot be explained.
Nevertheless, the original set of parameters for the dense sand that were derived from
triaxial testing also seem to match the pressiometer data quite well.
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Figure 13.16 Comparison of numerical results and pressiometer test data

Conclusion

The above results indicate that by use of the Hardening Soil model it is possible to
simulate different laboratory tests with different stress paths. This cannot be obtained
with simple models such as Mohr-Coulomb without changing input parameters. Hence,
the parameters in the Hardening Soil model are consistent and more or less independent
from the particular stress path. This makes the Hardening Soil model a powerful and an
accurate model, which can be used in many applications.
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13.3 APPLICATION OF THE HS SMALL MODEL ON REAL SOIL TESTS

In this section, the ability of the HS small model to simulate laboratory tests is examined.
Both, the laboratory test data and the basic HS parameters are identical to those
presented in the previous section. The two additional small strain parameters used in the
Hardening Soil model are quantified in Table 13.3.

Table 13.3 Additional HS small model parameters for loose and dense Hostun sand

Parameter Loose sand Dense sand Unit
GE' (Prer = 100 kPa) 70000 112500 kN/m?
Shear strain vg.7 0.0001 0.0002 -

Triaxial tests on loose and dense Hostun sand are presented in Figure 13.17 and Figure
13.18 respectively. As a reference, the previously obtained results from the Hardening
Soil model are plotted as well.
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Figure 13.17 Excavation Drained triaxial tests on loose Hostun sand at confining pressures of 100,
300, and 600 kPa. Left: Stress-strain data. Right: Shear modulus reduction.
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The overall stress-strain data obtained from both models seems almost identical. Only a
closer look at the small-strain domain shows a clear difference: The HS small model
follows a S-shaped stiffness reduction curve with much higher initial stiffness than the
one of the Hardening Soil model. Generally, both models match the test data at different

confining pressures reasonably well.
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Figure 13.18 Drained triaxial tests on dense Hostun sand at confining pressures of 100, 300, and
600 kPa. Left: Stress-strain data. Right:Shear modulus reduction.

Figure 13.19 presents results from a cyclic triaxial test by Rivera & Bard on dense sand.
The HS small model simulation of the test shows material damping which could not be
obtained when simulating the test with the Hardening Soil model. As virgin loading is
conducted in triaxial compression, the unloading sequence in triaxial extension gives
some plasticity. Therefore the first unloading / reloading loop is not closed.
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Figure 13.19 Hysteresis loop in a drained triaxial test on dense Hostun sand. Test data published
in Biarez & Hicher (1994).

13.4 SOFT SOIL CREEP MODEL : UNDRAINED TRIAXIAL TESTS AT DIFFERENT
LOADING RATES

In this section the Soft Soil Creep model (see Chapter 9) is utilised for the simulation of
clay in an undrained triaxial test at different strain rates. The model parameters are
obtained from test results on Haney Clay and are listed in Table 13.4.

The initial isotropic preconsolidation pressure P, = 373 kN/m?2, as reported in the
literature, is obtained by specifying a POP of 433 kN/m? in the initial conditions.

Table 13.4 Soft Soil Creep model parameters for Haney clay

Parameter Symbol Value Unit
Modified compression index A* 0.105 -
Modified swelling index K* 0.016 -
Secondary compression index | u* 0.004 -
Poisson's ratio Vur 0.15 -
Cohesion c 0.0 kN/m?
Friction angle %) 32 °
Dilatancy angle P 0.0 °
Coefficient of lateral stress Kg° 0.61 -
Permeability Ky, Ky 0.0001 m/day
Pre overburden pressure POP 433 kN/m?

Modelling of the triaxial test is as described in Section 13.1. However, here, the real
dimension of the test set-up is simulated (17.5 x 17.5 mm?), Figure 13.20. The specimen
surfaces (top and right hand side in Figure 13.20) are assumed drained whereas the
other boundaries are assumed closed.

The global mesh coarseness is set to coarse. A local refinement of 0.25 is used at the
upper and right-hand side of the model.

In addition to isotropic loading, prescribed displacements are also applied. Both types of
loading are simulated using the Staged construction option. During isotropic loading,
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horizontal and vertical loads are applied. The calculation phases for isotropic loading
consist of undrained plastic and consolidation analyses.
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Figure 13.20 Modelling of triaxial test on Haney clay. Left, Initial configuration. Right, configuration
for phase 9 - 11

After the isotropic loading phases, the displacements are reset to zero. The vertical load
is deactivated and the prescribed displacement is activated. Rate of loading is simulated
by applying prescribed displacements at different velocities. As such, a total of 12% axial
strain (2.1 mm, vertical displacement) is applied in 8.865 days (0.00094%/minute),
0.0556 days (0.15%/minute) and 0.00758 days (1.10%/minute) respectively. Each of the
prescribed displacement loading phase starts from the end of the isotropic loading phase.
The calculation scheme is listed in Table 13.5.

Table 13.5 Loading scheme for triaxial tests at different loading rates

Phase| Start from: | Calculation Load Displacement | Time interval
[kPa] [mm] [day]

1 0 Plastic 65 Inactive 0.00

2 1 Consolidation | 65 Inactive 0.01

3 2 Plastic 130 Inactive 0.00

4 3 Consolidation | 130 Inactive 0.01

5 4 Plastic 260 Inactive 0.00

6 5 Consolidation | 260 Inactive 0.01

7 6 Plastic 520 Inactive 0.00

8 7 Consolidation | 520 Inactive 0.01

9 8 Plastic 520 0.0021 8.865

10 8 Plastic 520 0.0021 0.0556

11 8 Plastic 520 0.0021 0.00758

The computational results are presented in Figure 13.21 and Figure 13.22. Figure 13.21
shows the stress-strain curves of the prescribed displacement loading phases. This
figure is obtained from Forcey and uy of the upper side of the model:

2ForceY
Qaverage = T — 03 (13.1)

152 Material Models Manual | PLAXIS 2015



where: R = 0.0175: and o3 = 520 kN/m? (13.2)

It can be seen that the shear strength highly depends on the strain rate; the higher strain
rate the higher the shear strength.

400

300

200 |

q average

C=1.10% /min

-
I
|
|
I
. LT e e
I
|
I
|
L
|
I
|
i
100 Jf o ___ L.B=0.15%/min . ___

A =0.00094% / min

S m b —— - ——

0 0.04

e
o
&
0

Figure 13.21 Average deviatoric stress versus axial strain for different rates of straining

Figure 13.22 shows the p- g stress paths from the prescribed displacement loading
phases. For higher strain rates there is a smaller reduction of the mean effective stress,
which allows for a larger ultimate deviatoric stress. It should be noted that the stress state
is not homogeneous at all, because of the inhomogeneous (excess) pore pressure
distribution. This is due to the fact that points close to draining boundaries consolidate
faster than points at a larger distance.
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Figure 13.22 p'-q stress paths for different rates of straining for a point at position (0.01, 0.01)

In addition to the full tests as described before, the last part of the test can also be done
in a simplified way using the Soil Test facility. Since the Soil Test facility operates on a
single stress point, it is not possible to start the undrained triaxial tests from an
inhomogeneous stress state, as considered in the full finite element based model.
Instead, we start from an isotropic effective stress of 500 kN/m?2.
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Table 13.6 Test conditions in the Soil Test facility

Test

A(0.00094%/min)

B(0.15%/min)

C(1.10%/min)

Type of test

Initial effect. stress |o3'|
Maximum strain |e1|
Time At

Number of steps

|Vert. precons. stress|

Triaxial-Undrained,
compression,
isotropic

520 kN/m?

12.0 %

8.865 days

500

433 kN/m?

Triaxial-Undrained,
compression,
isotropic

520 kN/m?

12.0 %

0.0556 days

500

433 kN/m?

Triaxial-Undrained,
compression,
isotropic

520 kN/m?

12.0 %

0.00758 days

500

433kN/m?

13.5 SOFT SOIL CREEP MODEL: RESPONSE IN ONE-DIMENSIONAL
COMPRESSION TEST

In this section the behaviour of the Soft Soil Creep model is illustrated on the basis of a
one-dimensional compression test on clay. Two types of analysis are performed. First,

the test is simulated assuming drained conditions in order to demonstrate the logarithmic
stress-strain relationship and the logarithmic time-settlement behaviour on the long term
(secondary compression). Second, the test is simulated more realistically by including
undrained conditions and consolidation. Since the consolidation process depends on the
drainage length, it is important to use actual dimensions of the test set-up. In this case an
axisymmetric configuration with specimen height of 0.01 m, Figure 13.23, is used. The
material parameters are shown in Table 13.7. The parameter values are selected
arbitrarily, but they are realistic for normally consolidated clay. The vertical
preconsolidation stress is fixed at 50 kPa (POP = 50 kPa).

0.01 m

e - 4 s

X

Figure 13.23 One-dimensional compression test

Drained analysis

In the first analysis successive plastic loading steps are applied using drained conditions.
The load is doubled in every step using Staged construction with time increments of 1
day. After the last loading step an additional creep period of 100 days is applied. The
calculation scheme is listed in Table 13.8. All calculations are performed with a tolerance
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Table 13.7 Soft Soil Creep model parameters for one-dimensional compression test

Parameter Symbol Value Unit
Unit weight ol 19 kN/m?3
Permeability Ky, ky 0.0001 m/day
Modified compression index A* 0.10 -
Modified swelling index K" 0.02 -
Secondary compression index uw* 0.005 -
Poisson's ratio Vur 0.15 -
Cohesion c 1.0 kN/m?
Friction angle o) 30 °
Dilatancy angle P 0.0 °
Coefficient of lateral stress K§° 0.5 -

of 1%.

Undrained analysis

In the second analysis the loading steps are instantaneously applied using undrained
conditions. After each loading step a consolidation of 1 day is applied to let the excess
pore pressures fully dissipate. After the last loading step, an additional creep period of
100 days is again introduced. The calculation scheme for this analysis is listed in Table
13.9. All calculations are performed with a reduced tolerance of 1%.

