
MSP430x2xx Family

2007 Mixed Signal Products

User’s Guide

SLAU144D

Related Documentation From Texas Instruments

iii

Preface

Read This First

About This Manual

Thismanual discussesmodules and peripherals of theMSP430x2xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family.

Pin functions, internal signal connections, and operational paramenters differ
from device to device. The user should consult the device-specific datasheet
for these details.

Related Documentation From Texas Instruments

For related documentation see the web site http://www.ti.com/msp430.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to subpart
J of part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which
case the user at his own expense will be required to take whatever measures
may be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

iv

Glossary

ACLK Auxiliary Clock See Basic Clock Module

ADC Analog-to-Digital Converter

BOR Brown-Out Reset See System Resets, Interrupts, and Operating Modes

BSL Bootstrap Loader See www.ti.com/msp430 for application reports

CPU Central Processing Unit See RISC 16-Bit CPU

DAC Digital-to-Analog Converter

DCO Digitally Controlled Oscillator See Basic Clock Module

dst Destination See RISC 16-Bit CPU

FLL Frequency Locked Loop See FLL+ in MSP430x4xx Family User’s Guide

GIE General Interrupt Enable See System Resets Interrupts and Operating Modes

INT(N/2) Integer portion of N/2

I/O Input/Output See Digital I/O

ISR Interrupt Service Routine

LSB Least-Significant Bit

LSD Least-Significant Digit

LPM Low-Power Mode See System Resets Interrupts and Operating Modes

MAB Memory Address Bus

MCLK Master Clock See Basic Clock Module

MDB Memory Data Bus

MSB Most-Significant Bit

MSD Most-Significant Digit

NMI (Non)-Maskable Interrupt See System Resets Interrupts and Operating Modes

PC Program Counter See RISC 16-Bit CPU

POR Power-On Reset See System Resets Interrupts and Operating Modes

PUC Power-Up Clear See System Resets Interrupts and Operating Modes

RAM Random Access Memory

SCG System Clock Generator See System Resets Interrupts and Operating Modes

SFR Special Function Register

SMCLK Sub-System Master Clock See Basic Clock Module

SP Stack Pointer See RISC 16-Bit CPU

SR Status Register See RISC 16-Bit CPU

src Source See RISC 16-Bit CPU

TOS Top-of-Stack See RISC 16-Bit CPU

WDT Watchdog Timer SeeWatchdog Timer

Register Bit Conventions

v

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each
individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility

rw Read/write

r Read only

r0 Read as 0

r1 Read as 1

w Write only

w0 Write as 0

w1 Write as 1

(w) No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as 0.

h0 Cleared by hardware

h1 Set by hardware

--0,--1 Condition after PUC

--(0),--(1) Condition after POR

vi

Contents

vii

Contents

1 Introduction 1-1. .
1.1 Architecture 1-2. .
1.2 Flexible Clock System 1-2. .
1.3 Embedded Emulation 1-3. .
1.4 Address Space 1-4. .

1.4.1 Flash/ROM 1-4. .
1.4.2 RAM 1-5. .
1.4.3 Peripheral Modules 1-5. .
1.4.4 Special Function Registers (SFRs) 1-5. .
1.4.5 Memory Organization 1-5. .

1.5 MSP430x2xx Family Enhancements 1-7. .

2 System Resets, Interrupts, and Operating Modes 2-1. .
2.1 System Reset and Initialization 2-2. .

2.1.1 Brownout Reset (BOR) 2-3. .
2.1.2 Device Initial Conditions After System Reset 2-4. .

2.2 Interrupts 2-5. .
2.2.1 (Non)-Maskable Interrupts (NMI) 2-6. .
2.2.2 Maskable Interrupts 2-9. .
2.2.3 Interrupt Processing 2-10. .
2.2.4 Interrupt Vectors 2-12. .

2.3 Operating Modes 2-14. .
2.3.1 Entering and Exiting Low-Power Modes 2-16. .

2.4 Principles for Low-Power Applications 2-17. .
2.5 Connection of Unused Pins 2-17. .

Contents

viii

3 RISC 16-Bit CPU 3-1. .
3.1 CPU Introduction 3-2. .
3.2 CPU Registers 3-4. .

3.2.1 Program Counter (PC) 3-4. .
3.2.2 Stack Pointer (SP) 3-5. .
3.2.3 Status Register (SR) 3-6. .
3.2.4 Constant Generator Registers CG1 and CG2 3-7. .
3.2.5 General-Purpose Registers R4 to R15 3-8. .

3.3 Addressing Modes 3-9. .
3.3.1 Register Mode 3-10. .
3.3.2 Indexed Mode 3-11. .
3.3.3 Symbolic Mode 3-12. .
3.3.4 Absolute Mode 3-13. .
3.3.5 Indirect Register Mode 3-14. .
3.3.6 Indirect Autoincrement Mode 3-15. .
3.3.7 Immediate Mode 3-16. .

3.4 Instruction Set 3-17. .
3.4.1 Double-Operand (Format I) Instructions 3-18. .
3.4.2 Single-Operand (Format II) Instructions 3-19. .
3.4.3 Jumps 3-20. .
3.4.4 Instruction Cycles and Lengths 3-72. .
3.4.5 Instruction Set Description 3-74. .

4 16-Bit MSP430X CPU 4-1. .
4.1 CPU Introduction 4-2. .
4.2 Interrupts 4-4. .
4.3 CPU Registers 4-5. .

4.3.1 Program Counter PC 4-5. .
4.3.2 Stack Pointer (SP) 4-7. .
4.3.3 Status Register (SR) 4-9. .
4.3.4 Constant Generator Registers CG1 and CG2 4-11. .
4.3.5 General-Purpose Registers R4 to R15 4-12. .

4.4 Addressing Modes 4-15. .
4.4.1 Register Mode 4-16. .
4.4.2 Indexed Mode 4-18. .
4.4.3 Symbolic Mode 4-24. .
4.4.4 Absolute Mode 4-29. .
4.4.5 Indirect Register Mode 4-32. .
4.4.6 Indirect, Autoincrement Mode 4-33. .
4.4.7 Immediate Mode 4-34. .

4.5 MSP430 and MSP430X Instructions 4-36. .
4.5.1 MSP430 Instructions 4-37. .
4.5.2 MSP430X Extended Instructions 4-44. .

4.6 Instruction Set Description 4-58. .
4.6.1 Extended Instruction Binary Descriptions 4-59. .
4.6.2 MSP430 Instructions 4-61. .
4.6.3 Extended Instructions 4-113. .
4.6.4 Address Instructions 4-156. .

Contents

ix

5 Basic Clock Module+ 5-1. .
5.1 Basic Clock Module+ Introduction 5-2. .
5.2 Basic Clock Module+ Operation 5-4. .

5.2.1 Basic Clock Module+ Features for Low-Power Applications 5-4.
5.2.2 Internal Very Low Power, Low Frequency Oscillator 5-4. .
5.2.3 LFXT1 Oscillator 5-5. .
5.2.4 XT2 Oscillator 5-6. .
5.2.5 Digitally-Controlled Oscillator (DCO) 5-6. .
5.2.6 DCO Modulator 5-9. .
5.2.7 Basic Clock Module+ Fail-Safe Operation 5-10. .
5.2.8 Synchronization of Clock Signals 5-12. .

5.3 Basic Clock Module+ Registers 5-13. .

6 DMA Controller 6-1. .
6.1 DMA Introduction 6-2. .
6.2 DMA Operation 6-4. .

6.2.1 DMA Addressing Modes 6-4. .
6.2.2 DMA Transfer Modes 6-5. .
6.2.3 Initiating DMA Transfers 6-12. .
6.2.4 Stopping DMA Transfers 6-14. .
6.2.5 DMA Channel Priorities 6-14. .
6.2.6 DMA Transfer Cycle Time 6-15. .
6.2.7 Using DMA with System Interrupts 6-16. .
6.2.8 DMA Controller Interrupts 6-16. .
6.2.9 Using the USCI_B I2C Module with the DMA Controller 6-17.
6.2.10 Using ADC12 with the DMA Controller 6-18. .
6.2.11 Using DAC12 With the DMA Controller 6-18. .
6.2.12 Writing to Flash With the DMA Controller 6-18. .

6.3 DMA Registers 6-19. .

7 Flash Memory Controller 7-1. .
7.1 Flash Memory Introduction 7-2. .
7.2 Flash Memory Segmentation 7-3. .

7.2.1 SegmentA 7-4. .
7.3 Flash Memory Operation 7-5. .

7.3.1 Flash Memory Timing Generator 7-5. .
7.3.2 Erasing Flash Memory 7-7. .
7.3.3 Writing Flash Memory 7-10. .
7.3.4 Flash Memory Access During Write or Erase 7-16. .
7.3.5 Stopping a Write or Erase Cycle 7-17. .
7.3.6 Marginal Read Mode 7-17. .
7.3.7 Configuring and Accessing the Flash Memory Controller 7-17.
7.3.8 Flash Memory Controller Interrupts 7-18. .
7.3.9 Programming Flash Memory Devices 7-18. .

7.4 Flash Memory Registers 7-20. .

Contents

x

8 Digital I/O 8-1. .
8.1 Digital I/O Introduction 8-2. .
8.2 Digital I/O Operation 8-3. .

8.2.1 Input Register PxIN 8-3. .
8.2.2 Output Registers PxOUT 8-3. .
8.2.3 Direction Registers PxDIR 8-3. .
8.2.4 Pullup/Pulldown Resistor Enable Registers PxREN 8-3. .
8.2.5 Function Select Registers PxSEL and PxSEL2 8-4. .
8.2.6 P1 and P2 Interrupts 8-5. .
8.2.7 Configuring Unused Port Pins 8-6. .

8.3 Digital I/O Registers 8-7. .

9 Supply Voltage Supervisor 9-1. .
9.1 SVS Introduction 9-2. .
9.2 SVS Operation 9-4. .

9.2.1 Configuring the SVS 9-4. .
9.2.2 SVS Comparator Operation 9-4. .
9.2.3 Changing the VLDx Bits 9-5. .
9.2.4 SVS Operating Range 9-6. .

9.3 SVS Registers 9-7. .

10 Watchdog Timer+ 10-1. .
10.1 Watchdog Timer+ Introduction 10-2. .
10.2 Watchdog Timer+ Operation 10-4. .

10.2.1 Watchdog timer+ Counter 10-4. .
10.2.2 Watchdog Mode 10-4. .
10.2.3 Interval Timer Mode 10-4. .
10.2.4 Watchdog Timer+ Interrupts 10-5. .
10.2.5 Watchdog Timer+ Clock Fail-Safe Operation 10-5. .
10.2.6 Operation in Low-Power Modes 10-6. .
10.2.7 Software Examples 10-6. .

10.3 Watchdog Timer+ Registers 10-7. .

11 Hardware Multiplier 11-1. .
11.1 Hardware Multiplier Introduction 11-2. .
11.2 Hardware Multiplier Operation 11-3. .

11.2.1 Operand Registers 11-3. .
11.2.2 Result Registers 11-4. .
11.2.3 Software Examples 11-5. .
11.2.4 Indirect Addressing of RESLO 11-6. .
11.2.5 Using Interrupts 11-6. .

11.3 Hardware Multiplier Registers 11-7. .

Contents

xi

12 Timer_A 12-1. .
12.1 Timer_A Introduction 12-2. .
12.2 Timer_A Operation 12-4. .

12.2.1 16-Bit Timer Counter 12-4. .
12.2.2 Starting the Timer 12-5. .
12.2.3 Timer Mode Control 12-5. .
12.2.4 Capture/Compare Blocks 12-11. .
12.2.5 Output Unit 12-13. .
12.2.6 Timer_A Interrupts 12-17. .

12.3 Timer_A Registers 12-19. .

13 Timer_B 13-1. .
13.1 Timer_B Introduction 13-2. .

13.1.1 Similarities and Differences From Timer_A 13-2. .
13.2 Timer_B Operation 13-4. .

13.2.1 16-Bit Timer Counter 13-4. .
13.2.2 Starting the Timer 13-5. .
13.2.3 Timer Mode Control 13-5. .
13.2.4 Capture/Compare Blocks 13-11. .
13.2.5 Output Unit 13-14. .
13.2.6 Timer_B Interrupts 13-18. .

13.3 Timer_B Registers 13-20. .

14 Universal Serial Interface 14-1. .
14.1 USI Introduction 14-2. .
14.2 USI Operation 14-5. .

14.2.1 USI Initialization 14-5. .
14.2.2 USI Clock Generation 14-6. .
14.2.3 SPI Mode 14-6. .
14.2.4 I2C Mode 14-9. .

14.3 USI Registers 14-13. .

15 Universal Serial Communication Interface, UART Mode 15-1. .
15.1 USCI Overview 15-2. .
15.2 USCI Introduction: UART Mode 15-3. .
15.3 USCI Operation: UART Mode 15-5. .

15.3.1 USCI Initialization and Reset 15-5. .
15.3.2 Character Format 15-5. .
15.3.3 Asynchronous Communication Formats 15-6. .
15.3.4 Automatic Baud Rate Detection 15-10. .
15.3.5 IrDA Encoding and Decoding 15-12. .
15.3.6 Automatic Error Detection 15-13. .
15.3.7 USCI Receive Enable 15-14. .
15.3.8 USCI Transmit Enable 15-15. .
15.3.9 UART Baud Rate Generation 15-15. .
15.3.10 Setting a Baud Rate 15-18. .
15.3.11 Transmit Bit Timing 15-19. .
15.3.12 Receive Bit Timing 15-20. .
15.3.13 Typical Baud Rates and Errors 15-21. .
15.3.14 Using the USCI Module in UART Mode with Low Power Modes 15-25.
15.3.15 USCI Interrupts 15-25. .

15.4 USCI Registers: UART Mode 15-27. .

Contents

xii

16 Universal Serial Communication Interface, SPI Mode 16-1. .
16.1 USCI Overview 16-2. .
16.2 USCI Introduction: SPI Mode 16-3. .
16.3 USCI Operation: SPI Mode 16-5. .

16.3.1 USCI Initialization and Reset 16-6. .
16.3.2 Character Format 16-6. .
16.3.3 Master Mode 16-7. .
16.3.4 Slave Mode 16-9. .
16.3.5 SPI Enable 16-10. .
16.3.6 Serial Clock Control 16-11. .
16.3.7 Using the SPI Mode with Low Power Modes 16-12. .
16.3.8 SPI Interrupts 16-13. .

16.4 USCI Registers: SPI Mode 16-15. .

17 Universal Serial Communication Interface, I2C Mode 17-1. .
17.1 USCI Overview 17-2. .
17.2 USCI Introduction: I2C Mode 17-3. .
17.3 USCI Operation: I2C Mode 17-5. .

17.3.1 USCI Initialization and Reset 17-6. .
17.3.2 I2C Serial Data 17-7. .
17.3.3 I2C Addressing Modes 17-8. .
17.3.4 I2C Module Operating Modes 17-9. .
17.3.5 I2C Clock Generation and Synchronization 17-21. .
17.3.6 Using the USCI Module in I2C Mode with Low Power Modes 17-22.
17.3.7 USCI Interrupts in I2C Mode 17-23. .

17.4 USCI Registers: I2C Mode 17-25. .

18 OA 18-1. .
18.1 OA Introduction 18-2. .
18.2 OA Operation 18-4. .

18.2.1 OA Amplifier 18-4. .
18.2.2 OA Input 18-4. .
18.2.3 OA Output and Feedback Routing 18-5. .
18.2.4 OA Configurations 18-6. .

18.3 OA Registers 18-12. .

19 Comparator_A+ 19-1. .
19.1 Comparator_A+ Introduction 19-2. .
19.2 Comparator_A+ Operation 19-4. .

19.2.1 Comparator 19-4. .
19.2.2 Input Analog Switches 19-4. .
19.2.3 Input Short Switch 19-5. .
19.2.4 Output Filter 19-6. .
19.2.5 Voltage Reference Generator 19-6. .
19.2.6 Comparator_A+, Port Disable Register CAPD 19-7. .
19.2.7 Comparator_A+ Interrupts 19-7. .
19.2.8 Comparator_A+ Used to Measure Resistive Elements 19-8.

19.3 Comparator_A+ Registers 19-10. .

Contents

xiii

20 ADC10 20-1. .
20.1 ADC10 Introduction 20-2. .
20.2 ADC10 Operation 20-4. .

20.2.1 10-Bit ADC Core 20-4. .
20.2.2 ADC10 Inputs and Multiplexer 20-5. .
20.2.3 Voltage Reference Generator 20-6. .
20.2.4 Auto Power-Down 20-6. .
20.2.5 Sample and Conversion Timing 20-7. .
20.2.6 Conversion Modes 20-9. .
20.2.7 ADC10 Data Transfer Controller 20-15. .
20.2.8 Using the Integrated Temperature Sensor 20-21. .
20.2.9 ADC10 Grounding and Noise Considerations 20-22. .
20.2.10 ADC10 Interrupts 20-23. .

20.3 ADC10 Registers 20-24. .

21 ADC12 21-1. .
21.1 ADC12 Introduction 21-2. .
21.2 ADC12 Operation 21-4. .

21.2.1 12-Bit ADC Core 21-4. .
21.2.2 ADC12 Inputs and Multiplexer 21-5. .
21.2.3 Voltage Reference Generator 21-6. .
21.2.4 Sample and Conversion Timing 21-7. .
21.2.5 Conversion Memory 21-10. .
21.2.6 ADC12 Conversion Modes 21-10. .
21.2.7 Using the Integrated Temperature Sensor 21-16. .
21.2.8 ADC12 Grounding and Noise Considerations 21-17. .
21.2.9 ADC12 Interrupts 21-18. .

21.3 ADC12 Registers 21-20. .

22 TLV Structure 22-1. .
22.1 TLV Introduction 22-2. .
22.2 Supported Tags 22-3. .

22.2.1 DCO Calibration TLV Structure 22-3. .
22.2.2 TAG_ADC12_1 Calibration TLV structure 22-4. .

22.3 Checking Integrity of SegmentA 22-7. .
22.4 Parsing TLV Structure of Segment A 22-8. .

23 DAC12 23-1. .
23.1 DAC12 Introduction 23-2. .
23.2 DAC12 Operation 23-4. .

23.2.1 DAC12 Core 23-4. .
23.2.2 DAC12 Reference 23-5. .
23.2.3 Updating the DAC12 Voltage Output 23-5. .
23.2.4 DAC12_xDAT Data Format 23-6. .
23.2.5 DAC12 Output Amplifier Offset Calibration 23-7. .
23.2.6 Grouping Multiple DAC12 Modules 23-8. .
23.2.7 DAC12 Interrupts 23-9. .

23.3 DAC12 Registers 23-10. .

Contents

xiv

24 SD16_A 24-1. .
24.1 SD16_A Introduction 24-2. .
24.2 SD16_A Operation 24-4. .

24.2.1 ADC Core 24-4. .
24.2.2 Analog Input Range and PGA 24-4. .
24.2.3 Voltage Reference Generator 24-4. .
24.2.4 Auto Power-Down 24-4. .
24.2.5 Analog Input Pair Selection 24-5. .
24.2.6 Analog Input Characteristics 24-6. .
24.2.7 Digital Filter 24-7. .
24.2.8 Conversion Memory Register: SD16MEM0 24-11. .
24.2.9 Conversion Modes 24-12. .
24.2.10 Using the Integrated Temperature Sensor 24-14. .
24.2.11 Interrupt Handling 24-15. .

24.3 SD16_A Registers 24-16. .

25 Embedded Emulation Module (EEM) 25-1. .
25.1 EEM Introduction 25-2. .
25.2 EEM Building Blocks 25-4. .

25.2.1 Triggers 25-4. .
25.2.2 Trigger Sequencer 25-5. .
25.2.3 State Storage (Internal Trace Buffer) 25-5. .
25.2.4 Clock Control 25-5. .

25.3 EEM Configurations 25-6. .

1-1Introduction

Introduction

This chapter describes the architecture of the MSP430.

Topic Page

1.1 Architecture 1-2. .

1.2 Flexible Clock System 1-2. .

1.3 Embedded Emulation 1-3. .

1.4 Address Space 1-4. .

1.5 MSP430x2xx Family Enhancements 1-7. .

Chapter 1

Architecture

1-2 Introduction

1.1 Architecture

TheMSP430 incorporatesa16-bitRISCCPU,peripherals, anda flexible clock
system that interconnect using a von-Neumann common memory address
bus (MAB) and memory data bus (MDB). Partnering a modern CPU with
modular memory-mapped analog and digital peripherals, the MSP430 offers
solutions for demanding mixed-signal applications.

Key features of the MSP430x2xx family include:

- Ultralow-power architecture extends battery life

J 0.1-μA RAM retention

J 0.8-μA real-time clock mode

J 250-μA / MIPS active

- High-performance analog ideal for precision measurement

J Comparator-gated timers for measuring resistive elements

- 16-bit RISC CPU enables new applications at a fraction of the code size.

J Large register file eliminates working file bottleneck

J Compact core design reduces power consumption and cost

J Optimized for modern high-level programming

J Only 27 core instructions and seven addressing modes

J Extensive vectored-interrupt capability

- In-system programmable Flash permits flexible code changes, field
upgrades and data logging

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A
low-frequency auxiliary clock (ACLK) is driven directly froma common32-kHz
watch crystal. The ACLK can be used for a background real-time clock self
wake-up function. An integrated high-speed digitally controlled oscillator
(DCO) can source themaster clock (MCLK) used by the CPU and high-speed
peripherals. By design, theDCO is active and stable in less than 2 μs at 1Mhz.
MSP430-based solutions effectively use the high-performance 16-bit RISC
CPU in very short bursts.

- Low-frequency auxiliary clock = Ultralow-power stand-by mode

- High-speed master clock = High performance signal processing

Embedded Emulation

1-3Introduction

Figure 1--1. MSP430 Architecture

ACLK

Bus
Conv.

Peripheral

MAB 16-Bit

MDB 16-Bit

MCLK

SMCLK

Clock
System

Peripheral PeripheralPeripheral

Peripheral Peripheral Peripheral

Watchdog

RAMFlash/

RISC CPU
16-Bit

JT
A
G
/D
eb
ug

ACLK
SMCLK

ROM

MDB 8-Bit

JTAG

1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is
accessed via JTAG using no additional system resources.

The benefits of embedded emulation include:

- Unobtrusive development and debug with full-speed execution,
breakpoints, and single-steps in an application are supported.

- Development is in-system subject to the same characteristics as the final
application.

- Mixed-signal integrity is preserved and not subject to cabling interference.

Address Space

1-4 Introduction

1.4 Address Space

The MSP430 von-Neumann architecture has one address space shared with
special function registers (SFRs), peripherals, RAM, and Flash/ROMmemory
as shown in Figure 1--2. See the device-specific data sheets for specific
memory maps. Code access are always performed on even addresses. Data
can be accessed as bytes or words.

The addressable memory space is currently 128 KB.

Figure 1--2. Memory Map

0FFE0h
Interrupt Vector Table

Flash/ROM

RAM

16-Bit Peripheral Modules

8-Bit Peripheral Modules

Special Function Registers

0FFFFh

0FFDFh

0200h

01FFh

0100h

0FFh

010h
0Fh

0h

Word/Byte

Word/Byte

Word

Byte

Byte

Word/Byte

10000h
Flash/ROM

1FFFFh

Access

Word/Byte

1.4.1 Flash/ROM

The start address of Flash/ROM depends on the amount of Flash/ROM
present and varies by device. The end address for Flash/ROM is 0x1FFFF.
Flash can be used for both code and data. Word or byte tables can be stored
and used in Flash/ROM without the need to copy the tables to RAM before
using them.

The interrupt vector table is mapped into the upper 16 words of Flash/ROM
address space, with the highest priority interrupt vector at the highest
Flash/ROM word address (0x1FFFF).

Address Space

1-5Introduction

1.4.2 RAM

RAMstarts at 0200h.TheendaddressofRAMdependson theamount ofRAM
present and varies by device. RAM can be used for both code and data.

1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space
from 0100 to 01FFh is reserved for 16-bit peripheral modules. Thesemodules
should be accessed with word instructions. If byte instructions are used, only
even addresses are permissible, and the high byte of the result is always 0.

Theaddress space from010h to0FFh is reserved for 8-bit peripheralmodules.
These modules should be accessed with byte instructions. Read access of
byte modules using word instructions results in unpredictable data in the high
byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located
in the lower 16 bytes of the address space, and are organized by byte. SFRs
must be accessed using byte instructions only. See the device-specific data
sheets for applicable SFR bits.

1.4.5 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even
addresses as shown in Figure 1--3. When using word instructions, only even
addresses may be used. The low byte of a word is always an even address.
The high byte is at the next odd address. For example, if a dataword is located
at address xxx4h, then the low byte of that data word is located at address
xxx4h, and the high byte of that word is located at address xxx5h.

Address Space

1-6 Introduction

Figure 1--3. Bits, Bytes, and Words in a Byte-Organized Memory

15

7

14

6

. . Bits . .

. . Bits . .

9

1

8

0

Byte

Byte

Word (High Byte)

Word (Low Byte)

xxxAh

xxx9h

xxx8h

xxx7h

xxx6h

xxx5h

xxx4h

xxx3h

Address Space

1-7Introduction

1.5 MSP430x2xx Family Enhancements

Table 1--1 highlights enhancements made to the MSP430x2xx family. The
enhancements are discussed fully in the following chapters, or in the case of
improved device parameters, shown in the device-specific data sheet.

Table 1--1.MSP430x2xx Family Enhancements

Subject Enhancement

Reset -- Brownout reset is included on all MSP430x2xx devices.
-- PORIFGandRSTIFG flags havebeenadded to IFG1 to indicate
the cause of a reset.

-- An instruction fetch from the address range 0x0000 -- 0x01FF
will reset the device.

Watchdog
Timer

-- All MSP430x2xx devices integrate the Watchdog Timer+
module (WDT+). The WDT+ ensures the clock source for the
timer is never disabled.

Basic Clock
System

-- TheLFXT1oscillator has selectable load capacitors in LFmode.
-- The LFXT1 supports up to 16-MHz crystals in HF mode.
-- The LFXT1 includes oscillator fault detection in LF mode.
-- The XIN and XOUT pins are shared function pins on 20- and
28-pin devices.

-- The external ROSC feature of the DCO not supported on some
devices. Software should not set the LSB of the BCSCTL2
register in this case. See the device-specific data sheet for
details.

-- The DCO operating frequency has been significantly increased.
-- The DCO temperature stability has been significantly improved.

Flash Memory -- The information memory has 4 segments of 64 bytes each.
-- SegmentA is individually locked with the LOCKA bit.
-- All information if protected frommass erase with the LOCKA bit.
-- Segment erases can be interrupted by an interrupt.
-- Flash updates can be aborted by an interrupt.
-- Flash programming voltage has been lowered to 2.2 V
-- Program/erase time has been reduced.
-- Clock failure aborts a flash update.

Digital I/O -- All ports have integrated pullup/pulldown resistors.
-- P2.6 and P2.7 functions have been added to 20- and 28- pin
devices. These are shared functions with XIN and XOUT.
Software must not clear the P2SELx bits for these pins if crystal
operation is required.

Comparator_A -- Comparator_A has expanded input capability with a new input
multiplexer.

Low Power -- Typical LPM3 current consumption has been reduced almost
50% at 3 V.

-- DCO startup time has been significantly reduced.

Operating
frequency

-- The maximum operating frequency is 16 MHz at 3.3 V.

BSL -- An incorrect password causes a mass erase.
-- BSL entry sequence is more robust to prevent accidental entry
and erasure.

1-8 Introduction

2-1System Resets, Interrupts, and Operating Modes

System Resets, Interrupts,
and Operating Modes

This chapter describes the MSP430x2xx system resets, interrupts, and
operating modes.

Topic Page

2.1 System Reset and Initialization 2-2. .

2.2 Interrupts 2-5. .

2.3 Operating Modes 2-14. .

2.4 Principles for Low-Power Applications 2-17. .

2.5 Connection of Unused Pins 2-17. .

Chapter 2

System Reset and Initialization

2-2 System Resets, Interrupts, and Operating Modes

2.1 System Reset and Initialization

The system reset circuitry shown in Figure 2--1 sources both a power-on reset
(POR) and a power-up clear (PUC) signal. Different events trigger these reset
signals and different initial conditions exist depending on which signal was
generated.

Figure 2--1. Power-On Reset and Power-Up Clear Schematic

POR
LatchS

R

PUC
Latch

S

R

Resetwd1

Resetwd2

S
S

Delay

RST/NMI

WDTNMI†

WDTTMSEL
†WDTQn†

WDTIFG†

EQU†

MCLK

POR

PUCS

(from flash module)
KEYV

SVS_POR‡

0 V

VCC

0 V

Brownout
Reset

† From watchdog timer peripheral module
‡ Devices with SVS only

S

Invalid instruction fetch

~50 μs

A POR is a device reset. A POR is only generated by the following three
events:

- Powering up the device

- A low signal on the RST/NMI pin when configured in the reset mode

- An SVS low condition when PORON = 1.

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

- A POR signal

- Watchdog timer expiration when in watchdog mode only

- Watchdog timer security key violation

- A Flash memory security key violation

- A CPU instruction fetch from the peripheral address range 0h -- 01FFh

System Reset and Initialization

2-3System Resets, Interrupts, and Operating Modes

2.1.1 Brownout Reset (BOR)

The brownout reset circuit detects low supply voltages such as when a supply
voltage is applied to or removed from the VCC terminal. The brownout reset
circuit resets the device by triggering a POR signal when power is applied or
removed. The operating levels are shown in Figure 2--2.

The POR signal becomes active when VCC crosses the VCC(start) level. It
remains active until VCC crosses the V(B_IT+) threshold and the delay t(BOR)
elapses. The delay t(BOR) is adaptive being longer for a slow rampingVCC.The
hysteresis Vhys(B_ IT--) ensures that the supply voltage must drop below
V(B_IT--) to generate another POR signal from the brownout reset circuitry.

Figure 2--2. Brownout Timing

t(BOR)

VCC(start)

VCC

V(B_IT--)

Set Signal for
POR circuitry

V(B_IT+)

Vhys(B_IT--)

As the V(B_IT--) level is significantly above the Vmin level of the POR circuit, the
BOR provides a reset for power failures where VCC does not fall below Vmin.
See device-specific data sheet for parameters.

System Reset and Initialization

2-4 System Resets, Interrupts, and Operating Modes

2.1.2 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

- The RST/NMI pin is configured in the reset mode.

- I/O pins are switched to inputmode as described in theDigital I/O chapter.

- Other peripheralmodules and registers are initialized as described in their
respective chapters in this manual.

- Status register (SR) is reset.

- The watchdog timer powers up active in watchdog mode.

- Program counter (PC) is loaded with address contained at reset vector
location (0FFFEh). If the reset vectors content is 0FFFFh the device will
be disabled for minimum power consumption.

Software Initialization

After a system reset, user software must initialize the MSP430 for the
application requirements. The following must occur:

- Initialize the SP, typically to the top of RAM.

- Initialize the watchdog to the requirements of the application.

- Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can
be evaluated to determine the source of the reset.

System Reset and Initialization

2-5System Resets, Interrupts, and Operating Modes

2.2 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the
modules in the connection chain as shown inFigure 2--3. Thenearer amodule
is to theCPU/NMIRS, thehigher thepriority. Interrupt priorities determinewhat
interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

- System reset
- (Non)-maskable NMI
- Maskable

Figure 2--3. Interrupt Priority

Bus
Grant

Module
1

Module
2

WDT
Timer

Module
m

Module
n

1 2 1 2 1 2 1 2 1NMIRS

GIE

CPU

OSCfault

Reset/NMI

PUC

Circuit

PUC

WDT Security Key

Priority High Low

MAB -- 5LSBs

GMIRS

Flash Security Key

Flash ACCV

System Reset and Initialization

2-6 System Resets, Interrupts, and Operating Modes

2.2.1 (Non)-Maskable Interrupts (NMI)

(Non)-maskableNMI interruptsarenotmaskedby thegeneral interruptenable
bit (GIE), but are enabled by individual interrupt enable bits (NMIIE, ACCVIE,
OFIE). When a NMI interrupt is accepted, all NMI interrupt enable bits are
automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, 0FFFCh.User softwaremust set the required
NMI interrupt enable bits for the interrupt to be re-enabled. The block diagram
for NMI sources is shown in Figure 2--4.

A (non)-maskable NMI interrupt can be generated by three sources:

- An edge on the RST/NMI pin when configured in NMI mode

- An oscillator fault occurs

- An access violation to the flash memory

Reset/NMI Pin

At power-up, the RST/NMI pin is configured in the reset mode. The function
of the RST/NMI pins is selected in the watchdog control register WDTCTL. If
the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in the reset
vector, 0FFFEh, and the RSTIFG flag is set.

If the RST/NMI pin is configured by user software to the NMI function, a signal
edge selected by the WDTNMIES bit generates an NMI interrupt if the NMIIE
bit is set. The RST/NMI flag NMIIFG is also set.

Note: Holding RST/NMI Low

When configured in the NMImode, a signal generating an NMI event should
not hold the RST/NMI pin low. If a PUC occurs from a different source while
theNMI signal is low, the devicewill be held in the reset state because aPUC
changes the RST/NMI pin to the reset function.

Note: Modifying WDTNMIES

WhenNMImode is selected and theWDTNMIESbit is changed, anNMI can
be generated, depending on the actual level at the RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

System Reset and Initialization

2-7System Resets, Interrupts, and Operating Modes

Figure 2--4. Block Diagram of (Non)-Maskable Interrupt Sources

Flash Module

KEYV

System Reset
Generator

BOR

POR PUC

WDTQn EQU

PUC

POR

PUC POR

NMIRS

Clear

S
WDTIFG

IRQ

WDTIE

Clear
IE1.0

PUC

POR

IRQA

WDTTMSEL

Counter

IFG1.0

WDTNMI
WDTTMSEL

WDTNMIES

Watchdog Timer Module

Clear

S

IFG1.4

PUC

Clear
IE1.4

PUC

NMIIFG

NMIIE

S

IFG1.1

Clear
IE1.1

PUC

OFIFG

OFIE

OSCFault

NMI_IRQA

IRQA: Interrupt Request Accepted

RST/NMI

S

FCTL3.2

Clear
IE1.5

ACCVIFG

ACCVIE

PUC

ACCV

WDT

S

IFG1.2

POR

PORIFG

Clear

S

IFG1.3
RSTIFG

POR

SVS_POR

System Reset and Initialization

2-8 System Resets, Interrupts, and Operating Modes

Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash
access violation can be enabled to generate an NMI interrupt by setting the
ACCVIEbit. TheACCVIFG flag can thenbe testedbyNMI the interrupt service
routine to determine if the NMI was caused by a flash access violation.

Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. The oscillator fault can be enabled to generate an NMI interrupt by
setting the OFIE bit. The OFIFG flag can then be tested by NMI the interrupt
service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the
LFXT1 to LFmode, therefore switching off the HFmode. The PUC signal also
switches off the XT2 oscillator.

System Reset and Initialization

2-9System Resets, Interrupts, and Operating Modes

Example of an NMI Interrupt Handler

TheNMI interrupt is amultiple-source interrupt. AnNMI interrupt automatically
resets the NMIIE, OFIE and ACCVIE interrupt-enable bits. The user NMI
service routine resets the interrupt flags and re-enables the interrupt-enable
bits according to the application needs as shown in Figure 2--5.

Figure 2--5. NMI Interrupt Handler

yes

no
OFIFG=1

yes

no
ACCVIFG=1

yes

Reset ACCVIFG

no
NMIIFG=1

Reset NMIIFGReset OFIFG

Start of NMI Interrupt Handler
Reset by HW:

OFIE, NMIIE, ACCVIE

User’s Software,
Oscillator Fault

Handler

User’s Software,
Flash Access

Violation Handler

User’s Software,
External NMI
Handler

Optional

RETI
End of NMI Interrupt

Handler

Note: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

To prevent nestedNMI interrupts, the ACCVIE, NMIIE, andOFIE enable bits
should not be set inside of an NMI interrupt service routine.

2.2.2 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability
including the watchdog timer overflow in interval-timer mode. Each maskable
interrupt source can be disabled individually by an interrupt enable bit, or all
maskable interrupts can be disabled by the general interrupt enable (GIE) bit
in the status register (SR).

Each individual peripheral interrupt is discussed in the associated peripheral
module chapter in this manual.

System Reset and Initialization

2-10 System Resets, Interrupts, and Operating Modes

2.2.3 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt
enable bit and GIE bit are set, the interrupt service routine is requested. Only
the individual enable bit must be set for (non)-maskable interrupts to be
requested.

Interrupt Acceptance

The interrupt latency is 5 cycles (CPUx) or 6 cycles (CPU), starting with the
acceptance of an interrupt request, and lasting until the start of execution of
the first instruction of the interrupt-service routine, as shown in Figure 2--6.
The interrupt logic executes the following:

1) Any currently executing instruction is completed.

2) The PC, which points to the next instruction, is pushed onto the stack.

3) The SR is pushed onto the stack.

4) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

5) The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

6) TheSR is cleared. This terminates any low-powermode.Because theGIE
bit is cleared, further interrupts are disabled.

7) The content of the interrupt vector is loaded into the PC: the program
continues with the interrupt service routine at that address.

Figure 2--6. Interrupt Processing

Item1

Item2SP TOS

Item1

Item2

SP TOS

PC

SR

Before
Interrupt

After
Interrupt

System Reset and Initialization

2-11System Resets, Interrupts, and Operating Modes

Return From Interrupt

The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles (CPU) or 3 cycles (CPUx) to
execute the following actions and is illustrated in Figure 2--7.

1) TheSRwith all previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) ThePCpops from the stack and begins execution at the pointwhere it was
interrupted.

Figure 2--7. Return From Interrupt

Item1

Item2

SP TOS

Item1

Item2SP TOS

PC

SR

Before After

PC

SR

Return From Interrupt

Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service
routine. When interrupt nesting is enabled, any interrupt occurring during an
interrupt service routine will interrupt the routine, regardless of the interrupt
priorities.

System Reset and Initialization

2-12 System Resets, Interrupts, and Operating Modes

2.2.4 Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the
address range 0FFFFh to 0FFC0h, as described in Table 2--1. A vector is
programmedby the userwith the 16-bit address of the corresponding interrupt
service routine. See the device-specific data sheet for the complete interrupt
vector list.

It is recommended to provide an interrupt service routine for each interrupt
vector that is assigned to a module. A dummy interrupt service routine can
consist of just the RETI instruction and several interrupt vectors can point to
it.

Unassigned interrupt vectors can be used for regular program code if
necessary.