Figure 13.24 shows the load-settlement curves of both analyses. It can be seen that,
after consolidation, the results of the undrained test match those of the drained test. The
influence of the preconsolidation stress can clearly be seen, although the transition
between reloading and primary loading is not as sharp as when using the Soft Soil
model. In fact, the results presented here are more realistic. The transition is indeed
around 50 kPa.

From the slope of the primary loading line one can back-calculate the modified
compression index A* = Aeq/In(o1 + Acy)/o1 ~ 0.10. Note that 1 mm settlement
corresponds to €1 = 10%. For an axial strain of 30% one would normally use an Updated
mesh analysis, which has not been done in this simple analysis. If, however, the Soft Soll
Creep model would have been used in an Updated mesh analysis with axial strains over
15% one would observe a stiffening effect as indicated by line C in Figure 13.24.

Figure 13.25 shows the time-settlement curves of the drained and the undrained
analyses. From the last part of the curve one can back-calculate the secondary
compression index u* = Aeq/In(At/ty) ~ 0.005 (with t, = 1 day).

Another interesting phenomenon is the development of lateral stresses. During primary
loading, the lateral stress is determined by K, appropriate for normally consolidated

soil. During unloading, the lateral stress decreases much less than the vertical stress, so
that the ratio o'y /0",y increases.

To show these effects the calculation is continued after with a new drained unloading
phase that starts from phase 7 (see Table 13.8) in which the vertical stress is reduced to
—80 kPa.
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Table 13.8 Calculation scheme for the drained case

Phase | Calculation type | Loading input Load | Time interval | Endtime
[kPa] | [day] [day]
1 Plastic Staged 10 1 1
construction
2 Plastic Staged 20 1 2
construction
3 Plastic Staged 40 1 3
construction
4 Plastic Staged 80 1 4
construction
5 Plastic Staged 160 1 5
construction
6 Plastic Staged 320 1 6
construction
7 Plastic Staged 640 1 7
construction
8 Plastic Staged 640 100 107
construction
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Figure 13.26 shows the stress state for two different calculation phases, both at a vertical
stress level of 80 kPa. The plot in the left hand side shows the stress state after primary

o1 [kPa]

Figure 13.24 Load-settlement curve of oedometer test with Soft Soil Creep model. A) Transient
loading with doubling of loading within one day. B) Instantaneous loading with
doubling of load at the beginning of a new day. C) As 'A’' using Updated Mesh

-

loading. As expected the horizontal stress is found to be approximately —40 kPa

(corresponding to Kj° = 0.5). The plot in the right hand side shows the final situation
after unloading down to —80 kPa. In this case the horizontal stress is decreased from
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APPLICATION OF ADVANCED SOIL MODELS

Table 13.9 Calculation scheme for second analysis

Phase| Calculation type | Loading input Load | Time interval | End time
[kPa] | [day] [day]

1 Plastic Staged 10 0 0
construction

2 Consolidation Staged 10 1 1
construction

3 Plastic Staged 20 0 1
construction

4 Consolidation Staged 20 1 2
construction

5 Plastic Staged 40 0 2
construction

6 Consolidation Staged 40 1 3
construction

7 Plastic Staged 80 0 3
construction

8 Consolidation Staged 80 1 4
construction

9 Plastic Staged 160 0 4
construction

10 Consolidation Staged 160 1 5
construction

11 Plastic Staged 320 0 5
construction

12 Consolidation Staged 320 1 6
construction

13 Plastic Staged 640 0 6
construction

14 Consolidation Staged 640 1 7
construction

15 Consolidation Staged 640 100 107
construction
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Figure 13.25 Time-settlement curve of oedometer test with Soft Soil Creep model. A) Transient
loading with doubling of loading within one day. B) Instantaneous loading with
doubling of load at the beginning of a new day
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Figure 13.26 Stress states at a vertical stress level of —80 kPa. Left, after primary loading o'xx ~ 40
kPa. Right, after unloading from —640 kPa o'xx ~ —220 kPa

—320 kPa to approximately —220 kPa, (Ac'xx = 100 kPa), i.e, much less than the
decrease of the vertical stress (Ac',, = 560 kPa). Thus, a situation where o'y is larger
than o'y, is obtained.

During sudden unloading in a one-dimensional compression test, the behaviour is purely
elastic. Hence, the ratio of the horizontal and vertical stress increments can be
determined as:

Aoy VY

= (13.3)
Ac'yy, 1 —-uvy
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It is easy to verify that the results correspond to Poisson's ratio v, = 0.15 as listed in
Table 13.3.

13.6 SOFT SOIL MODEL : RESPONSE IN ISOTROPIC COMPRESSION TEST

In this section it will be demonstrated that the Soft Soil model obeys a logarithmic
relationship between the volumetric strain and the mean stress in isotropic compression.
For this purpose the test set up is simulated as that presented in Figure 13.1. The vertical
load (A) and the horizontal load (B) are simultaneously applied to the same level so that a
fully isotropic stress state occurs. The parameters of the Soft Soil model are chosen
arbitrarily, but the values are realistic for normally consolidated clay. The parameters are
presented in Table 13.10.

From a stress-free state, the model is isotropically loaded to a mean stress of p' = 100
kPa, after which the displacements are reset to zero. As a result, the material becomes
'normally consolidated', i.e., the preconsolidation stress is equivalent to the current
state-of-stress. After that, the isotropic pressure is increased to p' = 1000 kPa. This
loading path is denoted as 'primary loading'. Then, the sample is isotropically 'unloaded'
to p' = 100 kPa. Finally, the sample is loaded up to p' = 10000 kPa. In the last loading
path, the maximum preload of 1000 kPa is exceeded. and hence, it consists of two parts:
the part of the loading path for which p' < 1000 kPa is referred to as 'reloading’, and the
part of the loading path for p' > 1000 kPa consists of further primary loading. The
calculation phases are indicated in Table 13.11.

The computational results are presented in Figure 13.27, which shows the relation
between the vertical strain ), and the vertical stress o'y,

The latter quantity is plotted on a logarithmic scale. The plot shows two straight lines,
which indicates that there is indeed a logarithmic relation for loading and unloading. The
vertical strain is 1/3 of the volumetric strain, ¢, and the vertical stress is equal to the
mean stress, p'. The volumetric strains obtained from the calculation are given in Table
13.12.

From these strains and corresponding stresses, the parameters A* and «* can be
back-calculated using Egs. (9.1) and (9.2).
_e,—ey 0235
In(p'/p°) ~ In(1000/100)
e2—¢l 0.188-0.235

Phase2 k* = — - - 0.020
S T T (p?/p") T In(100/1000)

Phase1 \* = =0.102

Table 13.10 Soft Soil model parameters for isotropic compression test

Modified compression index A* 0.10
Modified swelling index K" 0.02
Poisson's ratio Vyr 0.15
Friction angle ® 30°
Cohesion c 1.0 kPa
Normally consolidated Ko Kg° 0.5
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Table 13.11 Calculation phases for isotropic compression test on clay

Stage Initial stress Final stress

0 Initial situation p° =100 kPa

1 Primary loading p° =100 kPa p' = 1000 kPa
2 Unloading p' = 1000 kPa p? =100 kPa

3 Reloading p? = 100 kPa p® = 1000 kPa
4 Primary loading p® = 1000 kPa p* = 10000 kPa

Table 13.12 Volumetric strains from various calculation phases

Phase Initial strain Final strain

0 €% =0.000

1 €% =0.000 el =-0.235

2 e} =-0.235 €2 =-0.188

3 e2=-0.188 €3 =-0.235

4 ¥ = -0.235 ey = —0.471
—104

-1000

-100

-0.16

Figure 13.27 Results of isotropic compression test

3 2

-2 0235-0.188
Ph 3 Vv LA =0.020
e T T (6%/p?) T In(1000/100)
4 3 o
Phase 4 M\ = — Ev—E& 0.471 — 0.235 0102

In(p*/p?) ~ In(10000/1000)

The back-calculated values correspond to the input values as given in Table 13.10.

Note that the Soft Soil model does not include time effects such as in the secondary
compression. Such behaviour is included in the Soft Soil Creep model.
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13.7 HARDENING SOIL MODEL AND HS SMALL MODEL: EXCAVATION IN BERLIN
SAND

In the previous example, the advantage of the Hardening Soil model's distinct loading
and unloading stiffness was highlighted. With those, the calculated excavation heave
could be reduced to a more realistic, but in most cases still too high value. In the Berlin
excavation example, now the further advantage of considering small-strain stiffness in the
analysis is demonstrated.

The working group 1.6 Numerical methods in Geotechnics of the German Geotechnical
Society (DGGT) has organized several comparative finite element studies (benchmarks).
One of these benchmark examples is the installation of a triple anchored deep excavation
wall in Berlin sand. The reference solution by Schweiger (2002) is used here as the
starting point for the next validation example: Both, the mesh shown in Figure 13.28, and
the soil parameters given in Table 13.13 are taken from this reference solution. However,
the bottom soil layer 3 defined by Schweiger (2002) is assigned the parameters of layer 2
in the HSsmall analysis. In the reference solution this layer's only purpose is the
simulation of small-strain stiffness due to a lack of small-strain stiffness constitutive
models back then.

0.00

0— 30.00
E KT8 T oK E step 1 4.80 _z -3.00(GWT)
E Sand (layer 1) E Y 7°
E step 2 -9.30
20— NV TNZ7 TN] 4 70 o
q \WANZARN . -%
7 Excavation step 3 -14.%5 S
3 Sand (layer 2) % 7 SopY Al
E| Excavation step 4 -16.80
E INVANNPZY) i & N
40— ot -9
E -17.90(GWT) A3
607: hydraulic barrier -30.00 32.00
El v
i 80 diaphragm wall
80— Anchor Prestress Distance 0O Length |
E Al 768kN 2.30m 15cm® 19.80m
E Sand (layer 3) A2 945kN 1.35m 15cm? 23.30m
1003 VN TN A3 980KN 135m 15cm? 2380m
‘HH‘HH‘HH‘HH‘HH‘\\H‘HH‘HH‘H\\‘HH‘HH‘HH‘HH‘HH‘HH‘ Excavation and anchor detail (11000)
-20 0 20 4 60 80 100 120

Figure 13.28 Excavation in Berlin sand: plane strain mesh (left) and geometry detail (right).