Somemodule enable bits, interrupt enable bits, and interrupt flags are located
in the SFRs. The SFRs are located in the lower address range and are
implemented in byte format. SFRs must be accessed using byte instructions.
See the device-specific data sheet for the SFR configuration.

System Reset and Initialization

2-13System Resets, Interrupts, and Operating Modes

Table 2--1. Interrupt Sources,Flags, and Vectors

INTERRUPT SOURCE INTERRUPT FLAG
SYSTEM

INTERRUPT
WORD

ADDRESS PRIORITY

Power-up, external
reset, watchdog,
flash password,
illegal instruction
fetch

PORIFG
RSTIFG
WDTIFG
KEYV

Reset 0FFFEh 31, highest

NMI, oscillator fault,
flash memory access
violation

NMIIFG
OFIFG
ACCVIFG

(non)-maskable
(non)-maskable
(non)-maskable

0FFFCh 30

device-specific 0FFFAh 29

device-specific 0FFF8h 28

device-specific 0FFF6h 27

Watchdog timer WDTIFG maskable 0FFF4h 26

device-specific 0FFF2h 25

device-specific 0FFF0h 24

device-specific 0FFEEh 23

device-specific 0FFECh 22

device-specific 0FFEAh 21

device-specific 0FFE8h 20

device-specific 0FFE6h 19

device-specific 0FFE4h 18

device-specific 0FFE2h 17

device-specific 0FFE0h 16

device-specific 0FFDEh 15

device-specific 0FFDCh 14

device-specific 0FFDAh 13

device-specific 0FFD8h 12

device-specific 0FFD6h 11

device-specific 0FFD4h 10

device-specific 0FFD2h 9

device-specific 0FFD0h 8

device-specific 0FFCEh 7

device-specific 0FFCCh 6

device-specific 0FFCAh 5

device-specific 0FFC8h 4

device-specific 0FFC6h 3

device-specific 0FFC4h 2

device-specific 0FFC2h 1

device-specific 0FFC0h 0, lowest

Operating Modes

2-14 System Resets, Interrupts, and Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2--9.

The operating modes take into account three different needs:

- Ultralow-power

- Speed and data throughput

- Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2--8.

Figure 2--8. Typical Current Consumption of 21x1 Devices vs Operating Modes

315

AM

300

270

225
180

135

90
45

0
LPM0 LPM2 LPM3 LPM4

200

55 32
17 11 0.9 0.7 0.1 0.1

VCC = 3 V
VCC = 2.2 V

Operating Modes

I C
C
/μ
A
at
1
M
H
z

The low-power modes 0 to 4 are configured with the CPUOFF, OSCOFF,
SCG0, and SCG1 bits in the status register The advantage of including the
CPUOFF,OSCOFF, SCG0, andSCG1mode-control bits in the status register
is that the present operating mode is saved onto the stack during an interrupt
service routine. Program flow returns to the previous operating mode if the
savedSRvalue is not alteredduring the interrupt service routine.Program flow
can be returned to a different operating mode by manipulating the saved SR
value on the stack inside of the interrupt service routine. Themode-control bits
and the stack can be accessed with any instruction.

When setting any of themode-control bits, the selected operatingmode takes
effect immediately. Peripherals operatingwith any disabled clock are disabled
until the clock becomesactive. Theperipheralsmayalso bedisabledwith their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

Operating Modes

2-15System Resets, Interrupts, and Operating Modes

Figure 2--9. MSP430x2xx Operating Modes For Basic Clock System

Active Mode
CPU Is Active

Peripheral Modules Are Active

LPM0
CPU Off, MCLK Off,
SMCLK On, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 0

CPUOFF = 1
SCG0 = 1
SCG1 = 0

LPM2
CPU Off, MCLK Off, SMCLK
Off, DCO Off, ACLK On

CPUOFF = 1
SCG0 = 0
SCG1 = 1

LPM3
CPU Off, MCLK Off, SMCLK
Off, DCO Off, ACLK On

DC Generator Off

LPM4
CPU Off, MCLK Off, DCO

Off, SMCLK Off,
ACLK Off

DC Generator Off

CPUOFF = 1
OSCOFF = 1

SCG0 = 1
SCG1 = 1

RST/NMI
NMI Active

PUC RST/NMI is Reset Pin
WDT is Active

POR

WDT Active,
Security Key Violation

WDT
Time Expired, Overflow WDTIFG = 1

WDTIFG = 1

RST/NMI
Reset Active

SVS_POR

WDTIFG = 0

LPM1
CPU Off, MCLK Off,
DCO off, SMCLK On,

ACLK On

DC Generator Off if DCO
not used for SMCLK

CPUOFF = 1
SCG0 = 1
SCG1 = 1

SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status

0 0 0 0 Active CPU is active, all enabled clocks are active

0 0 0 1 LPM0 CPU, MCLK are disabled
SMCLK , ACLK are active

0 1 0 1 LPM1 CPU, MCLK are disabled, DCO and DC generator
are disabled if the DCO is not used for SMCLK.
ACLK is active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

Operating Modes

2-16 System Resets, Interrupts, and Operating Modes

2.3.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power
operating modes. The program flow is:

- Enter interrupt service routine:

J The PC and SR are stored on the stack

J The CPUOFF, SCG1, and OSCOFF bits are automatically reset

- Options for returning from the interrupt service routine:

J The original SR is popped from the stack, restoring the previous
operating mode.

J The SR bits stored on the stack can be modified within the interrupt
service routine returning to a different operatingmodewhen the RETI
instruction is executed.

; Enter LPM0 Example
BIS #GIE+CPUOFF,SR ; Enter LPM0

; ... ; Program stops here
;
; Exit LPM0 Interrupt Service Routine

BIC #CPUOFF,0(SP) ; Exit LPM0 on RETI
RETI

; Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0,SR ; Enter LPM3

; ... ; Program stops here
;
; Exit LPM3 Interrupt Service Routine

BIC #CPUOFF+SCG1+SCG0,0(SR) ; Exit LPM3 on RETI
RETI

Principles for Low-Power Applications

2-17System Resets, Interrupts, and Operating Modes

2.4 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the
MSP430’s clock system to maximize the time in LPM3. LPM3 power
consumption is less than 2 μA typical with both a real-time clock function and
all interrupts active. A 32-kHz watch crystal is used for the ACLK and the CPU
is clocked from the DCO (normally off) which has a 6-μs wake-up.

- Use interrupts to wake the processor and control program flow.

- Peripherals should be switched on only when needed.

- Use low-power integrated peripheral modules in place of software driven
functions. For example Timer_A and Timer_B can automatically generate
PWM and capture external timing, with no CPU resources.

- Calculated branching and fast table look-ups should be used in place of
flag polling and long software calculations.

- Avoid frequent subroutine and function calls due to overhead.

- For longer software routines, single-cycle CPU registers should be used.

2.5 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 2--2.

Table 2--2.Connection of Unused Pins

Pin Potential Comment

AVCC DVCC
AVSS DVSS
VREF+ Open

VeREF+ DVSS
VREF--/VeREF-- DVSS
XIN DVCC
XOUT Open

XT2IN DVSS
XT2OUT Open

Px.0 to Px.7 Open Switched to port function, output direction
or input with pullup/pulldown enabled

RST/NMI DVCC or VCC 47 kΩ pullup with 10 nF (2.2 nF†) pulldown

Test Open 20xx, 21xx, 22xx devices

TDO Open

TDI Open

TMS Open

TCK Open
† The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire
interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or
GANG programmers.

2-18 System Resets, Interrupts, and Operating Modes

3-1RISC 16-Bit CPU

RISC 16-Bit CPU

This chapter describes the MSP430 CPU, addressing modes, and
instruction set.

Topic Page

3.1 CPU Introduction 3-2. .

3.2 CPU Registers 3-4. .

3.3 Addressing Modes 3-9. .

3.4 Instruction Set 3-17. .

Chapter 3

CPU Introduction

3-2 RISC 16-Bit CPU

3.1 CPU Introduction

The CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
theuseof high-level languages suchasC.TheCPUcanaddress thecomplete
address range without paging.

The CPU features include:

- RISC architecture with 27 instructions and 7 addressing modes

- Orthogonal architecture with every instruction usable with every
addressing mode

- Full register access including programcounter, status registers, and stack
pointer

- Single-cycle register operations

- Large 16-bit register file reduces fetches to memory

- 16-bit address bus allows direct access and branching throughout entire
memory range

- 16-bit data bus allows direct manipulation of word-wide arguments

- Constant generator provides six most used immediate values and
reduces code size

- Direct memory-to-memory transfers without intermediate register holding

- Word and byte addressing and instruction formats

The block diagram of the CPU is shown in Figure 3--1.

CPU Introduction

3-3RISC 16-Bit CPU

Figure 3--1. CPU Block Diagram

015

MDB -- Memory Data Bus Memory Address Bus -- MAB

16
Zero, Z
Carry, C
Overflow, V
Negative, N

16--bit ALU

dst src

R8 General Purpose

R9 General Purpose

R10 General Purpose

R11 General Purpose

R12 General Purpose

R13 General Purpose

R14 General Purpose

R15 General Purpose

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R3/CG2 Constant Generator

R2/SR/CG1 Status

R1/SP Stack Pointer

R0/PC Program Counter 0

0

16

MCLK

CPU Registers

3-4 RISC 16-Bit CPU

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. R0, R1, R2 and R3 have
dedicated functions. R4 to R15 are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, or six),
and the PC is incremented accordingly. Instruction accesses in the 64-KB
address space are performed on word boundaries, and the PC is aligned to
even addresses. Figure 3--2 shows the program counter.

Figure 3--2. Program Counter

0

15 0

Program Counter Bits 15 to 1

1

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV #LABEL,PC ; Branch to address LABEL

MOV LABEL,PC ; Branch to address contained in LABEL

MOV @R14,PC ; Branch indirect to address in R14

CPU Registers

3-5RISC 16-Bit CPU

3.2.2 Stack Pointer (SP)

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3--3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3--4 shows stack usage.

Figure 3--3. Stack Pointer

0

15 0

Stack Pointer Bits 15 to 1

1

MOV 2(SP),R6 ; Item I2 -> R6

MOV R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h onto TOS

POP R8 ; R8 = 0123h

Figure 3--4. Stack Usage

I3

I1

I2

I3

0xxxh

0xxxh -- 2

0xxxh -- 4

0xxxh -- 6

0xxxh -- 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

0123h

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 3--5.

Figure 3--5. PUSH SP - POP SP Sequence

SP1

SPold
SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

CPU Registers

3-6 RISC 16-Bit CPU

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be
used in the register mode only addressed with word instructions. The remain-
ing combinations of addressing modes are used to support the constant gen-
erator. Figure 3--6 shows the SR bits.

Figure 3--6. Status Register Bits

SCG0 GIE Z C

rw-0

15 0

Reserved N
CPU
OFF

OSC
OFFSCG1V

8 79

Table 3--1 describes the status register bits.

Table 3--1.Description of Status Register Bits

Bit Description

V Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

ADD(.B),ADDC(.B) Set when:
Positive + Positive = Negative
Negative + Negative = Positive,
otherwise reset

SUB(.B),SUBC(.B),CMP(.B) Set when:
Positive -- Negative = Negative
Negative -- Positive = Positive,
otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the SMCLK.

SCG0 System clock generator 0. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled.

N Negative bit. This bit is set when the result of a byte or word operation
is negative and cleared when the result is not negative.
Word operation: N is set to the value of bit 15 of the

result
Byte operation: N is set to the value of bit 7 of the

result

Z Zero bit. This bit is set when the result of a byte or word operation is 0
and cleared when the result is not 0.

C Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred.

CPU Registers

3-7RISC 16-Bit CPU

3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constants are selected with the source-register addressing modes
(As), as described in Table 3--2.

Table 3--2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 -- -- -- -- -- Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 0FFFFh --1, word processing

The constant generator advantages are:

- No special instructions required

- No additional code word for the six constants

- No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator -- Expanded Instruction Set

TheRISC instruction set of theMSP430hasonly 27 instructions.However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:

MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.

INC dst

is replaced by:

ADD 0(R3),dst

CPU Registers

3-8 RISC 16-Bit CPU

3.2.5 General-Purpose Registers R4 to R15

The twelve registers, R4 to R15, are general-purpose registers. All of these
registers can be used as data registers, address pointers, or index values and
can be accessed with byte or word instructions as shown in Figure 3--7.

Figure 3--7. Register-Byte/Byte-Register Operations

Unused

High Byte Low Byte

Byte

Register-Byte Operation

0h

High Byte Low Byte

Byte

Byte-Register Operation

Register

Memory Register

Memory

Example Register-Byte Operation Example Byte-Register Operation

R5 = 0A28Fh R5 = 01202h

R6 = 0203h R6 = 0223h

Mem(0203h) = 012h Mem(0223h) = 05Fh

ADD.B R5,0(R6) ADD.B @R6,R5

08Fh 05Fh

+ 012h + 002h

0A1h 00061h

Mem (0203h) = 0A1h R5 = 00061h

C = 0, Z = 0, N = 1 C = 0, Z = 0, N = 0

(Low byte of register) (Addressed byte)

+ (Addressed byte) + (Low byte of register)

-->(Addressed byte) -->(Low byte of register, zero to High byte)

Addressing Modes

3-9RISC 16-Bit CPU

3.3 Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand can address the complete address space with no
exceptions. The bit numbers in Table 3--3 describe the contents of the As
(source) and Ad (destination) mode bits.

Table 3--3.Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/-- Indirect register
mode

@Rn Rn is used as a pointer to the
operand.

11/-- Indirect
autoincrement

@Rn+ Rn is used as a pointer to the
operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/-- Immediate mode #N The word following the instruction
contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressingmodes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

Addressing Modes

3-10 RISC 16-Bit CPU

3.3.1 Register Mode

The register mode is described in Table 3--4.

Table 3--4.Register Mode Description

Assembler Code Content of ROM

MOV R10,R11 MOV R10,R11

Length: One or two words

Operation: Move the content of R10 to R11. R10 is not affected.

Comment: Valid for source and destination

Example: MOV R10,R11

0A023hR10

R11

Before: After:

PC

0FA15h

PCold

0A023hR10

R11

PC PCold + 2

0A023h

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

Addressing Modes

3-11RISC 16-Bit CPU

3.3.2 Indexed Mode

The indexed mode is described in Table 3--5.

Table 3--5. Indexed Mode Description

Assembler Code Content of ROM

MOV 2(R5),6(R6) MOV X(R5),Y(R6)

X = 2

Y = 6

Length: Two or three words

Operation: Move the contents of the source address (contents of R5 + 2)
to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination

Example: MOV 2(R5),6(R6);

00006h

Address
Space

00002h

04596h PC

0FF16h

0FF14h

0FF12h

0xxxxh

05555h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

0108Ch
+0006h
01092h

01080h
+0002h
01082h

Register
Before:

00006h

Address
Space

00002h

04596h

PC
0FF16h

0FF14h

0FF12h

0xxxxh

01234h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

Register
After:

0xxxxh

Addressing Modes

3-12 RISC 16-Bit CPU

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3--6.

Table 3--6.Symbolic Mode Description

Assembler Code Content of ROM

MOV EDE,TONI MOV X(PC),Y(PC)

X = EDE -- PC

Y = TONI -- PC

Length: Two or three words

Operation: Move the contents of the source address EDE (contents of
PC+X) to the destination address TONI (contents of PC+Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically.With symbolicmode, theprogramcounter (PC)
is incremented automatically so that program execution
continues with the next instruction.

Comment: Valid for source and destination

Example: MOV EDE,TONI ;Source address EDE = 0F016h
;Dest. address TONI=01114h

011FEh

Address
Space

0F102h

04090h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

05555h

01116h

01114h

01112h 0xxxxh

0FF14h
+0F102h
0F016h

0FF16h
+011FEh
01114h

Register
Before:

011FEh

Address
Space

0F102h

04090h

PC
0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

Addressing Modes

3-13RISC 16-Bit CPU

3.3.4 Absolute Mode

The absolute mode is described in Table 3--7.

Table 3--7.Absolute Mode Description

Assembler Code Content of ROM

MOV &EDE,&TONI MOV X(0),Y(0)

X = EDE

Y = TONI

Length: Two or three words

Operation: Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination

Example: MOV &EDE,&TONI ;Source address EDE=0F016h,
;dest. address TONI=01114h

01114h

Address
Space

0F016h

04292h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

01234h

01116h

01114h

01112h 0xxxxh

Register
Before:

01114h

Address
Space

0F016h

04292h

PC
0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

This addressmode ismainly for hardware peripheralmodules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

Addressing Modes

3-14 RISC 16-Bit CPU

3.3.5 Indirect Register Mode

The indirect register mode is described in Table 3--8.

Table 3--8. Indirect Mode Description

Assembler Code Content of ROM

MOV @R10,0(R11) MOV @R10,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Comment: Valid only for source operand. The substitute for destination
operand is 0(Rd).

Example: MOV.B @R10,0(R11)

0000h

Address
Space

04AEBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0xxxxh

0xxh

012h

0xxh

0FA33h

002A7h

R10

R11

Register
Before:

0000h

Address
Space

04AEBh

PC
0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxh

05Bh

002A8h

002A7h

002A6h 0xxh

0FA33h

002A7h

R10

R11

Register
After:

0xxxxh0xxxxh

0xxxxh 0xxxxh

0FA34h

0FA32h

0FA30h

002A8h

002A7h

002A6h

Addressing Modes

3-15RISC 16-Bit CPU

3.3.6 Indirect Autoincrement Mode

The indirect autoincrement mode is described in Table 3--9.

Table 3--9. Indirect Autoincrement Mode Description

Assembler Code Content of ROM

MOV @R10+,0(R11) MOV @R10+,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to
the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without
any overhead. This is useful for table processing.

Comment: Valid only for source operand. The substitute for destination
operand is 0(Rd) plus second instruction INCD Rd.

Example: MOV @R10+,0(R11)

00000h

Address
Space

04ABBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

01234h

010AAh

010A8h

010A6h 0xxxxh

0FA32h

010A8h

R10

R11

Register
Before:

Address
Space

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

05BC1h

010AAh

010A8h

010A6h 0xxxxh

0FA34hR10

R11

Register
After:

0xxxxh

0xxxxh

0FF18h
00000h

04ABBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0xxxxh

0FF18h

010A8h

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 3--8.

Figure 3--8. Operand Fetch Operation

Instruction Address Operand

+1/ +2

Addressing Modes

3-16 RISC 16-Bit CPU

3.3.7 Immediate Mode

The immediate mode is described in Table 3--10.

Table 3--10.Immediate Mode Description

Assembler Code Content of ROM

MOV #45h,TONI MOV @PC+,X(PC)

45

X = TONI -- PC

Length: Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Operation: Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Comment: Valid only for a source operand.

Example: MOV #45h,TONI

01192h

Address
Space

00045h

040B0h PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

0xxxxh

0FF16h
+01192h
010A8h

Register
Before:

01192h

Address
Space

00045h

040B0h

PC
0FF16h

0FF14h

0FF12h

0xxxxh010AAh

010A8h

010A6h 0xxxxh

Register
After:

0xxxxh0FF18h

010AAh

010A8h

010A6h

00045h

Instruction Set

3-17RISC 16-Bit CPU

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique
op-codesdecodedby theCPU.Theemulated instructionsare instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:

- Dual-operand

- Single-operand

- Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .Wextensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:
0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROMlocationwouldbeavaliddestinationaddress,but thecontents
are not modifiable, so the results of the instruction would be lost.

Instruction Set

3-18 RISC 16-Bit CPU

3.4.1 Double-Operand (Format I) Instructions

Figure 3--9 illustrates the double-operand instruction format.

Figure 3--9. Double Operand Instruction Format

B/W D-Reg

15 0

Op-code AdS-Reg

8 714 13 12 11 10 9 6 5 4 3 2 1

As

Table 3--11 lists and describes the double operand instructions.

Table 3--11.Double Operand Instructions

Mnemonic S-Reg, Operation Status Bitsg,
D-Reg V N Z C

MOV(.B) src,dst src → dst -- -- -- --

ADD(.B) src,dst src + dst → dst * * * *

ADDC(.B) src,dst src + dst + C → dst * * * *

SUB(.B) src,dst dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst dst + .not.src + C → dst * * * *

CMP(.B) src,dst dst -- src * * * *

DADD(.B) src,dst src + dst + C → dst (decimally) * * * *

BIT(.B) src,dst src .and. dst 0 * * *

BIC(.B) src,dst .not.src .and. dst → dst -- -- -- --

BIS(.B) src,dst src .or. dst → dst -- -- -- --

XOR(.B) src,dst src .xor. dst → dst * * * *

AND(.B) src,dst src .and. dst → dst 0 * * *

* The status bit is affected

-- The status bit is not affected

0 The status bit is cleared

1 The status bit is set

Note: Instructions CMP and SUB

The instructions CMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.

Instruction Set

3-19RISC 16-Bit CPU

3.4.2 Single-Operand (Format II) Instructions

Figure 3--10 illustrates the single-operand instruction format.

Figure 3--10. Single Operand Instruction Format

B/W D/S-Reg

15 0

Op-code

8 714 13 12 11 10 9 6 5 4 3 2 1

Ad

Table 3--12 lists and describes the single operand instructions.

Table 3--12.Single Operand Instructions

Mnemonic S-Reg,
D Reg

Operation Status Bits
D-Reg

V N Z C

RRC(.B) dst C → MSB →.......LSB → C * * * *

RRA(.B) dst MSB → MSB →....LSB → C 0 * * *

PUSH(.B) src SP -- 2 → SP, src → @SP -- -- -- --

SWPB dst Swap bytes -- -- -- --

CALL dst SP -- 2 → SP, PC+2 → @SP -- -- -- --

dst → PC

RETI TOS → SR, SP + 2 →SP * * * *

TOS → PC,SP + 2 → SP

SXT dst Bit 7 → Bit 8........Bit 15 0 * * *

* The status bit is affected

-- The status bit is not affected

0 The status bit is cleared

1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode x(RN) is used, the word that follows contains the address
information.

Instruction Set

3-20 RISC 16-Bit CPU

3.4.3 Jumps

Figure 3--11 shows the conditional-jump instruction format.

Figure 3--11. Jump Instruction Format

C 10-Bit PC Offset

15 0

Op-code

8 714 13 12 11 10 9 6 5 4 3 2 1

Table 3--13 lists and describes the jump instructions.

Table 3--13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from --511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PCnew = PCold + 2 + PCoffset × 2

Instruction Set

3-21RISC 16-Bit CPU

* ADC[.W] Add carry to destination
* ADC.B Add carry to destination

Syntax ADC dst or ADC.W dst
ADC.B dst

Operation dst + C --> dst

Emulation ADDC #0,dst
ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

Instruction Set

3-22 RISC 16-Bit CPU

ADD[.W] Add source to destination
ADD.B Add source to destination

Syntax ADD src,dst or ADD.W src,dst
ADD.B src,dst

Operation src + dst --> dst

Description The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

Example R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) ≥ 246 [0Ah+0F6h]
...... ; No carry

Instruction Set

3-23RISC 16-Bit CPU

ADDC[.W] Add source and carry to destination
ADDC.B Add source and carry to destination

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C --> dst

Description Thesourceoperandand the carry bit (C) areadded to thedestinationoperand.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The32-bit counter pointed to byR13 is added to a 32-bit counter, elevenwords
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Example The 24-bit counter pointed to byR13 is added to a 24-bit counter, eleven bytes
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Instruction Set

3-24 RISC 16-Bit CPU

AND[.W] Source AND destination
AND.B Source AND destination

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .AND. dst --> dst

Description The source operand and the destination operand are logically ANDed. The
result is placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.

MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;
...... ; Result is not zero
;
;
; or
;
;
AND #0AA55h,TOM
JZ TONI

Example Thebits ofmask#0A5hare logicallyANDedwith the lowbyteTOM. If the result
is zero, a branch is taken to label TONI.

AND.B #0A5h,TOM ; mask Lowbyte TOM with 0A5h
JZ TONI ;
...... ; Result is not zero

Instruction Set

3-25RISC 16-Bit CPU

BIC[.W] Clear bits in destination
BIC.B Clear bits in destination

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation .NOT.src .AND. dst --> dst

Description The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six MSBs of the RAM word LEO are cleared.

BIC #0FC00h,LEO ; Clear 6 MSBs in MEM(LEO)

Example The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ;Clear 5MSBs in Ram location LEO

Instruction Set

3-26 RISC 16-Bit CPU

BIS[.W] Set bits in destination
BIS.B Set bits in destination

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .OR. dst --> dst

Description The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six LSBs of the RAM word TOM are set.

BIS #003Fh,TOM; set the six LSBs in RAM location TOM

Example The three MSBs of RAM byte TOM are set.

BIS.B #0E0h,TOM ; set the 3 MSBs in RAM location TOM

Instruction Set

3-27RISC 16-Bit CPU

BIT[.W] Test bits in destination
BIT.B Test bits in destination

Syntax BIT src,dst or BIT.W src,dst

Operation src .AND. dst

Description The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

Status Bits N: Set if MSB of result is set, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?
JNZ TOM ; Yes, branch to TOM
... ; No, proceed

Example If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8
JC TOM

Example A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using theBIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.
;
; Serial communication with LSB is shifted first:

; xxxx xxxx xxxx xxxx
BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry --> MSB of RECBUF

; cxxx xxxx
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; ^ ^
; MSB LSB

; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry --> LSB of RECBUF

; xxxx xxxc
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; | LSB
; MSB

Instruction Set

3-28 RISC 16-Bit CPU

* BR, BRANCH Branch to destination

Syntax BR dst

Operation dst --> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address
space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5+,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

Instruction Set

3-29RISC 16-Bit CPU

CALL Subroutine

Syntax CALL dst

Operation dst --> tmp dst is evaluated and stored
SP -- 2 --> SP
PC --> @SP PC updated to TOS
tmp --> PC dst saved to PC

Description A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

CALL #EXEC ;Call on label EXECor immediate address (e.g. #0A4h)
; SP--2 → SP, PC+2 → @SP, @PC+ → PC

CALL EXEC ; Call on the address contained in EXEC
; SP--2 → SP, PC+2 → @SP, X(PC) → PC
; Indirect address

CALL &EXEC ; Call on the address contained in absolute address
; EXEC
; SP--2 → SP, PC+2 → @SP, X(0) → PC
; Indirect address

CALL R5 ; Call on the address contained in R5
; SP--2 → SP, PC+2 → @SP, R5 → PC
; Indirect R5

CALL @R5 ; Call on the address contained in the word
; pointed to by R5
; SP--2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5

CALL @R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP--2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5 with autoincrement

CALL X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP--2 → SP, PC+2 → @SP, X(R5) → PC
; Indirect, indirect R5 + X

Instruction Set

3-30 RISC 16-Bit CPU

* CLR[.W] Clear destination
* CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 --> dst

Emulation MOV #0,dst
MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.

CLR TONI ; 0 --> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 --> TONI

Instruction Set

3-31RISC 16-Bit CPU

* CLRC Clear carry bit

Syntax CLRC

Operation 0 --> C

Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

Instruction Set

3-32 RISC 16-Bit CPU

* CLRN Clear negative bit

Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst --> dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example TheNegative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

Instruction Set

3-33RISC 16-Bit CPU

* CLRZ Clear zero bit

Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst --> dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The zero bit in the status register is cleared.

CLRZ

Instruction Set

3-34 RISC 16-Bit CPU

CMP[.W] Compare source and destination
CMP.B Compare source and destination

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation dst + .NOT.src + 1
or
(dst -- src)

Description The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

Status Bits N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise (src = dst)
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 andR6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R6?
JEQ EQUAL ; YES, JUMP

Example Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; number of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

Example TheRAMbytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI)?
JEQ EQUAL ; YES, JUMP

Instruction Set

3-35RISC 16-Bit CPU

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination

Syntax DADC dst or DADC.W src,dst
DADC.B dst

Operation dst + C --> dst (decimally)

Emulation DADD #0,dst
DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC.B 1(R8) ; Add carry to MSDs

Instruction Set

3-36 RISC 16-Bit CPU

DADD[.W] Source and carry added decimally to destination
DADD.B Source and carry added decimally to destination

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C --> dst (decimally)

Description The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 9999

Set if the result is greater than 99
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; clear carry
DADD R5,R3 ; add LSDs
DADD R6,R4 ; add MSDs with carry
JC OVERFLOW ; If carry occurs go to error handling routine

Example The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; clear carry
DADD.B #1,CNT ; increment decimal counter

or

SETC
DADD.B #0,CNT ; ≡ DADC.B CNT

Instruction Set

3-37RISC 16-Bit CPU

* DEC[.W] Decrement destination
* DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst -- 1 --> dst

Emulation SUB #1,dst
Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+0FEh
;

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI--EDE--1(R6)
DEC R10
JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3--12.

Figure 3--12. Decrement Overlap

EDE

EDE+254

TONI

TONI+254

Instruction Set

3-38 RISC 16-Bit CPU

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination

Syntax DECD dst or DECD.W dst
DECD.B dst

Operation dst -- 2 --> dst

Emulation SUB #2,dst
Emulation SUB.B #2,dst

Description Thedestinationoperand is decrementedby two.Theoriginal contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh
;

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI--EDE--2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

Instruction Set

3-39RISC 16-Bit CPU

* DINT Disable (general) interrupts

Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst --> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDedwith the status register (SR).
The result is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using theGIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

Instruction Set

3-40 RISC 16-Bit CPU

* EINT Enable (general) interrupts

Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR --> SR / .src .OR. dst --> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.
;

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

Instruction Set

3-41RISC 16-Bit CPU

* INC[.W] Increment destination
* INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 --> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

Instruction Set

3-42 RISC 16-Bit CPU

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 --> dst

Emulation ADD #2,dst
Emulation ADD.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned
; register

RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

Instruction Set

3-43RISC 16-Bit CPU

* INV[.W] Invert destination
* INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst --> dst

Emulation XOR #0FFFFh,dst
Emulation XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated,MEM(LEO) = 052h

Instruction Set

3-44 RISC 16-Bit CPU

JC Jump if carry set
JHS Jump if higher or same

Syntax JC label
JHS label

Operation If C = 1: PC + 2 × offset --> PC
If C = 0: execute following instruction

Description The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the programcounter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The P1IN.1 signal is used to define or control the program flow.

BIT.B #02h,&P1IN ; State of signal --> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

Example R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 ≥ 15
...... ; Continue here if R5 < 15

Instruction Set

3-45RISC 16-Bit CPU

JEQ, JZ Jump if equal, jump if zero

Syntax JEQ label, JZ label

Operation If Z = 1: PC + 2 × offset --> PC
If Z = 0: execute following instruction

Description The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 contains zero.

TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Example Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal
...... ; No, data are not equal, continue here

Example Branch to LABEL if R5 is 0.

TST R5
JZ LABEL
......

Instruction Set

3-46 RISC 16-Bit CPU

JGE Jump if greater or equal

Syntax JGE label

Operation If (N .XOR. V) = 0 then jump to label: PC + 2 × offset --> PC
If (N .XOR. V) = 1 then execute the following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If both N
andVare set or reset, the10-bit signedoffset contained in the instructionLSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 ≥ (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 ≥ (R7)
...... ; No, proceed
......
......

Instruction Set

3-47RISC 16-Bit CPU

JL Jump if less

Syntax JL label

Operation If (N .XOR. V) = 1 then jump to label: PC + 2 × offset --> PC
If (N .XOR. V) = 0 then execute following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is less than thememory pointed to byR7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed
......
......

Instruction Set

3-48 RISC 16-Bit CPU

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 × offset --> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the
program counter.

Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
--511 to +512 words relative to the current program counter.

Instruction Set

3-49RISC 16-Bit CPU

JN Jump if negative

Syntax JN label

Operation if N = 1: PC + 2 × offset --> PC
if N = 0: execute following instruction

Description The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example The result of a computation in R5 is to be subtracted fromCOUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT -- R5 --> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT≥0
......
......
......

L$1 CLR COUNT
......
......
......

Instruction Set

3-50 RISC 16-Bit CPU

JNC Jump if carry not set
JLO Jump if lower

Syntax JNC label
JLO label

Operation if C = 0: PC + 2 × offset --> PC
if C = 1: execute following instruction

Description The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
thenext instruction following the jump is executed. JNC (jump if nocarry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 --> BUFFER
JNC CONT ; No carry, jump to CONT

ERROR ; Error handler start
......
......
......

CONT ; Continue with normal program flow
......
......

Example Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 ; STATUS < 2
...... ; STATUS ≥ 2, continue here

Instruction Set

3-51RISC 16-Bit CPU

JNE Jump if not equal
JNZ Jump if not zero

Syntax JNE label
JNZ label

Operation If Z = 0: PC + 2 × offset --> PC
If Z = 1: execute following instruction

Description The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

Instruction Set

3-52 RISC 16-Bit CPU

MOV[.W] Move source to destination
MOV.B Move source to destination

Syntax MOV src,dst or MOV.W src,dst
MOV.B src,dst

Operation src --> dst

Description The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV @R10+,TOM--EDE--2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue copying
...... ; Copying completed
......
......

Example The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM--EDE--1(R10) ; Use pointer in R10 for
; both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue

; copying
...... ; Copying completed
......
......

Instruction Set

3-53RISC 16-Bit CPU

* NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

The NOP instruction is mainly used for two purposes:

- To fill one, two, or three memory words
- To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

Instruction Set

3-54 RISC 16-Bit CPU

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP --> temp
SP + 2 --> SP
temp --> dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst
Emulation MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

Instruction Set

3-55RISC 16-Bit CPU

PUSH[.W] Push word onto stack
PUSH.B Push byte onto stack

Syntax PUSH src or PUSH.W src
PUSH.B src

Operation SP -- 2 → SP
src → @SP

Description The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

Example The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

Instruction Set

3-56 RISC 16-Bit CPU

* RET Return from subroutine

Syntax RET

Operation @SP→ PC
SP + 2 → SP

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is moved to
theprogramcounter. Theprogramcontinues at the codeaddress following the
subroutine call.

Status Bits Status bits are not affected.

Instruction Set

3-57RISC 16-Bit CPU

RETI Return from interrupt

Syntax RETI

Operation TOS → SR
SP + 2 → SP
TOS → PC
SP + 2 → SP

Description The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3--13 illustrates the main program interrupt.

Figure 3--13. Main Program Interrupt

PC --6

PC --4

PC --2

PC

PC +2

PC +4

PC +6

PC +8

PC = PCi

PCi +2

PCi +4

PCi +n--4

PCi +n--2

PCi +n

Interrupt Request

Interrupt Accepted

PC+2 is Stored
Onto Stack

RETI

Instruction Set

3-58 RISC 16-Bit CPU

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <-- MSB <-- MSB--1 LSB+1 <-- LSB <-- 0

Emulation ADD dst,dst
ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3--14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3--14. Destination Operand—Arithmetic Shift Left

15 0

7 0

C

Byte

Word

0

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is
performed: the result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (× 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (× 2)
RLA.B R7 ; Shift left low byte of R7 (× 4)

Note: RLA Substitution

The assembler does not recognize the instruction:

RLA @R5+, RLA.B @R5+, or RLA(.B) @R5

It must be substituted by:

ADD @R5+,--2(R5) ADD.B @R5+,--1(R5) or ADD(.B) @R5

Instruction Set

3-59RISC 16-Bit CPU

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <-- MSB <-- MSB--1 LSB+1 <-- LSB <-- C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 3--15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3--15. Destination Operand—Carry Left Shift

15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C --> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information --> Carry
RLC R5 ; Carry=P0in.1 --> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C --> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5

It must be substituted by:

ADDC @R5+,--2(R5) ADDC.B @R5+,--1(R5) or ADDC(.B) @R5

Instruction Set

3-60 RISC 16-Bit CPU

RRA[.W] Rotate right arithmetically
RRA.B Rotate right arithmetically

Syntax RRA dst or RRA.W dst
RRA.B dst

Operation MSB --> MSB, MSB --> MSB--1, ... LSB+1 --> LSB, LSB --> C

Description The destination operand is shifted right one position as shown in Figure 3--16.
The MSB is shifted into the MSB, the MSB is shifted into the MSB--1, and the
LSB+1 is shifted into the LSB.

Figure 3--16. Destination Operand—Arithmetic Right Shift

15 0

15 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2 --> R5

; The value in R5 is multiplied by 0.75 (0.5 + 0.25).
;

PUSH R5 ; Hold R5 temporarily using stack
RRA R5 ; R5 × 0.5 --> R5
ADD @SP+,R5 ; R5 × 0.5 + R5 = 1.5 × R5 --> R5
RRA R5 ; (1.5 × R5) × 0.5 = 0.75 × R5 --> R5
......

Example The low byte of R5 is shifted right one position. TheMSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 --> R5: operation is on low byte only
; High byte of R5 is reset

PUSH.B R5 ; R5 × 0.5 --> TOS
RRA.B @SP ; TOS × 0.5 = 0.5 × R5 × 0.5 = 0.25 × R5 --> TOS
ADD.B @SP+,R5 ; R5 × 0.5 + R5 × 0.25 = 0.75 × R5 --> R5
......

Instruction Set

3-61RISC 16-Bit CPU

RRC[.W] Rotate right through carry
RRC.B Rotate right through carry

Syntax RRC dst or RRC.W dst
RRC dst

Operation C --> MSB --> MSB--1 LSB+1 --> LSB --> C

Description The destination operand is shifted right one position as shown in Figure 3--17.
The carry bit (C) is shifted into theMSB, the LSB is shifted into the carry bit (C).

Figure 3--17. Destination Operand—Carry Right Shift

15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h --> R5

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h --> R5; low byte of R5 is used

Instruction Set

3-62 RISC 16-Bit CPU

* SBC[.W] Subtract source and borrow/.NOT. carry from destination
* SBC.B Subtract source and borrow/.NOT. carry from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C --> dst
dst + 0FFh + C --> dst

Emulation SUBC #0,dst
SUBC.B #0,dst

Description The carry bit (C) is added to the destination operandminus one. The previous
contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to byR13 is subtracted froma 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

Instruction Set

3-63RISC 16-Bit CPU

* SETC Set carry bit

Syntax SETC

Operation 1 --> C

Emulation BIS #1,SR

Description The carry bit (C) is set.

Status Bits N: Not affected
Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

DSUB ADD #06666h,R5 ; Move content R5 from 0--9 to 6--0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0--9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h -- R5 -- 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

Instruction Set

3-64 RISC 16-Bit CPU

* SETN Set negative bit

Syntax SETN

Operation 1 --> N

Emulation BIS #4,SR

Description The negative bit (N) is set.

Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Instruction Set

3-65RISC 16-Bit CPU

* SETZ Set zero bit

Syntax SETZ

Operation 1 --> Z

Emulation BIS #2,SR

Description The zero bit (Z) is set.