Figure 13.29 shows results from the finite element calculation using the original
Hardening Soil model and the HS small model. The small-strain stiffness formulation in
the HS small model accumulates more settlements right next to the wall, whereas the
settlement trough is smaller. The triple anchored retaining wall is deflected less when
using the HSsmall model, almost fitting the measured deflection. Calculated excavation
heave at the end of excavation is shown in Figure 13.30. Compared to the HS results, the
heave which is due to elastic unloading, is roughly halved when using the HS small
model.
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Table 13.13 Hardening Soil modeland HS small modelparameters for the three sand layers in the

excavation project

Parameter Layer 1 Layer 2 Layer 3 Unit
Unit weight above/below | 19 /20 19/20 19/20 KN/m?
phreatic level
Eggf (Prer = 100 kPa) 45000 75000 105000 kN/m?

rel (Drer = 100 kPa) 45000 75000 105000 kN/m?
E' (Prer = 100 kPa) 180000 300000 315000 kN/m?
G’ (prer = 100 kPa) 168750 281250 NA kN/m?
Shear strain 9.7 0.0002 0.0002 NA -
Cohesion ¢ 1.0 1.0 1.0 kN/m?
Friction angle ¢ 35 38 38 °
Dilatancy angle ¢ 5.0 6.0 6.0 ©
Poisson's ratio v, 0.2 0.2 0.2 -
Power m 0.55 0.55 0.55 -
Kge 0.43 0.38 0.38 -
Tensile strength 0.0 0.0 0.0 KN/m?
Failure ratio 0.9 0.9 0.9 -

Distance to diaphragm wall [m] Wall deflection [m]
0 20 4|0 .- iO —0.’04 —0]03 -0.|02 -0.I01 0

0 L

-0.004

-0.008

-0.012

-0.016

Settlement [m]

Figure 13.29 Hardening Soil

model
displacements after the final excavation step. Left: Surface settlement trough. Right:
Lateral wall deflection.

¢ ¢ ¢ Measurement
" HS (Reference)

&—o—» HSsmall

and HS small
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APPLICATION OF ADVANCED SOIL MODELS
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Figure 13.30 Vertical displacements in the excavation pit at a distance of 10 m from the retaining
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14 USER-DEFINED SOIL MODELS

14.1 INTRODUCTION

PLAXIS has a facility for user-defined (UD) soil models. This facility allows users to
implement a wide range of constitutive soil models (stress-strain-time relationship) in
PLAXIS. Such models must be programmed in FORTRAN (or another programming
language), then compiled as a Dynamic Link Library (DLL) and then added to the UDSM
sub-folder of the PLAXIS program directory.

In principle the user provides information about the current stresses and state variables
and PLAXIS provides information about the previous ones and also the strain and time
increments. In the material data base of the PLAXIS input program, the required model
parameters can be entered in the material data sets.

of+ At kAL current stresses and state variables
ofj, k! previous stresses and state variables
Agj, At strain and time increments

As an example, a UD subroutine based on the Drucker-Prager material model is provided
in the user-defined soil models directory, which is included in the program installation
package. In this section, a step-by-step description on how a user-defined soil model can
be formed and utilised in PLAXIS is presented.

14.2 IMPLEMENTATION OF UD MODELS IN CALCULATIONS PROGRAM

The PLAXIS calculations program has been designed to allow for User-defined soil
models. There are mainly four tasks (functionalities) to be performed in the calculations
program:

. Initialisation of state variables

. Calculation of constitutive stresses (stresses computed from the material model at
certain step)

. Creation of effective material stiffness matrix
. Creation of elastic material stiffness matrix

These main tasks (and other tasks) have to be defined by the user in a subroutine called
'User_Mod'. In this subroutine more than one user-defined soil model can be defined. If a
UD soil model is used in an application, the calculation program calls the corresponding
task from the subroutine User_Mod. To create a UD soil model, the User_Mod subroutine
must have the following structure:
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Subroutine User_Mod (IDTask, iMod, IsUndr, iStep, iTer, Iel,Int, X,
Y, Z, TimeO, dTime, Props, Sig0O, Swp0O, StVarO,
dEps, D, Bulk_W, Sig, Swp, StVar, ipl, nStat,
NonSym, iStrsDep, iTimeDep, iTang, iPrjDir,
iPrjLen, iAbort)

where:

IDTask = Identification of the task (1 = Initialise state variables; 2 =
Calculate constitutive stresses; 3 = Create effective material
stiffness matrix; 4 = Return the number of state variables; 5 =
Return matrix attributes (NonSym, iStrsDep, iTimeDep, iTang);
6 = Create elastic material stiffness matrix)

iMod = User-defined soil model number (This option allows for more
than one UD model, up to 10.)

IsUndr = Drained condition (IsUndr = 0) or undrained condition (IsUndr =
1). In the latter case, PLAXIS will add a large bulk stiffness for
water.

iStep = Current calculation step number

iter = Current iteration number

Tel = Current element number

Int = Current local stress point number (1..3 for 6-noded elements, or
1..12 for 15-noded elements)

X,Y,Z = Global coordinates of current stress point

TimeO = Time at the start of the current step

dTime = Time increment of current step

Props = Array(1..50) with User-defined model parameters for the current
stress point

Sig0 = Array(1..20) with previous (= at the start of the current step)
effective stress components of the current stress point and
some other variables (0%, %, 0%, o3, 0%, "% Psteady:
Y Mstage®, ¥ Mstage, Sat, Sat°, Suc, Suc®, ¥ Msf®, ¥ Msf, X;,
SatRes, Temp, UnfrozenW, 0). In 2D calculations oy, and o
should be zero.

Swp0 = Previous excess pore pressure of the current stress point

StVar0 = Array(1..nStat) with previous values of state variables of the

current stress point

166 Material Models Manual | PLAXIS 2015



dEps = Array(1..12) with strain increments of the current stress point in
the current step (Aexx, Acyy, Aczz, Ay, Dvyyz, Dy, €%, €9,
€%, 1Yy Vpzr 1)~ In 2D calculations Avyz, Avzx, 79, and 72,
should be zero. In PLAXIS 2D this array may also contain non-
local strains. Contact Plaxis for more details.

D = Effective material stiffness matrix of the current stress point (1..6,
1..6)
Bulk_W = Bulk modulus of water for the current stress point (for undrained

calculations and consolidation)

Sig = Array (1..6) with resulting constitutive stresses of the current
stress point (o'xx, o'y, 0'2z, T'xy, 0'yz, 0'2x)

Swp = Resulting excess pore pressure of the current stress point

StVar = Array(1..nStat) with resulting values of state variables for the
current stress point

ipl = Plasticity indicator: 0 = no plasticity, 1 = Mohr-Coulomb (failure)
point; 2 = Tension cut-off point, 3 = Cap hardening point, 4 = Cap
friction point, 5 = Friction hardening point.

nStat = Number of state variables (unlimited)

NonSym = Parameter indicating whether the material stiffness matrix is non-
symmetric (NonSym = 1) or not (NonSym = 0) (required for
matrix storage and solution).

iStrsDep = Parameter indicating whether the material stiffness matrix is
stress-dependent (iStrsDep = 1) or not (iStrsDep = 0).

iTimeDep = Parameter indicating whether the material stiffness matrix is
time-dependent (iTimeDep = 1) or not (iTimeDep = 0).

iTang = Parameter indicating whether the material stiffness matrix is a
tangent stiffness matrix, to be used in a full Newton-Raphson
iteration process (iTang = 1) or not (iTang = 0).

iPrjDir = Project directory (for debugging purposes)
iPrjlen = Length of project directory name (for debugging purposes)
iAbort = Parameter forcing the calculation to stop (iAbort = 1).

In the above, 'increment' means 'the total contribution within the current step' and not per
iteration. 'Previous' means 'at the start of the current step’, which is equal to the value at
the end of the previous step.
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In the terminology of the above parameters it is assumed that the standard type of
parameters is used, i.e. parameters beginning with the characters A-H and O-Z are
double (8-byte) floating point values and the remaining parameters are 4-byte integer
values.

The parameters IDTask to dEps and iPrjDir and iPrjLen are input parameters; The
values of these parameters are provided by PLAXIS and can be used within the
subroutine. These input parameters should not be modified (except for Stvaro0 in case
IDTask = 1). The parameters D to iTang and iAbort are output parameters. The values of
these parameters are to be determined by the user. In case IDTask = 1, StVar0 becomes
output parameter.

The user subroutine should contain program code for listing the tasks and output
parameters (IDTask = 1 to 6). After the declaration of variables, the User_Mod subroutine
must have the following structure (here specified in pseudo code):

Case IDTask of

1 Begin
{ Initialise state variables StVar0O }
End
2 Begin
{ Calculate constitutive stresses Sig (and Swp) }
End
3 Begin
{ Create effective material stiffness matrix D }
End
4 Begin
{ Return the number of state variables nStat }
End
5 Begin
{ Return matrix attributes NonSym, iStrsDep,
iTimeDep }
End
6 Begin
{ Create elastic material stiffness matrix De }
End
End Case

If more than one UD model is considered, distinction should be made between different
models, indicated by the UD model number iMod.

Initialise state variables (1pTask = 1)

State variables (also called the hardening parameters) are, for example, used in
hardening models to indicate the current position of the yield loci. The update of state
variables is considered in the calculation of constitutive stresses based on the previous
value of the state variables and the new stress state. Hence, it is necessary to know
about the initial value of the state variables, i.e. the value at the beginning of the
calculation step. Within a continuous calculation phase, state variables are automatically
transferred from one calculation step to another. The resulting value of the state variable
in the previous step, StVar, is stored in the output files and automatically used as the
initial value in the current step, StVar0. When starting a new calculation phase, the initial
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value of the state variables is read from the output file of the previous calculation step and
put in the StVar0 array. In this case it is not necessary to modify the StVar0 array.