Status Bits N: Not affected
Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Instruction Set

3-66 RISC 16-Bit CPU

SUB[.W] Subtract source from destination
SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 --> dst
or
[(dst -- src --> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example See example at the SBC instruction.

Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

Instruction Set

3-67RISC 16-Bit CPU

SUBC[.W]SBB[.W] Subtract source and borrow/.NOT. carry from destination
SUBC.B,SBB.B Subtract source and borrow/.NOT. carry from destination

Syntax SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

Operation dst + .NOT.src + C --> dst
or
(dst -- src -- 1 + C --> dst)

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive.
Z: Set if result is zero, reset otherwise.
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

Example The 16-bit counter pointed to byR13 is subtracted froma 16-bit counter inR10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
... ; resulting from the LSDs

Note: Borrow Implementation

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

Instruction Set

3-68 RISC 16-Bit CPU

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15 to 8 <--> bits 7 to 0

Description The destination operand high and low bytes are exchanged as shown in
Figure 3--18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3--18. Destination Operand Byte Swap

15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 --> R7
SWPB R7 ; 1011111101000000 in R7

Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;
MOV R5,R4 ;Copy the swapped value to R4
BIC #0FF00h,R5 ;Correct the result
BIC #00FFh,R4 ;Correct the result

Instruction Set

3-69RISC 16-Bit CPU

SXT Extend Sign

Syntax SXT dst

Operation Bit 7 --> Bit 8 Bit 15

Description Thesignof the lowbyte is extended into thehighbyteas shown inFigure 3--19.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3--19. Destination Operand Sign Extension

15 8 7 0

Example R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h: 1000 0000
SXT R7 ; R7 = 0FF80h: 1111 1111 1000 0000

Instruction Set

3-70 RISC 16-Bit CPU

* TST[.W] Test destination
* TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description Thedestinationoperand is comparedwith zero. The status bits are set accord-
ing to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

Instruction Set

3-71RISC 16-Bit CPU

XOR[.W] Exclusive OR of source with destination
XOR.B Exclusive OR of source with destination

Syntax XOR src,dst or XOR.W src,dst
XOR.B src,dst

Operation src .XOR. dst --> dst

Description ThesourceanddestinationoperandsareexclusiveORed.The result is placed
into the destination. The source operand is not affected.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

Example The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in
; low byte of R6

Example Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is 0h

Instruction Set

3-72 RISC 16-Bit CPU

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3--14 lists the CPU cycles for interrupt overhead and reset.

Table 3--14.Interrupt and Reset Cycles

No. of Length of
Action

No. of
Cycles

Length of
Instruction

Return from interrupt (RETI) 5 1

Interrupt accepted 6 --

WDT reset 4 --

Reset (RST/NMI) 4 --

Format-II (Single Operand) Instruction Cycles and Lengths

Table 3--15 lists the length and CPU cycles for all addressing modes of
format-II instructions.

Table 3--15.Format-II Instruction Cycles and Lengths

No. of Cycles

Addressing
Mode

RRA, RRC
SWPB, SXT PUSH CALL

Length of
Instruction Example

Rn 1 3 4 1 SWPB R5

@Rn 3 4 4 1 RRC @R9

@Rn+ 3 5 5 1 SWPB @R10+

#N (See note) 4 5 2 CALL #0F000h

X(Rn) 4 5 5 2 CALL 2(R7)

EDE 4 5 5 2 PUSH EDE

&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format II Immediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

Instruction Set

3-73RISC 16-Bit CPU

Format-I (Double Operand) Instruction Cycles and Lengths

Table 3--16 lists the lengthandCPUcycles for all addressingmodesof format-I
instructions.

Table 3--16.Format 1 Instruction Cycles and Lengths

Addressing Mode No. of Length of

Src Dst Cycles
g

Instruction Example
Rn Rm 1 1 MOV R5,R8

PC 2 1 BR R9

x(Rm) 4 2 ADD R5,4(R6)

EDE 4 2 XOR R8,EDE

&EDE 4 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5@

PC 2 1 BR @R8

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R5,EDE

&EDE 5 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6@

PC 3 1 BR @R9+

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R9+,EDE

&EDE 5 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5 3 MOV #0300h,0(SP)

EDE 5 3 ADD #33,EDE

&EDE 5 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7()

PC 3 2 BR 2(R6)

TONI 6 3 MOV 4(R7),TONI

x(Rm) 6 3 ADD 4(R4),6(R9)

&TONI 6 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 3 2 BR EDE

TONI 6 3 CMP EDE,TONI

x(Rm) 6 3 MOV EDE,0(SP)

&TONI 6 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8

PC 3 2 BR &EDE

TONI 6 3 MOV &EDE,TONI

x(Rm) 6 3 MOV &EDE,0(SP)

&TONI 6 3 MOV &EDE,&TONI

Instruction Set

3-74 RISC 16-Bit CPU

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3--20 and the complete instruction set
is summarized in Table 3--17.

Figure 3--20. Core Instruction Map

0xxx
4xxx
8xxx
Cxxx
1xxx
14xx
18xx
1Cxx
20xx
24xx
28xx
2Cxx
30xx
34xx
38xx
3Cxx
4xxx
5xxx
6xxx
7xxx
8xxx
9xxx
Axxx
Bxxx
Cxxx
Dxxx
Exxx
Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ
JEQ/JZ
JNC
JC
JN
JGE
JL
JMP
MOV, MOV.B
ADD, ADD.B
ADDC, ADDC.B
SUBC, SUBC.B
SUB, SUB.B
CMP, CMP.B
DADD, DADD.B
BIT, BIT.B
BIC, BIC.B
BIS, BIS.B
XOR, XOR.B
AND, AND.B

Instruction Set

3-75RISC 16-Bit CPU

Table 3--17.MSP430 Instruction Set
Mnemonic Description V N Z C

ADC(.B)† dst Add C to destination dst + C → dst * * * *

ADD(.B) src,dst Add source to destination src + dst → dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + C → dst * * * *

AND(.B) src,dst AND source and destination src .and. dst → dst 0 * * *

BIC(.B) src,dst Clear bits in destination .not.src .and. dst → dst -- -- -- --

BIS(.B) src,dst Set bits in destination src .or. dst → dst -- -- -- --

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR† dst Branch to destination dst → PC -- -- -- --

CALL dst Call destination PC+2 → stack, dst → PC -- -- -- --

CLR(.B)† dst Clear destination 0 → dst -- -- -- --

CLRC† Clear C 0 → C -- -- -- 0

CLRN† Clear N 0 → N -- 0 -- --

CLRZ† Clear Z 0 → Z -- -- 0 --

CMP(.B) src,dst Compare source and destination dst -- src * * * *

DADC(.B)† dst Add C decimally to destination dst + C → dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst. src + dst + C → dst (decimally) * * * *

DEC(.B)† dst Decrement destination dst -- 1 → dst * * * *

DECD(.B)† dst Double-decrement destination dst -- 2 → dst * * * *

DINT† Disable interrupts 0 → GIE -- -- -- --

EINT† Enable interrupts 1 → GIE -- -- -- --

INC(.B)† dst Increment destination dst +1 → dst * * * *

INCD(.B)† dst Double-increment destination dst+2 → dst * * * *

INV(.B)† dst Invert destination .not.dst → dst * * * *

JC/JHS label Jump if C set/Jump if higher or same -- -- -- --

JEQ/JZ label Jump if equal/Jump if Z set -- -- -- --

JGE label Jump if greater or equal -- -- -- --

JL label Jump if less -- -- -- --

JMP label Jump PC + 2 x offset → PC -- -- -- --

JN label Jump if N set -- -- -- --

JNC/JLO label Jump if C not set/Jump if lower -- -- -- --

JNE/JNZ label Jump if not equal/Jump if Z not set -- -- -- --

MOV(.B) src,dst Move source to destination src → dst -- -- -- --

NOP† No operation -- -- -- --

POP(.B)† dst Pop item from stack to destination @SP → dst, SP+2 → SP -- -- -- --

PUSH(.B) src Push source onto stack SP -- 2 → SP, src → @SP -- -- -- --

RET† Return from subroutine @SP → PC, SP + 2 → SP -- -- -- --

RETI Return from interrupt * * * *

RLA(.B)† dst Rotate left arithmetically * * * *

RLC(.B)† dst Rotate left through C * * * *

RRA(.B) dst Rotate right arithmetically 0 * * *

RRC(.B) dst Rotate right through C * * * *

SBC(.B)† dst Subtract not(C) from destination dst + 0FFFFh + C → dst * * * *

SETC† Set C 1 → C -- -- -- 1

SETN† Set N 1 → N -- 1 -- --

SETZ† Set Z 1 → C -- -- 1 --

SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C → dst * * * *

SWPB dst Swap bytes -- -- -- --

SXT dst Extend sign 0 * * *

TST(.B)† dst Test destination dst + 0FFFFh + 1 0 * * 1

XOR(.B) src,dst Exclusive OR source and destination src .xor. dst → dst * * * *

† Emulated Instruction

3-76 RISC 16-Bit CPU

4-116-Bit MSP430X CPU

16-Bit MSP430X CPU

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB
memory access, its addressing modes, and instruction set. The MSP430X
CPU is implemented in all MSP430 devices that exceed 64-KB of address
space.

Topic Page

4.1 CPU Introduction 4-2. .

4.2 Interrupts 4-4. .

4.3 CPU Registers 4-5. .

4.4 Addressing Modes 4-15. .

4.5 MSP430 and MSP430X Instructions 4-36. .

4.6 Instruction Set Description 4-58. .

Chapter 4

CPU Introduction

4-2 16-Bit MSP430X CPU

4.1 CPU Introduction

The MSP430X CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The MSP430X CPU can address
a 1-MB address range without paging. In addition, the MSP430X CPU has
fewer interrupt overhead cycles and fewer instruction cycles in some cases
than theMSP430CPU,whilemaintaining the sameor better codedensity than
the MSP430 CPU. The MSP430X CPU is completely backwards compatible
with the MSP430 CPU.

The MSP430X CPU features include:

- RISC architecture.

- Orthogonal architecture.

- Full register access including program counter, status register and stack
pointer.

- Single-cycle register operations.

- Large register file reduces fetches to memory.

- 20-bit address bus allows direct access and branching throughout the
entire memory range without paging.

- 16-bit data bus allows direct manipulation of word-wide arguments.

- Constant generator provides the six most often used immediate values
and reduces code size.

- Directmemory-to-memory transferswithout intermediate registerholding.

- Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 4--1.

CPU Introduction

4-316-Bit MSP430X CPU

Figure 4--1. MSP430X CPU Block Diagram

R6

R5

R4

R3/CG2 Constant Generator

R7

R8

R9

R10

R11

R12

R13

R14

R15

0

0

R0/PC Program Counter

19

R1/SP Pointer Stack

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

Memory Address Bus -- MABMDB -- Memory Data Bus

16
20

16/20--bit ALU

srcdstZero, Z
Carry, C

Overflow,V
Negative,N

MCLK

016 15

R2/SR Status Register

Interrupts

4-4 16-Bit MSP430X CPU

4.2 Interrupts

The MSP430X uses the same interrupt structure as the MSP430:

- Vectored interrupts with no polling necessary

- Interrupt vectors are located downward from address 0FFFEh

Interrupt operation for both MSP430 and MSP430X CPUs is described in
Chapter 2 System Resets, Interrupts, and Operating modes, Section 2
Interrupts. The interrupt vectors contain 16-bit addresses that point into the
lower 64-KBmemory. This means all interrupt handlers must start in the lower
64-KB memory -- even in MSP430X devices.

During an interrupt, the program counter and the status register are pushed
onto the stack as shown in Figure 4--2. The MSP430X architecture efficiently
stores the complete 20-bit PC value by automatically appending the PC bits
19:16 to the stored SR value on the stack. When the RETI instruction is
executed, the full 20-bit PC is restored making return from interrupt to any
address in the memory range possible.

Figure 4--2. Program Counter Storage on the Stack for Interrupts

Item n--1

PC.19:16

PC.15:0

SPold

SP SR.11:0

CPU Registers

4-516-Bit MSP430X CPU

4.3 CPU Registers

TheCPU incorporates sixteen registers R0 to R15. Registers R0, R1, R2, and
R3 have dedicated functions. R4 to R15 are working registers for general use.

4.3.1 Program Counter PC

The 20-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, six or
eight bytes), and the PC is incremented accordingly. Instruction accesses are
performed on word boundaries, and the PC is aligned to even addresses.
Figure 4--3 shows the program counter.

Figure 4--3. Program Counter PC

0Program Counter Bits 19 to 1

19 15 1 016

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV.W #LABEL,PC ; Branch to address LABEL (lower 64 KB)

MOVA #LABEL,PC ; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC ; Branch to address in word LABEL
; (lower 64 KB)

MOV.W @R14,PC ; Branch indirect to address in
; R14 (lower 64 KB)

ADDA #4,PC ; Skip two words (1 MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only
addresses in the lower 64-KB address range can be reached with the BR or
CALL instruction. When branching or calling, addresses beyond the lower
64-KB range can only be reached using the BRA or CALLA instructions. Also,
any instruction to directly modify the PC does so according to the used
addressing mode. For example, MOV.W #value,PC will clear the upper four
bits of the PC because it is a .W instruction.

CPU Registers

4-6 16-Bit MSP430X CPU

Theprogramcounter is automatically storedon thestackwithCALL, orCALLA
instructions, and during an interrupt service routine. Figure 4--4 shows the
storage of the program counter with the return address after a CALLA
instruction. A CALL instruction stores only bits 15:0 of the PC.

Figure 4--4. Program Counter Storage on the Stack for CALLA

Item n

PC.19:16

PC.15:0

SPold

SP

The RETA instruction restores bits 19:0 of the program counter and adds 4 to
the stack pointer. The RET instruction restores bits 15:0 to the program
counter and adds 2 to the stack pointer.

CPU Registers

4-716-Bit MSP430X CPU

4.3.2 Stack Pointer (SP)

The 20-bit stack pointer (SP/R1) is used by the CPU to store the return
addresses of subroutine calls and interrupts. It uses a predecrement,
postincrement scheme. In addition, the SP can be used by software with all
instructions and addressing modes. Figure 4--5 shows the SP. The SP is
initialized into RAM by the user, and is always aligned to even addresses.

Figure 4--6 shows the stack usage. Figure 4--7 shows the stack usage when
20-bit address-words are pushed.

Figure 4--5. Stack Pointer

0Stack Pointer Bits 19 to 1

19 1 0

MOV.W 2(SP),R6 ; Copy Item I2 to R6

MOV.W R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h on stack

POP R8 ; R8 = 0123h

Figure 4--6. Stack Usage

I3

I1

I2

I3

0xxxh

0xxxh -- 2

0xxxh -- 4

0xxxh -- 6

0xxxh -- 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

Figure 4--7. PUSHX.A Format on the Stack

Item n--1

Item.19:16

Item.15:0

SPold

SP

CPU Registers

4-8 16-Bit MSP430X CPU

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 4--8.

Figure 4--8. PUSH SP - POP SP Sequence

SP1

SPold
SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

CPU Registers

4-916-Bit MSP430X CPU

4.3.3 Status Register (SR)

The 16-bit status register (SR/R2), used as a source or destination register,
can only be used in register mode addressed with word instructions. The
remaining combinations of addressing modes are used to support the
constant generator. Figure 4--9 shows the SR bits. Do not write 20-bit values
to the SR. Unpredictable operation can result.

Figure 4--9. Status Register Bits

SCG0 GIE Z C

rw-0

15 0

Reserved N
CPU
OFF

OSC
OFFSCG1V

8 79

Table 4--1 describes the status register bits.

Table 4--1.Description of Status Register Bits

Bit Description

Reserved Reserved

V Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

ADD(.B), ADDX(.B,.A),
ADDC(.B), ADDCX(.B.A),
ADDA

Set when:
positive + positive = negative
negative + negative = positive
otherwise reset

SUB(.B), SUBX(.B,.A),
SUBC(.B),SUBCX(.B,.A),
SUBA, CMP(.B),
CMPX(.B,.A), CMPA

Set when:
positive -- negative = negative
negative -- positive = positive
otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the DCO dc
generator if DCOCLK is not used for MCLK or SMCLK.

SCG0 System clock generator 0. This bit, when set, turns off the FLL+ loop
control.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator
when LFXT1CLK is not used for MCLK or SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable inter-
rupts. When reset, all maskable interrupts are disabled.

N Negative bit. This bit is set when the result of an operation is negative
and cleared when the result is positive.

CPU Registers

4-10 16-Bit MSP430X CPU

Bit Description

Z Zero bit. This bit is set when the result of an operation is zero and
cleared when the result is not zero.

C Carry bit. This bit is set when the result of an operation produced a
carry and cleared when no carry occurred.

CPU Registers

4-1116-Bit MSP430X CPU

4.3.4 The Constant Generator Registers CG1 and CG2

Six commonly used constants are generated with the constant generator
registers R2 (CG1) and R3 (CG2), without requiring an additional 16-bit word
of program code. The constants are selected with the source register
addressing modes (As), as described in Table 4--2.

Table 4--2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 - Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 FFh, FFFFh, FFFFFh -1, word processing

The constant generator advantages are:

- No special instructions required

- No additional code word for the six constants

- No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator -- Expanded Instruction Set

TheRISC instruction set of theMSP430hasonly 27 instructions.However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:

MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.

INC dst

is replaced by:

ADD 0(R3),dst

CPU Registers

4-12 16-Bit MSP430X CPU

4.3.5 General-Purpose Registers R4 to R15

The twelveCPU registersR4 toR15, contain 8-bit, 16-bit, or 20-bit values. Any
byte-write to aCPU register clears bits 19:8.Anyword-write toa register clears
bits 19:16. The only exception is the SXT instruction. The SXT instruction
extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word and address-word data.
Note the reset of the leading MSBs, if a register is the destination of a byte or
word instruction.

Figure 4--10 shows byte handling (8-bit data, .B suffix). The handling is shown
for a source register and a destination memory byte and for a source memory
byte and a destination register.

Figure 4--10. Register-Byte/Byte-Register Operation

Unused

High Byte Low Byte

Register-Byte Operation

High Byte Low Byte

Byte-Register Operation

Register

Memory Register

Memory

Operation

Memory

Operation

0 Register

Un-
used

Unused
Un-
used

0

19 16 15 0

19 16 15 0

8 7

8 7

CPU Registers

4-1316-Bit MSP430X CPU

Figure 4--11 and Figure 4--12 show 16-bit word handling (.W suffix). The
handling is shown for a source register and a destination memory word and
for a source memory word and a destination register.

Figure 4--11. Register-Word Operation

High Byte Low Byte

Register-Word Operation

Register

Memory

Operation

Memory

Un-
used

19 16 15 08 7

Figure 4--12. Word-Register Operation

High Byte Low Byte

Word-Register Operation

Register

Memory

Operation

0 Register

Un-
used

19 16 15 08 7

CPU Registers

4-14 16-Bit MSP430X CPU

Figure 4--13 and Figure 4--14 show 20-bit address-word handling (.A suffix).
The handling is shown for a source register and a destination memory
address-word and for a source memory address-word and a destination
register.

Figure 4--13. Register -- Address-Word Operation

High Byte Low Byte

Register -- Address-Word Operation

Register

Memory

Operation

Memory

Unused

0

Memory +2

Memory +2

19 16 15 08 7

Figure 4--14. Address-Word -- Register Operation

High Byte Low Byte

Address-Word -- Register Operation

Register

Memory

Operation

Register

UnusedMemory +2

19 16 15 08 7

CPU Registers

4-1516-Bit MSP430X CPU

4.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand use 16-bit or 20-bit addresses. The MSP430 and
MSP430X instructions are usable throughout the entire 1-MBmemory range.

Table 4--3.Source/Destination Addressing

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(PC) is
used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(SR) is
used.

10/-- Indirect register
mode

@Rn Rn is used as a pointer to the
operand.

11/-- Indirect
autoincrement

@Rn+ Rn is used as a pointer to the
operand. Rn is incremented
afterwards by 1 for .B instructions.
by 2 for .W instructions, and by 4
for .A instructions.

11/-- Immediate mode #N N is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indirect autoincrement
mode @PC+ is used.

The seven addressingmodes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

CPU Registers

4-16 16-Bit MSP430X CPU

4.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU
register.

Length: One, two, or three words

Comment: Valid for source and destination

Byte operation: Byte operation reads only the 8 LSBs of the source register
Rsrc and writes the result to the 8 LSBs of the destination
register Rdst. The bits Rdst.19:8 are cleared. The register
Rsrc is not modified.

Word operation:Word operation reads the 16 LSBsof the source registerRsrc
andwrites the result to the 16 LSBs of the destination register
Rdst. ThebitsRdst.19:16are cleared.The registerRsrc is not
modified.

Address-Word operation: Address-word operation reads the 20 bits of the
source register Rsrc and writes the result to the 20 bits of the
destination register Rdst. The register Rsrc is not modified

SXT Exception: The SXT instruction is the only exception for register
operation. The sign of the low byte in bit 7 is extended to the
bits Rdst.19:8.

Example: BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

xxxxh

Address
Space

D506h PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

xxxxh

Address
Space

D506h

PC21036h

21034h

AA550h

0B551h

R5

R6

Register
After:

A550h.or.1111h = B551h

CPU Registers

4-1716-Bit MSP430X CPU

Example: BISX.A R5,R6 ;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit
contents of R6.

The extension word contains the A/L-bit for 20-bit data. The instruction word
uses byte mode with bits A/L:B/W = 01. The result of the instruction is:

xxxxh

Address
Space

D546h

PC

21036h

21034h

AA550h

11111h

R5

R6

Register
Before:

Address
Space

PC AA550h

BB551h

R5

R6

Register
After:

AA550h.or.11111h = BB551h

1800h21032h

xxxxh

D546h

21036h

21034h

1800h21032h

CPU Registers

4-18 16-Bit MSP430X CPU

4.4.2 Indexed Mode

The Indexedmode calculates the address of theoperandbyadding the signed
index to aCPU register. The Indexedmode has three addressing possibilities:

- Indexed mode in lower 64-KB memory

- MSP430 instruction with Indexed mode addressing memory above the
lower 64-KB memory.

- MSP430X instruction with Indexed mode

Indexed Mode in Lower 64 KB Memory

If the CPU register Rn points to an address in the lower 64 KB of the memory
range, the calculatedmemory address bits 19:16 are cleared after the addition
of theCPU register Rn and the signed 16-bit index. Thismeans, the calculated
memory address is always located in the lower 64 KB and does not overflow
or underflow out of the lower 64-KB memory space. The RAM and the
peripheral registers can be accessed this way and existing MSP430 software
is usable without modifications as shown in Figure 4--15.

Figure 4--15. Indexed Mode in Lower 64 KB

16-bit
signed index

CPU Register
Rn

16-bit signed add

0 Memory address

FFFFF

00000

Lo
w
er
64
K
B

0FFFF
10000

Rn.19:0

Lower 64 KB.
Rn.19:16 = 0

16-bit byte index

0

19 16 15 0

S

Length: Two or three words

Operation: The signed 16-bit index is located in the next word after the
instruction and is added to theCPU register Rn. The resulting
bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range
00000h to 0FFFFh. The operand is the content of the
addressed memory location.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

CPU Registers

4-1916-Bit MSP430X CPU

Example: ADD.B 1000h(R5),0F000h(R6);

The previous instruction adds the 8-bit data contained in source byte
1000h(R5) and the destination byte 0F000h(R6) and places the result into the
destination byte. Source and destination bytes are both located in the lower
64 KB due to the cleared bits 19:16 of registers R5 and R6.

Source: The byte pointed to byR5 + 1000h results in address 0479Ch
+ 1000h = 0579Ch after truncation to a 16-bit address.

Destination: The byte pointed to by R6 + F000h results in address 01778h
+ F000h = 00778h after truncation to a 16-bit address.

xxxxh

Address
Space

F000h

1000h

PC

1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

01778h
+F000h
00778h

Register
Before:

Address
Space

Register
After:

55D6h11034h

xxxxh

F000h

1000h

PC1103Ah

11038h

11036h

0479Ch

01778h

R5

R6

55D6h11034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h
+45h
77h

src
dst
Sum

0479Ch
+1000h
0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

CPU Registers

4-20 16-Bit MSP430X CPU

MSP430 Instruction with Indexed Mode in Upper Memory

If the CPU register Rn points to an address above the lower 64-KB memory,
the Rn bits 19:16 are used for the address calculation of the operand. The
operand may be located in memory in the range Rn ±32 KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can
overflow or underflow into the lower 64-KB memory space. See Figure 4--16
and Figure 4--17.

Figure 4--16. Indexed Mode in Upper Memory

16-bit signed index
(sign extended to
20 bits)

CPU Register
Rn

20-bit signed add

Memory address

FFFFF

00000

Lo
w
er
64

K
B

0FFFF
10000

Upper Memory
Rn.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

Rn ±32 KB

S

Rn.19:0

Figure 4--17. Overflow and Underflow for the Indexed Mode

FFFFF

0000C

Lo
w
er
64

K
B

0,FFFF
10000

Rn.19:0

Rn.19:0

Rn.19:0

±3
2K

B

±3
2K

B

Rn.19:0

CPU Registers

4-2116-Bit MSP430X CPU

Length: Two or three words

Operation: The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of theCPU register Rn. This
delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the
addressed memory location.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADD.W 8346h(R5),2100h(R6);

This instruction adds the 16-bit data contained in the source and the
destination addresses and places the 16-bit result into the destination. Source
and destination operand can be located in the entire address range.

Source: The word pointed to by R5 + 8346h. The negative index
8346h is sign-extended, which results in address 23456h +
F8346h = 1B79Ch.

Destination: The word pointed to by R6 + 2100h results in address
15678h + 2100h = 17778h.

Figure 4--18. Example for the Indexed Mode

xxxxh

Address
Space

2100h

8346h

PC

1103Ah

11038h

11036h

23456h

15678h

R5

R6

15678h
+02100h
17778h

Register
Before:

Address
Space

Register
After:

5596h11034h

xxxxh

2100h

8346h

PC1103Ah

11038h

11036h

23456h

15678h

R5

R6

5596h11034h

xxxxh

2345h

1777Ah

17778h

xxxxh

7777h

1777Ah

17778h

05432h
+02345h
07777h

src
dst
Sum

23456h
+F8346h
1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

xxxxh

5432h

1B79Eh

1B79Ch

CPU Registers

4-22 16-Bit MSP430X CPU

MSP430X Instruction with Indexed Mode

When using an MSP430X instruction with Indexed mode, the operand can be
located anywhere in the range of Rn ± 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit CPU register
content and the 20-bit index. The four MSBs of the index are
contained in the extension word, the 16 LSBs are contained
in the word following the instruction. The CPU register is not
modified.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the
destination addresses and places the result into the destination.

Source: Two words pointed to by R5 + 12346h which results in
address 23456h + 12346h = 3579Ch.

Destination: Two words pointed to by R6 + 32100h which results in
address 45678h + 32100h = 77778h.

CPU Registers

4-2316-Bit MSP430X CPU

The extension word contains the MSBs of the source index and of the
destination indexand theA/L-bit for 20-bit data. The instructionwordusesbyte
mode due to the 20-bit data length with bits A/L:B/W = 01.

2100h

Address
Space

2346h

55D6h

PC

21038h

21036h

21034h

23456h

45678h

R5

R6

45678h
+32100h
77778h

Register
Before:

Address
Space

Register
After:

PC 23456h

45678h

R5

R6

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h
+12345h
77777h

src
dst
Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1883h21032h

xxxxh2103Ah

2100h

2346h

55D6h

21038h

21036h

21034h

1883h21032h

xxxxh2103Ah

23456h
+12346h
3579Ch

CPU Registers

4-24 16-Bit MSP430X CPU

4.4.3 Symbolic Mode

The Symbolic mode calculates the address of the operand by adding the
signed index to the program counter. The Symbolic mode has three
addressing possibilities:

- Symbolic mode in lower 64-KB memory

- MSP430 instruction with symbolic mode addressing memory above the
lower 64-KB memory.

- MSP430X instruction with symbolic mode

Symbolic Mode in Lower 64 KB

If the PC points to an address in the lower 64 KB of the memory range, the
calculated memory address bits 19:16 are cleared after the addition of the PC
and the signed 16-bit index. This means, the calculated memory address is
always located in the lower 64 KB and does not overflow or underflow out of
the lower 64-KBmemory space. TheRAMand the peripheral registers can be
accessed this way and existing MSP430 software is usable without
modifications as shown in Figure 4--15.

Figure 4--19. Symbolic Mode Running in Lower 64 KB

16-bit signed
PC index

Program
counter PC

16-bit signed add

0 Memory address

FFFFF

00000

Lo
w
er
64

K
B

0FFFF
10000

PC.19:0

Lower 64 KB.
PC.19:16 = 0

16-bit byte index

0

19 16 15 0

S

Operation: The signed 16-bit index in the next word after the instruction is
added temporarily to the PC. The resulting bits 19:16 are cleared giving a
truncated 16-bit memory address, which points to an operand address in the
range 00000h, to 0FFFFh. The operand is the content of the addressed
memory location.

Length: Two or three words

Comment: Valid for source and destination. The assembler calculates
the PC index and inserts it.

Example: ADD.B EDE,TONI ;

CPU Registers

4-2516-Bit MSP430X CPU

The previous instruction adds the 8-bit data contained in source byte EDEand
destination byte TONI and places the result into the destination byte TONI.
Bytes EDE and TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0,579Ch, pointed to by PC +
4766h where the PC index 4766h is the result of 0579Ch --
01036h=04766h.Address01036h is the locationof the index
for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC +
F740h, is the truncated 16-bit result of
00778h -- 1038h = FF740h. Address 01038h is the location
of the index for this example.

xxxxh

Address
Space

F740h

4766h

PC

0103Ah

01038h

01036h

01038h
+0F740h
00778h

Before:
Address
Space

After:

05D0h01034h

xxxxh

F740h

4766h

PC0103Ah

01038h

01036h

50D0h01034h

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h
+45h
77h

src
dst
Sum

01036h
+04766h
0579Ch

xxxxh

xx32h

0579Eh

0579Ch

xxxxh

xx32h

0579Eh

0579Ch

CPU Registers

4-26 16-Bit MSP430X CPU

MSP430 Instruction with Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits
19:16 are used for the address calculation of the operand. The operand may
be located in memory in the range PC ±32 KB, because the index, X, is a
signed 16-bit value. In this case, the address of the operand can overflow or
underflow into the lower 64-KB memory space as shown in Figure 4--20 and
Figure 4--21.

Figure 4--20. Symbolic Mode Running in Upper Memory

16-bit signed PC
index (sign
extended to
20 bits)

Program
counter PC

20-bit signed add

Memory address

FFFFF

00000

Lo
w
er
64

K
B

0FFFF
10000

PC.19:0

Upper Memory
PC.19:16 > 0

16-bit byte index

1 ... 15

19 16 15 0

S

PC ±32 KB

S

Figure 4--21. Overflow and Underflow for the Symbolic Mode

FFFFF

0000C

Lo
w
er
64

K
B

0FFFF
10000

PC.19:0

PC.19:0

PC.19:0

±3
2K

B

±3
2K

B

PC.19:0

CPU Registers

4-2716-Bit MSP430X CPU

Length: Two or three words

Operation: The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the PC. This delivers a
20-bit address, which points to an address in the range 0 to
FFFFFh. The operand is the content of the addressed
memory location.

Comment: Valid for source and destination. The assembler calculates
the PC index and inserts it

Example: ADD.W EDE,&TONI ;

This instruction adds the 16-bit data contained in source word EDE and
destination word TONI and places the 16-bit result into the destination word
TONI. For this example, the instruction is located at address 2,F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h
which is the 16-bit result of 3379Ch -- 2F036h = 04766h.
Address 2F036h is the location of the index for this example.

Destination: Word TONI located at address 00778h pointed to by the
absolute address 00778h.

xxxxh

Address
Space

0778h

4766h

PC

2F03Ah

2F038h

2F036h

2F036h
+04766h
3379Ch

Before:
Address
Space

After:

5092h2F034h

xxxxh

0778h

4766h

PC2F03Ah

2F038h

2F036h

5092h2F034h

xxxxh

5432h

3379Eh

3379Ch

xxxxh

5432h

3379Eh

3379Ch

5432h
+2345h
7777h

src
dst
Sum

xxxxh

2345h

0077Ah

00778h

xxxxh

7777h

0077Ah

00778h

CPU Registers

4-28 16-Bit MSP430X CPU

MSP430X Instruction with Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can
be located anywhere in the range of PC ± 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit PC and the
20-bit index. The four MSBs of the index are contained in the
extension word, the 16 LSBs are contained in the word
following the instruction.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADDX.B EDE,TONI ;

The instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by
PC + 14766h, is the 20-bit result of
3579Ch - 21036h = 14766h. Address 21036h is the address
of the index in this example.

Destination: Byte TONI located at address 77778h, pointed to by
PC + 56740h, is the 20-bit result of
77778h - 21038h = 56740h. Address 21038h is the address
of the index in this example..

6740h

Address Space

4766h

50D0h

PC

21038h

21036h

21034h

21038h
+56740h
77778h

Before: Address SpaceAfter:

PC

xxxxh

xx45h

7777Ah

77778h

xxxxh

xx77h

7777Ah

77778h

32h
+45h
77h

src
dst
Sum

xxxxh

xx32h

3579Eh

3579Ch

xxxxh

xx32h

3579Eh

3579Ch

18C5h21032h

xxxxh2103Ah

6740h

4766h

50D0h

21038h

21036h

21034h

18C5h21032h

xxxxh2103Ah

21036h
+14766h
3579Ch

CPU Registers

4-2916-Bit MSP430X CPU

4.4.4 Absolute Mode

The Absolute mode uses the contents of the word following the instruction as
the address of the operand. The Absolute mode has two addressing
possibilities:

- Absolute mode in lower 64-KB memory

- MSP430X instruction with Absolute mode

CPU Registers

4-30 16-Bit MSP430X CPU

Absolute Mode in Lower 64 KB

If anMSP430 instruction is usedwith Absolute addressingmode, the absolute
address is a 16-bit value and therefore points to an address in the lower 64 KB
of the memory range. The address is calculated as an index from 0 and is
stored in the word following the instruction The RAM and the peripheral
registers can be accessed this way and existing MSP430 software is usable
without modifications.

Length: Two or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates
the index from 0 and inserts it

Example: ADD.W &EDE,&TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE

Destination: Word at address TONI

xxxxh

Address Space

7778h

579Ch

PC

2103Ah

21038h

21036h

Before: Address SpaceAfter:

5292h21034h

xxxxh

7778h

579Ch

PC2103Ah

21038h

21036h

5292h21034h

xxxxh

2345h

0777Ah

07778h

xxxxh

7777h

0777Ah

07778h

5432h
+2345h
7777h

src
dst
Sum

xxxxh

5432h

0579Eh

0579Ch

xxxxh

5432h

0579Eh

0579Ch

CPU Registers

4-3116-Bit MSP430X CPU

MSP430X Instruction with Absolute Mode

If an MSP430X instruction is used with Absolute addressing mode, the
absolute address is a 20-bit value and therefore points to any address in the
memory range. The address value is calculated as an index from 0. The four
MSBs of the index are contained in the extension word, and the 16 LSBs are
contained in the word following the instruction.

Length: Three or four words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates
the index from 0 and inserts it

Example: ADDX.A &EDE,&TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE

Destination: Two words beginning with address TONI

7778h

Address
Space

579Ch

52D2h

PC

21038h

21036h

21034h

Before:
Address
Space

After:

PC

0001h

2345h

7777Ah

77778h

0007h

7777h

7777Ah

77778h

65432h
+12345h
77777h

src
dst
Sum

0006h

5432h

3579Eh

3579Ch

0006h

5432h

3579Eh

3579Ch

1987h21032h

xxxxh2103Ah

7778h

579Ch

52D2h

21038h

21036h

21034h

1987h21032h

xxxxh2103Ah

CPU Registers

4-32 16-Bit MSP430X CPU

4.4.5 Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the
source operand. The Indirect Register mode always uses a 20-bit address.

Length: One, two, or three words

Operation: The operand is the content the addressed memory location.
The source register Rsrc is not modified.

Comment: Valid only for the source operand. The substitute for the
destination operand is 0(Rdst).

Example: ADDX.W @R5,2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3,579Ch for this
example.

Destination: Word pointed to by R6 + 2100h which results in address
45678h + 2100h = 7778h.

xxxxh

Address
Space

2100h

55A6h PC

21038h

21036h

21034h

3579Ch

45678h

R5

R6

45678h
+02100h
47778h

Register
Before:

Address
Space

Register
After:

xxxxh

2100h

55A6h

PC21038h

21036h

21034h

3579Ch

45678h

R5

R6

xxxxh

2345h

4777Ah

47778h

xxxxh

7777h

4777Ah

47778h

5432h
+2345h
7777h

src
dst
Sum

xxxxh

5432h

3579Eh

3579Ch

xxxxh

5432h

3579Eh

3579ChR5 R5

CPU Registers

4-3316-Bit MSP430X CPU

4.4.6 Indirect, Autoincrement Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc
as the source operand. Rsrc is then automatically incremented by 1 for byte
instructions, by 2 for word instructions, and by 4 for address-word instructions
immediately after accessing the source operand. If the same register is used
for source and destination, it contains the incremented address for the
destination access. Indirect Autoincrement mode always uses 20-bit
addresses.

Length: One, two, or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid only for the source operand.

Example: ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3,579Ch for this
example.

Destination: Byte pointed to byR6 + 0hwhich results in address 0778h for
this example.

xxxxh

Address
Space

0000h

55F6h PC

21038h

21036h

21034h

3579Ch

00778h

R5

R6

00778h
+0000h
00778h

Register
Before:

Address
Space

Register
After:

xxxxh

0000h

55F6h

PC21038h

21036h

21034h

3579Dh

00778h

R5

R6

xxxxh

xx45h

0077Ah

00778h

xxxxh

xx77h

0077Ah

00778h

32h
+45h
77h

src
dst
Sum

xxh

32h

3579Dh

3579Ch

xxh

xx32h

3579Dh

3579ChR5

R5

CPU Registers

4-34 16-Bit MSP430X CPU

4.4.7 Immediate Mode

The Immediate mode allows accessing constants as operands by including
the constant in the memory location following the instruction. The program
counter PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the
immediate operand, the PC is incremented by 2 for byte, word, or
address-word instructions. The Immediate mode has two addressing
possibilities:

- 8- or 16-bit constants with MSP430 instructions

- 20-bit constants with MSP430X instruction

MSP430 Instructions with Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the
constant is an 8- or 16-bit value and is stored in the word following the
instruction.

Length: Two or three words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with
the 16-bit destination operand.

Comment: Valid only for the source operand.

Example: ADD #3456h,&TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h.

Destination: Word at address TONI.

xxxxh

Address
Space

0778h

3456h

PC

2103Ah

21038h

21036h

Before:
Address
Space

After:

50B2h21034h

xxxxh

0778h

3456h

PC2103Ah

21038h

21036h

50B2h21034h

xxxxh

2345h

0077Ah

00778h

xxxxh

579Bh

0077Ah

00778h

3456h
+2345h
579Bh

src
dst
Sum

CPU Registers

4-3516-Bit MSP430X CPU

MSP430X Instructions with Immediate Mode

If an MSP430X instruction is used with immediate addressing mode, the
constant is a 20-bit value. The 4 MSBs of the constant are stored in the
extension word and the 16 LSBs of the constant are stored in the word
following the instruction.

Length: Three or four words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with
the 20-bit destination operand.

Comment: Valid only for the source operand.

Example: ADDX.A #23456h,&TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h.

Destination: Two words beginning with address TONI.

7778h

Address
Space

3456h

50F2h

PC

21038h

21036h

21034h

Before:
Address
Space

After:

PC

0001h

2345h

7777Ah

77778h

0003h

579Bh

7777Ah

77778h

23456h
+12345h
3579Bh

src
dst
Sum

1907h21032h

xxxxh2103Ah

7778h

3456h

50F2h

21038h

21036h

21034h

1907h21032h

xxxxh2103Ah

MSP430 and MSP430X Instructions

4-36 16-Bit MSP430X CPU

4.5 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430
CPU. These instructions are used throughout the 1-MBmemory range unless
their 16-bit capability is exceeded. The MSP430X instructions are used when
the addressing of the operands or the data length exceeds the 16-bit capability
of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and
MSP430X instruction:

- To use only theMSP430 instructions: The only exceptions are the CALLA
and the RETA instruction. This can be done if a few, simple rules are met:

J Placement of all constants, variables, arrays, tables, and data in the
lower 64 KB. This allows the use of MSP430 instructions with 16-bit
addressing for all data accesses. No pointers with 20-bit addresses
are needed.

J Placement of subroutine constants immediately after the subroutine
code. This allows the use of the symbolic addressing mode with its
16-bit index to reach addresses within the range of PC ±32 KB.

- To use only MSP430X instructions: The disadvantages of this method are
the reduced speed due to the additional CPU cycles and the increased
program space due to the necessary extension word for any double
operand instruction.

- Use the best fitting instruction where needed

The following sections list and describe the MSP430 and MSP430X
instructions.

MSP430 and MSP430X Instructions

4-3716-Bit MSP430X CPU

4.5.1 MSP430 Instructions

TheMSP430 instructions canbeused, regardless if the program resides in the
lower 64 KB or beyond it. The only exceptions are the instructions CALL and
RET which are limited to the lower 64 KB address range. CALLA and RETA
instructions have been added to the MSP430X CPU to handle subroutines in
the entire address range with no code size overhead.

MSP430 Double Operand (Format I) Instructions

Figure 4--22 shows the format of the MSP430 double operand instructions.
Source and destination words are appended for the Indexed, Symbolic,
Absolute and Immediate modes. Table 4--4 lists the twelve MSP430 double
operand instructions.

Figure 4--22. MSP430 Double Operand Instruction Format

15 12 11 8 7 6 5 4 0

Op-code Rsrc Ad B/W As Rdst

Source or Destination 15:0

Destination 15:0

Table 4--4.MSP430 Double Operand Instructions

Mnemonic S-Reg, Operation Status Bitsg,
D-Reg V N Z C

MOV(.B) src,dst src → dst -- -- -- --

ADD(.B) src,dst src + dst → dst * * * *

ADDC(.B) src,dst src + dst + C → dst * * * *

SUB(.B) src,dst dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst dst + .not.src + C → dst * * * *

CMP(.B) src,dst dst -- src * * * *

DADD(.B) src,dst src + dst + C → dst (decimally) * * * *

BIT(.B) src,dst src .and. dst 0 * * Z

BIC(.B) src,dst .not.src .and. dst → dst -- -- -- --

BIS(.B) src,dst src .or. dst → dst -- -- -- --

XOR(.B) src,dst src .xor. dst → dst * * * Z

AND(.B) src,dst src .and. dst → dst 0 * * Z

* The status bit is affected

-- The status bit is not affected

0 The status bit is cleared

1 The status bit is set

MSP430 and MSP430X Instructions

4-38 16-Bit MSP430X CPU

Single Operand (Format II) Instructions

Figure 4--23 shows the format forMSP430 single operand instructions, except
RETI. The destination word is appended for the Indexed, Symbolic, Absolute
and Immediate modes .Table 4--5 lists the seven single operand instructions.

Figure 4--23. MSP430 Single Operand Instructions

15 7 6 5 4 0

Op-code B/W Ad Rdst

Destination 15:0

Table 4--5.MSP430 Single Operand Instructions

Mnemonic S-Reg,
D Reg

Operation Status Bits
D-Reg

V N Z C

RRC(.B) dst C → MSB →.......LSB → C * * * *

RRA(.B) dst MSB → MSB →....LSB → C 0 * * *

PUSH(.B) src SP -- 2 → SP, src → @SP -- -- -- --

SWPB dst bit 15…bit 8 ⇔ bit 7…bit 0 -- -- -- --

CALL dst Call subroutine in lower 64 KB -- -- -- --

RETI TOS → SR, SP + 2 →SP * * * *

TOS → PC,SP + 2 → SP

SXT dst Register mode:
bit 7 → bit 8 …bit 19
Other modes:
bit 7 → bit 8 …bit 15

0 * * Z

* The status bit is affected

-- The status bit is not affected

0 The status bit is cleared

1 The status bit is set

MSP430 and MSP430X Instructions

4-3916-Bit MSP430X CPU

Jumps

Figure 4--24 shows the format for MSP430 and MSP430X jump instructions.
The signed 10-bit word offset of the jump instruction is multiplied by two,
sign-extended to a 20-bit address, and added to the 20-bit program counter.
This allows jumps in a range of -511 to +512 words relative to the program
counter in the full 20-bit address space Jumps do not affect the status bits.
Table 4--6 lists and describes the eight jump instructions.

Figure 4--24. Format of the Conditional Jump Instructions

15

Op-Code

13 12 10 9 8 0

Condition S 10-Bit Signed PC Offset

Table 4--6.Conditional Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

MSP430 and MSP430X Instructions

4-40 16-Bit MSP430X CPU

Emulated Instructions

In addition to the MSP430 and MSP430X instructions, emulated instructions
are instructions that make code easier to write and read, but do not have
op-codes themselves. Instead, they are replaced automatically by the
assembler with a core instruction. There is no code or performance penalty for
using emulated instructions. The emulated instructions are listed in Table 4--7.

Table 4--7.Emulated Instructions

Instruction Explanation Emulation V N Z C

ADC(.B) dst Add Carry to dst ADDC(.B) #0,dst * * * *

BR dst Branch indirectly dst MOV dst,PC - - - -

CLR(.B) dst Clear dst MOV(.B) #0,dst - - - -

CLRC Clear Carry bit BIC #1,SR - - - 0

CLRN Clear Negative bit BIC #4,SR - 0 - -

CLRZ Clear Zero bit BIC #2,SR - - 0 -

DADC(.B) dst Add Carry to dst decimally DADD(.B) #0,dst * * * *

DEC(.B) dst Decrement dst by 1 SUB(.B) #1,dst * * * *

DECD(.B) dst Decrement dst by 2 SUB(.B) #2,dst * * * *

DINT Disable interrupt BIC #8,SR - - - -

EINT Enable interrupt BIS #8,SR - - - -

INC(.B) dst Increment dst by 1 ADD(.B) #1,dst * * * *

INCD(.B) dst Increment dst by 2 ADD(.B) #2,dst * * * *

INV(.B) dst Invert dst XOR(.B) #-1,dst * * * *

NOP No operation MOV R3,R3 - - - -

POP dst Pop operand from stack MOV @SP+,dst - - - -

RET Return from subroutine MOV @SP+,PC - - - -

RLA(.B) dst Shift left dst arithmetically ADD(.B) dst,dst * * * *

RLC(.B) dst Shift left dst
logically through Carry

ADDC(.B) dst,dst * * * *

SBC(.B) dst Subtract Carry from dst SUBC(.B) #0,dst * * * *

SETC Set Carry bit BIS #1,SR - - - 1

SETN Set Negative bit BIS #4,SR - 1 - -

SETZ Set Zero bit BIS #2,SR - - 1 -

TST(.B) dst Test dst
(compare with 0)

CMP(.B) #0,dst 0 * * 1

MSP430 and MSP430X Instructions

4-4116-Bit MSP430X CPU

MSP430 Instruction Execution

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to MCLK.

Instruction Cycles and Length for Interrupt, Reset, and Subroutines

Table 4--8 lists the length and the CPU cycles for reset, interrupts and
subroutines.

Table 4--8. Interrupt, Return and Reset Cycles and Length

Action
Execution Time
MCLK Cycles

Length of
Instruction (Words)

Return from interrupt RETI 3† 1

Return from subroutine RET 3 1

Interrupt request service (cycles
needed before 1st instruction)

5‡ -

WDT reset 4 -

Reset (RST/NMI) 4 -

† The cycle count in MSP430 CPU is 5.
‡ The cycle count in MSP430 CPU is 6.

MSP430 and MSP430X Instructions

4-42 16-Bit MSP430X CPU

Format-II (Single Operand) Instruction Cycles and Lengths

Table 4--9 lists the length and the CPU cycles for all addressing modes of the
MSP430 single operand instructions.

Table 4--9.MSP430 Format-II Instruction Cycles and Length

No. of Cycles Length of
Instruction Example

Addressing
Mode

RRA, RRC
SWPB, SXT PUSH CALL

Length of
Instruction Example

Rn 1 3 3† 1 SWPB R5

@Rn 3 3† 4 1 RRC @R9

@Rn+ 3 3† 4‡ 1 SWPB @R10+

#N n.a. 3† 4‡ 2 CALL #LABEL

X(Rn) 4 4‡ 4‡ 2 CALL 2(R7)

EDE 4 4‡ 4‡ 2 PUSH EDE

&EDE 4 4‡ 4‡ 2 SXT &EDE
† The cycle count in MSP430 CPU is 4.
‡ The cycle count inMSP430CPU is 5.Also, the cycle count is 5 for X(Rn) addressingmode,when
Rn = SP.

Jump Instructions. Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

MSP430 and MSP430X Instructions

4-4316-Bit MSP430X CPU

Format-I (Double Operand) Instruction Cycles and Lengths

Table 4--10 lists the length and CPU cycles for all addressing modes of the
MSP430 format-I instructions.

Table 4--10.MSP430 Format-I Instructions Cycles and Length

Addressing Mode No. of Length of

Src Dst Cycles
g

Instruction Example
Rn Rm 1 1 MOV R5,R8

PC 2 1 BR R9

x(Rm) 4† 2 ADD R5,4(R6)

EDE 4† 2 XOR R8,EDE

&EDE 4† 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5@

PC 3 1 BR @R8

x(Rm) 5† 2 XOR @R5,8(R6)

EDE 5† 2 MOV @R5,EDE

&EDE 5† 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6@

PC 3 1 BR @R9+

x(Rm) 5† 2 XOR @R5,8(R6)

EDE 5† 2 MOV @R9+,EDE

&EDE 5† 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9

PC 3 2 BR #2AEh

x(Rm) 5† 3 MOV #0300h,0(SP)

EDE 5† 3 ADD #33,EDE

&EDE 5† 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7()

PC 3 2 BR 2(R6)

TONI 6† 3 MOV 4(R7),TONI

x(Rm) 6† 3 ADD 4(R4),6(R9)

&TONI 6† 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6

PC 3 2 BR EDE

TONI 6† 3 CMP EDE,TONI

x(Rm) 6† 3 MOV EDE,0(SP)

&TONI 6† 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8

PC 3 2 BR &EDE

TONI 6† 3 MOV &EDE,TONI

x(Rm) 6† 3 MOV &EDE,0(SP)

&TONI 6† 3 MOV &EDE,&TONI

† MOV, BIT, and CMP instructions execute in 1 fewer cycle

MSP430X Extended Instructions

4-44 16-Bit MSP430X CPU

4.5.2 MSP430X Extended Instructions

The extendedMSP430X instructions give theMSP430XCPU full access to its
20-bit address space. Most MSP430X instructions require an additional word
of op-code called the extension word. Some extended instructions do not
require an additional word and are noted in the instruction description. All
addresses, indexes and immediate numbers have 20-bit values, when
preceded by the extension word.

There are two types of extension word:

- Register/register mode for Format-I instructions and register mode for
Format-II instructions.

- Extension word for all other address mode combinations.

MSP430X Extended Instructions

4-4516-Bit MSP430X CPU

Register Mode Extension Word

The register mode extension word is shown in Figure 4--25 and described in
Table 4--11. An example is shown in Figure 4--27.

Figure 4--25. The Extension Word for Register Modes

15 12 11 10 9 8 7 6 5 4 3 0

0001 1 00 ZC # A/L 0 0 (n--1)/Rn

Table 4--11.Description of the Extension Word Bits for Register Mode

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are extension
words.

10:9 Reserved

ZC Zero carry bit.

0: The executed instruction uses the status of the carry bit C.

1: The executed instruction uses the carry bit as 0. The carry bit will
be defined by the result of the final operation after instruction execu-
tion.

Repetition bit.

0: The number of instruction repetitions is set by extension-word bits
3:0.

1: The number of instructions repetitions is defined by the value of the
four LSBs of Rn. See description for bits 3:0.

A/L Data length extension bit. Together with the B/W-bits of the following
MSP430 instruction, the AL bit defines the used data length of the
instruction.

A/L B/W Comment

0 0 Reserved

0 1 20-bit address-word

1 0 16-bit word

1 1 8-bit byte

5:4 Reserved

3:0 Repetition Count.

= 0: These four bits set the repetition count n. These bits contain
n - 1.

= 1: These four bits define the CPU register whose bits 3:0 set the
number of repetitions. Rn.3:0 contain n - 1.

MSP430X Extended Instructions

4-46 16-Bit MSP430X CPU

Non-Register Mode Extension Word

The extension word for non-register modes is shown in Figure 4--26 and
described in Table 4--12. An example is shown in Figure 4--28.

Figure 4--26. The Extension Word for Non-Register Modes

15 12 11 10 7 6 5 4 3 0

0 0 0 1 1 Source bits 19:16 A/L 0 0 Destination bits 19:16

Table 4--12.Description of the Extension Word Bits for Non-Register Modes

Bit Description

15:11 Extension word op-code. Op-codes 1800h to 1FFFh are exten-
sion words.

Source Bits
19:16

The four MSBs of the 20-bit source. Depending on the source
addressing mode, these four MSBs may belong to an immedi-
ate operand, an index or to an absolute address.

A/L Data length extension bit. Together with the B/W-bits of the fol-
lowing MSP430 instruction, the AL bit defines the used data
length of the instruction.

A/L B/W Comment

0 0 Reserved

0 1 20 bit address-word

1 0 16 bit word

1 1 8 bit byte

5:4 Reserved

Destination Bits
19:16

The four MSBs of the 20-bit destination. Depending on the des-
tination addressing mode, these four MSBs may belong to an
index or to an absolute address.

Note: B/W and A/L Bit Settings for SWPBX and SXTX

The B/W and A/L bit settings for SWPBX and SXTX are:

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 n.a.
1 0 SWPB.W, SXTX.W
1 1 n.a.

MSP430X Extended Instructions

4-4716-Bit MSP430X CPU

Figure 4--27. Example for an Extended Register/Register Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 00 ZC # A/L Rsvd (n--1)/Rn

Op-code Rsrc Ad B/W As Rdst

XORX.A R9,R8

0 0 0 1 1 0 0 0 0 0 0

14(XOR) 9 0 1 0 8(R8)

XORX instruction Source R9

0: Use Carry

1: Repetition count
in bits 3:0

01: Address word

Destination
register mode

Source
register mode

Destination R8

Figure 4--28. Example for an Extended Immediate/Indexed Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 Source 19:16 A/L Rsvd Destination 19:16

Op-code Rsrc Ad B/W As Rdst

XORX.A #12345h, 45678h(R15)

0 0 0 1 1 1 0 0 4

14 (XOR) 0 (PC) 1 1 3 15 (R15)

18xx extension word 12345h

@PC+
X(Rn)

Source 15:0

Destination 15:0

Immediate operand LSBs: 2345h

Index destination LSBs: 5678h

01: Address
word

MSP430X Extended Instructions

4-48 16-Bit MSP430X CPU

Extended Double Operand (Format-I) Instructions

All twelve double-operand instructions have extended versions as listed in
Table 4--13.

Table 4--13.Extended Double Operand Instructions

Status Bits

Mnemonic Operands Operation V N Z C

MOVX(.B,.A) src,dst src → dst -- -- -- --

ADDX(.B,.A) src,dst src + dst → dst * * * *

ADDCX(.B,.A) src,dst src + dst + C → dst * * * *

SUBX(.B,.A) src,dst dst + .not.src + 1 → dst * * * *

SUBCX(.B,.A) src,dst dst + .not.src + C → dst * * * *

CMPX(.B,.A) src,dst dst -- src * * * *

DADDX(.B,.A) src,dst src + dst + C → dst (decimal) * * * *

BITX(.B,.A) src,dst src .and. dst 0 * * Z

BICX(.B,.A) src,dst .not.src .and. dst → dst -- -- -- --

BISX(.B,.A) src,dst src .or. dst → dst -- -- -- --

XORX(.B,.A) src,dst src .xor. dst → dst * * * Z

ANDX(.B,.A) src,dst src .and. dst → dst 0 * * Z

* The status bit is affected

-- The status bit is not affected

0 The status bit is cleared

1 The status bit is set

MSP430X Extended Instructions

4-4916-Bit MSP430X CPU

The four possible addressing combinations for the extension word for format-I
instructions are shown in Figure 4--29.

Figure 4--29. Extended Format-I Instruction Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n--1/Rn

Op-code B/W dst

0 ZC # 0 0

src 0 0 0

0 0 0 1 1 A/L

Op-code B/W dst

src.15:0

src.19:16 0 0

src Ad As

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

src Ad

0 0 0 1 1 A/L dst.19:16

Op-code B/W dst

src.15:0

0 0

src Ad

0 0 0 0

dst.19:160 0 0 0

As

src.19:16

As

dst.15:0

If the 20-bit address of a source or destination operand is located in memory,
not in a CPU register, then two words are used for this operand as shown in
Figure 4--30.

Figure 4--30. 20-Bit Addresses in Memory

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 19:16

Operand LSBs 15:0

0...

Address

Address+2

MSP430X Extended Instructions

4-50 16-Bit MSP430X CPU

Extended Single Operand (Format-II) Instructions

Extended MSP430X Format-II instructions are listed in Table 4--14.

Table 4--14.Extended Single-Operand Instructions

Operation Status Bits

Mnemonic Operands n V N Z C

CALLA dst Call indirect to subroutine (20-bit address) -- -- -- --

POPM.A #n,Rdst Pop n 20-bit registers from stack 1 -- 16 -- -- -- --

POPM.W #n,Rdst Pop n 16-bit registers from stack 1 -- 16 -- -- -- --

PUSHM.A #n,Rsrc Push n 20-bit registers to stack 1 -- 16 -- -- -- --

PUSHM.W #n,Rsrc Push n 16-bit registers to stack 1 -- 16

PUSHX(.B,.A) src Push 8/16/20-bit source to stack -- -- -- --

RRCM(.A) #n,Rdst Rotate right Rdst n bits through carry
(16-/20-bit register)

1 -- 4 0 * * *

RRUM(.A) #n,Rdst Rotate right Rdst n bits unsigned
(16-/20-bit register)

1 -- 4 0 * * *

RRAM(.A) #n,Rdst Rotate right Rdst n bits arithmetically
(16-/20-bit register)

1 -- 4 * * * *

RLAM(.A) #n,Rdst Rotate left Rdst n bits arithmetically
(16-/20-bit register)

1 -- 4 * * * *

RRCX(.B,.A) dst Rotate right dst through carry
(8-/16-/20-bit data)

1 0 * * *

RRUX(.B,.A) dst Rotate right dst unsigned (8-/16-/20-bit) 1 0 * * *

RRAX(.B,.A) dst Rotate right dst arithmetically 1 * * * *

SWPBX(.A) dst Exchange low byte with high byte 1 -- -- -- --

SXTX(.A) Rdst Bit7 → bit8 … bit19 1 0 * * *

SXTX(.A) dst Bit7 → bit8 … MSB 1 0 * * *

MSP430X Extended Instructions

4-5116-Bit MSP430X CPU

The three possible addressing mode combinations for format-II instructions
are shown in Figure 4--31.

Figure 4--31. Extended Format-II Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 A/L n--1/Rn

Op-code B/W dst

0 ZC # 0 0

0 0 0 1 1 A/L

Op-code B/W dst

0 0

0 0 0 1 1 A/L

Op-code B/W dst

dst.15:0

0 0

0 0 0 0

dst.19:160 0 0 0

0 0 0 0

0 0

1 x

x 1

Extended Format II Instruction Format Exceptions

Exceptions for the Format II instruction formats are shown below.

Figure 4--32. PUSHM/POPM Instruction Format

15 8 7 4 3 0

Op-code n--1 Rdst -- n+1

Figure 4--33. RRCM, RRAM, RRUM and RLAM Instruction Format

15 12 11 10 9 4 3 0

C n--1 Op-code Rdst

MSP430X Extended Instructions

4-52 16-Bit MSP430X CPU

Figure 4--34. BRA Instruction Format

15 12 11 8 7 4 3 0

C Rsrc Op-code 0(PC)

C #imm/abs19:16 Op-code 0(PC)

C Rsrc Op-code 0(PC)

#imm15:0 / &abs15:0

index15:0

Figure 4--35. CALLA Instruction Format

15 4 3 0

Op-code Rdst

Op-code Rdst

Op-code #imm/ix/abs19:16

index15:0

#imm15:0 / index15:0 / &abs15:0

MSP430X Extended Instructions

4-5316-Bit MSP430X CPU

Extended Emulated Instructions

The extended instructions together with the constant generator form the
extended Emulated instructions. Table 4--15 lists the Emulated instructions.

Table 4--15.Extended Emulated Instructions

Instruction Explanation Emulation

ADCX(.B,.A) dst Add carry to dst ADDCX(.B,.A) #0,dst

BRA dst Branch indirect dst MOVA dst,PC

RETA Return from subroutine MOVA @SP+,PC

CLRA Rdst Clear Rdst MOV #0,Rdst

CLRX(.B,.A) dst Clear dst MOVX(.B,.A) #0,dst

DADCX(.B,.A) dst Add carry to dst decimally DADDX(.B,.A) #0,dst

DECX(.B,.A) dst Decrement dst by 1 SUBX(.B,.A) #1,dst

DECDA Rdst Decrement dst by 2 SUBA #2,Rdst

DECDX(.B,.A) dst Decrement dst by 2 SUBX(.B,.A) #2,dst

INCX(.B,.A) dst Increment dst by 1 ADDX(.B,.A) #1,dst

INCDA Rdst Increment Rdst by 2 ADDA #2,Rdst

INCDX(.B,.A) dst Increment dst by 2 ADDX(.B,.A) #2,dst

INVX(.B,.A) dst Invert dst XORX(.B,.A) #-1,dst

RLAX(.B,.A) dst Shift left dst arithmetically ADDX(.B,.A) dst,dst

RLCX(.B,.A) dst Shift left dst logically through carry ADDCX(.B,.A) dst,dst

SBCX(.B,.A) dst Subtract carry from dst SUBCX(.B,.A) #0,dst

TSTA Rdst Test Rdst (compare with 0) CMPA #0,Rdst

TSTX(.B,.A) dst Test dst (compare with 0) CMPX(.B,.A) #0,dst

POPX dst Pop to dst MOVX(.B, .A) @SP+,dst

MSP430X Extended Instructions

4-54 16-Bit MSP430X CPU

MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the registermodeand the Immediatemode, except for theMOVA instruction
as listed in Table 4--16. Restricting the addressing modes removes the need
for the additional extension-word op-code improving code density and
execution time. Address instructions should be used any time an MSP430X
instruction is needed with the corresponding restricted addressing mode.

Table 4--16.Address Instructions, Operate on 20-bit Registers Data

Status Bits

Mnemonic Operands Operation V N Z C

ADDA Rsrc,Rdst

#imm20,Rdst

Add source to destination
register

* * * *

MOVA Rsrc,Rdst

#imm20,Rdst

z16(Rsrc),Rdst

EDE,Rdst

&abs20,Rdst

@Rsrc,Rdst

@Rsrc+,Rdst

Rsrc,z16(Rdst)

Rsrc,&abs20

Move source to destination - - - -

CMPA Rsrc,Rdst

#imm20,Rdst

Compare source to destina-
tion register

* * * *

SUBA Rsrc,Rdst

#imm20,Rdst

Subtract source from des-
tination register

* * * *

MSP430X Extended Instructions

4-5516-Bit MSP430X CPU

MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction
depends on the instruction format and the addressing modes used— not the
instruction itself. The number of clock cycles refers to MCLK.

MSP430X Format-II (Single-Operand) Instruction Cycles and Lengths

Table 4--17 lists the length and theCPU cycles for all addressingmodes of the
MSP430X extended single-operand instructions.

Table 4--17.MSP430X Format II Instruction Cycles and Length

Execution Cycles/Length of Instruction (Words)

Instruction Rn @Rn @Rn+ #N X(Rn) EDE &EDE

RRAM n/1 -- -- -- -- -- --

RRCM n/1 -- -- -- -- -- --

RRUM n/1 -- -- -- -- -- --

RLAM n/1 -- -- -- -- -- --

PUSHM 2+n/1 -- -- -- -- -- --

PUSHM.A 2+2n/1 -- -- -- -- -- --

POPM 2+n/1 -- -- -- -- -- --

POPM.A 2+2n/1 -- -- -- -- -- --

CALLA 4/1 5/1 5/1 4/2 6†/2 6/2 6/2

RRAX(.B) 1+n/2 4/2 4/2 -- 5/3 5/3 5/3

RRAX.A 1+n/2 6/2 6/2 -- 7/3 7/3 7/3

RRCX(.B) 1+n/2 4/2 4/2 -- 5/3 5/3 5/3

RRCX.A 1+n/2 6/2 6/2 -- 7/3 7/3 7/3

PUSHX(.B) 4/2 4/2 4/2 4/3 5†/3 5/3 5/3

PUSHX.A 5/2 6/2 6/2 6/3 7†/3 7/3 7/3

POPX(.B) 3/2 -- -- -- 5/3 5/3 5/3

POPX.A 4/2 -- -- -- 7/3 7/3 7/3
† Add one cycle when Rn = SP.

MSP430X Format-I (Double-Operand) Instruction Cycles and Lengths

Table 4--18 lists the length and CPU cycles for all addressing modes of the
MSP430X extended format-I instructions.

MSP430X Extended Instructions

4-56 16-Bit MSP430X CPU

Table 4--18.MSP430X Format-I Instruction Cycles and Length

Addressing Mode
No. of
Cycles

Length of
Instruction

Source Destination .B/.W .A .B/.W/.A Examples

Rn Rm† 2 2 2 BITX.B R5,R8

PC 3 3 2 ADDX R9,PC

X(Rm) 5‡ 7§ 3 ANDX.A R5,4(R6)

EDE 5‡ 7§ 3 XORX R8,EDE

&EDE 5‡ 7§ 3 BITX.W R5,&EDE

@Rn Rm 3 4 2 BITX @R5,R8

PC 3 4 2 ADDX @R9,PC

X(Rm) 6‡ 9§ 3 ANDX.A @R5,4(R6)

EDE 6‡ 9§ 3 XORX @R8,EDE

&EDE 6‡ 9§ 3 BITX.B @R5,&EDE

@Rn+ Rm 3 4 2 BITX @R5+,R8

PC 4 5 2 ADDX.A @R9+,PC

X(Rm) 6‡ 9§ 3 ANDX @R5+,4(R6)

EDE 6‡ 9§ 3 XORX.B @R8+,EDE

&EDE 6‡ 9§ 3 BITX @R5+,&EDE

#N Rm 3 3 3 BITX #20,R8

PC¶ 4 4 3 ADDX.A #FE000h,PC

X(Rm) 6‡ 8§ 4 ANDX #1234,4(R6)

EDE 6‡ 8§ 4 XORX #A5A5h,EDE

&EDE 6‡ 8§ 4 BITX.B #12,&EDE

X(Rn) Rm 4 5 3 BITX 2(R5),R8

PC¶ 5 6 3 SUBX.A 2(R6),PC

X(Rm) 7‡ 10§ 4 ANDX 4(R7),4(R6)

EDE 7‡ 10§ 4 XORX.B 2(R6),EDE

&EDE 7‡ 10§ 4 BITX 8(SP),&EDE

EDE Rm 4 5 3 BITX.B EDE,R8

PC¶ 5 6 3 ADDX.A EDE,PC

X(Rm) 7‡ 10§ 4 ANDX EDE,4(R6)

EDE 7‡ 10§ 4 ANDX EDE,TONI

&TONI 7‡ 10§ 4 BITX EDE,&TONI

&EDE Rm 4 5 3 BITX &EDE,R8

PC¶ 5 6 3 ADDX.A &EDE,PC

X(Rm) 7‡ 10§ 4 ANDX.B &EDE,4(R6)

TONI 7‡ 10§ 4 XORX &EDE,TONI

&TONI 7‡ 10§ 4 BITX &EDE,&TONI
† Repeat instructions require n+1 cycles where n is the number of times the instruction is
executed.

‡ Reduce the cycle count by one for MOV, BIT, and CMP instructions.
§ Reduce the cycle count by two for MOV, BIT, and CMP instructions.
¶ Reduce the cycle count by one for MOV, ADD, and SUB instructions.

MSP430X Extended Instructions

4-5716-Bit MSP430X CPU

MSP430X Address Instruction Cycles and Lengths

Table 4--19 lists the length and theCPU cycles for all addressingmodes of the
MSP430X address instructions.

Table 4--19.Address Instruction Cycles and Length

Addressing Mode

Execution
Time MCLK
Cycles

Length of
Instruction
(Words)

Source Destination
MOVA
BRA

CMPA
ADDA
SUBA MOVA

CMPA
ADDA
SUBA Example

Rn Rn 1 1 1 1 CMPA R5,R8

PC 2 2 1 1 SUBA R9,PC

x(Rm) 4 - 2 - MOVA R5,4(R6)

EDE 4 - 2 - MOVA R8,EDE

&EDE 4 - 2 - MOVA R5,&EDE

@Rn Rm 3 - 1 - MOVA @R5,R8

PC 3 - 1 - MOVA @R9,PC

@Rn+ Rm 3 - 1 - MOVA @R5+,R8

PC 3 - 1 - MOVA @R9+,PC

#N Rm 2 3 2 2 CMPA #20,R8

PC 3 3 2 2 SUBA #FE000h,PC

x(Rn) Rm 4 - 2 - MOVA 2(R5),R8

PC 4 - 2 - MOVA 2(R6),PC

EDE Rm 4 - 2 - MOVA EDE,R8

PC 4 - 2 - MOVA EDE,PC

&EDE Rm 4 - 2 - MOVA &EDE,R8

PC 4 - 2 - MOVA &EDE,PC

Instruction Set Description

4-58 16-Bit MSP430X CPU

4.6 Instruction Set Description

The instruction map of the MSP430X shows all available instructions:

0xxx
10xx
14xx
18xx
1Cxx
20xx
24xx
28xx
2Cxx
30xx
34xx
38xx
3Cxx
4xxx
5xxx
6xxx
7xxx
8xxx
9xxx
Axxx
Bxxx
Cxxx
Dxxx
Exxx
Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ
JEQ/JZ
JNC
JC
JN
JGE
JL
JMP
MOV, MOV.B
ADD, ADD.B
ADDC, ADDC.B
SUBC, SUBC.B
SUB, SUB.B
CMP, CMP.B
DADD, DADD.B
BIT, BIT.B
BIC, BIC.B
BIS, BIS.B
XOR, XOR.B
AND, AND.B

MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM

CALLA
PUSHM.A, POPM.A, PUSHM.W, POPM.W

Extension Word For Format I and Format II Instructions

Instruction Set Description

4-5916-Bit MSP430X CPU

4.6.1 Extended Instruction Binary Descriptions

Detailed MSP430X instruction binary descriptions are shown below.

Instruction
Group

src or
data.19:16

Instruction
Identifier dst

Instruction 15 12 11 8 7 4 3 0

MOVA 0 0 0 0 src 0 0 0 0 dst MOVA @Rsrc,Rdst

0 0 0 0 src 0 0 0 1 dst MOVA @Rsrc+,Rdst

0 0 0 0 &abs.19:16 0 0 1 0 dst MOVA &abs20,Rdst

&abs.15:0

0 0 0 0 src 0 0 1 1 dst MOVA x(Rsrc),Rdst

x.15:0 ±15-bit index x

0 0 0 0 src 0 1 1 0 &abs.19:16 MOVA Rsrc,&abs20

&abs.15:0

0 0 0 0 src 0 1 1 1 dst MOVA Rsrc,X(Rdst)

x.15:0 ±15-bit index x

0 0 0 0 imm.19:16 1 0 0 0 dst MOVA #imm20,Rdst

imm.15:0

CMPA 0 0 0 0 imm.19:16 1 0 0 1 dst CMPA #imm20,Rdst

imm.15:0

ADDA 0 0 0 0 imm.19:16 1 0 1 0 dst ADDA #imm20,Rdst

imm.15:0

SUBA 0 0 0 0 imm.19:16 1 0 1 1 dst SUBA #imm20,Rdst

imm.15:0

MOVA 0 0 0 0 src 1 1 0 0 dst MOVA Rsrc,Rdst

CMPA 0 0 0 0 src 1 1 0 1 dst CMPA Rsrc,Rdst

ADDA 0 0 0 0 src 1 1 1 0 dst ADDA Rsrc,Rdst

SUBA 0 0 0 0 src 1 1 1 1 dst SUBA Rsrc,Rdst

Instruction
Group

Bit
loc.

Inst.
ID

Instruction
Identifier dst

Instruction 15 12 11 10 9 8 7 4 3 0

RRCM.A 0 0 0 0 n--1 0 0 0 1 0 0 dst RRCM.A #n,Rdst

RRAM.A 0 0 0 0 n--1 0 1 0 1 0 0 dst RRAM.A #n,Rdst

RLAM.A 0 0 0 0 n--1 1 0 0 1 0 0 dst RLAM.A #n,Rdst

RRUM.A 0 0 0 0 n--1 1 1 0 1 0 0 dst RRUM.A #n,Rdst

RRCM.W 0 0 0 0 n--1 0 0 0 1 0 1 dst RRCM.W #n,Rdst

RRAM.W 0 0 0 0 n--1 0 1 0 1 0 1 dst RRAM.W #n,Rdst

RLAM.W 0 0 0 0 n--1 1 0 0 1 0 1 dst RLAM.W #n,Rdst

RRUM.W 0 0 0 0 n--1 1 1 0 1 0 1 dst RRUM.W #n,Rdst

Instruction Set Description

4-60 16-Bit MSP430X CPU

Instruction Identifier dst

Instruction 15 12 11 8 7 6 5 4 3 0

RETI 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

CALLA 0 0 0 1 0 0 1 1 0 1 0 0 dst CALLA Rdst

0 0 0 1 0 0 1 1 0 1 0 1 dst CALLA x(Rdst)

x.15:0

0 0 0 1 0 0 1 1 0 1 1 0 dst CALLA @Rdst

0 0 0 1 0 0 1 1 0 1 1 1 dst CALLA @Rdst+

0 0 0 1 0 0 1 1 1 0 0 0 &abs.19:16 CALLA &abs20

&abs.15:0

0 0 0 1 0 0 1 1 1 0 0 1 x.19:16 CALLA EDE

x.15:0 CALLA x(PC)

0 0 0 1 0 0 1 1 1 0 1 1 imm.19:16 CALLA #imm20

imm.15:0

Reserved 0 0 0 1 0 0 1 1 1 0 1 0 x x x x

Reserved 0 0 0 1 0 0 1 1 1 1 x x x x x x

PUSHM.A 0 0 0 1 0 1 0 0 n--1 dst PUSHM.A #n,Rdst

PUSHM.W 0 0 0 1 0 1 0 1 n--1 dst PUSHM.W #n,Rdst

POPM.A 0 0 0 1 0 1 1 0 n--1 dst--n+1 POPM.A #n,Rdst

POPM.W 0 0 0 1 0 1 1 1 n--1 dst--n+1 POPM.W #n,Rdst

MSP430 Instructions

4-6116-Bit MSP430X CPU

4.6.2 MSP430 Instructions

The MSP430 instructions are listed and described on the following pages.

MSP430 Instructions

4-62 16-Bit MSP430X CPU

* ADC[.W] Add carry to destination
* ADC.B Add carry to destination

Syntax ADC dst or ADC.W dst
ADC.B dst

Operation dst + C --> dst

Emulation ADDC #0,dst
ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD

MSP430 Instructions

4-6316-Bit MSP430X CPU

ADD[.W] Add source word to destination word
ADD.B Add source byte to destination byte

Syntax ADD src,dst or ADD.W src,dst
ADD.B src,dst

Operation src + dst → dst

Description Thesourceoperand is added to thedestinationoperand.Theprevious content
of the destination is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Ten is added to the 16-bit counter CNTR located in lower 64 K.

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

Example A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump
to label TONI is performed on a carry.