However, if the previous calculation step does not contain information on the state
variables (for example in the very first calculation step), the StVar0 array would contain
zeros. For this case the initial value has to be calculated based on the actual conditions
(actual stress state) at the beginning of the step. Consider, for example, the situation
where the first state variable is the minimum mean effective stress, p' (considering that
compression is negative). If the initial stresses have been generated using the
Ko-procedure, then the initial effective stresses are non-zero, but the initial value of the
state variable is zero, because the initialization of this user-defined variable is not
considered in the Kp-procedure. In this case, part 1 of the user subroutine may look like:

1 Begin
{ Initialise state variables StVarO}
p = (8ig0o[1] + Sig0[2] + Sig0[3] ) / 3.0
StVar0[1] = Min(StVarO[1] ,p)
End

Calculate constitutive stresses (IDTask = 2)

This task constitutes the main part of the user subroutine in which the stress integration
and correction are performed according to the user-defined soil model formulation. Let us
consider a simple example using a linear elastic D-matrix as created under IDTask = 3.

In this case the stress components, Sig, can directly be calculated from the initial
stresses, Sig0, the material stiffness matrix, D, and the strain increments, dEps: Sig[i]=
Sigo[i] + >_ (D[/, j1*dEps[j]). In this case, part 2 of the user subroutine may look like:

2 Begin
{ Calculate constitutive stresses Sig (and Swp) }
For i=1 to 6 do
Sigli] = Sig0[il
For j=1 to 6 do
Sigl[i] = Sigl[i] + D[i,jl*dEps[j]
End for {j}
End for {i}
End

Create effective material stiffness matrix (IDTask = 3)

The material stiffness matrix, D, may be a matrix containing only the elastic components
of the stress-strain relationship (as it is the case for the existing soil models in PLAXIS),
or the full elastoplastic material stiffness matrix (tangent stiffness matrix). Let us consider
the very simple example of Hooke's law of isotropic linear elasticity. There are only two
model parameters involved: Young's modulus, E, and Poisson's ratio, v. These
parameters are stored, respectively, in position 1 and 2 of the model parameters array,
Props(1..50). In this case, part 3 of the user subroutine may look like:

3 Begin
{ Create effective material stiffness matrix D}
E = Props[1]
v = Props[2]

PLAXIS 2015 | Material Models Manual 169



G = 0.5*%E/(1.0+v)
Fac = 2xG/(1.0-2%v) { make sure that v < 0.5 !! }
Terml = Facx(1-v)
Term2 = Fac*v
D[1,1] = Termi
D[1,2] = Term2
D[1,3] = Term2
D[2,1] = Term2
D[2,2] = Terml
D[2,3] = Term2
D[3,1] = Term2
D[3,2] = Term2
D[3,3] = Terml

D[4,4] = G

D[5,5] = G

D[6,6] = G
End

(By default, D will be initialized to zero, so the remaining terms are still zero; however, it is
a good habit to explicitly define zero terms as well.)

If undrained behaviour is considered (IsUndr = 1), then a bulk stiffness for water
(Bulk_W) must be specified at the end of part 3. After calling the user subroutine with
IDTask = 3 and IsUndr = 1, PLAXIS will automatically add the stiffness of the water to the
material stiffness matrix D such that: D[i=1..3, j=1..3] = D[/,j]+ Bulk_W. If Bulk_W is
not specified, PLAXIS will give it a default value of 100*Avg(D[i=1..3, j=1..3]).

Return the number of state variables (IDTask = /)

This part of the user subroutine returns the parameter nStat, i.e. the number of state
variables. In the case of just a single state parameter, the user subroutine should look
like:

4  Begin
{ Return the number of state variables nStat }
nStat = 1
End

Return matrix attributes (IDTask = 5)

The material stiffness matrix may be stress-dependent (such as in the Hardening Soil
model) or time-dependent (such as in the Soft Soil Creep model). When using a tangent
stiffness matrix, the matrix may even be non-symmetric, for example in the case of
non-associated plasticity. The last part of the user subroutine is used to initialize the
matrix attributes in order to update and store the global stiffness matrix properly during
the calculation process. For the simple example of Hooke's law, as described earlier, the
matrix is symmetric and neither stress- nor time-dependent. In this case the user
subroutine may be written as:

5 Begin
{ Return matrix attributes NonSym, iStrsDep, }
{ iTimeDep, iTang }
NonSym = 0O
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iStrsDep = 0

iTimeDep = O

iTang = 0
End

For NonSym = 0 only half of the global stiffness matrix is stored using a profile structure,
whereas for Nonsym = 1 the full matrix profile is stored.

For iStrsDep = 1 the global stiffness matrix is created and decomposed at the beginning
of each calculation step based on the actual stress state (modified Newton-Raphson
procedure).

For iTimeDep = 1 the global stiffness matrix is created and decomposed every time when
the time step changes.

For iTang = 1 the global stiffness matrix is created and decomposed at the beginning of
each iteration based on the actual stress state (full Newton-Raphson procedure; to be
used in combination with iStrsDep=1).

Create elastic material stiffness matrix (IDTask = 6)

The elastic material stiffness matrix, D®, is the elastic part of the effective material
stiffness matrix as described earlier.

In the case that the effective material stiffness matrix was taken to be the elastic stiffness
matrix, this matrix may just be adopted here. However in the case that an elastoplastic or
tangent matrix was used for the effective stiffness matrix, then the matrix to be created
here should only contain the elastic components.

The reason that an elastic material stiffness matrix is required is because PLAXIS
calculates the current relative global stiffness of the finite element model as a whole
(CSP = Current Stiffness Parameter). The CSP parameter is defined as:
B Total work
Total elastic work

The elastic material stiffness matrix is required to calculate the total elastic work in the
definition of the CSP. The CSP equals unity if all the material is elastic whereas it
gradually reduces to zero when failure is approached.

The CSP parameter is used in the calculation of the global error. The global error is
defined as:

|unbalance force|
|currently activated load|+ CSP -|previously activated load|

Global error =

The unbalance force is the difference between the external forces and the internal
reactions. The currently activated load is the load that is being activated in the current
calculation phase, whereas the previously activated load is the load that has been
activated in previous calculation phases and that is still active in the current phase.

Using the above definition for the global error in combination with a fixed tolerated error
results in an improved equilibrium situation when plasticity increases or failure is
approached. The idea is that a small out-of-balance is not a problem when a situation is
mostly elastic, but in order to accurately calculate failure state, safety factor or bearing
capacity, a stricter equilibrium condition must be adopted.
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Part 6 of the user subroutine looks very similar to part 3, except that only elastic
components are considered here. It should be noted that the same variable D is used to
store the elastic material stiffness matrix, whereas in Part 3 this variable is used to store
the effective material stiffness matrix.

6 Begin
{ Create elastic material stiffness matrix D }
D[1,1]
D[1,2]
D[1,3]

o

—_

(&)

(&)

=
|

End

Using predefined subroutines from the source code

In order to simplify the creation of user subroutines, a number of FORTRAN subroutines
and functions for vector and matrix operations are available in the source code (to be
included in the file with the user subroutine). The available subroutines may be called by
User_Mod subroutine to shorten the code. An overview of the available subroutines is
given in Appendix C.

Definition of user-interface functions

In addition to the user-defined model itself it is possible to define functions that will
facilitate its use within the Plaxis user-interface. If available, Plaxis Input will retrieve
information about the model and its parameters using the procedures described hereafter.

procedure GetModelCount(var C:longint) ;

C = number of models (return parameter)

This procedure retrieves the number of models that have been defined in the DLL.
PLAXIS assumes that model IDs are successive starting at model ID = 1.

procedure GetModelName (var iModel : longint;
var Name : shortstring) ;

iModel = User-defined soil model number to retrieve the name for (input
parameter)
Name = model name (return parameter)

This procedure retrieves the names of the models defined in the DLL.
procedure GetParamCount(var iModel : longint; var C :longint) ;

iModel User-defined soil model number (input parameter)

¢ = number of parameters for the specified model (return parameter)

This procedure retrieves the number of parameters of a specific model.

procedure GetParamName(var iModel,iParam : longint;
var Name : shortstring);
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iModel = User-defined soil modelnumber (input parameter)
iParam = Parameter number (input parameter)
Name = parameter name (return parameter)

This procedure retrieves the parameter name of a specific parameter.

Procedure GetParamUnit(var iModel,iParam : longint;
var Units : shortstring) ;

iModel = User-defined soil model number (input parameter)
iParam = Parameter number (input parameter)
Units = Parameter units (return parameter)

This procedure retrieves the parameter units of a specific parameter. Since the chosen
units are dependent on the units of length, force and time chosen by the user the
following characters should be used for defining parameter units:

'L" or 'I' for units of length 'F' or 'f' for units of force 'T" or 't' for units of time.

For model names, model parameter names and model parameter units special
characters can be used for indicating subscript, superscript or symbol font (for instance
for Greek characters).

~ :  From here characters will be superscript
_ From here characters will be subscript

e : From here characters will be in symbol font
# :  Ends the current superscript or subscript.
Pairs of "".#',' ... # and '@...# can be nested.
For example:

A UD model parameter uses the oedometer stiffness as parameter. The parameter name
can be defined as 'E_oed#' and its units as 'F/L"2#'".

When defining a unit containing one of the letters 'I', 'f' or 't', like 'cal/mol’, these letters will
be replaced by the unit of length, the unit of force or the unit of time respectively. To avoid
this, these letters should be preceded by a backslash. For example 'cal/mol' should be
defined as 'ca\l/mo\l' to avoid getting '‘cam/mom".

The state variables to be displayed in the Output program can be defined.

procedure GetStateVarCount(var iModel : longint; var C :longint) ;

iModel

User-defined soil model number (input parameter)

C = number of state variables for the specified model (return
parameter)

This procedure retrieves the number of state variables of a specific model.

procedure GetStateVarName(var iModel,iParam : longint;
var Name : shortstring);
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iModel = Used-defined soil model number (input parameter)
iParam = Parameter number (input parameter)
Name = parameter name (return parameter)

This procedure retrieves the state parameter name of a specific parameter.