ADD.W @R5,R6 ; Add table word to R6. R6.19:16 = 0

JC TONI ; Jump if carry

... ; No carry

Example A table byte pointed to byR5 (20-bit address) is added toR6. The jump to label
TONI is performed if no carry occurs. The table pointer is auto-incremented by
1. R6.19:8 = 0

ADD.B @R5+,R6 ; Add byte to R6. R5 + 1. R6: 000xxh

JNC TONI ; Jump if no carry

... ; Carry occurred

MSP430 Instructions

4-64 16-Bit MSP430X CPU

ADDC[.W] Add source word and carry to destination word
ADDC.B Add source byte and carry to destination byte

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C → dst

Description The source operand and the carry bit C are added to the destination operand.
The previous content of the destination is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Constant value 15 and the carry of the previous instruction are added to the
16-bit counter CNTR located in lower 64 K.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

Example A tableword pointed to byR5 (20-bit address) and the carryCareadded toR6.
The jump to label TONI is performed on a carry. R6.19:16 = 0

ADDC.W @R5,R6 ; Add table word + C to R6

JC TONI ; Jump if carry

... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to
R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1. R6.19:8 = 0

ADDC.B @R5+,R6 ; Add table byte + C to R6. R5 + 1

JNC TONI ; Jump if no carry

... ; Carry occurred

MSP430 Instructions

4-6516-Bit MSP430X CPU

AND[.W] Logical AND of source word with destination word
AND.B Logical AND of source byte with destination byte

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .and. dst → dst

Description The source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM
located in the lower 64 K. If the result is zero, a branch is taken to label TONI.
R5.19:16 = 0

MOV #AA55h,R5 ; Load 16-bit mask to R5

AND R5,&TOM ; TOM .and. R5 -> TOM

JZ TONI ; Jump if result 0

... ; Result > 0

or shorter:

AND #AA55h,&TOM ; TOM .and. AA55h -> TOM

JZ TONI ; Jump if result 0

Example A table byte pointed to byR5 (20-bit address) is logically ANDedwithR6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 = 0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

MSP430 Instructions

4-66 16-Bit MSP430X CPU

BIC[.W] Clear bits set in source word in destination word
BIC.B Clear bits set in source byte in destination byte

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation (.not. src) .and. dst → dst

Description The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0

BIC #0C000h,R5 ; Clear R5.19:14 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16 = 0

BIC.W @R5,R7 ; Clear bits in R7 set in @R5

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P1OUT ; Clear I/O port P1 bits set in @R5

MSP430 Instructions

4-6716-Bit MSP430X CPU

BIS[.W] Set bits set in source word in destination word
BIS.B Set bits set in source byte in destination byte

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .or. dst → dst

Description The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0

BIS #A000h,R5 ; Set R5 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.
R7.19:16 = 0

BIS.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is
incremented by 1 afterwards.

BIS.B @R5+,&P1OUT ; Set I/O port P1 bits. R5 + 1

MSP430 Instructions

4-68 16-Bit MSP430X CPU

BIT[.W] Test bits set in source word in destination word
BIT.B Test bits set in source byte in destination byte

Syntax BIT src,dst or BIT.W src,dst
BIT.B src,dst

Operation src .and. dst

Description The source operand and the destination operand are logically ANDed. The
result affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not
cleared!

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Test if one -- or both -- of bits 15 and 14 of R5 (16-bit data) is set. Jump to label
TONI if this is the case. R5.19:16 are not affected.

BIT #C000h,R5 ; Test R5.15:14 bits

JNZ TONI ; At least one bit is set in R5

... ; Both bits are reset

Example A tablewordpointed to byR5 (20-bit address) is used to test bits inR7. Jump to
label TONI if at least one bit is set. R7.19:16 are not affected.

BIT.W @R5,R7 ; Test bits in R7

JC TONI ; At least one bit is set

... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in output
Port1. Jump to label TONI if no bit is set. The next table byte is addressed.

BIT.B @R5+,&P1OUT ; Test I/O port P1 bits. R5 + 1

JNC TONI ; No corresponding bit is set

... ; At least one bit is set

MSP430 Instructions

4-6916-Bit MSP430X CPU

* BR, BRANCH Branch to destination in lower 64K address space

Syntax BR dst

Operation dst --> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the lower 64K
address space. All source addressing modes can be used. The branch
instruction is a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

MSP430 Instructions

4-70 16-Bit MSP430X CPU

CALL Call a Subroutine in lower 64 K

Syntax CALL dst

Operation dst → tmp 16-bit dst is evaluated and stored
SP -- 2 → SP
PC → @SP updated PC with return address to TOS
tmp→ PC saved 16-bit dst to PC

Description A subroutine call is made from an address in the lower 64 K to a subroutine
address in the lower 64 K. All seven source addressing modes can be used.
The call instruction is a word instruction. The return is made with the RET
instruction.

Status Bits Not affected
PC.19:16: Cleared (address in lower 64 K)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly
to address.

CALL #EXEC ; Start address EXEC

CALL #0AA04h ; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address
EXEC. EXEC is located at the address (PC + X) where X is within PC±32 K.

CALL EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute
address EXEC in the lower 64 K.

CALL &EXEC ; Start address at @EXEC

Register Mode: Call a subroutine at the 16-bit address contained in register
R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word
pointed to by register R5 (20-bit address).

CALL @R5 ; Start address at @R5

MSP430 Instructions

4-7116-Bit MSP430X CPU

* CLR[.W] Clear destination
* CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 --> dst

Emulation MOV #0,dst
MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.

CLR TONI ; 0 --> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 --> TONI

MSP430 Instructions

4-72 16-Bit MSP430X CPU

* CLRC Clear carry bit

Syntax CLRC

Operation 0 --> C

Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

MSP430 Instructions

4-7316-Bit MSP430X CPU

* CLRN Clear negative bit

Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst --> dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example TheNegative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET

MSP430 Instructions

4-74 16-Bit MSP430X CPU

* CLRZ Clear zero bit

Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst --> dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The zero bit in the status register is cleared.

CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address con-
tained in theword pointed to by register R5 (20-bit address) and increment the
16-bit address in R5 afterwards by 2. The next time the software uses R5 as
a pointer, it can alter the programexecution due to access to the next word ad-
dress in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit
address pointed to by register (R5 + X), e.g. a table with addresses starting at
X. The address is within the lower 64 KB. X is within ±32 KB.

CALL X(R5) ; Start address at @(R5+X). z16(R5)

MSP430 Instructions

4-7516-Bit MSP430X CPU

CMP[.W] Compare source word and destination word
CMP.B Compare source byte and destination byte

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation (.not.src) + 1 + dst or dst -- src

Description The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The result
affects only the status bits in SR.

Register Mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not
cleared.

Status Bits N: Set if result is negative (src > dst), reset if positive (src = dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tinationoperanddelivers anegative result, or if the subtractionof aposi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if
EDE equals the constant. The address of EDE is within PC ± 32 K.

CMP #01800h,EDE ; Compare word EDE with 1800h

JEQ TONI ; EDE contains 1800h

... ; Not equal

Example A tablewordpointed toby (R5 + 10) is comparedwithR7. Jump to label TONI if
R7 contains a lower, signed 16-bit number. R7.19:16 is not cleared. The
address of the source operand is a 20-bit address in full memory range.

CMP.W 10(R5),R7 ; Compare two signed numbers

JL TONI ; R7 < 10(R5)

... ; R7 >= 10(R5)

Example A table byte pointed to by R5 (20-bit address) is compared to the value in
output Port1. Jump to label TONI if values are equal. The next table byte is
addressed.

CMP.B @R5+,&P1OUT ; Compare P1 bits with table. R5 + 1

JEQ TONI ; Equal contents

... ; Not equal

MSP430 Instructions

4-76 16-Bit MSP430X CPU

* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination

Syntax DADC dst or DADC.W src,dst
DADC.B dst

Operation dst + C --> dst (decimally)

Emulation DADD #0,dst
DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

MSP430 Instructions

4-7716-Bit MSP430X CPU

DADD[.W] Add source word and carry decimally to destination word
DADD.B Add source byte and carry decimally to destination byte

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C → dst (decimally)

Description Thesourceoperandand thedestinationoperandare treatedas two (.B) or four
(.W) binary coded decimals (BCD) with positive signs. The source operand
and the carry bit C are added decimally to the destination operand. The source
operand is not affected. The previous content of the destination is lost. The
result is not defined for non-BCD numbers.

Status Bits N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0.
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset

otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Decimal 10 is added to the 16-bit BCD counter DECCNTR.

DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter

Example The eight-digit BCD number contained in 16-bit RAM addresses BCD and
BCD+2 is added decimally to an eight-digit BCD number contained in R4 and
R5 (BCD+2 and R5 contain the MSDs). The carry C is added, and cleared.

CLRC ; Clear carry

DADD.W &BCD,R4 ; Add LSDs. R4.19:16 = 0

DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 = 0

JC OVERFLOW ; Result >9999,9999: go to error
routine

... ; Result ok

Example The two-digit BCD number contained in word BCD (16-bit address) is added
decimally to a two-digit BCD number contained in R4. The carry C is added,
also. R4.19:8 = 0

CLRC ; Clear carry

DADD.B &BCD,R4 ; Add BCD to R4 decimally.
R4: 0,00ddh

MSP430 Instructions

4-78 16-Bit MSP430X CPU

* DEC[.W] Decrement destination
* DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst -- 1 --> dst

Emulation SUB #1,dst
Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+0FEh
;

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI--EDE--1(R6)
DEC R10
JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 4--36.

Figure 4--36. Decrement Overlap

EDE

EDE+254

TONI

TONI+254

MSP430 Instructions

4-7916-Bit MSP430X CPU

* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination

Syntax DECD dst or DECD.W dst
DECD.B dst

Operation dst -- 2 --> dst

Emulation SUB #2,dst
Emulation SUB.B #2,dst

Description Thedestinationoperand is decrementedby two.Theoriginal contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh
;

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI--EDE--2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

MSP430 Instructions

4-80 16-Bit MSP430X CPU

* DINT Disable (general) interrupts

Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst --> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDedwith the status register (SR).
The result is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using theGIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

MSP430 Instructions

4-8116-Bit MSP430X CPU

* EINT Enable (general) interrupts

Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR --> SR / .src .OR. dst --> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.
;

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

MSP430 Instructions

4-82 16-Bit MSP430X CPU

* INC[.W] Increment destination
* INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 --> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL

MSP430 Instructions

4-8316-Bit MSP430X CPU

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 --> dst

Emulation ADD #2,dst
Emulation ADD.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned
; register

RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

MSP430 Instructions

4-84 16-Bit MSP430X CPU

* INV[.W] Invert destination
* INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst --> dst

Emulation XOR #0FFFFh,dst
Emulation XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise (= .NOT. Zero)

Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated,MEM(LEO) = 052h

MSP430 Instructions

4-8516-Bit MSP430X CPU

JC Jump if carry
JHS Jump if Higher or Same (unsigned)

Syntax JC label

JHS label

Operation If C = 1: PC + (2 × Offset) → PC
If C = 0: execute the following instruction

Description The carry bit C in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is reset, the
instruction after the jump is executed.

JC is used for the test of the carry bit C

JHS is used for the comparison of unsigned numbers

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The state of the port 1 pin P1IN.1 bit defines the program flow.

BIT.B #2,&P1IN ; Port 1, bit 1 set? Bit -> C

JC Label1 ; Yes, proceed at Label1

... ; No, continue

Example If R5 ≥ R6 (unsigned) the program continues at Label2

CMP R6,R5 ; Is R5 ≥ R6? Info to C

JHS Label2 ; Yes, C = 1

... ; No, R5 < R6. Continue

Example If R5 ≥ 12345h (unsigned operands) the program continues at Label2

CMPA #12345h,R5 ; Is R5 ≥ 12345h? Info to C

JHS Label2 ; Yes, 12344h < R5 <= F,FFFFh. C = 1

... ; No, R5 < 12345h. Continue

MSP430 Instructions

4-86 16-Bit MSP430X CPU

JEQ,JZ Jump if equal,Jump if zero

Syntax JZ label

JEQ label

Operation If Z = 1: PC + (2 × Offset) → PC
If Z = 0: execute following instruction

Description The Zero bit Z in the status register is tested. If it is set, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is reset, the
instruction after the jump is executed.

JZ is used for the test of the Zero bit Z

JEQ is used for the comparison of operands

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The state of the P2IN.0 bit defines the program flow

BIT.B #1,&P2IN ; Port 2, bit 0 reset?

JZ Label1 ; Yes, proceed at Label1

... ; No, set, continue

Example If R5 = 15000h (20-bit data) the program continues at Label2

CMPA #15000h,R5 ; Is R5 = 15000h? Info to SR

JEQ Label2 ; Yes, R5 = 15000h. Z = 1

... ; No, R5 ≠ 15000h. Continue

Example R7 (20-bit counter) is incremented. If its content is zero, the programcontinues
at Label4.

ADDA #1,R7 ; Increment R7

JZ Label4 ; Zero reached: Go to Label4

... ; R7 ≠ 0. Continue here.

MSP430 Instructions

4-8716-Bit MSP430X CPU

JGE Jump if Greater or Equal (signed)

Syntax JGE label

Operation If (N .xor. V) = 0: PC + (2 × Offset) → PC
If (N .xor. V) = 1: execute following instruction

Description Thenegative bitNand theoverflowbit V in the status register are tested. If both
bits are set or both are reset, the signed 10-bit word offset contained in the
instruction ismultiplied by two, signextended, andadded to the20-bit program
counter PC. This means a jump in the range -511 to +512 words relative to the
PC in full Memory range. If only one bit is set, the instruction after the jump is
executed.

JGE is used for the comparison of signed operands: also for incorrect results
due to overflow, the decision made by the JGE instruction is correct.

Note: JGE emulates the non-implemented JP (jump if positive) instruction if
used after the instructions AND, BIT, RRA, SXTX and TST. These instructions
clear the V-bit.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run
in the full memory range.

TST.B &EDE ; Is EDE positive? V <- 0

JGE Label1 ; Yes, JGE emulates JP

... ; No, 80h <= EDE <= FFh

Example If the content of R6 is greater than or equal to thememory pointed to byR7, the
program continues a Label5. Signed data. Data and program in full memory
range.

CMP @R7,R6 ; Is R6 ≥ @R7?

JGE Label5 ; Yes, go to Label5

... ; No, continue here.

Example If R5 ≥ 12345h (signed operands) the program continues at Label2. Program
in full memory range.

CMPA #12345h,R5 ; Is R5 ≥ 12345h?

JGE Label2 ; Yes, 12344h < R5 <= 7FFFFh.

... ; No, 80000h <= R5 < 12345h.

MSP430 Instructions

4-88 16-Bit MSP430X CPU

JL Jump if Less (signed)

Syntax JL label

Operation If (N .xor. V) = 1: PC + (2 × Offset) → PC
If (N .xor. V) = 0: execute following instruction

Description Thenegative bit N and the overflowbit V in the status register are tested. If only
one is set, the signed10-bitwordoffset contained in the instruction ismultiplied
by two, sign extended, and added to the 20-bit program counter PC. This
means a jump in the range -511 to +512words relative to thePC in fullmemory
range. If both bits N and V are set or both are reset, the instruction after the
jump is executed.

JL is used for the comparisonof signedoperands: also for incorrect results due
to overflow, the decision made by the JL instruction is correct.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example If byte EDE contains a smaller, signed operand than byte TONI, continue at
Label1. The address EDE is within PC ± 32 K.

CMP.B &TONI,EDE ; Is EDE < TONI

JL Label1 ; Yes

... ; No, TONI <= EDE

Example If the signed content of R6 is less than the memory pointed to by R7 (20-bit
address) the program continues at Label Label5. Data and program in full
memory range.

CMP @R7,R6 ; Is R6 < @R7?

JL Label5 ; Yes, go to Label5

... ; No, continue here.

Example If R5 < 12345h (signed operands) the program continues at Label2. Data and
program in full memory range.

CMPA #12345h,R5 ; Is R5 < 12345h?

JL Label2 ; Yes, 80000h =< R5 < 12345h.

... ; No, 12344h < R5 =< 7FFFFh.

MSP430 Instructions

4-8916-Bit MSP430X CPU

JMP Jump unconditionally

Syntax JMP label

Operation PC + (2 × Offset) → PC

Description The signed 10-bit word offset contained in the instruction is multiplied by two,
sign extended, and added to the 20-bit program counter PC. This means an
unconditional jump in the range -511 to +512words relative to the PC in the full
memory.TheJMP instructionmaybeusedasaBRorBRA instructionwithin its
limited range relative to the program counter.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The byte STATUS is set to 10. Then a jump to label MAINLOOP ismade. Data
in lower 64 K, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10

JMP MAINLOOP ; Go to main loop

Example The interrupt vector TAIV of Timer_A3 is read and used for the program flow.
Program in full memory range, but interrupt handlers always starts in lower
64K.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC

RETI ; No Timer_A interrupt pending

JMP IHCCR1 ; Timer block 1 caused interrupt

JMP IHCCR2 ; Timer block 2 caused interrupt

RETI ; No legal interrupt, return

MSP430 Instructions

4-90 16-Bit MSP430X CPU

JN Jump if Negative

Syntax JN label

Operation If N = 1: PC + (2 × Offset) → PC
If N = 0: execute following instruction

Description The negative bit N in the status register is tested. If it is set, the signed 10-bit
word offset contained in the instruction ismultiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If N is reset, the
instruction after the jump is executed.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The byte COUNT is tested. If it is negative, program execution continues at
Label0. Data in lower 64 K, program in full memory range.

TST.B &COUNT ; Is byte COUNT negative?

JN Label0 ; Yes, proceed at Label0

... ; COUNT ≥ 0

Example R6 is subtracted from R5. If the result is negative, program continues at
Label2. Program in full memory range.

SUB R6,R5 ; R5 -- R6 -> R5

JN Label2 ; R5 is negative: R6 > R5 (N = 1)

... ; R5 ≥ 0. Continue here.

Example R7 (20-bit counter) is decremented. If its content is below zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7

JN Label4 ; R7 < 0: Go to Label4

... ; R7 ≥ 0. Continue here.

MSP430 Instructions

4-9116-Bit MSP430X CPU

JNC Jump if No carry
JLO Jump if lower (unsigned)

Syntax JNC label
JLO label

Operation If C = 0: PC + (2 × Offset) → PC
If C = 1: execute following instruction

Description The carry bit C in the status register is tested. If it is reset, the signed 10-bit
word offset contained in the instruction ismultiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If C is set, the
instruction after the jump is executed.

JNC is used for the test of the carry bit C

JLO is used for the comparison of unsigned numbers .

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example If byte EDE < 15 the program continues at Label2. Unsigned data. Data in
lower 64 K, program in full memory range.

CMP.B #15,&EDE ; Is EDE < 15? Info to C

JLO Label2 ; Yes, EDE < 15. C = 0

... ; No, EDE ≥ 15. Continue

Example The word TONI is added to R5. If no carry occurs, continue at Label0. The
address of TONI is within PC ± 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C

JNC Label0 ; No carry

... ; Carry = 1: continue here

MSP430 Instructions

4-92 16-Bit MSP430X CPU

JNZ Jump if Not Zero
JNE Jump if Not Equal

Syntax JNZ label
JNE label

Operation If Z = 0: PC + (2 × Offset) → PC
If Z = 1: execute following instruction

Description The zero bit Z in the status register is tested. If it is reset, the signed 10-bit word
offset contained in the instruction is multiplied by two, sign extended, and
added to the 20-bit program counter PC. This means a jump in the range -511
to +512 words relative to the PC in the full memory range. If Z is set, the
instruction after the jump is executed.

JNZ is used for the test of the Zero bit Z

JNE is used for the comparison of operands

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected

Example The byte STATUS is tested. If it is not zero, the program continues at Label3.
The address of STATUS is within PC ± 32 K.

TST.B STATUS ; Is STATUS = 0?

JNZ Label3 ; No, proceed at Label3

... ; Yes, continue here

Example If word EDE ≠ 1500 the program continues at Label2. Data in lower 64 K,
program in full memory range.

CMP #1500,&EDE ; Is EDE = 1500? Info to SR

JNE Label2 ; No, EDE ≠ 1500.

... ; Yes, R5 = 1500. Continue

Example R7 (20-bit counter) is decremented. If its content is not zero, the program
continues at Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7

JNZ Label4 ; Zero not reached: Go to Label4

... ; Yes, R7 = 0. Continue here.

MSP430 Instructions

4-9316-Bit MSP430X CPU

MOV[.W] Move source word to destination word
MOV.B Move source byte to destination byte

Syntax MOV src,dst or MOV.Wsrc,dst
MOV.B src,dst

Operation src → dst

Description The source operand is copied to the destination. The source operand is not
affected.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K).

MOV #01800h,&EDE ; Move 1800h to EDE

Example The contents of table EDE (word data, 16-bit addresses) are copied to table
TOM. The length of the tables is 030h words. Both tables reside in the lower
64K.

MOV #EDE,R10 ; Prepare pointer (16-bit address)

Loop MOV @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
R10+2

CMP #EDE+60h,R10 ; End of table reached?

JLO Loop ; Not yet

... ; Copy completed

Example The contents of table EDE (byte data, 16-bit addresses) are copied to table
TOM. The length of the tables is 020h bytes. Both tables may reside in full
memory range, but must be within R10 ±32 K.

MOVA #EDE,R10 ; Prepare pointer (20-bit)

MOV #20h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter

JNZ Loop ; Not yet done

... ; Copy completed

MSP430 Instructions

4-94 16-Bit MSP430X CPU

* NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

MSP430 Instructions

4-9516-Bit MSP430X CPU

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP --> temp
SP + 2 --> SP
temp --> dst

Emulation MOV @SP+,dst or MOV.W @SP+,dst
Emulation MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

MSP430 Instructions

4-96 16-Bit MSP430X CPU

PUSH[.W] Save a word on the stack
PUSH.B Save a byte on the stack

Syntax PUSH dst or PUSH.W dst
PUSH.B dst

Operation SP -- 2 → SP
dst → @SP

Description The20-bit stackpointerSP is decrementedby two.Theoperand is thencopied
to the RAMword addressed by the SP. A pushed byte is stored in the low byte,
the high byte is not affected.

Status Bits Not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the two 16-bit registers R9 and R10 on the stack.

PUSH R9 ; Save R9 and R10 XXXXh

PUSH R10 ; YYYYh

Example Save the twobytesEDEandTONIon the stack.TheaddressesEDEandTONI
are within PC ± 32 K.

PUSH.B EDE ; Save EDE xxXXh

PUSH.B TONI ; Save TONI xxYYh

MSP430 Instructions

4-9716-Bit MSP430X CPU

RET Return from subroutine

Syntax RET

Operation @SP → PC.15:0 Saved PC to PC.15:0. PC.19:16 ← 0
SP + 2 → SP

Description The 16-bit return address (lower 64 K), pushed onto the stack by a CALL
instruction is restored to the PC. The program continues at the address
following the subroutine call. The four MSBs of the program counter PC.19:16
are cleared.

Status Bits Not affected
PC.19:16: Cleared

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Call a subroutineSUBR in the lower 64Kand return to the address in the lower
64K after the CALL

CALL #SUBR ; Call subroutine starting at SUBR

... ; Return by RET to here

SUBR PUSH R14 ; Save R14 (16 bit data)

... ; Subroutine code

POP R14 ; Restore R14

RET ; Return to lower 64 K

Figure 4--37. The Stack After a RET Instruction

Item n

PCReturn

Item n

Stack before RET Stack after RET

SP

SP

instruction instruction

MSP430 Instructions

4-98 16-Bit MSP430X CPU

RETI Return from interrupt

Syntax RETI

Operation @SP → SR.15:0 Restore saved status register SR with PC.19:16
SP + 2 → SP
@SP → PC.15:0 Restore saved program counter PC.15:0
SP + 2 → SP House keeping

Description The status register is restored to the value at the beginning of the interrupt
service routine. This includes the fourMSBsof the programcounter PC.19:16.
The stack pointer is incremented by two afterwards.

The 20-bit PC is restored from PC.19:16 (from same stack location as the
status bits) and PC.15:0. The 20-bit program counter is restored to the value
at the beginning of the interrupt service routine. The program continues at the
address following the last executed instructionwhen the interruptwasgranted.
The stack pointer is incremented by two afterwards.

Status Bits N: restored from stack
Z: restored from stack
C: restored from stack
V: restored from stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from stack

Example Interrupt handler in the lower 64 K. A 20-bit return address is stored on the
stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)

... ; Interrupt handler code

POPM.A #2,R14 ; Restore R13 and R14 (20-bit data)

RETI ; Return to 20-bit address in full memory range

MSP430 Instructions

4-9916-Bit MSP430X CPU

* RLA[.W] Rotate left arithmetically
* RLA.B Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <-- MSB <-- MSB--1 LSB+1 <-- LSB <-- 0

Emulation ADD dst,dst
ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4--38.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 4--38. Destination Operand—Arithmetic Shift Left

15 0

7 0

C

Byte

Word

0

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is
performed: the result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is multiplied by 2.

RLA R7 ; Shift left R7 (× 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7 (× 2)
RLA.B R7 ; Shift left low byte of R7 (× 4)

Note: RLA Substitution

The assembler does not recognize the instruction:

RLA @R5+, RLA.B @R5+, or RLA(.B) @R5

It must be substituted by:

ADD @R5+,--2(R5) ADD.B @R5+,--1(R5) or ADD(.B)@R5,0(R5)

MSP430 Instructions

4-100 16-Bit MSP430X CPU

* RLC[.W] Rotate left through carry
* RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <-- MSB <-- MSB--1 LSB+1 <-- LSB <-- C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 4--39.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 4--39. Destination Operand—Carry Left Shift

15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C --> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information --> Carry
RLC R5 ; Carry=P0in.1 --> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C --> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5

It must be substituted by:

ADDC @R5+,--2(R5) ADDC.B @R5+,--1(R5) or ADDC(.B) @R5,0(R5)

MSP430 Instructions

4-10116-Bit MSP430X CPU

RRA[.W] Rotate Right Arithmetically destination word
RRA.B Rotate Right Arithmetically destination byte

Syntax RRA.B dst or RRA.W dst

Operation MSB → MSB → MSB-1 . →... LSB+1 → LSB → C

Description The destination operand is shifted right arithmetically by one bit position as
shown inFigure 4--40.TheMSBretains its value (sign).RRAoperatesequal to
a signed division by 2. The MSB is retained and shifted into the MSB-1. The
LSB+1 is shifted into the LSB. The previous LSB is shifted into the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA R5 ; R5/2 -> R5

Example The signed RAM byte EDE is shifted arithmetically right one position.

RRA.B EDE ; EDE/2 -> EDE

Figure 4--40. Rotate Right Arithmetically RRA.B and RRA.W

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

MSP430 Instructions

4-102 16-Bit MSP430X CPU

RRC[.W] Rotate Right through carry destination word
RRC.B Rotate Right through carry destination byte

Syntax RRC dst or RRC.Wdst
RRC.B dst

Operation C → MSB → MSB-1 → ... LSB+1 → LSB → C

Description The destination operand is shifted right by one bit position as shown in
Figure 4--41. The carry bit C is shifted into theMSB and the LSB is shifted into
the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB

RRC EDE ; EDE = EDE » 1 + 8000h

Figure 4--41. Rotate Right through Carry RRC.B and RRC.W

C

19 0

MSB0 0 0 0 0 0 0

715

0 0 0 0 0 LSB

C

19 0

MSB0 0 0 0

15

LSB

MSP430 Instructions

4-10316-Bit MSP430X CPU

* SBC[.W] Subtract source and borrow/.NOT. carry from destination
* SBC.B Subtract source and borrow/.NOT. carry from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C --> dst
dst + 0FFh + C --> dst

Emulation SUBC #0,dst
SUBC.B #0,dst

Description The carry bit (C) is added to the destination operandminus one. The previous
contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to byR13 is subtracted froma 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

MSP430 Instructions

4-104 16-Bit MSP430X CPU

* SETC Set carry bit

Syntax SETC

Operation 1 --> C

Emulation BIS #1,SR

Description The carry bit (C) is set.

Status Bits N: Not affected
Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

DSUB ADD #06666h,R5 ; Move content R5 from 0--9 to 6--0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0--9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h -- R5 -- 1)
; R6 = R6 + R5 + 1
; R6 = 0150h

MSP430 Instructions

4-10516-Bit MSP430X CPU

* SETN Set negative bit

Syntax SETN

Operation 1 --> N

Emulation BIS #4,SR

Description The negative bit (N) is set.

Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

MSP430 Instructions

4-106 16-Bit MSP430X CPU

* SETZ Set zero bit

Syntax SETZ

Operation 1 --> Z

Emulation BIS #2,SR

Description The zero bit (Z) is set.

Status Bits N: Not affected
Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

MSP430 Instructions

4-10716-Bit MSP430X CPU

SUB[.W] Subtract source word from destination word
SUB.B Subtract source byte from destination byte

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation (.not.src) + 1 + dst → dst or dst -- src → dst

Description The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The source
operand is not affected, the result is written to the destination operand.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tinationoperanddelivers anegative result, or if the subtractionof aposi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 16-bit constant 7654h is subtracted from RAM word EDE.

SUB #7654h,&EDE ; Subtract 7654h from EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7.
Afterwards, if R7 contains zero, jump to label TONI. R5 is then
auto-incremented by 2. R7.19:16 = 0.

SUB @R5+,R7 ; Subtract table number from R7. R5 + 2

JZ TONI ; R7 = @R5 (before subtraction)

... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from byte R12 points to. The address of CNT is within
PC ± 32 K. The address R12 points to is in full memory range.

SUB.B CNT,0(R12) ; Subtract CNT from @R12

MSP430 Instructions

4-108 16-Bit MSP430X CPU

SUBC[.W] Subtract source word with carry from destination word
SUBC.B Subtract source byte with carry from destination byte

Syntax SUBC src,dst or SUBC.W src,dst
SUBC.B src,dst

Operation (.not.src) + C + dst → dst or dst -- (src -- 1) + C → dst

Description The source operand is subtracted from the destination operand. This is done
by adding the 1’s complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Used for 32, 48, and 64-bit operands.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tinationoperanddelivers anegative result, or if the subtractionof aposi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 16-bit constant 7654h is subtracted fromR5with the carry from the previous
instruction. R5.19:16 = 0

SUBC.W #7654h,R5 ; Subtract 7654h + C from R5

Example A48-bit number (3 words) pointed to byR5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 points to the next 48-bit number
afterwards. The address R7 points to is in full memory range.

SUB @R5+,0(R7) ; Subtract LSBs. R5 + 2

SUBC @R5+,2(R7) ; Subtract MIDs with C. R5 + 2

SUBC @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. The address of CNT is in lower 64 K.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

MSP430 Instructions

4-10916-Bit MSP430X CPU

SWPB Swap bytes

Syntax SWPB dst

Operation dst.15:8 ⇔ dst.7:0

Description The high and the low byte of the operand are exchanged. PC.19:16 bits are
cleared in register mode.

Status Bits Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Exchange the bytes of RAM word EDE (lower 64 K).

MOV #1234h,&EDE ; 1234h -> EDE

SWPB &EDE ; 3412h -> EDE

Figure 4--42. Swap Bytes in Memory

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

Figure 4--43. Swap Bytes in a Register

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPB

After SWPB

0

x

0...

19

19

16

16

MSP430 Instructions

4-110 16-Bit MSP430X CPU

SXT Extend sign

Syntax SXT dst

Operation dst.7 → dst.15:8, dst.7 → dst.19:8 (Register Mode)

Description Register Mode: the sign of the low byte of the operand is extended into the bits
Rdst.19:8

Rdst.7 = 0: Rdst.19:8 = 000h afterwards.

Rdst.7 = 1: Rdst.19:8 = FFFh afterwards.

Other Modes: the sign of the low byte of the operand is extended into the high
byte.

dst.7 = 0: high byte = 00h afterwards.

dst.7 = 1: high byte = FFh afterwards.

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the
16-bit signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh

SXT R5 ; Sign extend low byte to R5.19:8

ADD R5,R7 ; Add signed 16-bit values

Example The signed 8-bit data in EDE (PC ±32 K) is sign extended and added to the
20-bit data in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh

SXT R5 ; Sign extend low byte to R5.19:8

ADDA R5,R7 ; Add signed 20-bit values

MSP430 Instructions

4-11116-Bit MSP430X CPU

* TST[.W] Test destination
* TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description Thedestinationoperand is comparedwith zero. The status bits are set accord-
ing to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero
R7NEG ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

MSP430 Instructions

4-112 16-Bit MSP430X CPU

XOR[.W] Exclusive OR source word with destination word
XOR.B Exclusive OR source byte with destination byte

Syntax XOR dst or XOR.Wdst
XOR.B dst

Operation src .xor. dst → dst

Description The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
content of the destination is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. Z)
V: Set if both operands are negative before execution, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Toggle bits in word CNTR (16-bit data) with information (bit = 1) in
address-word TONI. Both operands are located in lower 64 K.

XOR &TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.
R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Example Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE. R7.19:8 = 0. The address of EDE is within PC ± 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.

INV.B R7 ; Invert low byte of R7, high byte is 0h

Extended Instructions

4-11316-Bit MSP430X CPU

4.6.3 Extended Instructions

The extendedMSP430X instructions give theMSP430XCPU full access to its
20-bit address space. SomeMSP430X instructions require an additional word
of op-code called the extension word. All addresses, indexes, and immediate
numbers have 20-bit values, when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following
pages. For MSP430X instructions that do not require the extension word, it is
noted in the instruction description.

Extended Instructions

4-114 16-Bit MSP430X CPU

* ADCX.A Add carry to destination address-word
* ADCX.[W] Add carry to destination word
* ADCX.B Add carry to destination byte

Syntax ADCX.A dst
ADCX dst or ADCX.W dst
ADCX.B dst

Operation dst + C --> dst

Emulation ADDCX.A #0,dst
ADDCX #0,dst
ADDCX.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 40-bit counter, pointed to by R12 and R13, is incremented.

INCX.A @R12 ; Increment lower 20 bits
ADCX.A @R13 ; Add carry to upper 20 bits

Extended Instructions

4-11516-Bit MSP430X CPU

ADDX.A Add source address-word to destination address-word
ADDX[.W] Add source word to destination word
ADDX.B Add source byte to destination byte

Syntax ADDX.A src,dst
ADDX src,dst or ADDX.W src,dst
ADDX.B src,dst

Operation src + dst → dst

Description The source operand is added to the destination operand. The previous
contents of the destination are lost. Both operands can be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs)
and CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

Example A tableword (16-bit) pointed tobyR5 (20-bit address) is added toR6.The jump
to label TONI is performed on a carry.

ADDX.W @R5,R6 ; Add table word to R6

JC TONI ; Jump if carry

... ; No carry

Example A table byte pointed to byR5 (20-bit address) is added toR6. The jump to label
TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDX.B @R5+,R6 ; Add table byte to R6. R5 + 1. R6: 000xxh

JNC TONI ; Jump if no carry

... ; Carry occurred

Note: Use ADDA for the following two cases for better code density and
execution.
ADDX.A Rsrc,Rdst or
ADDX.A #imm20,Rdst

Extended Instructions

4-116 16-Bit MSP430X CPU

ADDCX.A Add source address-word and carry to destination address-word
ADDCX[.W] Add source word and carry to destination word
ADDCX.B Add source byte and carry to destination byte

Syntax ADDCX.A src,dst
ADDCX src,dst or ADDCX.W src,dst
ADDCX.B src,dst

Operation src + dst + C → dst

Description The source operand and the carry bit C are added to the destination operand.
The previous contents of the destination are lost. Both operands may be
located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Constant 15 and the carry of the previous instruction are added to the 20-bit
counter CNTR located in two words.

ADDCX.A #15,&CNTR ; Add 15 + C to 20-bit CNTR

Example A tableword pointed to byR5 (20-bit address) and the carryCareadded toR6.
The jump to label TONI is performed on a carry.

ADDCX.W @R5,R6 ; Add table word + C to R6

JC TONI ; Jump if carry

... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to
R6. The jump to label TONI is performed if no carry occurs. The table pointer is
auto-incremented by 1.

ADDCX.B @R5+,R6 ; Add table byte + C to R6. R5 + 1

JNC TONI ; Jump if no carry

... ; Carry occurred

Extended Instructions

4-11716-Bit MSP430X CPU

ANDX.A Logical AND of source address-word with destination address-word
ANDX[.W] Logical AND of source word with destination word
ANDX.B Logical AND of source byte with destination byte

Syntax ANDX.A src,dst
ANDX src,dst or ANDX.W src,dst
ANDX.B src,dst

Operation src .and. dst → dst

Description The source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the
address-word TOM located in twowords. If the result is zero, a branch is taken
to label TONI.

MOVA #AAA55h,R5 ; Load 20-bit mask to R5

ANDX.A R5,TOM ; TOM .and. R5 -> TOM

JZ TONI ; Jump if result 0

... ; Result > 0

or shorter:

ANDX.A #AAA55h,TOM ; TOM .and. AAA55h -> TOM

JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6.
R6.19:8 = 0. The table pointer is auto-incremented by 1.

ANDX.B @R5+,R6 ; AND table byte with R6. R5 + 1

Extended Instructions

4-118 16-Bit MSP430X CPU

BICX.A Clear bits set in source address-word in destination address-word
BICX[.W] Clear bits set in source word in destination word
BICX.B Clear bits set in source byte in destination byte

Syntax BICX.A src,dst
BICX src,dst or BICX.W src,dst
BICX.B src,dst

Operation (.not. src) .and. dst → dst

Description The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected. Both operands may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7.
R7.19:16 = 0

BICX.W @R5,R7 ; Clear bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in output
Port1.

BICX.B @R5,&P1OUT ; Clear I/O port P1 bits

Extended Instructions

4-11916-Bit MSP430X CPU

BISX.A Set bits set in source address-word in destination address-word
BISX[.W] Set bits set in source word in destination word
BISX.B Set bits set in source byte in destination byte

Syntax BISX.A src,dst
BISX src,dst or BISX.W src,dst
BISX.B src,dst

Operation src .or. dst → dst

Description The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected. Both
operands may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Bits 16 and 15 of R5 (20-bit data) are set to one.

BISX.A #018000h,R5 ; Set R5.16:15 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.

BISX.W @R5,R7 ; Set bits in R7

Example A table byte pointed to byR5 (20-bit address) is used to set bits in outputPort1.

BISX.B @R5,&P1OUT ; Set I/O port P1 bits

Extended Instructions

4-120 16-Bit MSP430X CPU

BITX.A Test bits set in source address-word in destination address-word
BITX[.W] Test bits set in source word in destination word
BITX.B Test bits set in source byte in destination byte

Syntax BITX.A src,dst
BITX src,dst or BITX.W src,dst
BITX.B src,dst

Operation src .and. dst

Description The source operand and the destination operand are logically ANDed. The
result affects only the status bits. Both operands may be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

BITX.A #018000h,R5 ; Test R5.16:15 bits

JNZ TONI ; At least one bit is set

... ; Both are reset

Example A tablewordpointed to byR5 (20-bit address) is used to test bits inR7. Jump to
label TONI if at least one bit is set.

BITX.W @R5,R7 ; Test bits in R7: C = .not.Z

JC TONI ; At least one is set

... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1.
Jump to label TONI if no bit is set. The next table byte is addressed.

BITX.B @R5+,&P1IN ; Test input P1 bits. R5 + 1

JNC TONI ; No corresponding input bit is set

... ; At least one bit is set

Extended Instructions

4-12116-Bit MSP430X CPU

* CLRX.A Clear destination address-word
* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte

Syntax CLRX.A dst
CLRX dst or CLRX.W dst
CLRX.B dst

Operation 0 --> dst

Emulation MOVX.A #0,dst
MOVX #0,dst
MOVX.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM address-word TONI is cleared.