Procedure GetStateVArUnit(var iModel,iParam : longint;
var Units : shortstring) ;

iModel = User-defined soil model number (input parameter)
iParam = Parameter number (input parameter)
Units = Parameter units (return parameter)

This procedure retrieves the state parameter units of a specific parameter.

All procedures are defined in Pascal but equivalent procedures can be created, for
instance in a Fortran programming language. Please make sure that the data format of
the parameters in the subroutine headers is identical to those formulated before. For
instance, the procedures mentioned above use a "shortstring" type; a "shortstring” is an
array of 256 characters where the first character contains the actual length of the
shortstring contents. Some programming languages only have null-terminated strings; in
this case it may be necessary to use an array of 256 bytes representing the ASCII values
of the characters to return names and units. An example of Fortran subroutines is
included in the software package.

Compiling the user subroutine

The user subroutine User_Mod has to be compiled into a DLL file using an appropriate
compiler. Note that the compiler must have the option for compiling DLL files. Below are
examples for two different FORTRAN compilers. It is supposed that the user subroutine
User_Mod is contained in the fle USRMOD.FOR.

After creating the user subroutine User_Mod, a command must be included to export
data to the DLL.

The following statement has to be inserted in the subroutine just after the declaration of
variables:

. Using Lahey Fortran (LF95, ...): DLL_Export User_Mod

. Using Intel Visual Fortran: IDEC$ ATTRIBUTES DLLExport,StdCall,Reference ::
User_Mod

In order to compile the USRMOD.FOR into a DLL file, the following command must be
executed:

. Using Lahey Fortran 90: LF90 -win -dIl USRMOD.FOR -lib LFUsrLib -ml bd
. Using Lahey Fortran 95: LF95 -win -dil USRMOD.FOR -lib LFUsrLib -ml bd
. Using Intel Visual Fortran: ifort /winapp USRMOD.FOR DFUsrLib.lib /dll

. Using GCC compiler: g95 USRMOD.FOR -0 usermod.dll -shared -fcase -upper
-fno-underscoring -mrtd
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. For GCC compiler, the following statement has to be included in the subroutine just
after the declaration of variables: NONE

In all cases USRMOD.DLL file will be created. It can be renamed to 'any' .dll. This file
should be placed in the usdm folder under the PLAXIS program directory, thereafter it
can be used together with the existing PLAXIS calculations program (PLASW.EXE in
PLAXIS 2D or PLASW3DF.EXE in PLAXIS 3D). Once the UD model is used, PLAXIS will
execute the commands as listed in the USRMOD.DLL file.

In order to compile as 64-bit, you need both a 32-bit compiled 'USRMOD.DLL' and a
64-bit compiled ' USRMODG64.DLL' file in the usdm folder under the PLAXIS program
directory. The last one only needs to contain the 'User_Mod' subroutine.

Debugging possibilities

When making computer programs, usually some time is spent to 'debug' earlier written
source code. In order to be able to effectively debug the user subroutine, there should be
a possibility for the user to write any kind of data to a file. Such a 'debug-file' is not
automatically available and has to be created in the user subroutine.

After the debug-file is created, data can be written to this file from within the user
subroutine. This can be done by using, for example, the availably written subroutines
(Section C).

14.3 INPUT OF UD MODEL PARAMETERS VIA USER-INTERFACE

Input of the model parameters for user-defined soil models can be done using the
PLAXIS material data base. In fact, the procedure is very similar to the input of
parameters for the existing PLAXIS models.

When creating a new material data set for soil and interfaces in the material data base, a
window appears with six tabsheets: General, Parameters, Groundwater, Thermal,
Interfaces, Initial Figure 14.1. A user-defined model can be selected from the Material
model combo box in the General tabsheet.

After inputting general properties, the appropriate UD model can be chosen from the
available models that have been found by PLAXIS Input.

The Parameters tabsheet shows two combo boxes; the top combo box lists all the DLLs
that contain valid UD models and the next combo box shows the models defined in the
selected DLL. Each UD model has its own set of model parameters, defined in the same
DLL that contains the model definition.

When an available model is chosen PLAXIS will automatically read its parameter names
and units from the DLL and fill the parameter table below.

Interfaces
The Interfaces tabsheet, Figure 14.2, contains the material data for interfaces.

Normally, this tabsheet contains the Rjnr parameter. For user-defined soil models the
interface tabsheet is slightly different and contains the interface oedometer modulus,

Egg@, and the interface strength parameters Cinter,0inter and ¥iner. Hence, the interface
shear strength is directly given in strength parameters instead of using a factor relating
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Soil - User-defined - <NoMame>
s

General ‘Paramebers I Flow parameters | Interfaces = | Initial |

Property Unit
Material set

Identification

Material model

Drainage type

Colour

Comments

General properties

Tunsar khyjms

Value

<MNoName >

Linear elastic
Mohr-Coulomb
Hardening soil

HS small

Soft sail

Soft soil creep
Jointed rock
Modified Cam-Clay
NGI-ADP
Hoek-Brown
Sekiguchi-Ohta {Inviscid)

] »

m

Sekiiuchw-ohta ii\sdd

Tex Kifm?

= Advanced

[ Mext I [ oK ] I Cancel ]

a. Selection of user-defined soil models

Soil - User-defined - <NoMame»

O B i

General ‘ Parameters |Fluw parameters | Interfaces * | Initial |

Property Unit value
User-defined model

DLL file example. il

Model in DLL DP
Parameters

G kNjm2 0.000
nu 0.000
0.000
0.000

c Kjm2 0.000

[ [ext ] [ oK. ] [ Cancel ]

b. Input of parameters

Figure 14.1 Selection window

the interface shear strength to the soil shear strength, as it is the case in PLAXIS models.

In addition, two parameters are included to enable stress-dependency of the interface
stiffness according to a power law formulation:

ref Uln UD-Power
oed U D_ Pref

where UD-Power, is the rate of stress dependency of the interface stiffness, UD-P™® is
the reference stress level (usually 100 kN/m?) and o', is the effective normal stress in the
interface stress point.

Eoed(U'n) = (14.1)

After having entered values for all parameters, the data sets can be assigned to the
corresponding soil clusters, in a similar way as for the existing material models in
PLAXIS. The user-defined parameters are transmitted to the calculation program and
appear for the appropriate stress points as Props(1..50) in the User_Mod subroutine.
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USER-DEFINED SOIL MODELS

Y
[ General | [ Fow | imterfaces [mital |
Property Unit Value
Interface material properties

Eont™ Km2
Cref Kfm? 0.000
@ (ohi) o 0.000
v (psi) : 0,000
UD-Power 0.000
un-p e knjm2 100.0

[ wen J[ ok J[ cencad |

Figure 14.2 Interface tabsheet

PLAXIS 2015 | Material Models Manual 177



MATERIAL MODELS MANUAL

178 Material Models Manual | PLAXIS 2015



15 STRUCTURAL BEHAVIOUR

15.1 ANCHORS

The elastic behaviour of an anchor involves only a relationship between axial force N and
displacement (elongation) u of the form:

N=E—LAu (15.1)

The anchor stiffness EA is defined by the user based on the material stiffness E and
cross section A.

In case of elastoplastic behaviour of the anchor the maximum tension force is bound by
Fmaxtens and the maximum compression force is bound by Fpmax,comp-

|_ . 152 BEAMS
The local system of axes of a beam element is such that the first axis corresponds with
the axial beam direction. The second and third axis are always perpendicular to the beam

axis.
)
5 N ¢ Q2 Qi3
a. Local Axes b. Axial force N c. Shearforce Q12 d. Shear force Qi3
Figure 15.1 Axial force and shear forces
3
v?2
I3 M3 k3 Io M2 k2
a. Bending moment M; b. Bending moment M»

Figure 15.2 Bending moments

Elastic behaviour of beam elements is defined by the following parameters:
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A Beam cross section area

E: Young's modulus in axial direction
bo: Moment of inertia against bending around the second axis
I3: Moment of inertia against bending around the third axis

The relationships between the different force components and the strain / gradient /
curvature components are defined as:

N = EAe M2 = Elgﬁg
012 = kGA’y12 M3 = E/3!€3 (15.2)
Qi3 = KGAY13

In which k is the shear correction factor, which is taken as ¥. The shear modulus is
taken as G = Y,E.

15.3 2D GEOGRIDS

The PLAXIS 2D program allows for orthotropic behaviour of geogrid elements, which is
defined by the parameters EAy and EA,. The stiffnesses are defined by the user and are
based on the material tension stiffnesses (Ey, Ep) and the cross section areas (A+, A2)
corresponding to the local axes of the geogrid. Geogrid elements cannot sustain
compression forces.

The relationship between the force and the strain in axisymmetric models is defined as:

N EA; O €
= (15.3)
H 0 EAs||en
where H is the hoop force and ¢4 is the hoop strain. For plane strain model H = 0.

In case of elastoplastic behaviour the maximum tension force in any direction is bound by
pr1 and prg.
15.4 3D GEOGRIDS

The PLAXIS 3D program allows for orthotropic as well as anisotropic material behaviour
in geogrid elements, which is defined by the following parameters:

N1 = EA1€1
N2 = EA2€2 (15.4)
Qi2 = GAvi2

In the case of orthotropic behaviour EAy = EA; and GA = ,EA; in the general three
dimensional case.

When plasticity is considered, the maximum tensile forces can be defined:

Np,1: Maximum tensile force in 1-direction
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Npo: Maximum tensile force in 2-direction

Axial forces are calculated at the stress points of the geogrid elements. If N, is
exceeded, stresses are redistributed according to the theory of plasticity, so that the
maximum forces are complied with. This will result in irreversible deformations. Output of
axial forces is given in the nodes, which requires extrapolation of the values at the stress
points. Nodal forces are not checked against the maximum forces. Hence, it is possible
that the nodal values of the axial force may slightly exceed Np.

15.5 2D PLATES

The PLAXIS 2D program allows for orthotropic elasto-plastic material behaviour in plate
elements. The elastic behaviour is defined by the following parameters:

EA;: Normal stiffness

EAs: Stiffness in the out of plane direction
El: Bending stiffness

Vi Poisson's ratio

The material behaviour in plate elements is defined by the following relationship between
strains and stresses.

ON 1—v 1—v EN

oo | = 2Gv 2 0 £ (155)
1—v 1-v

T 0 0 KGI|| 7

In which K is the shear correction factor, which is taken as ¥%. For isotropic material:

E;
2(1 +v)

G:

(15.6)

For anisotropic plates, the following relationship between strains and stresses is used:

ON E1 0 O EN
o2 |=| 0 Ex 0 || e (15.7)
T 0 0 KG || ~
where Ey = EA{/d and E, = EA>/d. Note that the Poisson's ratio () is assumed to be
zero in anisotropic case.

The material behaviour in plate elements is defined by the following relationship between
structural forces and strains:
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N = EAse (15.8)

H= EAQEH (15.9)

Q= ﬂv* (15.10)
2(1+v)

M= Elx (15.11)

The modified shear strain v* takes into account the shear strain v and some additional
terms in order to give a more accurate approximation of the problem. k is the shear
correction factor, which is taken as %. This implies that the shear stiffness is determined
from the assumption that the plate has a rectangular cross section. In the case of
modelling a solid wall, this will give the correct shear deformation. However, in the case
of steel profile elements, like sheet-pile walls, the computed shear deformation may be
too large. You can check this by judging the value of dgq, which can be computed as

/ 12EI/EA. For steel profile elements, deq should be at least of the order of a factor 10
times smaller than the length of the plate to ensure negligible shear deformations.

When plasticity is considered, the maximum bending moment and maximum normal
force can be defined:

Mp: Maximum bending moment
Np: Maximum normal force

The maximum bending moment is given in units of force times length per unit width. The
maximum axial force, Np, is specified in units of force per unit width. When the
combination of a bending moment and an axial force occur in a plate, then the actual
bending moment or axial force at which plasticity occurs is lower than respectively M, or
Np. The relationship between M, and N, is visualised in (Figure 15.3). The diamond
shape represents the ultimate combination of forces for which plasticity will occur. Force
combinations inside the diamond will result in elastic deformations only.

By default the maximum moment is set to 1+10'° units if the material type is set to elastic
(the default setting).

Bending moments and axial forces are calculated at the stress points of the beam
elements. When yield function is violated, stresses are redistributed according to the
theory of plasticity, so that the maxima are complied with. This will result in irreversible
deformations. Output of bending moments and axial forces is given in the nodes, which
requires extrapolation of the values at the stress points. Nodal forces are not checked
against the maximum forces. Hence, it is possible that the nodal values of the axial force
may slightly exceed Mp.
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STRUCTURAL BEHAVIOUR

\4

Mp

Figure 15.3 Combinations of maximum bending moment and axial force

E 15.6 3D PLATES

The PLAXIS 3D program allows for orthotropic material behaviour in plate elements,
which is defined by the following parameters:

E;: Young's modulus in first axial direction

E: Young's modulus in second axial direction

Gi2: In-plane shear modulus

Gi3: Out-of-plane shear modulus related to shear deformation over first direction

Go3s: Out-of-plane shear modulus related to shear deformation over second
direction

Vi Poisson's ratio (v12 < v/E1/Ez)

The material behaviour in plate elements is defined by the following relationship between
strains and stresses, which is based on the general three-dimensional continuum
mechanics theory and the assumption that o33 = 0.

11 1/Ey —vip/Er 0 0 0 011

) —vig/Er 1/E> 0 0 0 o2

T2 | = 0 0 1/G2 O 0 o12 (15.12)
Y13 0 0 0 1/kGis 0 013
REI 0 0 0 0 1/ngs_ | 023 |
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In which k is the shear correction factor, which is taken as . Inverting this relationship
and ignoring the higher order terms in v gives the following stress-strain relationship:

o11 Ei vi2E, O 0 O
022 vipE, E; 0 0 O
o2 |=| O 0 G2 0 0
013 0 0 0 kGiz O
023 0 0 0 0 KGos

€11
€22
M2
Y13

723

(15.13)

This approximation holds as long as the Poisson's ratio is small. These stress-strain

relationships can be transformed into relationships for structural forces:

N1 E1 d 1/12E2d &9

Ng U12E2d E2d g2

Q2 Gied O 0 Y12

013 = 0 kG13d 0 ’}/1*3
i Qo3 11 0 0 kGosd 7;3
T Eia® Exa®

w] [ B et o

- V12E2d3 Egd3

Mz 12 12 ‘ 0d3

Mi» 12
el 0 0 12

K11

K22

K12

(15.14a)

(15.14b)

(15.14c)

In which d is the thickness of the plate, which also determines the distributed weight of
the plate together with the unit weight of the plate material: v - d. The modified shear
strain v* takes into account the shear strain v and some additional terms in order to give
a more accurate approximation of the problem.

The local system of axes in a plate element is such that the first and the second local axis
lie in the plane of the plate whereas the third axis is perpendicular to the plane of the

plate (Figure 15.4).

When geometric orthotropy is considered rather than material orthotropy, the following

relationships for structural forces apply:

N

M EA1 Z/EA1
Nil 1722 17202 || =
N. - Z/EA1 EAQ
L2 I c
- EA1»
Qi2 2(1+v)
EA
_ 0 13
Qi 2(1 +1)
| s 0 0

~
~

0

0
EAz;
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2(1 +v)

EA;
Z/EA1

Y12
71*3

*

V23

1% EA1
EA,

(15.15a)

(15.15b)



A

\V)
w

@

T

Q12 G2 712 Q13 Gi3 713 Q23 Goz 723

Mo K12 Mi11 k11 M2z k22

Figure 15.4 Definition of positive normal forces (N), shear forces (Q) and bending moments (M) for
a plate based on local system of axes

EI1 I/E/1

M 21,2 O Ko Ely vEly 0 K
M | = % % 0 koo |~ | VEl El 0 Koo
El _Eha
M. 12 0 0
12 0 0 Syl 2(1+0) JLT2
(15.15c)

where the approximations hold for a small Poisson's ratio. In these relations the following
alternative parameters are used:

Aq: Effective material cross section area for axial forces in the first direction
Ao: Effective material cross section area for axial forces in the second direction
Aqo: Effective material cross section area for shear forces Q2

A13: Effective material cross section area for shear forces Q3
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Aos: Effective material cross section area for shear forces Qo3

Iy: Moment of inertia against bending over the first axis
b: Moment of inertia against bending over the second axis
lio: Moment of inertia against torsion

In order to use the available plate elements for geometric orthotropy, the basic material
parameters should be chosen in such a way that the resulting normal stiffness E{A is
equal to the normal stiffness EA+ of the plate. Here E; is the input value for the Young's
modulus in the first direction, A is the internally calculated area of the plate, E is the
actual Young's modulus of the material and Ay is the cross sectional area of the element
to be modelled. Similar parameter choices should be made for the other normal stiffness,
flexural rigidities and shear stiffnesses. However, for a given choice of the equivalent
plate thickness d it will not be possible to match all stiffness components exactly. The
thickness d is the equivalent plate thickness such that the average distributed weight of
the plate corresponds to v - d.

When bending is considered as the most important type of deformation, the following
choices are recommended:

Ey = 12El/d® E; = 12EhL/d®
B6EI EA EA
Gio = 12;3 Gig = —— 18 Gog= — 2 (15.16)
(1+v)d 2(1 +v)d 2(1 +v)d
V2 =V

In this case the resulting flexural rigidities £1d°/12 and E,d®/12 and shear stiffnesses
Gi3d and Go3d prove to be independent of the chosen value for equivalent plate
thickness. Only the normal stiffnesses E1A and E>A and shear stiffness Gi2d are not
independent of the chosen value of the equivalent plate thickness, and a suitable
selection for d has to be made. What is the most suitable selection for d depends on the
construction that is to be modelled. Two examples are given below.

Engineering examples:

In the following, two types of applications are given that frequently occur in the
engineering practice. The first example is a sheet-pile wall, as depicted in Figure 15.5.
From the sheet-pile manufacturer, the following properties are known: t (wall thickness),
h (total height), A (per m wall width), /1, Egteer and stees-

The structure is geometrically orthotropic with significant different stiffnesses in horizontal
and vertical direction. It is known that the axial stiffness in vertical direction is larger than
the effective stiffness in horizontal direction (E; > E»). Moreover, the flexural rigidity
against bending over the vertical direction, /1, is much larger than the stiffness against
bending over the horizontal direction, k, (l; >> kL say Iy ~ 20k and Iy >> l;» say

/1 ~ 10/12). t

Furthermore, it is assumed that the cross section area that is effective against shear
deformation over the vertical direction is about 1/3 of the total cross section area,

A factor of 20 is used here to move the bending stiffness over the first direction sufficiently small compared to
the bending stiffness over the second direction, whilst the matrix condition is still OK. Note that in reality bending
stiffness differences in order of 1000 may exist.
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Figure 15.5 Example of sheet-pile wall with its major quantities

whereas the area that is effective against shear deformation over the horizontal direction
is about 1/10 of the total cross section area. Finally, the Poisson's ratio's for sheet pile
walls can be assumed zero. With these assumptions, the situation could be modelled by
selecting the model parameters in the following way:

d = h (which is considerably larger than 1)
E1 = 12Esteell1 /ds
Eo = 12Egeeih/d® ~ 2/ 1, E1 ~ Eq/20

Giz = % ~ 6Esteell1/10d3
stee

Gz = _EsteaiAts ~ Esteel(A/3)/2d ~ Egiee)A/6d
2(1 + Vsteel)

GQS = M ~ Esteel(A/1o)/2d ~ EsteelA/zod
2(1 + vsteer)d

vi2 = 0

v = Avsteel / d

The second example is a concrete T-shaped floor profile, as depicted in Figure 15.6. In
addition to the precise geometry dimensions, the following properties are known:
Econcretea Vconcrete

The structure is again geometrically orthotropic with significant different stiffnesses in the
two major floor directions. The flexural rigidity against bending over the second direction,
b, is larger than the stiffness against bending over the first direction, /1, (k. > 1), since b