CLRX.A TONI ; 0 --> TONI

Extended Instructions

4-122 16-Bit MSP430X CPU

CMPX.A Compare source address-word and destination address-word
CMPX[.W] Compare source word and destination word
CMPX.B Compare source byte and destination byte

Syntax CMPX.A src,dst
CMPX src,dst or CMPX.W src,dst
CMPX.B src,dst

Operation (.not. src) + 1 + dst or dst -- src

Description The source operand is subtracted from the destination operand by adding the
1’s complement of the source + 1 to the destination. The result affects only the
status bits. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive

destination operand delivers a negative result, or if the subtraction of
a positive source operand fromanegative destination operanddelivers
a positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE
equals the constant.

CMPX.A #018000h,EDE ; Compare EDE with 18000h

JEQ TONI ; EDE contains 18000h

... ; Not equal

Example A table word pointed to by R5 (20-bit address) is compared with R7. Jump to
label TONI if R7 contains a lower, signed, 16-bit number.

CMPX.W @R5,R7 ; Compare two signed numbers

JL TONI ; R7 < @R5

... ; R7 >= @R5

Example A table byte pointed to by R5 (20-bit address) is compared to the input in I/O
Port1. Jump to label TONI if the values are equal. The next table byte is
addressed.

CMPX.B @R5+,&P1IN ; Compare P1 bits with table. R5 + 1

JEQ TONI ; Equal contents

... ; Not equal

Note: Use CMPA for the following two cases for better density and execution.
CMPA Rsrc,Rdst or
CMPA #imm20,Rdst

Extended Instructions

4-12316-Bit MSP430X CPU

* DADCX.A Add carry decimally to destination address-word
* DADCX[.W] Add carry decimally to destination word
* DADCX.B Add carry decimally to destination byte

Syntax DADCX.A dst
DADCX dst or DADCX.W src,dst
DADCX.B dst

Operation dst + C --> dst (decimally)

Emulation DADDX.A #0,dst
DADDX #0,dst
DADDX.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,
byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise.
C: Set if the BCD result is too large (address-word > 99999h,

word > 9999h, byte > 99h), reset otherwise.
V: Undefined.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits
DADCX.A 0(R13) ; Add carry to upper 20 bits

Extended Instructions

4-124 16-Bit MSP430X CPU

DADDX.A Add source address-word and carry decimally to destination address-word
DADDX[.W] Add source word and carry decimally to destination word
DADDX.B Add source byte and carry decimally to destination byte

Syntax DADDX.A src,dst
DADDX src,dst or DADDX.W src,dst
DADDX.B src,dst

Operation src + dst + C → dst (decimally)

Description The source operand and the destination operand are treated as two (.B), four
(.W), or five (.A) binary coded decimals (BCD) with positive signs. The source
operand and the carry bit C are added decimally to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost. The result is not defined for non-BCD numbers. Both operands may
be located in the full address space.

Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h,
byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise.
C: Set if the BCD result is too large (address-word > 99999h,

word > 9999h, byte > 99h), reset otherwise.
V: Undefined.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two
words.

DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter

Example Theeight-digit BCDnumber contained in 20-bit addressesBCDandBCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5
(BCD+2 and R5 contain the MSDs).

CLRC ; Clear carry

DADDX.W BCD,R4 ; Add LSDs

DADDX.W BCD+2,R5 ; Add MSDs with carry

JC OVERFLOW ; Result >99999999: go to error routine

... ; Result ok

Example The two-digit BCD number contained in 20-bit address BCD is added
decimally to a two-digit BCD number contained in R4.

CLRC ; Clear carry

DADDX.B BCD,R4 ; Add BCD to R4 decimally.
; R4: 000ddh

Extended Instructions

4-12516-Bit MSP430X CPU

* DECX.A Decrement destination address-word
* DECX[.W] Decrement destination word
* DECX.B Decrement destination byte

Syntax DECX dst
DECX dst or DECX.W dst
DECX.B dst

Operation dst -- 1 --> dst

Emulation SUBX.A #1,dst
SUBX #1,dst
SUBX.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM address-word TONI is decremented by 1

DECX.A TONI ; Decrement TONI

Extended Instructions

4-126 16-Bit MSP430X CPU

* DECDX.A Double-decrement destination address-word
* DECDX[.W] Double-decrement destination word
* DECDX.B Double-decrement destination byte

Syntax DECDX.A dst
DECDX dst or DECDX.W dst
DECDX.B dst

Operation dst -- 2 --> dst

Emulation SUBX.A #2,dst
SUBX #2,dst
SUBX.B #2,dst

Description Thedestinationoperand is decrementedby two.Theoriginal contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM address-word TONI is decremented by 2.

DECDX.A TONI ; Decrement TONI by two

Extended Instructions

4-12716-Bit MSP430X CPU

* INCX.A Increment destination address-word
* INCX[.W] Increment destination word
* INCX.B Increment destination byte

Syntax INCX.A dst
INCX dst or INCX.W dst
INCX.B dst

Operation dst + 1 --> dst

Emulation ADDX.A #1,dst
ADDX #1,dst
ADDX.B #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFFh, reset otherwise

Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM address-word TONI is incremented by 1.

INCX.A TONI ; Increment TONI (20-bits)

Extended Instructions

4-128 16-Bit MSP430X CPU

* INCDX.A Double-increment destination address-word
* INCDX[.W] Double-increment destination word
* INCDX.B Double-increment destination byte

Syntax INCDX.A dst
INCDX dst or INCDX.W dst
INCDX.B dst

Operation dst + 2 --> dst

Emulation ADDX.A #2,dst
ADDX #2,dst
ADDX.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFEh, reset otherwise

Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM byte LEO is incremented by two; PC points to upper memory

INCDX.B LEO ; Increment LEO by two

Extended Instructions

4-12916-Bit MSP430X CPU

* INVX.A Invert destination
* INVX[.W] Invert destination
* INVX.B Invert destination

Syntax INVX.A dst
INVX dst or INVX.W dst
INVX.B dst

Operation .NOT.dst --> dst

Emulation XORX.A #0FFFFFh,dst
XORX #0FFFFh,dst
XORX.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFFh, reset otherwise

Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example 20-bit content of R5 is negated (twos complement).
INVX.A R5 ; Invert R5
INCX.A R5 ; R5 is now negated

Example Content of memory byte LEO is negated. PC is pointing to upper memory
INVX.B LEO ; Invert LEO
INCX.B LEO ; MEM(LEO) is negated

Extended Instructions

4-130 16-Bit MSP430X CPU

MOVX.A Move source address-word to destination address-word
MOVX[.W] Move source word to destination word
MOVX.B Move source byte to destination byte

Syntax MOVX.A src,dst
MOVX src,dst or MOVX.W src,dst
MOVX.B src,dst

Operation src → dst

Description The source operand is copied to the destination. The source operand is not
affected. Both operands may be located in the full address space.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Move a 20-bit constant 18000h to absolute address-word EDE.

MOVX.A #018000h,&EDE ; Move 18000h to EDE

Example The contents of table EDE (word data, 20-bit addresses) are copied to table
TOM. The length of the table is 030h words.

MOVA #EDE,R10 ; Prepare pointer (20-bit address)

Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
R10+2

CMPA #EDE+60h,R10 ; End of table reached?

JLO Loop ; Not yet

... ; Copy completed

Example The contents of table EDE (byte data, 20-bit addresses) are copied to table
TOM. The length of the table is 020h bytes.

MOVA #EDE,R10 ; Prepare pointer (20-bit)

MOV #20h,R9 ; Prepare counter

Loop MOVX.B @R10+,TOM-EDE-1(R10) ; R10 points to both tables.
; R10+1

DEC R9 ; Decrement counter

JNZ Loop ; Not yet done

... ; Copy completed

Extended Instructions

4-13116-Bit MSP430X CPU

Tenof the28possible addressing combinations of theMOVX.A instruction can
use the MOVA instruction. This saves two bytes and code cycles. Examples
for the addressing combinations are:

MOVX.A Rsrc,Rdst MOVA Rsrc,Rdst ; Reg/Reg

MOVX.A #imm20,Rdst MOVA #imm20,Rdst ; Immediate/Reg

MOVX.A &abs20,Rdst MOVA &abs20,Rdst ; Absolute/Reg

MOVX.A @Rsrc,Rdst MOVA @Rsrc,Rdst ; Indirect/Reg

MOVX.A @Rsrc+,Rdst MOVA @Rsrc+,Rdst ; Indirect,Auto/Reg

MOVX.A Rsrc,&abs20 MOVA Rsrc,&abs20 ; Reg/Absolute

The next four replacements are possible only if 16-bit indexes are sufficient for
the addressing.

MOVX.A z20(Rsrc),Rdst MOVA z16(Rsrc),Rdst ; Indexed/Reg

MOVX.A Rsrc,z20(Rdst) MOVA Rsrc,z16(Rdst) ; Reg/Indexed

MOVX.A symb20,Rdst MOVA symb16,Rdst ; Symbolic/Reg

MOVX.A Rsrc,symb20 MOVA Rsrc,symb16 ; Reg/Symbolic

Extended Instructions

4-132 16-Bit MSP430X CPU

POPM.A Restore n CPU registers (20-bit data) from the stack
POPM[.W] Restore n CPU registers (16-bit data) from the stack

Syntax POPM.A #n,Rdst 1 ≤ n ≤ 16
POPM.W #n,Rdst or POPM #n,Rdst 1 ≤ n ≤ 16

Operation POPM.A: Restore the register values from stack to the specified CPU
registers. The stack pointer SP is incremented by four for each register
restored from stack. The 20-bit values from stack (2 words per register) are
restored to the registers.

POPM.W: Restore the 16-bit register values from stack to the specified CPU
registers. The stack pointer SP is incremented by two for each register
restored from stack. The 16-bit values from stack (one word per register) are
restored to the CPU registers.

Note : This does not use the extension word.

Description POPM.A: The CPU registers pushed on the stack are moved to the extended
CPU registers, starting with the CPU register (Rdst - n + 1). The stack pointer
is incremented by (n × 4) after the operation.

POPM.W: The 16-bit registers pushed on the stack are moved back to the
CPU registers, starting with CPU register (Rdst - n + 1). The stack pointer is
incremented by (n × 2) after the instruction. The MSBs (Rdst.19:16) of the
restored CPU registers are cleared

Status Bits Not affected, except SR is included in the operation

Mode Bits OSCOFF,CPUOFF, andGIE are not affected, except SR is included in the op-
eration.

Example Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.A #5,R13 ; Restore R9, R10, R11, R12, R13

Example Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 ; Restore R9, R10, R11, R12, R13

Extended Instructions

4-13316-Bit MSP430X CPU

PUSHM.A Save n CPU registers (20-bit data) on the stack
PUSHM[.W] Save n CPU registers (16-bit words) on the stack

Syntax PUSHM.A #n,Rdst 1 ≤ n ≤ 16
PUSHM.W #n,Rdst or PUSHM #n,Rdst 1 ≤ n ≤ 16

Operation PUSHM.A:Save the20-bitCPU register valueson the stack.The stackpointer
(SP) is decremented by four for each register stored on the stack. The MSBs
are stored first (higher address).

PUSHM.W: Save the 16-bit CPU register values on the stack. The stack
pointer is decremented by two for each register stored on the stack.

Description PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on
the stack. The stack pointer is decremented by (n × 4) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

PUSHM.W: The n registers, starting with Rdst backwards, are stored on the
stack. The stack pointer is decremented by (n × 2) after the operation. The
data (Rn.19:0) of the pushed CPU registers is not affected.

Note : This instruction does not use the extension word.

Status Bits Not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9

Example Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

Extended Instructions

4-134 16-Bit MSP430X CPU

* POPX.A Restore single address-word from the stack
* POPX[.W] Restore single word from the stack
* POPX.B Restore single byte from the stack

Syntax POPX.A dst
POPX dst or POPX.W dst
POPX.B dst

Operation Restore the 8/16/20-bit value from the stack to the destination. 20-bit
addresses are possible. The stack pointer SP is incremented by two (byte and
word operands) and by four (address-word operand).

Emulation MOVX(.B,.A) @SP+,dst

Description The itemonTOS iswritten to thedestination operand.RegisterMode, Indexed
Mode, Symbolic Mode, and Absolute Mode are possible. The stack pointer is
incremented by two or four.

Note: the stack pointer is incremented by two also for byte operations.

Status Bits Not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Write the 16-bit value on TOS to the 20-bit address &EDE.

POPX.W &EDE ; Write word to address EDE

Example Write the 20-bit value on TOS to R9.

POPX.A R9 ; Write address-word to R9

Extended Instructions

4-13516-Bit MSP430X CPU

PUSHX.A Save a single address-word on the stack
PUSHX[.W] Save a single word on the stack
PUSHX.B Save a single byte on the stack

Syntax PUSHX.A src
PUSHX src or PUSHX.W src
PUSHX.B src

Operation Save the8/16/20-bit valueof thesourceoperandon theTOS.20-bit addresses
are possible. The stack pointer (SP) is decremented by two (byte and word
operands) or by four (address-word operand) before the write operation.

Description The stack pointer is decremented by two (byte and word operands) or by four
(address-word operand). Then the source operand is written to the TOS. All
seven addressing modes are possible for the source operand.

Note : This instruction does not use the extension word.

Status Bits Not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the byte at the 20-bit address &EDE on the stack.

PUSHX.B &EDE ; Save byte at address EDE

Example Save the 20-bit value in R9 on the stack.

PUSHX.A R9 ; Save address-word in R9

Extended Instructions

4-136 16-Bit MSP430X CPU

RLAM.A Rotate Left Arithmetically the 20-bit CPU register content
RLAM[.W] Rotate Left Arithmetically the 16-bit CPU register content

Syntax RLAM.A #n,Rdst 1 ≤ n ≤ 4
RLAM.W #n,Rdst or RLAM #n,Rdst 1 ≤ n ≤ 4

Operation C ← MSB ← MSB-1 LSB+1 ← LSB ← 0

Description The destination operand is shifted arithmetically left one, two, three, or four
positions as shown in Figure 4--44. RLAM works as a multiplication (signed
and unsigned) with 2, 4, 8, or 16. The word instruction RLAM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3

(n = 4)
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit operand in R5 is shifted left by three positions. It operates equal to
an arithmetic multiplication by 8.

RLAM.A #3,R5 ; R5 = R5 x 8

Figure 4--44. Rotate Left Arithmetically RLAM[.W] and RLAM.A

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

0

0

Extended Instructions

4-13716-Bit MSP430X CPU

* RLAX.A Rotate left arithmetically address-word
* RLAX[.W] Rotate left arithmetically word
* RLAX.B Rotate left arithmetically byte

Syntax RLAX.B dst
RLAX dst or RLAX.W dst
RLAX.B dst

Operation C <-- MSB <-- MSB--1 LSB+1 <-- LSB <-- 0

Emulation ADDX.A dst,dst
ADDX dst,dst
ADDX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4--45.
TheMSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX
instruction acts as a signed multiplication by 2.

Figure 4--45. Destination Operand—Arithmetic Shift Left

MSB 0

C 0

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 040000h ≤ dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R7 is multiplied by 2.

RLAX.A R7 ; Shift left R7 (20-bit)

Extended Instructions

4-138 16-Bit MSP430X CPU

* RLCX.A Rotate left through carry address-word
* RLCX[.W] Rotate left through carry word
* RLCX.B Rotate left through carry byte

Syntax RLCX.A dst
RLCX dst or RLCX.W dst
RLCX.B dst

Operation C <-- MSB <-- MSB--1 LSB+1 <-- LSB <-- C

Emulation ADDCX.A dst,dst
ADDCX dst,dst
ADDCX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 4--46.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 4--46. Destination Operand—Carry Left Shift

MSB 0

C

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs

the initial value is 040000h ≤ dst < 0C0000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is shifted left one position.

RLCX.A R5 ; (R5 x 2) + C --> R5

Example TheRAMbyte LEO is shifted left one position. PC is pointing to uppermemory

RLCX.B LEO ; RAM(LEO) x 2 + C --> RAM(LEO)

Extended Instructions

4-13916-Bit MSP430X CPU

RRAM.A Rotate Right Arithmetically the 20-bit CPU register content
RRAM[.W] Rotate Right Arithmetically the 16-bit CPU register content

Syntax RRAM.A #n,Rdst 1 ≤ n ≤ 4
RRAM.W #n,Rdst or RRAM #n,Rdst 1 ≤ n ≤ 4

Operation MSB → MSB → MSB-1 …. LSB+1 → LSB → C

Description The destination operand is shifted right arithmetically by one, two, three, or
four bit positions as shown in Figure 4--47. The MSB retains its value (sign).
RRAM operates equal to a signed division by 2/4/8/16. The MSB is retained
and shifted into MSB-1. The LSB+1 is shifted into the LSB, and the LSB is
shifted into the carry bit C. The word instruction RRAM.W clears the bits
Rdst.19:16.

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3

(n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5

Example The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) x R15

PUSHM.A #1,R15 ; Save extended R15 on stack

RRAM.A #1,R15 ; R15 × 0.5 -> R15

ADDX.A @SP+,R15 ; R15 × 0.5 + R15 = 1.5 × R15 -> R15

RRAM.A #1,R15 ; (1.5 × R15) × 0.5 = 0.75 × R15 -> R15

Figure 4--47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

16

Extended Instructions

4-140 16-Bit MSP430X CPU

RRAX.A Rotate Right Arithmetically the 20-bit operand
RRAX[.W] Rotate Right Arithmetically the 16-bit operand
RRAX.B Rotate Right Arithmetically the 8-bit operand

Syntax RRAX.A Rdst
RRAX.W Rdst
RRAX Rdst
RRAX.B Rdst

RRAX.A dst
RRAX.W dst or RRAX dst
RRAX.B dst

Operation MSB → MSB → MSB-1 LSB+1 → LSB → C

Description Register Mode for the destination: the destination operand is shifted right by
onebit position as shown inFigure 4--48. TheMSB retains its value (sign). The
word instruction RRAX.W clears the bits Rdst.19:16, the byte instruction
RRAX.B clears the bits Rdst.19:8. TheMSB retains its value (sign), the LSB is
shifted into the carry bit. RRAX here operates equal to a signed division by 2.

All other modes for the destination: the destination operand is shifted right
arithmetically by one bit position as shown in Figure 4--49. The MSB retains
its value (sign), the LSB is shifted into the carry bit. RRAXhere operates equal
to a signed division by 2. All addressing modes -- with the exception of the
Immediate Mode -- are possible in the full memory.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Extended Instructions

4-14116-Bit MSP430X CPU

Example The signed 20-bit number in R5 is shifted arithmetically right four positions.

RPT #4
RRAX.A R5 ; R5/16 --> R5

Example The signed 8-bit value in EDE is multiplied by 0.5.

RRAX.B &EDE ; EDE/2 -> EDE

Figure 4--48. Rotate Right Arithmetically RRAX(.B,.A). Register Mode

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

819

0 0

19 16

0000

Figure 4--49. Rotate Right Arithmetically RRAX(.B,.A). Non-Register Mode

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

Extended Instructions

4-142 16-Bit MSP430X CPU

RRCM.A Rotate Right through carry the 20-bit CPU register content
RRCM[.W] Rotate Right through carry the 16-bit CPU register content

Syntax RRCM.A #n,Rdst 1 ≤ n ≤ 4
RRCM.W #n,Rdst or RRCM #n,Rdst 1 ≤ n ≤ 4

Operation C → MSB → MSB-1 → ... LSB+1 → LSB → C

Description The destination operand is shifted right by one, two, three, or four bit positions
as shown in Figure 4--50. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. The word instruction RRCM.W clears the bits
Rdst.19:16

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3

(n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The address-word in R5 is shifted right by three positions. The MSB-2 is
loaded with 1.

SETC ; Prepare carry for MSB-2

RRCM.A #3,R5 ; R5 = R5 » 3 + 20000h

Example The word in R6 is shifted right by two positions. The MSB is loaded with the
LSB. The MSB-1 is loaded with the contents of the carry flag.

RRCM.W #2,R6 ; R6 = R6 » 2. R6.19:16 = 0

Figure 4--50. Rotate Right Through Carry RRCM[.W] and RRCM.A

C

19 0

MSB0

15

LSB

C

19 0

MSB LSB

16

Extended Instructions

4-14316-Bit MSP430X CPU

RRCX.A Rotate Right through carry the 20-bit operand
RRCX[.W] Rotate Right through carry the 16-bit operand
RRCX.B Rotate Right through carry the 8-bit operand

Syntax RRCX.A Rdst
RRCX.W Rdst
RRCX Rdst
RRCX.B Rdst

RRCX.A dst
RRCX.W dst or RRCX dst
RRCX.B dst

Operation C → MSB → MSB-1 → ... LSB+1 → LSB → C

Description Register Mode for the destination: the destination operand is shifted right by
onebit positionas shown inFigure 4--51.Theword instructionRRCX.Wclears
the bits Rdst.19:16, the byte instructionRRCX.Bclears the bits Rdst.19:8. The
carry bit C is shifted into the MSB, the LSB is shifted into the carry bit.

All other modes for the destination: the destination operand is shifted right by
one bit position as shown in Figure 4--52. The carry bit C is shifted into the
MSB, the LSB is shifted into the carry bit. All addressing modes -- with the ex-
ception of the Immediate Mode -- are possible in the full memory.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Extended Instructions

4-144 16-Bit MSP430X CPU

Example The20-bit operand at addressEDE is shifted right by one position. TheMSB is
loaded with 1.

SETC ; Prepare carry for MSB

RRCX.A EDE ; EDE = EDE » 1 + 80000h

Example The word in R6 is shifted right by twelve positions.

RPT #12
RRCX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 4--51. Rotate Right Through Carry RRCX(.B,.A). Register Mode

C

19 0

MSB0 -- 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

Figure 4--52. Rotate Right Through Carry RRCX(.B,.A). Non-Register Mode

C

0

MSB

7

LSB

C

15 0

MSB LSB

C

19 0

MSB LSB

31 20

0 0

Extended Instructions

4-14516-Bit MSP430X CPU

RRUM.A Rotate Right Unsigned the 20-bit CPU register content
RRUM[.W] Rotate Right Unsigned the 16-bit CPU register content

Syntax RRUM.A #n,Rdst 1 ≤ n ≤ 4
RRUM.W #n,Rdst or RRUM #n,Rdst 1 ≤ n ≤ 4

Operation 0 → MSB → MSB-1 . →... LSB+1 → LSB → C

Description The destination operand is shifted right by one, two, three, or four bit positions
as shown in Figure 4--53. Zero is shifted into the MSB, the LSB is shifted into
the carry bit. RRUMworks like an unsigned division by 2, 4, 8, or 16. The word
instruction RRUM.W clears the bits Rdst.19:16.

Note : This instruction does not use the extension word.

Status Bits N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3) or LSB+3

(n = 4)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The unsigned address-word in R5 is divided by 16.

RRUM.A #4,R5 ; R5 = R5 » 4. R5/16

Example The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W #1,R6 ; R6 = R6/2. R6.19:15 = 0

Figure 4--53. Rotate Right Unsigned RRUM[.W] and RRUM.A

C

19 0

MSB0000

15

LSB

C

19 0

MSB LSB

0

0

16

Extended Instructions

4-146 16-Bit MSP430X CPU

RRUX.A Rotate Right unsigned the 20-bit operand
RRUX[.W] Rotate Right unsigned the 16-bit operand
RRUX.B Rotate Right unsigned the 8-bit operand

Syntax RRUX.A Rdst
RRUX.W Rdst
RRUX Rdst
RRUX.B Rdst

Operation C=0 → MSB → MSB-1 → ... LSB+1 → LSB → C

Description RRUX is valid for registerModeonly: the destinationoperand is shifted right by
onebit positionas shown inFigure 4--54.Theword instructionRRUX.Wclears
the bits Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8.
Zero is shifted into the MSB, the LSB is shifted into the carry bit.

Status Bits N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise
C: Loaded from LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The word in R6 is shifted right by twelve positions.

RPT #12
RRUX.W R6 ; R6 = R6 » 12. R6.19:16 = 0

Figure 4--54. Rotate Right Unsigned RRUX(.B,.A). Register Mode

C

19 0

MSB0 -- 0

7

LSB

C

19 0

MSB LSB

8

C

15 0

MSB LSB

19 16

0 0 0 0

0

0

0

Extended Instructions

4-14716-Bit MSP430X CPU

* SBCX.A Subtract source and borrow/.NOT. carry from destination address-word
* SBCX[.W] Subtract source and borrow/.NOT. carry from destination word
* SBCX.B Subtract source and borrow/.NOT. carry from destination byte

Syntax SBCX.A dst
SBCX dst or SBCX.W dst
SBCX.B dst

Operation dst + 0FFFFFh + C --> dst
dst + 0FFFFh + C --> dst
dst + 0FFh + C --> dst

Emulation SUBCX.A #0,dst
SUBCX #0,dst
SUBCX.B #0,dst

Description The carry bit (C) is added to the destination operandminus one. The previous
contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 8-bit counter pointed to byR13 is subtracted froma 16-bit counter pointed
to by R12.

SUBX.B @R13,0(R12) ; Subtract LSDs
SBCX.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

Extended Instructions

4-148 16-Bit MSP430X CPU

SUBX.A Subtract source address-word from destination address-word
SUBX[.W] Subtract source word from destination word
SUBX.B Subtract source byte from destination byte

Syntax SUBX.A src,dst
SUBX src,dst or SUBX.W src,dst
SUBX.B src,dst

Operation (.not. src) + 1 + dst → dst or dst -- src → dst

Description The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + 1 to the destination. The source
operand is not affected. The result is written to the destination operand. Both
operands may be located in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tinationoperanddelivers anegative result, or if the subtractionof aposi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 20-bit constant 87654h is subtracted fromEDE (LSBs) and EDE+2 (MSBs).

SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2|EDE

Example A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to
label TONI if R7 contains zero after the instruction. R5 is auto-incremented by
2. R7.19:16 = 0

SUBX.W @R5+,R7 ; Subtract table number from R7. R5 + 2

JZ TONI ; R7 = @R5 (before subtraction)

... ; R7 <> @R5 (before subtraction)

Example Byte CNT is subtracted from the byte R12 points to in the full address space.
Address of CNT is within PC ± 512 K.

SUBX.B CNT,0(R12) ; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.
SUBX.A Rsrc,Rdst or
SUBX.A #imm20,Rdst

Extended Instructions

4-14916-Bit MSP430X CPU

SUBCX.A Subtract source address-word with carry from destination address-word
SUBCX[.W] Subtract source word with carry from destination word
SUBCX.B Subtract source byte with carry from destination byte

Syntax SUBCX.A src,dst
SUBCX src,dst or SUBCX.W src,dst
SUBCX.B src,dst

Operation (.not. src) + C + dst → dst or dst -- (src -- 1) + C → dst

Description The source operand is subtracted from the destination operand. This is made
by adding the 1’s complement of the source + carry to the destination. The
source operand is not affected, the result is written to the destination operand.
Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tinationoperanddelivers anegative result, or if the subtractionof aposi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 20-bit constant 87654h is subtracted from R5 with the carry from the
previous instruction.

SUBCX.A #87654h,R5 ; Subtract 87654h + C from R5

Example A48-bit number (3 words) pointed to byR5 (20-bit address) is subtracted from
a 48-bit counter in RAM, pointed to by R7. R5 auto-increments to point to the
next 48-bit number.

SUBX.W @R5+,0(R7) ; Subtract LSBs. R5 + 2

SUBCX.W @R5+,2(R7) ; Subtract MIDs with C. R5 + 2

SUBCX.W @R5+,4(R7) ; Subtract MSBs with C. R5 + 2

Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous
instruction is used. 20-bit addresses.

SUBCX.B &CNT,0(R12) ; Subtract byte CNT from @R12

Extended Instructions

4-150 16-Bit MSP430X CPU

SWPBX.A Swap bytes of lower word
SWPBX[.W] Swap bytes of word

Syntax SWPBX.A dst
SWPBX.W dst or SWPBX dst

Operation dst.15:8⇔ dst.7:0

Description Register Mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is
used, Rn.19:16 are unchanged.When the .Wextension is used, Rn.19:16 are
cleared.
Other Modes: When the .A extension is used, bits 31:20 of the destination
address are cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped
with bits 7:0. When the .W extension is used, bits 15:8 are swapped with bits
7:0 of the addressed word.

Status Bits Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Exchange the bytes of RAM address-word EDE.

MOVX.A #23456h,&EDE ; 23456h --> EDE

SWPBX.A EDE ; 25634h --> EDE

Example Exchange the bytes of R5.

MOVA #23456h,R5 ; 23456h --> R5
SWPBX.W R5 ; 05634h --> R5

Figure 4--55. Swap Bytes SWPBX.A Register Mode

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX.A

After SWPBX.A

X

X

19

19

16

16

Extended Instructions

4-15116-Bit MSP430X CPU

Figure 4--56. Swap Bytes SWPBX.A In Memory

15 8 7 0

Low ByteHigh Byte

Before SWPBX.A

After SWPBX.A

X

19 1631 20

X

15 8 7 0

High ByteLow Byte0

19 1631 20

X

Figure 4--57. Swap Bytes SWPBX[.W] Register Mode

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

X

0

19

19

16

16

Figure 4--58. Swap Bytes SWPBX[.W] In Memory

15 8 7 0

15 8 7 0

Low Byte

Low ByteHigh Byte

High Byte

Before SWPBX

After SWPBX

Extended Instructions

4-152 16-Bit MSP430X CPU

SXTX.A Extend sign of lower byte to address-word
SXTX[.W] Extend sign of lower byte to word

Syntax SXTX.A dst
SXTX.W dst or SXTX dst

Operation dst.7 → dst.15:8, Rdst.7 → Rdst.19:8 (Register Mode)

Description Register Mode:
The sign of the low byte of the operand (Rdst.7) is extended into the bits
Rdst.19:8.

Other Modes:
SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.

SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into
dst.15:8.

Status Bits N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits
31:20 located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE --> EDE+2/EDE

Figure 4--59. Sign Extend SXTX.A

15 8 7 6 019 162031

0 0...... S

19 16

15 8 7 6 019 16

S

19 16

SXTX.A Rdst

SXTX.A dst

Extended Instructions

4-15316-Bit MSP430X CPU

Figure 4--60. Sign Extend SXTX[.W]

15 8 7 6 0

S

15 8 7 6 019 16

S

19 16

SXTX[.W] Rdst

SXTX[.W] dst

Extended Instructions

4-154 16-Bit MSP430X CPU

* TSTX.A Test destination address-word
* TSTX[.W] Test destination word
* TSTX.B Test destination byte

Syntax TSTX.A dst
TSTX dst or TST.W dst
TST.B dst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPX.A #0,dst
CMPX #0,dst
CMPX.B #0,dst

Description The destination operand is compared with zero. The status bits are set
according to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM byte LEO is tested; PC is pointing to upper memory. If it is negative,
continue at LEONEG; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO
JN LEONEG ; LEO is negative
JZ LEOZERO ; LEO is zero

LEOPOS ; LEO is positive but not zero
LEONEG ; LEO is negative
LEOZERO ; LEO is zero

Extended Instructions

4-15516-Bit MSP430X CPU

XORX.A Exclusive OR source address-word with destination address-word
XORX[.W] Exclusive OR source word with destination word
XORX.B Exclusive OR source byte with destination byte

Syntax XORX.A src,dst
XORX src,dst or XORX.W src,dst
XORX.B src,dst

Operation src .xor. dst → dst

Description The source and destination operands are exclusively ORed. The result is
placed into the destination. The source operand is not affected. The previous
contents of the destination are lost. Both operands may be located in the full
address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V: Set if both operands are negative (before execution), reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Toggle bits in address-word CNTR (20-bit data) with information in
address-word TONI (20-bit address).

XORX.A TONI,&CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 = 0

Example Reset to zero those bits in the low byte of R7 that are different from the bits in
byte EDE (20-bit address).

XORX.B EDE,R7 ; Set different bits to 1 in R7

INV.B R7 ; Invert low byte of R7. R7.19:8 = 0.

Address Instructions

4-156 16-Bit MSP430X CPU

4.6.4 Address Instructions

MSP430X address instructions are instructions that support 20-bit operands
but have restricted addressing modes. The addressing modes are restricted
to the Register mode and the Immediate mode, except for the MOVA
instruction. Restricting the addressing modes removes the need for the
additional extension-word op-code improving code density and execution
time. The MSP430X address instructions are listed and described in the
following pages.

Address Instructions

4-15716-Bit MSP430X CPU

ADDA Add 20-bit source to a 20-bit destination register

Syntax ADDA Rsrc,Rdst
ADDA #imm20,Rdst

Operation src + Rdst → Rdst

Description The20-bit source operand is added to the 20-bit destinationCPU register. The
previous contents of the destination are lost. The source operand is not
affected.

Status Bits N: Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the 20-bit result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of

two negative numbers is positive, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.

ADDA #0A4320h,R5 ; Add A4320h to 20-bit R5

JC TONI ; Jump on carry

... ; No carry occurred

Address Instructions

4-158 16-Bit MSP430X CPU

* BRA Branch to destination

Syntax BRA dst

Operation dst → PC

Emulation MOVA dst,PC

Description An unconditional branch is taken to a 20-bit address anywhere in the full
address space. All seven source addressing modes can be used. The branch
instruction is an address-word instruction. If the destination address is
contained in a memory location X, it is contained in two ascending words: X
(LSBs) and (X + 2) (MSBs).

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Examples for all addressing modes are given.

ImmediateMode: Branch to label EDE located anywhere in the 20-bit address
space or branch directly to address.

BRA #EDE ; MOVA #imm20,PC

BRA #01AA04h

Symbolic Mode: Branch to the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where
X is within ±32 K. Indirect addressing.

BRA EXEC ; MOVA z16(PC),PC

Note: if the 16-bit index is not sufficient, a 20-bit index may be used with the
following instruction.

MOVX.A EXEC,PC ; 1M byte range with 20-bit index

AbsoluteMode: Branch to the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register Mode: Branch to the 20-bit address contained in register R5. Indirect
R5.

BRA R5 ; MOVA R5,PC

Address Instructions

4-15916-Bit MSP430X CPU

Indirect Mode: Branch to the 20-bit address contained in the word pointed to
by register R5 (LSBs). TheMSBs have the address (R5 + 2). Indirect, indirect
R5.

BRA @R5 ; MOVA @R5,PC

Indirect, Auto-Increment Mode: Branch to the 20-bit address contained in the
words pointed to by register R5 and increment the address in R5 afterwards
by 4. The next time the S/W flow uses R5 as a pointer, it can alter the program
execution due to access to the next address in the table pointed to by R5. Indi-
rect, indirect R5.

BRA @R5+ ; MOVA @R5+,PC. R5 + 4

IndexedMode: Branch to the 20-bit address contained in the address pointed
to by register (R5 + X) (e.g. a table with addresses starting at X). (R5 + X)
points to the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within
R5 ± 32 K. Indirect, indirect (R5 + X).

BRA X(R5) ; MOVA z16(R5),PC

Note: if the 16-bit index is not sufficient, a 20-bit index X may be used with the
following instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

Address Instructions

4-160 16-Bit MSP430X CPU

CALLA Call a Subroutine

Syntax CALLA dst

Operation dst → tmp20-bit dst is evaluated and stored
SP -- 2 → SP
PC.19:16 → @SP updated PC with return address to TOS (MSBs)
SP -- 2 → SP
PC.15:0 → @SP updated PC to TOS (LSBs)
tmp → PC saved 20-bit dst to PC

Description A subroutine call is made to a 20-bit address anywhere in the full address
space. All seven source addressingmodes can be used. The call instruction is
an address-word instruction. If the destination address is contained in a
memory location X, it is contained in two ascending words: X (LSBs) and
(X + 2) (MSBs). Two words on the stack are needed for the return address.
The return is made with the instruction RETA.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC or call directly an address.

CALLA #EXEC ; Start address EXEC

CALLA #01AA04h ; Start address 01AA04h

Symbolic Mode: Call a subroutine at the 20-bit address contained in address-
es EXEC (LSBs) and EXEC+2 (MSBs). EXEC is located at the address
(PC + X) where X is within ±32 K. Indirect addressing.

CALLA EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 20-bit address contained in absolute
addresses EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

CALLA &EXEC ; Start address at @EXEC

Register Mode: Call a subroutine at the 20-bit address contained in register
R5. Indirect R5.

CALLA R5 ; Start address at @R5

Address Instructions

4-16116-Bit MSP430X CPU

Indirect Mode: Call a subroutine at the 20-bit address contained in the word
pointed to by register R5 (LSBs). The MSBs have the address (R5 + 2). Indi-
rect, indirect R5.

CALLA @R5 ; Start address at @R5

Indirect, Auto-Increment Mode: Call a subroutine at the 20-bit address con-
tained in the words pointed to by register R5 and increment the 20-bit address
in R5 afterwards by 4. The next time the S/W flow uses R5 as a pointer, it can
alter the programexecution due to access to the nextword address in the table
pointed to by R5. Indirect, indirect R5.

CALLA @R5+ ; Start address at @R5. R5 + 4

Indexed Mode: Call a subroutine at the 20-bit address contained in the ad-
dress pointed to by register (R5 + X) e.g. a table with addresses starting at X.
(R5 + X) points to the LSBs, (R5 + X + 2) points to the MSBs of the word ad-
dress. X is within R5 ±32 K. Indirect, indirect (R5 + X).

CALLA X(R5) ; Start address at @(R5+X). z16(R5)

Address Instructions

4-162 16-Bit MSP430X CPU

* CLRA Clear 20-bit destination register

Syntax CLRA Rdst

Operation 0 --> Rdst

Emulation MOVA #0,Rdst

Description The destination register is cleared.

Status Bits Status bits are not affected.

Example The 20-bit value in R10 is cleared.

CLRA R10 ; 0 --> R10

Address Instructions

4-16316-Bit MSP430X CPU

CMPA Compare the 20-bit source with a 20-bit destination register

Syntax CMPA Rsrc,Rdst
CMPA #imm20,Rdst

Operation (.not. src) + 1 + Rdst or Rdst -- src

Description The 20-bit source operand is subtracted from the 20-bit destination CPU
register. This is made by adding the 1’s complement of the source + 1 to the
destination register. The result affects only the status bits.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive

destination operand delivers a negative result, or if the subtraction of
a positive source operand fromanegative destination operanddelivers
a positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 20-bit immediate operand and R6 are compared. If they are equal the
program continues at label EQUAL.

CMPA #12345h,R6 ; Compare R6 with 12345h

JEQ EQUAL ; R5 = 12345h

... ; Not equal

Example The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or
equal to R6, the program continues at label GRE.