PLAXIS 2015 | Material Models Manual 187



Figure 15.6 Example of concrete floor profile with its major quantities

is dominated by h{+ hs whereas /; only depends on hy. Furthermore, the cross section
area (per unit of width) that is effective against shear deformation over the second
direction (Go3) is equal to the total cross section area A, whereas the area that is
effective against shear deformation over the first direction (Gj3) is equal to hy. With these
assumptions, the situation could be modelled by selecting the model parameters in the
following way:

d= h1 W1 +(h1 +h2)W2
- W1y + Wo

E1 = 12Econcr«';=tel1/d3 = 12E¢:oncrete11*2’7:13/(13 = Econcreteh?/d3

%h?W1 + 1%(/71 + h2)3W2
E2 = 12Econcretel2/d3 Whel’e l2 = W1 + W2
6E / 1 43

Gio = concrete’12 h o~ = —"h

' (1 + Veoncrete) 5 Where hz 1 127
G13 = EconcreteA13 = Econcreteh1

2(1 + Vconcrete)d 2(1 + Vconcrete)d

623 - EconcreteA23 = Econcreted - Econcrete

2(1 + veoncrete)d  2(1 + Veoncrete)d - 2(1 + veoncrete)

V12 = Vconcrete

15.7 2D EMBEDDED PILE ROW
An embedded pile in PLAXIS 2D consists of plate elements with embedded interface

elements to describe the interaction with the soil at the pile skin and at the pile foot
(bearing capacity). The material parameters of the embedded pile distinguish between
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the parameters of the pile and the parameters of the skin resistance and foot resistance.
The plate elements are considered to be linear elastic. The elastic behaviour is defined
by the following parameters:

E: Young's modulus in axial direction
A: Pile cross section area
I Moment of inertia against bending around the pile axis

The material behaviour in plate elements is defined by the following relationship between
strains and stresses.

on|_|E O fen (15.17)

T 0 KG || ~
Where
ON: Normal stress
T Shear stress

Shear modulus

E

T 2(1+v)
K: Shear correction factor taken as ¥,
EN: Normal strain

The material behaviour in plate elements is defined by the following relationship between
structural forces and strains:

N = EAqen (15.18)

Q= %Av* (15.19)
2(1 +v)

M = Elx (15.20)

The modified shear strain v* takes into account the shear strain v and some additional
terms in order to give a more accurate approximation of the problem.

The interaction of the pile with the soil at the skin of the pile is described by linear elastic
behaviour with a finite strength and is defined by the following parameter:
Tax: Maximum traction allowed at the skin of the embedded pile (can vary along the
pile)
The constitutive equation at the skin of the pile is defined by (see Figure 15.7):
ts Ks 0 || uf—us

= (15.21)
tn 0 Kn Uﬁ —us

where uP denotes the displacement of the pile and u® denotes the displacement of the

soil. K5 denotes the elastic shear stiffness (against longitudinal (axial) displacement
differences) of the embedded interface elements and K, denotes the elastic normal
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stiffness (against transverse (lateral) displacement differences) of the embedded
interface elements. These values are calculated using the interface stiffness factors and
the pile spacing defined by the user:

Ks = ISFpg-Csol

Beone (15.22)
Kn = ISFgy—s0i—

spacing

Default interface stiffness factors are calculated based on the pile spacing (Lspacing) in
relation to the pile diameter (Deg):

ISFrg = 2.5 (W’) o (15.23)
eq

Lepacing \ -0
ISFay = 2.5 (SL’;"’C(’J”") (15.24)
e

ISFx = 25 (LS”“’”Q> o (15.25)
eq

Ks
Ts;max

Kn

K foot

i I:bot;max

Figure 15.7 Stiffness of the embedded interface elements for piles

The normal stress f, will always remain elastic. For the shear stress in axial direction fs to
remain elastic it is given by:

[ts| < Trnax (15.26)

For plastic behaviour the shear force s is given by:

lts|= Tmax (15.27)

The interaction of the pile with the soil at the foot of the pile is described by a linear
elastic perfectly plastic interface element. The strength of the base is described by the
following parameter:

Frnax: Maximum force allowed at the foot of the embedded pile

In addition, no tension forces are allowed. In order to ensure that a realistic pile bearing
capacity as specified can actually be reached, a zone in the soil surrounding the pile foot
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is identified where any kind of soil plasticity is excluded (elastic zone; Figure 15.8). The
size of this zone is determined by the embedded pile's equivalent radius Re, (Reference
Manual).

Embedded pile (row)

&3

Figure 15.8 Elastic zone surrounding the bottom of the pile (after Sluis (2012))

| D

Elastic zone

The constitutive relationship at the foot of the pile and its failure criterion are defined by:

Froot = Kfoot(ugo[ — Upyor) < Fmax (15.28)

where Kj,o; denotes the stiffness of the spring which is defined in the same way as the
stiffness of the embedded interface elements:

Gsoil R
Koot = 1SFir—2274 (15.29)
S
In case of plastic behaviour, the foot force F,; is given by:
Froot = Fmax (15.30)

15.8 3D EMBEDDED PILE

An embedded pile in PLAXIS 3D consists of beam elements with embedded interface
elements to describe the interaction with the soil at the pile skin and at the pile foot
(bearing capacity). The material parameters of the embedded pile distinguish between
the parameters of the beam and the parameters of the skin resistance and foot
resistance. The beam elements are considered to be linear elastic and are defined by the
same material parameters as a regular beam element (Section 15.2).

The interaction of the pile with the soil at the skin of the pile is described by linear elastic
behaviour with a finite strength and is defined by the following parameter:

Trax: Maximum traction allowed at the skin of the embedded pile (can vary along the
pile)
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The constitutive equation at the skin of the pile is defined by (see Figure 15.9):

ts Ks 0 0 || uf—us
thl=|0 Ky, O || uf—us (15.31)
t; 00 Kt Uf — U}S

where uP denotes the displacement of the pile and u® denotes the displacement of the
soil. K5 denotes the elastic shear stiffness (against parallel displacement differences) of
the embedded interface elements and K, and K; denote the elastic normal stiffness
(against perpendicular displacement differences) of the embedded interface elements.
By default these values are defined such that the stiffness of the embedded interface
elements does not influence the total elastic stiffness of the pile-soil structure:

Ks >> Gsoil (15 32)
K= K = 202 |
1-2v
Kt
Kn
Ks
S
Kt
t
Kn
Ks
n

Figure 15.9 Stiffness of the embedded interface elements at the skin of the pile

The normal stresses t, and t; will always remain elastic. For the shear stress in axial
direction ts to remain elastic it is given by:

[ts| < Trax (15.33)

For plastic behaviour the shear force I is given by:

[ts|= Tmax (15.34)
In case of defining a layer dependent skin resistance the shear force ts will remain elastic
as long as:

ts|< (07 tangj + ¢))mDeg  and  |ts| < Tpax (15.35)
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where Dgq denotes the diameter or the equivalent diameter (in the case alternative beam
properties have been specified) of the embedded pile

(Deq = 2 max {\/(A/n), V@lg /A)} where lag = (b + 5)/2) and 029 is the average
lateral (perpendicular) stress of the soil around the pile:

1
o9 = E(axx +0z)  (in the case of a vertical pile) (15.36)

The parameters ¢; and c¢; are the friction angle and cohesion of the embedded interface.
The strength properties of embedded interfaces with layer dependent skin resistance are
linked to the strength properties of a soil layer. Each data set has an associated strength
reduction factor for interfaces Rjner. The embedded interface properties are calculated
from the soil properties in the associated data set and the strength reduction factor by
applying the following rules:

tan ¢; = Rinter tan v soir (15.37)

Ci = Rinter Csoil

For plastic behaviour I is given by:

avg avg

|ts|= (U,, tan g; + C,-) mD provided that (o~ tan g; + ¢))7D < Thax (15.38)

In the case of a layer dependent skin resistance where the actual bearing capacity is not
known, Tmax can be used as an ultimate cut-off value. The interaction of the pile with the
soil at the foot of the pile is described by a linear elastic perfectly plastic interface
element. The strength of the base is described by the following parameter:

Frax: Maximum force allowed at the foot of the embedded pile

In addition, no tension forces are allowed. The constitutive relationship at the foot of the
pile and its failure criterion are defined by (see Figure 15.10):

Froot = Kfoot(ugot - Ufsoot) < Frax (15.39)

where Kj,o: denotes the stiffness of the spring which is defined in the same way as the
stiffness of the embedded interface elements:

Kfoot >> Gsoil (1 5-40)

In case of plastic behaviour, the foot force F, is given by:

Ffoot = Fmax (15-41)

In order to ensure that a realistic pile bearing capacity as specified can actually be
reached, a zone in the soil volume elements surrounding the beam is identified where
any kind of soil plasticity is excluded (elastic zone Figure 15.8). The size of this zone is
determined by the embedded pile's equivalent radius Req = max {\/(A/w), \/(2lavg/A)}
where layg = (ko + I3) /2. The elastic zone makes the embedded pile almost behave like a
volume pile. However, installation effects of piles are not taken into account and the
pile-soil interaction is modelled at the centre rather than at the circumference.
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Kfoot

Figure 15.10 Stiffness of the embedded interface element at the foot of the pile
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W 16 HYDRAULIC MODELS

16.1 VAN GENUCHTEN MODEL

A Soil Water Characteristic Curve (SWCC) is introduced to describe hydraulic parameters
of the groundwater flow in unsaturated zones (usually above the phreatic surface). The
SWCC describes the capacity of the soil to keep water at different stresses. There are
many models which describe the hydraulic behaviour of unsaturated soils. The most
common in the groundwater literature is the model proposed by Van Genuchten (1980),
which is used in PLAXIS. The Van Genuchten function is a three-parameter equation and
relates the saturation to the pressure head ¢p:

S(¢p) = Sres + (Ssat — Sres)[1 + (ga|¢p‘)g"]gc (16.1)

Where

bp = —— (16.2)
Pw Suction pore stress.
Yw Unit weight of the pore fluid.

Sres A residual saturation which describes a part of the fluid that
remains in the pores even at high suction heads.

Ssat In general at saturated conditions the pores will not be
completely filled with water as air can get trapped and the
saturation in this situation, Ssz, will be less than one. However,
the default is Szt = 1.0

9a A fitting parameter which is related to the air entry value of the
soil and has to be measured for a specific material. It is in the
unit of 1/L and is a positive value.

On A fitting parameter which is a function of the rate of water
extraction from the soil once the air entry value has been
exceeded. This parameter has to be measured for a specific
material.

ge A fitting parameter which is used in the general Van Genuchten
equation. In PLAXIS the following assumption is made to convert
the Van Genuchten to a two-parameter equation (Eq. (16.3)).

= 1_g”> 16.3
e ( 7 (16.3)

The Van Genuchten relationship provides reasonable results for low and intermediate
suctions. For very high suction values, saturation remains at the residual saturation.

Figure 16.1 and Figure 16.2 show the effect of the parameters g, and g, on the shape of
the SWCC.

Relative permeability is related to the saturation via the effective saturation. The effective
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Figure 16.1 Effect of the parameter g, on the SWCC

saturation S is expressed as:

Se = ﬂ (16.4)
Ssat - Sres
The relative permeability according to Van Genuchten now reads:
2
(625 |(2)
Keei(S) = max | (Se)o | 1 — |1 - 539" g )| 10 (16.5)

gy is a fitting parameter and has to be measured for a specific material. Note that using
the above expressions, the relative permeability can be related to the suction pore
pressure directly.

The derivative of the degree of saturation with respect to the suction pore pressure reads:

— 2gn>

]
OP) _ (S4ar - Sres)[1 — g”}[gn <g"’> o ~pw‘g"”} {1 + <ga : pw) 9]< 9n
OPw On Tw Tw
(16.6)

Figure 16.3 and Figure 16.4 present the Van Genuchten relations for a sandy material
with parameters Sga = 1.0, Sres = 0.027, g, =2.24 m~', g;= 0.0 and g, = 2.286
graphically.
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Figure 16.3 Van Genuchten pressure-saturation
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Figure 16.4 Van Genuchten pressure-relative permeability
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16.2 APPROXIMATE VAN GENUCHTEN MODEL

As an alternative, the PlaxFlow program supports a linearized Van Genuchten model for
which the approximate Van Genuchten parameters can be derived. According to this
concept saturation relates to the pore pressure head as:

1 if gpp > 0
S(dp) = {1+ W;% i dps < bp < O (16.7)
0 i by < dps

The variable ¢ps is a material dependent pressure head which specifies the extent of the
unsaturated zone under hydrostatic conditions. Below this threshold value the saturation
is assumed to be zero. For saturated conditions the degree of saturation equals one. The
relation between relative permeability and pressure head is written as:

1 if pp >0

49p
101%0k] i g < pp < 0
1074 ifdp < b

According to this formulation the permeability in the transition zone is described as a
log-linear relation of pressure head where ¢py is the pressure head at which the relative
permeability is reduced to 10~*. The permeability remains constant for higher values of
the pressure head. Under saturated conditions the relative permeability equals one and
the effective permeability is equal to the saturated permeability which is assumed to be
constant.

krel(¢p) = (16.8)

The input parameters of the “approximate Van Genuchten model” are derived from the
classical Van Genuchten model. These parameters are translated into approximately
equivalent process parameters for the numerically more robust linearized model. For ¢ps
the translation is as follows:

1
ps= ——— (16.9)
P Sgp=—1.0m — Ssat

The parameter ¢py is set equal to the pressure head at which the relative permeability
according to Van Genuchten is 10~2, with a lower limit of -0.5 m. Figure 16.5 presents
the functional relation between pressure and saturation according to the approximate Van

Genuchten model using ¢ps = 1.48 m. The corresponding pressure-relative saturation
relation ¢px = 1.15 mis given in Figure 16.6.
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APPENDIX A - SYMBOLS

A : Cross section area

c : Cohesion

csp : Current stiffness parameter

Cu, Sy : Undrained shear-strength

d : Thickness

D¢ : Elastic material matrix representing Hooke's law
e : Void ratio

E : Young's modulus

Eoed : Oedometer modulus

f : Yield function

g : Plastic potential function

G : Shear modulus

/ : Moment of inertia

K : Bulk modulus

Ko : Coefficient of lateral earth pressure (initial stress state)
Kg° : Coefficient of lateral earth pressure for a normally

consolidated stress state
m : Power in stress-dependent stiffness relation
M : Slope of critical state line in p' — q space
M : Bending moment
n Porosity
N : Normal force
OCR : Over-consolidation ratio
p : Isotropic stress or mean stress,
negative for pressure; positive for tension
Pp : Isotropic pre-consolidation stress, negative for pressure
POP : Pre overburden pressure, positive for (over)pressure
q Equivalent shear stress or deviatoric stress
Q : Shear force
Ry : Failure ratio
t : Time
u Vector with displacement components
v Unit weight
ol Various types of shear strain
A : Increment
€ : Vector with Cartesian strain components, normal
components
positive for extension; negative for compression
€q : Deviatoric strain (invariant)
Ev : Volumetric strain,
negative for compression; positive for extension
K : Cam-Clay swelling index
K* : Modified swelling index
A : Plastic multiplier
A : Cam-Clay compression index
¥ : Modified compression index
w* : Modified creep index
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v : Poisson's ratio

a : Vector with Cartesian stress components, normal
components
positive for tension; negative for pressure

op : Vertical pre-consolidation stress, negative for pressure

® : Friction angle

P : Dilatancy angle

xC : denotes creep component

x€ : denotes elastic component

xP : denotes plastic component

x ref : denotes reference value (related to a reference stress)

Xy : denotes undrained

Xur : denotes unloading and reloading

X m : denotes mobilised
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In this appendix, an overview of the applicability of the material models is given.

APPENDIX B - APPLICABILITY OF THE MATERIAL MODELS
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APPENDIX C - FORTRAN SUBROUTINES FOR USER-DEFINED SOIL MODELS

In this appendix, a listing is given of the subroutines and functions which are provided by
PLAXIS in libraries and source code in the User-defined soil models directory. These can
be called by the User_Mod subroutine:

Subroutines

MZeroR( R, K ):

To initialize K terms of double array R to zero
MZeroI( I, K ):

To initialize K terms of integer array / to zero
SetRVal( R, K, V ):

To initialize K terms of double array R to V
SetIVal( I, K, IV ):

To initialize K terms of integer array /to IV
CopyIVec( I1, I2, K ):

To copy K values from integer array /1 to /2
CopyRVec( R1, R2, K ):

To copy K values from double array R7to R2
MulVec( V, F, n ):

To multiply a vector V by a factor F, n values
MatVec( xMat, im, Vec, n, VecR ):

Matrix (xMat)-vector(Vec) operation.

First dimension of matrix is im; resulting vector is VecR
AddVec( Vecl, Vec2, R1, R2, n, VecR ):

To add n terms of two vectors; result in VecR

VecR; = R1 - Vecl; + R2 - Vec2;
MatMat ( xMatil, idl, xMat2, id2, nR1l, nC2,
nC1l, xMatR, idR):

Matrix multiplication xMatRj; = xMat 1y -xMat 2
id1, id2, idR : first dimension of matrices

nR1 number of rows in xMat1 and resulting xMatR
nC2 number of column in xMat2 and resulting xMatR

nC1 number of columns in xMat2 =rows in xMat2
MatMatSq( n, xMatl, xMat2, xMatR ):

Matrix multiplication xMatRj; = xMat 1y -xMat 2;

Fully filled square matrices with dimensions n
MatInvPiv( AOrig, B, n ):

Matrix inversion of square matrices AOrig and B with dimensions n.
AOQirig is NOT destroyed, B contains inverse matrix of AOrig.

Row-pivoting is used.
Wrival( io, C, V ):
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To write a double value V to file unit io (when io > 0)

The value is preceded by the character string C.
WriIvl( io, C, I ):

As WriVal but for integer value /
WriVec( io, C, V, n ):

As WriVal but for n values of double array V
WriIVce( io, C, iV, n ):

As WriVal but for n values of integer array iV
WriMat( io, C, V, nd, nr, nc ):

As WriVal but for double matrix V. nd is first dimension of V, nr and nc are the

number of rows and columns to print respectively.
PrnSig( iOpt, S, xN1, xN2, xN3, S1, S2, S3, P, Q ):

To determine principal stresses and (for iOpt=1) principal directions.

iOpt = 0 to obtain principal stresses without directions

iOpt = 1 to obtain principal stresses and directions

S array containing 6 stress components (XX, YY, ZZ, XY, YZ, ZX)

xN1, xN2, xN3 array containing 3 values of principal normalized directions
only when iOpt=1.

S1, S2, S3 sorted principal stresses (S < S2 < S3)

P isotropic stress (negative for compression)

Q deviatoric stress
CarSig( S1, S2, 83, xN1, xN2, xN3, SNew ):

To calculate Cartesian stresses from principal stresses and principal directions.
S1, S2, S3 principal stresses
xN1, xN2, xN3 arrays containing principal directions (from PrnSig)

SNew contains 6 stress components (XX, YY, ZZ, XY, YZ, ZX)
CrossProd( xN1, xN2, xN3 ):

Cross product of vectors xN1 and xN2
SetVecLen( xN, n, xL ):

To multiply the n components of vector xN such that the length of xN becomes

xL (for example to normalize vector xN to unit length).

Functions

Logical Function LEqual( A, B, Eps ):
Returns TRUE when two values A and B are almost equal, FALSE otherwise.
LEqual =|A-B| < Eps *(|A| +|B| + Eps )/ 2

Logical Function IsOArr( A, n ):

Returns TRUE when all n values of real (double) array A are zero, FALSE

otherwise
Logical Function IsOIArr( IArr, n ):
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APPENDIX C - FORTRAN SUBROUTINES FOR USER-DEFINED SOIL MODELS

Returns TRUE when all n values of integer array /Arr are zero, FALSE otherwise
Double Precision Function DInProd( A, B, n ):

Returns the dot product of two vectors with length n
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