CMPA R6,R5 ; Compare R6 with R5 (R5 -- R6)

JGE GRE ; R5 >= R6

... ; R5 < R6

Address Instructions

4-164 16-Bit MSP430X CPU

* DECDA Double-decrement 20-bit destination register

Syntax DECDA Rdst

Operation Rdst -- 2 --> Rdst

Emulation SUBA #2,Rdst

Description The destination register is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if Rdst contained 2, reset otherwise
C: Reset if Rdst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is decremented by 2

DECDA R5 ; Decrement R5 by two

Address Instructions

4-16516-Bit MSP430X CPU

* INCDA Double-increment 20-bit destination register

Syntax INCDA Rdst

Operation dst + 2 --> dst

Emulation ADDA #2,Rdst

Example The destination register is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if Rdst contained 0FFFFEh, reset otherwise

Set if Rdst contained 0FFFEh, reset otherwise
Set if Rdst contained 0FEh, reset otherwise

C: Set if Rdst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if Rdst contained 0FFFEh or 0FFFFh, reset otherwise
Set if Rdst contained 0FEh or 0FFh, reset otherwise

V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is incremented by 2

INCDA R5 ; Increment R5 by two

Address Instructions

4-166 16-Bit MSP430X CPU

MOVA Move the 20-bit source to the 20-bit destination

Syntax MOVA Rsrc,Rdst
MOVA #imm20,Rdst
MOVA z16(Rsrc),Rdst
MOVA EDE,Rdst
MOVA &abs20,Rdst
MOVA @Rsrc,Rdst
MOVA @Rsrc+,Rdst
MOVA Rsrc,z16(Rdst)
MOVA Rsrc,&abs20

Operation src → Rdst
Rsrc → dst

Description The 20-bit source operand is moved to the 20-bit destination. The source
operand is not affected. The previous content of the destination is lost.

Status Bits Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Copy 20-bit value in R9 to R8.

MOVA R9,R8 ; R9 -> R8

Write 20-bit immediate value 12345h to R12.

MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in ad-
dresses (R9 + 100h) LSBs and (R9 + 102h) MSBs

MOVA 100h(R9),R8 ; Index: ± 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2
(MSBs) to R12.

MOVA &EDE,R12 ; &EDE -> R12. 2 words transferred

Move20-bit value in 20-bit addressesEDE (LSBs) andEDE+2 (MSBs) toR12.
PC index ±32 K.

MOVA EDE,R12 ; EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in
addresses @R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9,R8 ; @R9 -> R8. 2 words transferred

Address Instructions

4-16716-Bit MSP430X CPU

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by
four afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2)
MSBs.

MOVA @R9+,R8 ; @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination
operand in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and
EDE+2 (MSBs).

MOVA R13,&EDE ; R13 -> EDE. 2 words transferred

Move20-bit value inR13 to 20-bit addressesEDE (LSBs) andEDE+2 (MSBs).
PC index ±32 K.

MOVA R13,EDE ; R13 -> EDE. 2 words transferred

Address Instructions

4-168 16-Bit MSP430X CPU

* RETA Return from subroutine

Syntax RETA

Operation @SP → PC.15:0 LSBs (15:0) of saved PC to PC.15:0
SP + 2 → SP
@SP → PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP + 2 → SP

Emulation MOVA @SP+,PC

Description The 20-bit return address information, pushed onto the stack by a CALLA
instruction, is restored to the program counter PC. The program continues at
the address following the subroutine call. The status register bits SR.11:0 are
not affected. This allows the transfer of information with these bits.

Status Bits N: Not affected
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Call a subroutine SUBR fromanywhere in the 20-bit address space and return
to the address after the CALLA.

CALLA #SUBR ; Call subroutine starting at SUBR

... ; Return by RETA to here

SUBR PUSHM.A #2,R14 ; Save R14 and R13 (20 bit data)

... ; Subroutine code

POPM.A #2,R14 ; Restore R13 and R14 (20 bit data)

RETA ; Return (to full address space)

Address Instructions

4-16916-Bit MSP430X CPU

* TSTA Test 20-bit destination register

Syntax TSTA Rdst

Operation dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMPA #0,Rdst

Description The destination register is compared with zero. The status bits are set
according to the result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is
positive but not zero, continue at R7POS.

TSTA R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero
R7NEG ; R7 is negative
R7ZERO ; R7 is zero

Address Instructions

4-170 16-Bit MSP430X CPU

SUBA Subtract 20-bit source from 20-bit destination register

Syntax SUBA Rsrc,Rdst
SUBA #imm20,Rdst

Operation (.not.src) + 1 + Rdst → Rdst or Rdst -- src → Rdst

Description The 20-bit source operand is subtracted from the 20-bit destination register.
This is made by adding the 1’s complement of the source + 1 to the
destination. The result is written to the destination register, the source is not
affected.

Status Bits N: Set if result is negative (src > dst), reset if positive (src <= dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB (Rdst.19), reset otherwise
V: Set if the subtraction of a negative source operand from a positive des-

tinationoperanddelivers anegative result, or if the subtractionof aposi-
tive source operand from a negative destination operand delivers a
positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program
continues at label TONI.

SUBA R5,R6 ; R6 -- R5 -> R6

JC TONI ; Carry occurred

... ; No carry

5-1Basic Clock Module+

Basic Clock Module+

The basic clock module+ provides the clocks for MSP430x2xx devices. This
chapter describes the operation of the basic clock module+ of the
MSP430x2xx device family.

Topic Page

5.1 Basic Clock Module Introduction 5-2. .

5.2 Basic Clock Module Operation 5-4. .

5.3 Basic Clock Module Registers 5-13. .

Chapter 5

Basic Clock Module+ Introduction

5-2 Basic Clock Module+

5.1 Basic Clock Module+ Introduction

The basic clock module+ supports low system cost and ultralow-power
consumption. Using three internal clock signals, the user can select the best
balance of performance and low power consumption. The basic clock
module+ can be configured to operate without any external components, with
one external resistor, with one or two external crystals, or with resonators,
under full software control.

The basic clock module+ includes three or four clock sources:

- LFXT1CLK: Low-frequency/high-frequency oscillator that can be used
with low-frequencywatch crystals or external clock sources of 32,768-Hz.
or with standard crystals, resonators, or external clock sources in the
400-kHz to 16-MHz range.

- XT2CLK: Optional high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 400-kHz to
16-MHz range.

- DCOCLK: Internal digitally controlled oscillator (DCO).

- VLOCLK: Internal very low power, low frequency oscillator with 12-kHz
typical frequency.

Three clock signals are available from the basic clock module+:

- ACLK: Auxiliary clock. ACLK is software selectable as LFXT1CLK or
VLOCLK. ACLK is divided by 1, 2, 4, or 8. ACLK is software selectable for
individual peripheral modules.

- MCLK: Master clock. MCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available on-chip), or DCOCLK.MCLK is divided by
1, 2, 4, or 8. MCLK is used by the CPU and system.

- SMCLK: Sub-main clock. SMCLK is software selectable as LFXT1CLK,
VLOCLK, XT2CLK (if available on-chip), or DCOCLK. SMCLK is divided
by 1, 2, 4, or 8. SMCLK is software selectable for individual peripheral
modules.

The block diagram of the basic clock module+ is shown in Figure 5--1.

Note: Device-Specific Clock Variations

All clock features are not available on all MSP430x2xx devices.

MSP430x20xx: LFXT1 does not support HFmode, XT2 is not present, ROSC
is not supported.
MSP430x21x1: Internal LP/LF oscillator is not present, XT2 is not present,
ROSC is not supported.
MSP430x21x2: XT2 is not present.
MSP430x22xx: MSP430x23x0: XT2 is not present.

Basic Clock Module+ Introduction

5-3Basic Clock Module+

Figure 5--1. Basic Clock Module+ Block Diagram

Divider
/1/2/4/8

DIVAx

MCLK

CPUOFF

LFXT1CLK

DCOCLK

XIN

XOUT

Divider
/1/2/4/8

DIVMx

SMCLK

SCG1
DIVSx

ACLK

Main System Clock

Auxillary Clock

Sub System Clock

DCO

DCOx

DC
Generator

SCG0 RSELx

off

SELS

1

0

SELMx

00

01

10

11
1

0

1

0Divider
/1/2/4/8

Modulator

1

0n

n+1

XTS

XCAPx

LFXT1 Oscillator

LF

0 V

LFOff

0 V

Min. Puls
Filter

LFXT1Sx

MODx

else

10
Min. Pulse
Filter

Internal
LP/LF

VLOCLK

XT2IN

XT2OUT

XT2OFF

XT

Min. Pulse
Filter

Connected only when
XT2 not present on--chip

XT2S

VCC

1

0

DCOR

Oscillator†

XT1Off

XT2 Oscillator†

Rosc†

OSCOFF

XT†

†Note: Device-Specific Clock Variations

All clock features are not available on all MSP430x2xx devices.

MSP430x20xx: LFXT1 does not support HFmode, XT2 is not present, ROSC
is not supported.
MSP430x21x1: Internal LP/LF oscillator is not present, XT2 is not present,
ROSC is not supported.
MSP430x21x2: XT2 is not present.
MSP430x22xx, MSP430x23x0: XT2 is not present.

Basic Clock Module+ Operation

5-4 Basic Clock Module+

5.2 Basic Clock Module+ Operation

After a PUC,MCLK and SMCLK are sourced fromDCOCLK at ~1.1MHz (see
the device-specific data sheet for parameters) and ACLK is sourced from
LFXT1CLK in LF mode with an internal load capacitance of 6pF.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure
theMSP430operatingmodesandenable or disableportions of thebasic clock
module+. See Chapter System Resets, Interrupts and Operating Modes. The
DCOCTL, BCSCTL1, BCSCTL2, and BCSCTL3 registers configure the basic
clock module+.

The basic clockmodule+ can be configured or reconfigured by software at any
time during program execution, for example:

BIS.B #RSEL2+RSEL1+RSEL0,&BCSCTL1 ; Select range 7

BIS.B #DCO2+DCO1+DCO0,&DCOCTL ; Select max DCO tap

5.2.1 Basic Clock Module+ Features for Low-Power Applications

Conflicting requirements typically exist in battery-powered applications:

- Low clock frequency for energy conservation and time keeping

- High clock frequency for fast reaction to events and fast burst processing
capability

- Clock stability over operating temperature and supply voltage

The basic clock module+ addresses the above conflicting requirements by
allowing theuser to select from the threeavailable clocksignals:ACLK,MCLK,
and SMCLK. For optimal low-power performance, ACLK can be sourced from
a low-power 32,768-Hz watch crystal, providing a stable time base for the
system and low power stand-by operation, or from the internal low-frequency
oscillator when crystal-accurate time keeping is not required.. The MCLK can
be configured to operate from the on-chip DCO that can be activated when
requested by interrupt-driven events. The SMCLK can be configured to
operate from a crystal or the DCO, depending on peripheral requirements. A
flexible clock distribution and divider system is provided to fine tune the
individual clock requirements.

5.2.2 Internal Very Low Power, Low Frequency Oscillator

The internal very-low-power, low-frequency oscillator (VLO) provides a typical
frequency of 12kHz (see device-specific data sheet for parameters) without
requiring a crystal. VLOCLKsource is selected by setting LFXT1Sx = 10when
XTS = 0. The OSCOFF bit disables the VLO for LPM4. The LFXT1 crystal
oscillators are disabled when the VLO is selected reducing current
consumption. The VLO consumes no power when not being used.

Basic Clock Module+ Operation

5-5Basic Clock Module+

5.2.3 LFXT1 Oscillator

The LFXT1 oscillator supports ultralow-current consumption using a
32,768-Hzwatchcrystal in LFmode (XTS=0).Awatchcrystal connects toXIN
and XOUT without any other external components. The software-selectable
XCAPx bits configure the internally provided load capacitance for the LFXT1
crystal in LF mode. This capacitance can be selected as 1pF, 6pF, 10pF or
12.5pF typical. Additional external capacitors can be added if necessary.

The LFXT1 oscillator also supports high-speed crystals or resonators when in
HF mode (XTS = 1, XCAPx = 00). The high-speed crystal or resonator
connects toXINandXOUTand requiresexternal capacitorsonboth terminals.
These capacitors should be sized according to the crystal or resonator
specifications.When LFXT1 is in HFmode, the LFXT1Sx bits select the range
of operation.

LFXT1 may be used with an external clock signal on the XIN pin in either LF
or HF mode when LFXT1Sx = 11, OSCOFF = 0 and XCAPx = 00. When used
with an external signal, the external frequency must meet the data sheet
parameters for the chosen mode. When the input frequency is below the
specified lower limit, the LFXT1OF bit may be set preventing the CPU from
being clocked with LFXT1CLK.

Software can disable LFXT1 by setting OSCOFF, if LFXT1CLK does not
source SMCLK or MCLK, as shown in Figure 5--2.

Figure 5--2. Off Signals for the LFXT1 Oscillator

XT2 is an Internal Signal
XT2 = 0: Devices without XT2 oscillator
XT2 = 1: Devices with XT2 oscillator

ACLK_request

MCLK_request

OSCOFF

CPUOFF

SCG1

SELS

SMCLK_request

SELM0
XSELM1

XT2

XTS

LFOff

XT1Off

LFXT1Off

Note: LFXT1 Oscillator Characteristics

Low-frequency crystals often require hundreds of milliseconds to start up,
depending on the crystal.

Ultralow-power oscillators suchas the LFXT1 in LFmode should beguarded
from noise coupling from other sources. The crystal should be placed as
close as possible to the MSP430 with the crystal housing grounded and the
crystal traces guarded with ground traces.

Basic Clock Module+ Operation

5-6 Basic Clock Module+

5.2.4 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK
and its characteristics are identical to LFXT1 in HF mode. The XT2Sx bits
select the range of operation of XT2. The XT2OFF bit disables the XT2
oscillator if XT2CLK is not used for MCLK or SMCLK as shown in Figure 5--3.

XT2 may be used with external clock signals on the XT2IN pin when XT2Sx
= 11 and XT2OFF = 0. When used with an external signal, the external
frequency must meet the data sheet parameters for XT2. When the input
frequency is below the specified lower limit, the XT2OF bit may be set
preventing the CPU from being clocked with XT2CLK.

Figure 5--3. Off Signals for Oscillator XT2

MCLK_request
CPUOFF

SCG1

SELS

SMCLK_request

SELM0
XSELM1

XT2OFF

XT2off (Internal Signal)

5.2.5 Digitally-Controlled Oscillator (DCO)

The DCO is an integrated digitally controlled oscillator. The DCO frequency
can be adjusted by software using the DCOx, MODx, and RSELx bits.

Disabling the DCO

Software can disable DCOCLK by setting SCG0 when it is not used to source
SMCLK or MCLK in active mode, as shown in Figure 5--4.

Figure 5--4. On/Off Control of DCO

MCLK_request
CPUOFF

SCG1

SELS

SMCLK_request

XSELM1

SYNCDCOCLK
XT2CLK

QD

SCG0

DCOCLK_on

1: on
0: off

1: on
0: off

DCO_Gen_on

DCOCLK

Basic Clock Module+ Operation

5-7Basic Clock Module+

Adjusting the DCO frequency

After a PUC, RSELx = 7 and DCOx = 3, allowing the DCO to start at a
mid-range frequency. MCLK and SMCLK are sourced from DCOCLK.
Because the CPU executes code from MCLK, which is sourced from the
fast-startingDCO, code execution typically begins fromPUC in less than 2 μs.
The typical DCOx and RSELx ranges and steps are shown in Figure 5--5.

The frequency of DCOCLK is set by the following functions:

- The four RSELx bits select one of sixteen nominal frequency ranges for
the DCO. These ranges are defined for an individual device in the
device-specific data sheet.

- The threeDCOxbits divide theDCOrange selectedby theRSELxbits into
8 frequency steps, separated by approximately 10%.

- The five MODx bits, switch between the frequency selected by the DCOx
bits and the next higher frequency set by DCOx+1. When DCOx = 07h,
the MODx bits have no effect because the DCO is already at the highest
setting for the selected RSELx range.

Figure 5--5. Typical DCOx Range and RSELx Steps

RSEL=0

RSEL = 15

DCO=0 DCO=7DCO=4DCO=1 DCO=2 DCO=3 DCO=5 DCO=6

fDCO

20000 kHz

100 kHz

1000 kHz

RSEL = 7

Basic Clock Module+ Operation

5-8 Basic Clock Module+

Each MSP430F2xx device has calibrated DCOCTL and BCSCTL1 register
settings for specific frequencies stored in information memory segment A. To
use the calibrated settings, the information is copied into the DCOCTL and
BCSCTL1 registers. The calibrated settings affect the DCOx, MODx, and
RSELx bits, and clear all other bits, except XT2OFF which remains set. The
remaining bits of BCSCTL1 can be set or cleared as needed with BIS.B or
BIC.B instructions.

; Set DCO to 1 MHz:

MOV.B &CALBC1_1MHZ,&BCSCTL1 ; Set range

MOV.B &CALDCO_1MHZ,&DCOCTL ; Set DCO step + modulation

Using an External Resistor (ROSC) for the DCO

Some MSP430F2xx devices provide the option to source the DCO current
through an external resistor, ROSC, tied toDVCC,whenDCOR=1. In this case,
the DCO has the same characteristics as MSP430x1xx devices, and the
RSELx setting is limited to 0 to 7 with the RSEL3 ignored. This option provides
an additional method to tune the DCO frequency by varying the resistor value.
See the device-specific data sheet for parameters.

Basic Clock Module+ Operation

5-9Basic Clock Module+

5.2.6 DCO Modulator

The modulator mixes two DCO frequencies, fDCO and fDCO+1 to produce an
intermediate effective frequency between fDCO and fDCO+1 and spread the
clock energy, reducing electromagnetic interference (EMI). The modulator
mixes fDCO and fDCO+1 for 32DCOCLK clock cycles and is configuredwith the
MODx bits. When MODx = 0 the modulator is off.

The modulator mixing formula is:

t =(32-- MODx) × tDCO + MODx × tDCO+1

Because fDCO is lower than the effective frequency and fDCO+1 is higher than
the effective frequency, the error of the effective frequency integrates to zero.
It does not accumulate. The error of the effective frequency is zero every 32
DCOCLK cycles. Figure 5--6 illustrates the modulator operation.

The modulator settings and DCO control are configured with software. The
DCOCLKcan be compared to a stable frequency of known value andadjusted
with the DCOx, RSELx, and MODx bits. See http://www.msp430.com for
application notes and example code on configuring the DCO.

Figure 5--6. Modulator Patterns

MODx

Lower DCO Tap Frequency fDCO

31

24

16

15

5

4

3

2

1

0

Upper DCO Tap Frequency fDCO+1

Basic Clock Module+ Operation

5-10 Basic Clock Module+

5.2.7 Basic Clock Module+ Fail-Safe Operation

The basic clockmodule+ incorporates an oscillator-fault fail-safe feature. This
feature detects an oscillator fault for LFXT1 and XT2 as shown in Figure 5--7
The available fault conditions are:

- Low-frequency oscillator fault (LFXT1OF) for LFXT1 in LF mode

- High-frequency oscillator fault (LFXT1OF) for LFXT1 in HF mode

- High-frequency oscillator fault (XT2OF) for XT2

The crystal oscillator fault bits LFXT1OF, and XT2OF are set if the
corresponding crystal oscillator is turned on and not operating properly. The
fault bits remain set as long as the fault condition exists and are automatically
cleared if the enabled oscillators function normally.

The OFIFG oscillator-fault flag is set and latched at POR or when an oscillator
fault (LFXT1OF, or XT2OF) is detected.WhenOFIFG is set, MCLK is sourced
from the DCO, and if OFIE is set, the OFIFG requests an NMI interrupt. When
the interrupt is granted, the OFIE is reset automatically. The OFIFG flag must
be cleared by software. The source of the fault can be identified by checking
the individual fault bits.

If a fault is detected for the crystal oscillator sourcing the MCLK, the MCLK is
automatically switched to the DCO for its clock source. This does not change
the SELMx bit settings. This condition must be handled by user software.

Figure 5--7. Oscillator-Fault Logic

LF_OscFault

XT1_OscFault

XT2_OscFault

XTS

XT2OF

LFXT1OF

Set OFIFG Flag

Basic Clock Module+ Operation

5-11Basic Clock Module+

Sourcing MCLK from a Crystal

After a PUC, the basic clock module+ uses DCOCLK for MCLK. If required,
MCLK may be sourced from LFXT1 or XT2.

The sequence to switch the MCLK source from the DCO clock to the crystal
clock (LFXT1CLK or XT2CLK) is:

1) Switch on the crystal oscillator and select appropriate mode

2) Clear the OFIFG flag

3) Wait at least 50 μs

4) Test OFIFG, and repeat steps 1-4 until OFIFG remains cleared.

; Select LFXT1 (HF mode) for MCLK

BIC.W #OSCOFF,SR ; Turn on osc.

BIS.B #XTS,&BCSCTL1 ; HF mode

MOV.B #LFXT1S0,&BCSCTL3 ; 1-3MHz Crystal

L1 BIC.B #OFIFG,&IFG1 ; Clear OFIFG

MOV.W #0FFh,R15 ; Delay

L2 DEC.W R15 ;

JNZ L2 ;

BIT.B #OFIFG,&IFG1 ; Re-test OFIFG

JNZ L1 ; Repeat test if needed

BIS.B #SELM1+SELM0,&BCSCTL2 ; Select LFXT1CLK

Basic Clock Module+ Operation

5-12 Basic Clock Module+

5.2.8 Synchronization of Clock Signals

WhenswitchingMCLKorSMCLK fromone clock source to another, the switch
is synchronized to avoid critical race conditions as shown in Figure 5--8:

1) The current clock cycle continues until the next rising edge.

2) The clock remains high until the next rising edge of the new clock.

3) The new clock source is selected and continues with a full high period.

Figure 5--8. Switch MCLK from DCOCLK to LFXT1CLK

DCOCLK

LFXT1CLK

MCLK

LFXT1CLKDCOCLK

Select
LFXT1CLK

Wait for
LFXT1CLK

Basic Clock Module+ Registers

5-13Basic Clock Module+

5.3 Basic Clock Module+ Registers

The basic clock module+ registers are listed in Table 5--1.

Table 5--1.Basic Clock module+ Registers

Register Short Form Register Type Address Initial State

DCO control register DCOCTL Read/write 056h 060h with PUC
Basic clock system control 1 BCSCTL1 Read/write 057h 087h with POR†

Basic clock system control 2 BCSCTL2 Read/write 058h Reset with PUC

Basic clock system control 3 BCSCTL3 Read/write 053h 005h with PUC

SFR interrupt enable register 1 IE1 Read/write 000h Reset with PUC

SFR interrupt flag register 1 IFG1 Read/write 002h Reset with PUC
† Some of the register bits are also PUC initialized. See register summary.

Basic Clock Module+ Registers

5-14 Basic Clock Module+

DCOCTL, DCO Control Register

7 6 5 4 3 2 1 0

DCOx MODx

rw--0 rw--1 rw--1 rw--0 rw--0 rw--0 rw--0 rw--0

DCOx Bits
7-5

DCO frequency select. These bits select which of the eight discrete DCO
frequencies within the range defined by the RSELx setting is selected.

MODx Bits
4-0

Modulator selection. These bits define how often the fDCO+1 frequency is
used within a period of 32 DCOCLK cycles. During the remaining clock
cycles (32--MOD) the fDCO frequency is used. Not useable when DCOx=7.

BCSCTL1, Basic Clock System Control Register 1

7 6 5 4 3 2 1 0

XT2OFF XTS† DIVAx RSELx

rw--(1) rw--(0) rw--(0) rw--(0) rw--0 rw--1 rw--1 rw--1
† XTS = 1 is not supported in MSP430x20xx devices.

XT2OFF Bit 7 XT2 off. This bit turns off the XT2 oscillator
0 XT2 is on
1 XT2 is off if it is not used for MCLK or SMCLK.

XTS Bit 6 LFXT1 mode select.
0 Low frequency mode
1 High frequency mode

DIVAx Bits
5-4

Divider for ACLK
00 /1
01 /2
10 /4
11 /8

RSELx Bits
3-0

Range Select. Sixteen different frequency ranges are available. The lowest
frequency range is selected by setting RSELx=0. RSEL3 is ignored when
DCOR = 1.

Basic Clock Module+ Registers

5-15Basic Clock Module+

BCSCTL2, Basic Clock System Control Register 2

7 6 5 4 3 2 1 0

SELMx DIVMx SELS DIVSx DCOR†

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0
† Does not apply to MSP430x20xx or MSP430x21xx

SELMx Bits
7-6

Select MCLK. These bits select the MCLK source.
00 DCOCLK
01 DCOCLK
10 XT2CLK when XT2 oscillator present on-chip. LFXT1CLK or VLOCLK

when XT2 oscillator not present on-chip.
11 LFXT1CLK or VLOCLK

DIVMx BitS
5-4

Divider for MCLK
00 /1
01 /2
10 /4
11 /8

SELS Bit 3 Select SMCLK. This bit selects the SMCLK source.
0 DCOCLK
1 XT2CLK when XT2 oscillator present. LFXT1CLK or VLOCLK when

XT2 oscillator not present

DIVSx BitS
2-1

Divider for SMCLK
00 /1
01 /2
10 /4
11 /8

DCOR Bit 0 DCO resistor select
0 Internal resistor
1 External resistor

Basic Clock Module+ Registers

5-16 Basic Clock Module+

BCSCTL3, Basic Clock System Control Register 3

7 6 5 4 3 2 1 0

XT2Sx LFXT1Sx XCAPx XT2OF† LFXT1OF

rw--0 rw--0 rw--0 rw--0 rw--0 rw--1 r0 r--(1)
† Does not apply to MSP430x2xx, MSP430x21xx, or MSP430x22xx devices

XT2Sx Bits
7-6

XT2 range select. These bits select the frequency range for XT2.
00 0.4 -- 1-MHz crystal or resonator
01 1 -- 3-MHz crystal or resonator
10 3 -- 16-MHz crystal or resonator
11 Digital external 0.4 -- 16-MHz clock source

LFXT1Sx Bits
5-4

Low-frequency clock select and LFXT1 range select. These bits select
between LFXT1 and VLO when XTS = 0, and select the frequency range
for LFXT1 when XTS = 1.
When XTS = 0:
00 32768 Hz Crystal on LFXT1
01 Reserved
10 VLOCLK (Reserved in MSP430x21x1 devices)
11 Digital external clock source
When XTS = 1 (Not applicable for MSP430x20xx devices)
00 0.4 -- 1-MHz crystal or resonator
01 1 -- 3-MHz crystal or resonator
10 3 -- 16-MHz crystal or resonator
11 Digital external 0.4 -- 16-MHz clock source

XCAPx Bits
3-2

Oscillator capacitor selection. These bits select the effective capacitance
seen by the LFXT1 crystal when XTS = 0. If XTS = 1 or if LFCT1Sx = 11
XCAPx should be 00.
00 ~1 pF
01 ~6 pF
10 ~10 pF
11 ~12.5 pF

XT2OF Bit 1 XT2 oscillator fault
0 No fault condition present
1 Fault condition present

LFXT1OF Bit 0 LFXT1 oscillator fault
0 No fault condition present
1 Fault condition present

Basic Clock Module+ Registers

5-17Basic Clock Module+

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

OFIE

rw--0

Bits
7-2

These bits may be used by other modules. See device-specific data sheet.

OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B
or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled

Bits 0 This bit may be used by other modules. See device-specific data sheet.

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

OFIFG

rw--1

Bits
7-2

These bits may be used by other modules. See device-specific data sheet.

OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1may beused for other
modules, it is recommended to set or clear this bit using BIS.B or BIC.B
instructions, rather than MOV.B or CLR.B instructions.
0 No interrupt pending
1 Interrupt pending

Bits 0 This bit may be used by other modules. See device-specific data sheet.

5-18 Basic Clock Module+

6-1DMA Controller

DMA Controller

The DMA controller module transfers data from one address to another
without CPU intervention. This chapter describes the operation of the DMA
controller of the MSP430x2xx device family.

Topic Page

6.1 DMA Introduction 6-2. .

6.2 DMA Operation 6-4. .

6.3 DMA Registers 6-19. .

Chapter 6

DMA Introduction

6-2 DMA Controller

6.1 DMA Introduction

The direct memory access (DMA) controller transfers data from one address
to another, without CPU intervention, across the entire address range. For
example, the DMA controller can move data from the ADC12 conversion
memory to RAM.

Devices that contain a DMA controller may have one, two, or three DMA
channels available. Therefore, depending on the number of DMA channels
available, some features described in this chapter are not applicable to all
devices.

Using the DMA controller can increase the throughput of peripheral modules.
It can also reduce system power consumption by allowing the CPU to remain
in a low-power mode without having to awaken to move data to or from a
peripheral.

The DMA controller features include:

- Up to three independent transfer channels

- Configurable DMA channel priorities

- Requires only two MCLK clock cycles per transfer

- Byte or word and mixed byte/word transfer capability

- Block sizes up to 65535 bytes or words

- Configurable transfer trigger selections

- Selectable edge or level-triggered transfer

- Four addressing modes

- Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 6--1.

DMA Introduction

6-3DMA Controller

Figure 6--1. DMA Controller Block Diagram

ENNMI

DT

DMA Channel 2

DMASRSBYTE

DMA2SZ

DMA2DA

DMA2SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

DT

DMA Channel 1

DMASRSBYTE

DMA1SZ

DMA1DA

DMA1SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

DT

DMA Channel 0

DMASRSBYTE

DMA0SZ

DMA0DA

DMA0SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

Address
Space

NMI Interrupt Request

JTAG Active

Halt

Halt CPU

ROUNDROBIN

DMAONFETCH

DAC12_0IFG

DMAE0

DMAREQ

DMA0TSELx

4

DMA2IFG

TACCR2_CCIFG

TBCCR2_CCIFG

ADC12_IFGx

0000

0001

0010

0011

0100

0101

1101

1111

1110

0110

USCI A0 data receive

USCI A0 data transmit

1100

0111

USCI B0 data transmit

USCI B0 data receive

TACCR0_CCIFG

1000TBCCR0_CCIFG

1010

1001

USCI A1 data Tx

USCI A1 data Rx

1011Multiplier ready

D
M
A
P
rio
rit
y
A
nd

C
on
tr
ol
l

DAC12_0IFG

DMAE0

DMAREQ

DMA1TSELx

4

DMA0IFG

TACCR2_CCIFG

TBCCR2_CCIFG

ADC12_IFGx

0000

0001

0010

0011

0100

0101

1101

1111

1110

0110

1100

0111TACCR0_CCIFG

1000TBCCR0_CCIFG

1010

1001

1011Multiplier ready

DAC12_0IFG

DMAE0

DMAREQ

DMA2TSEL

4

DMA1IFG

TACCR2_CCIFG

TBCCR2_CCIFG

ADC12_IFGx

0000

0001

0010

0011

0100

0101

1101

1111

1110

0110

1100

0111TACCR0_CCIFG

1000TBCCR0_CCIFG

1010

1001

1011Multiplier ready

USCI A0 data receive

USCI A0 data transmit

USCI B0 data transmit

USCI B0 data receive

USCI A0 data receive

USCI A0 data transmit

USCI B0 data transmit

USCI B0 data receive

USCI A1 data Tx

USCI A1 data Rx

USCI A1 data Tx

USCI A1 data Rx

DMA Operation

6-4 DMA Controller

6.2 DMA Operation

TheDMA controller is configured with user software. The setup and operation
of the DMA is discussed in the following sections.

6.2.1 DMA Addressing Modes

The DMA controller has four addressing modes. The addressing mode for
each DMA channel is independently configurable. For example, channel 0
may transfer between two fixed addresses, while channel 1 transfers between
twoblocks of addresses. Theaddressingmodesare shown inFigure 6--2. The
addressing modes are:

- Fixed address to fixed address

- Fixed address to block of addresses

- Block of addresses to fixed address

- Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCRx and
DMADSTINCRx control bits. The DMASRCINCRx bits select if the source
address is incremented, decremented, or unchanged after each transfer. The
DMADSTINCRx bits select if the destination address is incremented,
decremented, or unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte.
When transferring word-to-byte, only the lower byte of the source-word
transfers. When transferring byte-to-word, the upper byte of the
destination-word is cleared when the transfer occurs.

Figure 6--2. DMA Addressing Modes

Address SpaceAddress Space

DMA
Controller

Address Space Address SpaceDMA
Controller

DMA
Controller

DMA
Controller

Fixed Address To Block Of AddressesFixed Address To Fixed Address

Block Of Addresses To Fixed Address Block Of Addresses To Block Of Addresses

DMA Operation

6-5DMA Controller

6.2.2 DMA Transfer Modes

The DMA controller has six transfer modes selected by the DMADTx bits as
listed in Table 6--1. Each channel is individually configurable for its transfer
mode. For example, channel 0 may be configured in single transfer mode,
while channel 1 is configured for burst-block transfer mode, and channel 2
operates in repeated block mode. The transfer mode is configured
independently from the addressing mode. Any addressing mode can be used
with any transfer mode.

Two types of data can be transferred selectable by the DMAxCTL DSTBYTE
and SRCBYTE fields. The source and/or destination location can be either
byte or word data. It is also possible to transfer byte to byte, word to word or
any combination.

Table 6--1.DMA Transfer Modes

DMADTx Transfer
Mode

Description

000 Single transfer Each transfer requires a trigger. DMAEN is
automatically cleared when DMAxSZ transfers have
been made.

001 Block transfer A complete block is transferred with one trigger.
DMAEN is automatically cleared at the end of the
block transfer.

010, 011 Burst-block
transfer

CPU activity is interleaved with a block transfer.
DMAEN is automatically cleared at the end of the
burst-block transfer.

100 Repeated
single transfer

Each transfer requires a trigger. DMAEN remains
enabled.

101 Repeated
block transfer

A complete block is transferred with one trigger.
DMAEN remains enabled.

110, 111 Repeated
burst-block
transfer

CPU activity is interleaved with a block transfer.
DMAEN remains enabled.

DMA Operation

6-6 DMA Controller

Single Transfer

In single transfer mode, each byte/word transfer requires a separate trigger.
The single transfer state diagram is shown in Figure 6--3.

The DMAxSZ register is used to define the number of transfers to be made.
The DMADSTINCRx and DMASRCINCRx bits select if the destination
address and the source address are incremented or decremented after each
transfer. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary
registers. The temporary values of DMAxSA and DMAxDA are incremented
or decremented after each transfer. The DMAxSZ register is decremented
after each transfer. When the DMAxSZ register decrements to zero it is
reloaded from its temporary register and the corresponding DMAIFG flag is
set. When DMADTx = 0, the DMAEN bit is cleared automatically when
DMAxSZ decrements to zero and must be set again for another transfer to
occur.

In repeated single transfer mode, the DMA controller remains enabled with
DMAEN = 1, and a transfer occurs every time a trigger occurs.

DMA Operation

6-7DMA Controller

Figure 6--3. DMA Single Transfer State Diagram

Reset

Wait for Trigger

Idle

Hold CPU,
Transfer one word/byte

[+Trigger AND DMALEVEL = 0]
OR

[Trigger=1 AND DMALEVEL=1]

DMAABORT=0

DMAABORT = 1

2 x MCLK

DMAEN = 0

Modify T_SourceAdd
Modify T_DestAdd

Decrement DMAxSZ

[ENNMI = 1
AND NMI event]

OR
[DMALEVEL = 1
AND Trigger = 0]

[DMADTx = 0
AND DMAxSZ = 0]
OR DMAEN = 0

DMAxSZ → T_Size
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMAREQ = 0

DMAxSZ > 0
AND DMAEN = 1

DMAEN = 0
DMAEN = 1

T_Size → DMAxSZ
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMADTx = 4
AND DMAxSZ = 0
AND DMAEN = 1

DMAEN = 0
DMAREQ = 0

T_Size → DMAxSZ

DMA Operation

6-8 DMA Controller

Block Transfers

In block transfer mode, a transfer of a complete block of data occurs after one
trigger. When DMADTx = 1, the DMAEN bit is cleared after the completion of
the block transfer and must be set again before another block transfer can be
triggered. After a block transfer has been triggered, further trigger signals
occurring during the block transfer are ignored. The block transfer state
diagram is shown in Figure 6--4.

The DMAxSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRx bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary
registers. The temporary values of DMAxSA and DMAxDA are incremented
or decremented after each transfer in the block. The DMAxSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAxSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

During a block transfer, the CPU is halted until the complete block has been
transferred. The block transfer takes 2 x MCLK x DMAxSZ clock cycles to
complete. CPU execution resumes with its previous state after the block
transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion
of the block transfer. The next trigger after the completion of a repeated block
transfer triggers another block transfer.

DMA Operation

6-9DMA Controller

Figure 6--4. DMA Block Transfer State Diagram

Reset

Wait for Trigger

Idle

Hold CPU,
Transfer one word/byte

[+Trigger AND DMALEVEL = 0]
OR

[Trigger=1 AND DMALEVEL=1]

DMAABORT=0

DMAABORT = 1

2 x MCLK

DMAEN = 0

Modify T_SourceAdd
Modify T_DestAdd

Decrement DMAxSZ

DMAxSZ > 0

[ENNMI = 1
AND NMI event]

OR
[DMALEVEL = 1
AND Trigger = 0]

[DMADTx = 1
AND DMAxSZ = 0]

OR
DMAEN = 0

DMAxSZ → T_Size
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMAREQ = 0
T_Size → DMAxSZ

DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMADTx = 5
AND DMAxSZ = 0
AND DMAEN = 1

DMAEN = 0
DMAEN = 1

DMAEN = 0
DMAREQ = 0

T_Size → DMAxSZ

DMA Operation

6-10 DMA Controller

Burst-Block Transfers

In burst-block mode, transfers are block transfers with CPU activity
interleaved. The CPU executes 2 MCLK cycles after every four byte/word
transfers of the block resulting in 20% CPU execution capacity. After the
burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is
cleared. DMAENmust be set again before another burst-block transfer can be
triggered. After a burst-block transfer has been triggered, further trigger
signals occurring during the burst-block transfer are ignored. The burst-block
transfer state diagram is shown in Figure 6--5.

The DMAxSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRx bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary
registers. The temporary values of DMAxSA and DMAxDA are incremented
or decremented after each transfer in the block. The DMAxSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAxSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

In repeated burst-block mode the DMAEN bit remains set after completion of
the burst-block transfer and no further trigger signals are required to initiate
another burst-block transfer. Another burst-block transfer begins immediately
after completion of a burst-block transfer. In this case, the transfers must be
stopped by clearing theDMAENbit, or by anNMI interrupt whenENNMI is set.
In repeated burst-blockmode theCPUexecutes at 20%capacity continuously
until the repeated burst-block transfer is stopped.

DMA Operation

6-11DMA Controller

Figure 6--5. DMA Burst-Block Transfer State Diagram

2 x MCLK

Reset

Wait for Trigger

Idle

Hold CPU,
Transfer one word/byte

Burst State
(release CPU for 2xMCLK)

[+Trigger AND DMALEVEL = 0]
OR

[Trigger=1 AND DMALEVEL=1]

DMAABORT=0

DMAABORT = 1

2 x MCLK

DMAEN = 0

Modify T_SourceAdd
Modify T_DestAdd

Decrement DMAxSZ

[DMADTx = {6, 7}
AND DMAxSZ = 0]

[ENNMI = 1
AND NMI event]

OR
[DMALEVEL = 1
AND Trigger = 0]

[DMADTx = {2, 3}
AND DMAxSZ = 0]

OR
DMAEN = 0

DMAxSZ → T_Size
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

T_Size → DMAxSZ
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMAEN = 0
DMAEN = 1

DMAxSZ > 0
DMAxSZ > 0 AND

a multiple of 4 words/bytes
were transferred

DMAxSZ > 0

DMAEN = 0
DMAREQ = 0

T_Size → DMAxSZ

DMA Operation

6-12 DMA Controller

6.2.3 Initiating DMA Transfers

Each DMA channel is independently configured for its trigger source with the
DMAxTSELx bits as described in Table 6--2.The DMAxTSELx bits should be
modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable
DMA triggers may occur.

When selecting the trigger, the trigger must not have already occurred, or the
transfer will not take place. For example, if the TACCR2 CCIFG bit is selected
as a trigger, and it is already set, no transfer will occur until the next time the
TACCR2 CCIFG bit is set.

Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge
of the trigger signal initiates the transfer. In single-transfermode, each transfer
requires its own trigger. When using block or burst-block modes, only one
trigger is required to initiate the block or burst-block transfer.

Level-Sensitive Triggers

WhenDMALEVEL=1, level-sensitive triggers are used. For proper operation,
level-sensitive triggers can only be used when external trigger DMAE0 is
selected as the trigger. DMA transfers are triggered as long as the trigger
signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to
complete. If the trigger signal goes low during a block or burst-block transfer,
the DMA controller is held in its current state until the trigger goes back high
or until the DMA registers are modified by software. If the DMA registers are
not modified by software, when the trigger signal goes high again, the transfer
resumes from where it was when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADTx = {0, 1, 2, 3}
are recommended because the DMAEN bit is automatically reset after the
configured transfer.

Halting Executing Instructions for DMA Transfers

The DMAONFETCH bit controls when the CPU is halted for a DMA transfer.
When DMAONFETCH = 0, the CPU is halted immediately and the transfer
beginswhena trigger is received.WhenDMAONFETCH=1, theCPU finishes
the currently executing instruction before the DMA controller halts the CPU
and the transfer begins.

Note: DMAONFETCH Must Be Used When The DMA Writes To Flash

If the DMA controller is used to write to flash memory, the DMAONFETCH
bit must be set. Otherwise, unpredictable operation can result.

DMA Operation

6-13DMA Controller

Table 6--2.DMA Trigger Operation

DMAxTSELx Operation

0000 A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset
when the transfer starts

0001 A transfer is triggered when the TACCR2 CCIFG flag is set. The TACCR2 CCIFG flag is
automatically reset when the transfer starts. If the TACCR2 CCIE bit is set, the TACCR2
CCIFG flag will not trigger a transfer.

0010 A transfer is triggered when the TBCCR2 CCIFG flag is set. The TBCCR2 CCIFG flag is
automatically reset when the transfer starts. If the TBCCR2 CCIE bit is set, the TBCCR2
CCIFG flag will not trigger a transfer.

0011 A transfer is triggered when serial interface receives new data.

Devices with USCI_A0 module: A transfer is triggered when USCI_A0 receives new data.
UCA0RXIFG is automatically reset when the transfer starts. If UCA0RXIE is set, the
UCA0RXIFG flag will not trigger a transfer.

0100 A transfer is triggered when serial interface is ready to transmit new data.

Devices with USCI_A0 module:A transfer is triggered when USCI_A0 is ready to transmit new
data. UCA0TXIFG is automatically reset when the transfer starts. If UCA0TXIE is set, the
UCA0TXIFG flag will not trigger a transfer.

0101 A transfer is triggered when the DAC12_0CTL DAC12IFG flag is set. The DAC12_0CTL
DAC12IFG flag is automatically cleared when the transfer starts. If the DAC12_0CTL
DAC12IE bit is set, the DAC12_0CTL DAC12IFG flag will not trigger a transfer.

0110 A transfer is triggered by an ADC12IFGx flag. When single-channel conversions are
performed, the corresponding ADC12IFGx is the trigger. When sequences are used, the
ADC12IFGx for the last conversion in the sequence is the trigger. A transfer is triggered when
the conversion is completed and the ADC12IFGx is set. Setting the ADC12IFGx with software
will not trigger a transfer. All ADC12IFGx flags are automatically reset when the associated
ADC12MEMx register is accessed by the DMA controller.

0111 A transfer is triggered when the TACCR0 CCIFG flag is set. The TACCR0 CCIFG flag is
automatically reset when the transfer starts. If the TACCR0 CCIE bit is set, the TACCR0
CCIFG flag will not trigger a transfer.

1000 A transfer is triggered when the TBCCR0 CCIFG flag is set. The TBCCR0 CCIFG flag is
automatically reset when the transfer starts. If the TBCCR0 CCIE bit is set, the TBCCR0
CCIFG flag will not trigger a transfer.

1001 A transfer is triggered when the UCA1RXIFG flag is set. UCA1RXIFG is automatically reset
when the transfer starts. If URXIE1 is set, the UCA1RXIFG flag will not trigger a transfer.

1010 A transfer is triggered when the UCA1TXIFG flag is set. UCA1TXIFG is automatically reset
when the transfer starts. If UTXIE1 is set, the UCA1TXIFG flag will not trigger a transfer.

1011 A transfer is triggered when the hardware multiplier is ready for a new operand.

1100 No transfer is triggered.

Devices with USCI_B0 module: A transfer is triggered when USCI_B0 receives new data.
UCB0RXIFG is automatically reset when the transfer starts. If UCB0RXIE is set, the
UCB0RXIFG flag will not trigger a transfer.

1101 No transfer is triggered.

Devices with USCI_B0 module: A transfer is triggered when USCI_B0 is ready to transmit
new data. UCB0TXIFG is automatically reset when the transfer starts. If UCB0TXIE is set, the
UCB0TXIFG flag will not trigger a transfer.

DMA Operation

6-14 DMA Controller

Table 6--2. DMA Trigger Operation (continued)

DMAxTSELx Operation

1110 A transfer is triggered when the DMAxIFG flag is set. DMA0IFG triggers channel 1, DMA1IFG
triggers channel 2, and DMA2IFG triggers channel 0. None of the DMAxIFG flags are
automatically reset when the transfer starts.

1111 A transfer is triggered by the external trigger DMAE0.

6.2.4 Stopping DMA Transfers

There are two ways to stop DMA transfers in progress:

- A single, block, or burst-block transfer may be stopped with an NMI
interrupt, if the ENNMI bit is set in register DMACTL1.

- A burst-block transfer may be stopped by clearing the DMAEN bit.

6.2.5 DMA Channel Priorities

The default DMA channel priorities are DMA0--DMA1--DMA2. If two or three
triggers happen simultaneously or are pending, the channel with the highest
priority completes its transfer (single, block or burst-block transfer) first, then
the second priority channel, then the third priority channel. Transfers in
progress are not halted if a higher priority channel is triggered. The higher
priority channel waits until the transfer in progress completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit.
When the ROUNDROBIN bit is set, the channel that completes a transfer
becomes the lowest priority. The order of the priority of the channels always
stays the same, DMA0--DMA1--DMA2, for example:

DMA Priority Transfer Occurs New DMA Priority

DMA0 -- DMA1 -- DMA2 DMA1 DMA2 -- DMA0 -- DMA1

DMA2 -- DMA0 -- DMA1 DMA2 DMA0 -- DMA1 -- DMA2

DMA0 -- DMA1 -- DMA2 DMA0 DMA1 -- DMA2 -- DMA0

When the ROUNDROBIN bit is cleared the channel priority returns to the
default priority.

DMA Operation

6-15DMA Controller

6.2.6 DMA Transfer Cycle Time

The DMA controller requires one or two MCLK clock cycles to synchronize
before each single transfer or complete block or burst-block transfer. Each
byte/word transfer requires two MCLK cycles after synchronization, and one
cycle of wait time after the transfer. Because the DMA controller uses MCLK,
the DMA cycle time is dependent on the MSP430 operating mode and clock
system setup.

If theMCLK source is active, but the CPU is off, theDMA controller will use the
MCLK source for each transfer, without re-enabling the CPU. If the MCLK
source is off, the DMA controller will temporarily restart MCLK, sourced with
DCOCLK, for the single transfer or complete block or burst-block transfer. The
CPU remains off, and after the transfer completes, MCLK is turned off. The
maximum DMA cycle time for all operating modes is shown in Table 6--3.

Table 6--3.Maximum Single-Transfer DMA Cycle Time

CPU Operating Mode Clock Source Maximum DMA Cycle Time

Active mode MCLK=DCOCLK 4 MCLK cycles

Active mode MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM0/1 MCLK=DCOCLK 5 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 5 MCLK cycles + 6 μs†

Low-power mode LPM0/1 MCLK=LFXT1CLK 5 MCLK cycles

Low-power mode LPM3 MCLK=LFXT1CLK 5 MCLK cycles

Low-power mode LPM4 MCLK=LFXT1CLK 5 MCLK cycles + 6 μs†

† The additional 6 μs are needed to start theDCOCLK. It is the t(LPMx) parameter in the data sheet.

DMA Operation

6-16 DMA Controller

6.2.7 Using DMA with System Interrupts

DMA transfers are not interruptible by system interrupts. System interrupts
remain pending until the completion of the transfer. NMI interrupts can
interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA transfers. If an
interrupt service routine or other routine must execute with no interruptions,
the DMA controller should be disabled prior to executing the routine.

6.2.8 DMA Controller Interrupts

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any
mode, when the corresponding DMAxSZ register counts to zero. If the
corresponding DMAIE and GIE bits are set, an interrupt request is generated.

All DMAIFG flags source only one DMA controller interrupt vector and, on
some devices, the interrupt vector may be shared with other modules. Please
refer to the device specific datasheet for further details. For these devices,
software must check the DMAIFG and respective module flags to determine
the source of the interrupt. The DMAIFG flags are not reset automatically and
must be reset by software.

Additionally, some devices utilize the DMAIV register. All DMAIFG flags are
prioritized, with DMA0IFG being the highest, and combined to source a single
interrupt vector. The highest priority enabled interrupt generates a number in
the DMAIV register. This number can be evaluated or added to the program
counter to automatically enter theappropriate software routine.DisabledDMA
interrupts do not affect the DMAIV value.

Any access, read or write, of theDMAIV register automatically resets the high-
est pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, as-
sume that DMA0 has the highest priority. If the DMA0IFG and DMA2IFG flags
are set when the interrupt service routine accesses the DMAIV register,
DMA0IFG is reset automatically. After the RETI instruction of the interrupt ser-
vice routine is executed, the DMA2IFG will generate another interrupt.

DMA Operation

6-17DMA Controller

DMAIV Software Example

The following software example shows the recommended use of DMAIV and
the handling overhead. The DMAIV value is added to the PC to automatically
jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself.

;Interrupt handler for DMA0IFG, DMA1IFG, DMA2IFG Cycles

DMA_HND ... ; Interrupt latency 6

ADD &DMAIV,PC ; Add offset to Jump table 3

RETI ; Vector 0: No interrupt 5

JMP DMA0_HND ; Vector 2: DMA channel 0 2

JMP DMA1_HND ; Vector 4: DMA channel 1 2

JMP DMA2_HND ; Vector 6: DMA channel 2 2

RETI ; Vector 8: Reserved 5

RETI ; Vector 10: Reserved 5

RETI ; Vector 12: Reserved 5

RETI ; Vector 14: Reserved 5

DMA2_HND ; Vector 6: DMA channel 2

... ; Task starts here

RETI ; Back to main program 5

DMA1_HND ; Vector 4: DMA channel 1

... ; Task starts here

RETI ; Back to main program 5

DMA0_HND ; Vector 2: DMA channel 0

... ; Task starts here

RETI ; Back to main program 5

6.2.9 Using the USCI_B I2C Module with the DMA Controller

The USCI_B I2C module provides two trigger sources for the DMA controller.
The USCI_B I2C module can trigger a transfer when new I2C data is received
and when data is needed for transmit.

A transfer is triggered if UCB0RXIFG is set. The UCB0RXIFG is cleared
automatically when the DMA controller acknowledges the transfer. If
UCB0RXIE is set, UCB0RXIFG will not trigger a transfer.

A transfer is triggered if UCB0TXIFG is set. The UCB0TXIFG is cleared
automatically when the DMA controller acknowledges the transfer. If
UCB0TXIE is set, UCB0TXIFG will not trigger a transfer.

DMA Operation

6-18 DMA Controller

6.2.10 Using ADC12 with the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data from any ADC12MEMx register to another location. DMA transfers are
done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput of the ADC12 module, and
enhances low-power applications allowing the CPU to remain off while data
transfers occur.

DMA transfers can be triggered from any ADC12IFGx flag. When CONSEQx
= {0,2} the ADC12IFGx flag for the ADC12MEMx used for the conversion can
trigger a DMA transfer. When CONSEQx = {1,3}, the ADC12IFGx flag for the
last ADC12MEMx in the sequence can trigger a DMA transfer. Any
ADC12IFGx flag is automatically cleared when the DMA controller accesses
the corresponding ADC12MEMx.

6.2.11 Using DAC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data to the DAC12_xDAT register. DMA transfers are done without CPU
intervention and independently of any low-power modes. The DMA controller
increases throughput to the DAC12 module, and enhances low-power
applications allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using
theDMAcontrollerwith theDAC12. For example, anapplication that produces
a sinusoidal waveform may store the sinusoid values in a table. The DMA
controller cancontinuously andautomatically transfer thevalues to theDAC12
at specific intervals creating the sinusoid with zero CPU execution. The
DAC12_xCTL DAC12IFG flag is automatically cleared when the DMA
controller accesses the DAC12_xDAT register.

6.2.12 Writing to Flash With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data to the Flash memory. DMA transfers are done without CPU intervention
and independent of any low-power modes. The DMA controller performs the
move of the data word/byte to the Flash. The write timing control is done by
the Flash controller. Write transfers to the Flash memory succeed if the Flash
controller set--up is prior to the DMA transfer and if the Flash is not busy. To
set up the Flash controller for write accesses, see Chapter 7, Flash Memory
Controller.

DMA Registers

6-19DMA Controller

6.3 DMA Registers

The DMA registers are listed in Table 6--4.

Table 6--4.DMA Registers

Register Short Form Register Type Address Initial State

DMA control 0 DMACTL0 Read/write 0122h Reset with POR

DMA control 1 DMACTL1 Read/write 0124h Reset with POR

DMA interrupt vector DMAIV Read only 0126h Reset with POR

DMA channel 0 control DMA0CTL Read/write 01D0h Reset with POR

DMA channel 0 source address DMA0SA Read/write 01D2h Unchanged

DMA channel 0 destination address DMA0DA Read/write 01D6h Unchanged

DMA channel 0 transfer size DMA0SZ Read/write 01DAh Unchanged

DMA channel 1 control DMA1CTL Read/write 01DCh Reset with POR

DMA channel 1 source address DMA1SA Read/write 01DEh Unchanged

DMA channel 1 destination address DMA1DA Read/write 01E2h Unchanged

DMA channel 1 transfer size DMA1SZ Read/write 01E6h Unchanged

DMA channel 2 control DMA2CTL Read/write 01E8h Reset with POR

DMA channel 2 source address DMA2SA Read/write 01EAh Unchanged

DMA channel 2 destination address DMA2DA Read/write 01EEh Unchanged

DMA--channel 2 transfer size DMA2SZ Read/write 01F2h Unchanged

DMA Registers

6-20 DMA Controller

DMACTL0, DMA Control Register 0

15 14 13 12 11 10 9 8

Reserved DMA2TSELx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

DMA1TSELx DMA0TSELx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

Reserved Bits
15--12

Reserved

DMA2
TSELx

Bits
11--8

DMA trigger select. These bits select the DMA transfer trigger.
0000 DMAREQ bit (software trigger)
0001 TACCR2 CCIFG bit
0010 TBCCR2 CCIFG bit
0011 Serial data received UCA0RXIFG
0100 Serial data transmit ready UCA0TXIFG
0101 DAC12_0CTL DAC12IFG bit
0110 ADC12 ADC12IFGx bit
0111 TACCR0 CCIFG bit
1000 TBCCR0 CCIFG bit
1001 Serial data received UCA1RXIFG
1010 Serial data transmit ready UCA1TXIFG
1011 Multiplier ready
1100 Serial data received UCB0RXIFG
1101 Serial data transmit ready UCB0TXIFG
1110 DMA0IFG bit triggers DMA channel 1

DMA1IFG bit triggers DMA channel 2
DMA2IFG bit triggers DMA channel 0

1111 External trigger DMAE0

DMA1
TSELx

Bits
7--4

Same as DMA2TSELx

DMA0
TSELx

Bits
3–0

Same as DMA2TSELx

DMA Registers

6-21DMA Controller

DMACTL1, DMA Control Register 1

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 DMA
ONFETCH

ROUND
ROBIN ENNMI

r0 r0 r0 r0 r0 rw--(0) rw--(0) rw--(0)

Reserved Bits
15--3

Reserved. Read only. Always read as 0.

DMA
ONFETCH

Bit 2 DMA on fetch
0 The DMA transfer occurs immediately
1 The DMA transfer occurs on next instruction fetch after the trigger

ROUND
ROBIN

Bit 1 Round robin. This bit enables the round-robin DMA channel priorities.
0 DMA channel priority is DMA0 -- DMA1 -- DMA2
1 DMA channel priority changes with each transfer

ENNMI Bit 0 Enable NMI. This bit enables the interruption of a DMA transfer by an NMI
interrupt. When an NMI interrupts a DMA transfer, the current transfer is
completed normally, further transfers are stopped, and DMAABORT is set.
0 NMI interrupt does not interrupt DMA transfer
1 NMI interrupt interrupts a DMA transfer

DMA Registers

6-22 DMA Controller

DMAxCTL, DMA Channel x Control Register

15 14 13 12 11 10 9 8

Reserved DMADTx DMADSTINCRx DMASRCINCRx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

DMA
DSTBYTE

DMA
SRCBYTE DMALEVEL DMAEN DMAIFG DMAIE DMA

ABORT DMAREQ

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

Reserved Bit 15 Reserved

DMADTx Bits
14--12

DMA Transfer mode.
000 Single transfer
001 Block transfer
010 Burst-block transfer
011 Burst-block transfer
100 Repeated single transfer
101 Repeated block transfer
110 Repeated burst-block transfer
111 Repeated burst-block transfer

DMA
DSTINCRx

Bits
11--10

DMA destination increment. This bit selects automatic incrementing or
decrementing of the destination address after each byte or word transfer.
WhenDMADSTBYTE=1, the destination address increments/decrements by
one. When DMADSTBYTE=0, the destination address
increments/decrements by two. The DMAxDA is copied into a temporary
register and the temporary register is incremented or decremented.DMAxDA
is not incremented or decremented.
00 Destination address is unchanged
01 Destination address is unchanged
10 Destination address is decremented
11 Destination address is incremented

DMA
SRCINCRx

Bits
9--8

DMA source increment. This bit selects automatic incrementing or
decrementing of the source address for each byte or word transfer. When
DMASRCBYTE=1, the source address increments/decrements by one.
When DMASRCBYTE=0, the source address increments/decrements by
two. The DMAxSA is copied into a temporary register and the temporary
register is incremented or decremented. DMAxSA is not incremented or
decremented.
00 Source address is unchanged
01 Source address is unchanged
10 Source address is decremented
11 Source address is incremented

DMA
DSTBYTE

Bit 7 DMA destination byte. This bit selects the destination as a byte or word.
0 Word
1 Byte

DMA Registers

6-23DMA Controller

DMA
SRCBYTE

Bit 6 DMA source byte. This bit selects the source as a byte or word.
0 Word
1 Byte

DMA
LEVEL

Bit 5 DMA level. This bit selects between edge-sensitive and level-sensitive
triggers.
0 Edge sensitive (rising edge)
1 Level sensitive (high level)

DMAEN Bit 4 DMA enable
0 Disabled
1 Enabled

DMAIFG Bit 3 DMA interrupt flag
0 No interrupt pending
1 Interrupt pending

DMAIE Bit 2 DMA interrupt enable
0 Disabled
1 Enabled

DMA
ABORT

Bit 1 DMA Abort. This bit indicates if a DMA transfer was interrupt by an NMI.
0 DMA transfer not interrupted
1 DMA transfer was interrupted by NMI

DMAREQ Bit 0 DMA request. Software-controlled DMA start. DMAREQ is reset
automatically.
0 No DMA start
1 Start DMA

DMA Registers

6-24 DMA Controller

DMAxSA, DMA Source Address Register

15 14 13 12 11 10 9 8

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved DMAxSAx

r0 r0 r0 r0 rw rw rw rw

15 14 13 12 11 10 9 8

DMAxSAx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSAx

rw rw rw rw rw rw rw rw

DMAxSA Bits
15--0

DMAsource addressThe source address register points to theDMAsource
address for single transfers or the first source address for block transfers. The
source address register remains unchanged during block and burst-block
transfers.

Devices thathaveaddressablememory range64KBorbelowcontainasingle
word for the DMAxSA.

Devices that have addressable memory range beyond 64 KB contain an
additional word for the source address. Bits 15--4 of this additional word are
reserved and always read as zero. When writing to DMAxSA with word
formats, this additional word is automatically cleared. Reads of this additional
word using word formats, are always read as zero.

DMA Registers

6-25DMA Controller

DMAxDA, DMA Destination Address Register

15 14 13 12 11 10 9 8

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved DMAxDAx

r0 r0 r0 r0 rw rw rw rw

15 14 13 12 11 10 9 8

DMAxDAx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxDAx

rw rw rw rw rw rw rw rw

DMAxDA Bits
15--0

DMA destination address The destination address register points to the
DMA destination address for single transfers or the first destination address
for block transfers. The destination address register remains unchanged
during block and burst-block transfers.

Devices thathaveaddressablememory range64KBorbelowcontainasingle
word for the DMAxDA.

Devices that have addressable memory range beyond 64 KB contain an
additional word for the destination address. Bits 15--4 of this additional word
are reserved and always read as zero. When writing to DMAxDA with word
formats, this additional word is automatically cleared. Reads of this additional
word using word formats, are always read as zero.

DMA Registers

6-26 DMA Controller

DMAxSA, DMA Source Address Register

15 14 13 12 11 10 9 8

Reserved

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

Reserved DMAxSAx

r0 r0 r0 r0 rw rw rw rw

15 14 13 12 11 10 9 8

DMAxSAx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSAx

rw rw rw rw rw rw rw rw

DMAxSA Bits
15--0

DMAsource addressThe source address register points to theDMAsource
address for single transfers or the first source address for block transfers. The
source address register remains unchanged during block and burst-block
transfers.

Devices thathaveaddressablememory range64KBorbelowcontainasingle
word for the DMAxSA. The upper word is automatically cleared when writing
using word operations. Reads from this location are always read as zero.

Devices that have addressable memory range beyond 64 KB contain an
additional word for the source address. Bits 15--4 of this additional word are
reserved and always read as zero. When writing to DMAxSA with word
formats, this additional word is automatically cleared. Reads of this additional
word using word formats, are always read as zero.

DMA Registers

6-27DMA Controller

DMAxSZ, DMA Size Address Register

15 14 13 12 11 10 9 8

DMAxSZx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSZx

rw rw rw rw rw rw rw rw

DMAxSZx Bits
15--0

DMA size. The DMA size register defines the number of byte/word data per
block transfer. DMAxSZ register decrements with each word or byte transfer.
WhenDMAxSZdecrements to 0, it is immediately and automatically reloaded
with its previously initialized value.
00000h Transfer is disabled
00001h One byte or word to be transferred
00002h Two bytes or words have to be transferred
:
0FFFFh 65535 bytes or words have to be transferred

DMA Registers

6-28 DMA Controller

DMAIV, DMA Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 DMAIVx 0

r0 r0 r0 r0 r--(0) r--(0) r--(0) r0

DMAIVx Bits
15-0

DMA interrupt vector value

DMAIV Contents Interrupt Source Interrupt Flag
Interrupt
Priority

00h No interrupt pending --

02h DMA channel 0 DMA0IFG Highest

04h DMA channel 1 DMA1IFG

06h DMA channel 2 DMA2IFG

08h Reserved --

0Ah Reserved --

0Ch Reserved --

0Eh Reserved -- Lowest

7-1Flash Memory Controller

Flash Memory Controller

This chapter describes the operation of the MSP430x2xx flash memory
controller.

Topic Page

7.1 Flash Memory Introduction 7-2. .

7.2 Flash Memory Segmentation 7-3. .

7.3 Flash Memory Operation 7-5. .

7.4 Flash Memory Registers 7-20. .

Chapter 7

Flash Memory Introduction

7-2 Flash Memory Controller

7.1 Flash Memory Introduction

The MSP430 flash memory is bit--, byte-, and word-addressable and
programmable. The flash memory module has an integrated controller that
controls programming and erase operations. The controller has four registers,
a timing generator, and a voltage generator to supply program and erase
voltages.

MSP430 flash memory features include:

- Internal programming voltage generation

- Bit, byte or word programmable

- Ultralow-power operation

- Segment erase and mass erase

- Marginal 0 and marginal 1 read mode (optional, please refer to device
specific data sheet)

The block diagram of the flash memory and controller is shown in Figure 7--1.

Note: Minimum VCC During Flash Write or Erase

The minimum VCC voltage during a flash write or erase operation is 2.2 V.
If VCC falls below 2.2 V during awrite or erase, the result of the write or erase
will be unpredictable.

Figure 7--1. Flash Memory Module Block Diagram

Enable
Data Latch

Enable
Address
Latch

Address Latch Data Latch

MAB
MDB

FCTL1

FCTL2

FCTL3

Timing
Generator

Programming
Voltage
Generator

Flash
Memory
ArrayFCTL4

Flash Memory Segmentation

7-3Flash Memory Controller

7.2 Flash Memory Segmentation

MSP430 flash memory is partitioned into segments. Single bits, bytes, or
words can be written to flash memory, but the segment is the smallest size of
flash memory that can be erased.

The flash memory is partitioned into main and information memory sections.
There is no difference in the operation of the main and information memory
sections. Code or data can be located in either section. The differences
between the two sections are the segment size and the physical addresses.

The information memory has four 64-byte segments. The main memory has
two or more 512-byte segments. See the device-specific data sheet for the
complete memory map of a device.

The segments are further divided into blocks.

Figure 7--2 shows the flash segmentation using an example of 32-KB flash
that has eight main segments and four information segments.

Figure 7--2. Flash Memory Segments, 32-KB Example

32-kbyte
Flash

Main Memory

Segment 0

512-byte
Flash

Information Memory

Segment 1

Segment 2

Segment 61

Segment 62

Segment 63

0x0FFFF

0x0F000

0x010FF

0x01000

Segment A

Segment B

Segment C

Segment D

0x0FFFF

0x08000

0x010FF

0x01000

0x0FE00
0x0FDFF
0x0FC00

Block
0x0FFFF
0x0FFC0
0x0FFBF
0x0FF80
0x0FF7F
0x0FF40
0x0FF3F
0x0FF00

Block

Block

Block

Block
0x0FFFF
0x0FEC0
0x0FEBF
0x0FE80
0x0FE7F
0x0FE40
0x0FE3F
0x0FE00

Block

Block

Block

Flash Memory Segmentation

7-4 Flash Memory Controller

7.2.1 SegmentA

SegmentA of the information memory is locked separately from all other
segmentswith the LOCKAbit.WhenLOCKA=1, SegmentA cannot bewritten
or erased and all informationmemory is protected from erasure during amass
erase or production programming. When LOCKA = 0, SegmentA can be
erased and written as any other flash memory segment, and all information
memory is erased during a mass erase or production programming.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to
LOCKA has no effect. This allows existing flash programming routines to be
used unchanged.

; Unlock SegmentA

BIT #LOCKA,&FCTL3 ; Test LOCKA

JZ SEGA_UNLOCKED ; Already unlocked?

MOV #FWKEY+LOCKA,&FCTL3 ; No, unlock SegmentA

SEGA_UNLOCKED ; Yes, continue

; SegmentA is unlocked

; Lock SegmentA

BIT #LOCKA,&FCTL3 ; Test LOCKA

JNZ SEGALOCKED ; Already locked?

MOV #FWKEY+LOCKA,&FCTL3 ; No, lock SegmentA

SEGA_LOCKED ; Yes, continue

; SegmentA is locked

Flash Memory Operation

7-5Flash Memory Controller

7.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash
memory is not being erased or written, the flash timing generator and voltage
generator are off, and the memory operates identically to ROM.

MSP430 flash memory is in-system programmable (ISP) without the need for
additional external voltage. The CPU can program its own flash memory. The
flash memory write/erase modes are selected with the BLKWRT, WRT,
MERAS, and ERASE bits and are:

- Byte/word write

- Block write

- Segment Erase

- Mass Erase (all main memory segments)

- All Erase (all segments)

Reading or writing to flash memory while it is being programmed or erased is
prohibited. If CPU execution is required during the write or erase, the code to
be executed must be in RAM. Any flash update can be initiated from within
flash memory or RAM.

7.3.1 Flash Memory Timing Generator

Write and erase operations are controlled by the flash timing generator shown
in Figure 7--3. The flash timing generator operating frequency, fFTG, must be
in the range from ~ 257 kHz to ~ 476 kHz (see device-specific data sheet).

Figure 7--3. Flash Memory Timing Generator Block Diagram

FN5 FN0 PUC........... EMEX

Flash Timing Generator
Divider, 1--64

BUSY WAIT

Reset
fFTG

FSSELx

SMCLK

SMCLK

ACLK

MCLK

00

01

10

11

Flash Memory Operation

7-6 Flash Memory Controller

Flash Timing Generator Clock Selection

The flash timing generator can be sourced fromACLK, SMCLK, orMCLK. The
selected clock source should be divided using the FNx bits to meet the
frequency requirements for fFTG. If the fFTG frequency deviates from the
specification during thewrite or erase operation, the result of thewrite or erase
may be unpredictable, or the flash memory may be stressed above the limits
of reliable operation.

If a clock failure is detected during a write or erase operation, the operation is
aborted, the FAIL flag is set, and the result of the operation is unpredictable.

While a write or erase operation is active the selected clock source can not be
disabled by putting the MSP430 into a low-power mode. The selected clock
source will remain active until the operation is completed before being
disabled.

Flash Memory Operation

7-7Flash Memory Controller

7.3.2 Erasing Flash Memory

The erased level of a flash memory bit is 1. Each bit can be programmed from
1 to 0 individually but to reprogram from 0 to 1 requires an erase cycle. The
smallest amount of flash that can be erased is a segment. There are three
erase modes selected with the ERASE and MERAS bits listed in Table 7--1.

Table 7--1.Erase Modes

MERAS ERASE Erase Mode

0 1 Segment erase

1 0 Mass erase (all main memory segments)

1 1 LOCKA = 0: Erase main and information flash memory.
LOCKA = 1: Erase only main flash memory.

Any erase is initiated by a dummy write into the address range to be erased.
The dummy write starts the flash timing generator and the erase operation.
Figure 7--4 shows theerasecycle timing.TheBUSYbit is set immediatelyafter
the dummywrite and remains set throughout the erase cycle. BUSY,MERAS,
and ERASE are automatically cleared when the cycle completes. The erase
cycle timing is not dependent on the amount of flash memory present on a
device. Erase cycle times are equivalent for all MSP430F2xx devices.

Figure 7--4. Erase Cycle Timing

BUSY

Erase Operation Active

tmass erase = 10593/fFTG, tsegment erase = 4819/fFTG

Erase Time, VCC Current Consumption is Increased

Generate
Programming Voltage

Remove
Programming Voltage

A dummy write to an address not in the range to be erased does not start the
erase cycle, does not affect the flash memory, and is not flagged in any way.
This errant dummy write is ignored.

Flash Memory Operation

7-8 Flash Memory Controller

Initiating an Erase from Within Flash Memory

Any erase cycle can be initiated fromwithin flashmemory or fromRAM.When
a flash segment eraseoperation is initiated fromwithin flashmemory, all timing
is controlled by the flash controller, and the CPU is held while the erase cycle
completes. After the erase cycle completes, theCPU resumes codeexecution
with the instruction following the dummy write.

When initiating an erase cycle fromwithin flashmemory, it is possible to erase
the code needed for execution after the erase. If this occurs, CPU execution
will be unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 7--5.

Figure 7--5. Erase Cycle from Within Flash Memory

Setup flash controller and erase
mode

Disable watchdog

Set LOCK=1, re-enable watchdog

Dummy write

; Segment Erase from flash. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable segment erase
CLR &0FC10h ; Dummy write, erase S1
MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK
... ; Re-enable WDT?

Flash Memory Operation

7-9Flash Memory Controller

Initiating an Erase from RAM

Any erase cycle may be initiated from RAM. In this case, the CPU is not held
and can continue to execute code from RAM. The BUSY bit must be polled to
determine the end of the erase cycle before the CPU can access any flash
addressagain. If a flashaccessoccurswhileBUSY=1, it is anaccess violation,
ACCVIFG will be set, and the erase results will be unpredictable.

The flow to initiate an erase from flash from RAM is shown in Figure 7--6.

Figure 7--6. Erase Cycle from Within RAM

yes
BUSY = 1

yes
BUSY = 1

Disable watchdog

Setup flash controller and
erase mode

Dummy write

Set LOCK = 1, re-enable
watchdog

; Segment Erase from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable erase

CLR &0FC10h ; Dummy write, erase S1
L2 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK

... ; Re-enable WDT?

Flash Memory Operation

7-10 Flash Memory Controller

7.3.3 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in
Table 7--1.

Table 7--2.Write Modes

BLKWRT WRT Write Mode

0 1 Byte/word write

1 1 Block write

Bothwritemodes use a sequence of individual write instructions, but using the
block write mode is approximately twice as fast as byte/word mode, because
the voltage generator remains on for the complete block write. Any instruction
that modifies a destination can be used to modify a flash location in either
byte/word mode or block write mode. A flash word (low + high byte) must not
be written more than twice between erasures. Otherwise, damage can occur.

The BUSY bit is set while a write operation is active and cleared when the
operation completes. If thewrite operation is initiated fromRAM, theCPUmust
not access flash while BUSY=1. Otherwise, an access violation occurs,
ACCVIFG is set, and the flash write is unpredictable.

Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from
RAM. When initiating from within flash memory, all timing is controlled by the
flash controller, and the CPU is held while the write completes. After the write
completes, theCPU resumes code executionwith the instruction following the
write. The byte/word write timing is shown in Figure 7--7.

Figure 7--7. Byte/Word Write Timing

BUSY

Programming Operation Active

Programming Time, VCC Current Consumption is Increased

tWord Write = 30/fFTG

Generate
Programming Voltage

Remove
Programming Voltage

When a byte/word write is executed fromRAM, the CPU continues to execute
code from RAM. The BUSY bit must be zero before the CPU accesses flash
again, otherwise an access violation occurs, ACCVIFG is set, and the write
result is unpredictable.

Flash Memory Operation

7-11Flash Memory Controller

In byte/word mode, the internally-generated programming voltage is applied
to the complete 64-byte block, each time a byte or word is written, for 27 of the
30 fFTG cycles. With each byte or word write, the amount of time the block is
subjected to the programming voltage accumulates. The cumulative
programming time, tCPT, must not be exceeded for any block. If the cumulative
programming time is met, the block must be erased before performing any
further writes to any address within the block. See the device-specific data
sheet for specifications.

Initiating a Byte/Word Write from Within Flash Memory

The flow to initiate a byte/word write from flash is shown in Figure 7--8.

Figure 7--8. Initiating a Byte/Word Write from Flash

Setup flash controller
and set WRT=1

Disable watchdog

Set WRT=0, LOCK=1,
re-enable watchdog

Write byte or word

; Byte/word write from flash. 514 kHz < SMCLK < 952 kHz
; Assumes 0FF1Eh is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+WRT,&FCTL1 ; Enable write

MOV #0123h,&0FF1Eh ; 0123h -> 0FF1Eh

MOV #FWKEY,&FCTL1 ; Done. Clear WRT

MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK

... ; Re-enable WDT?

Flash Memory Operation

7-12 Flash Memory Controller

Initiating a Byte/Word Write from RAM

The flow to initiate a byte/word write from RAM is shown in Figure 7--9.

Figure 7--9. Initiating a Byte/Word Write from RAM

yes
BUSY = 1

yes
BUSY = 1

Disable watchdog

Setup flash controller
and set WRT=1

Write byte or word

Set WRT=0, LOCK = 1
re-enable watchdog

; Byte/word write from RAM. 514 kHz < SMCLK < 952 kHz

; Assumes 0FF1Eh is already erased

; Assumes ACCVIE = NMIIE = OFIE = 0.
MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT

L1 BIT #BUSY,&FCTL3 ; Test BUSY
JNZ L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2

MOV #FWKEY,&FCTL3 ; Clear LOCK

MOV #FWKEY+WRT,&FCTL1 ; Enable write

MOV #0123h,&0FF1Eh ; 0123h -> 0FF1Eh

L2 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY,&FCTL1 ; Clear WRT

MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK

... ; Re-enable WDT?

Flash Memory Operation

7-13Flash Memory Controller

Block Write

The block write can be used to accelerate the flash write process when many
sequential bytes or words need to be programmed. The flash programming
voltage remains on for the duration of writing the 64-byte block. The
cumulative programming time tCPTmust not be exceeded for any block during
a block write.

A block write cannot be initiated from within flash memory. The block write
must be initiated from RAM only. The BUSY bit remains set throughout the
duration of the block write. The WAIT bit must be checked between writing
each byte or word in the block. When WAIT is set the next byte or word of the
block can be written. When writing successive blocks, the BLKWRT bit must
be cleared after the current block is complete. BLKWRT can be set initiating
the next block write after the required flash recovery time given by tend. BUSY
is cleared following each block write completion indicating the next block can
be written. Figure 7--10 shows the block write timing.

Figure 7--10. Block-Write Cycle Timing

BUSY

WAIT

Generate Programming Operation Active

tBlock, 0 = 25/fFTG tBlock, 1-63 = 18/fFTG

Write to flash e.g., MOV #123h, &Flash

BLKWRT bit

tBlock, 1-63 = 18/fFTG tend = 6/fFTG

Cumulative Programming Time tCPT ∼=< 4ms, VCC Current Consumption is Increased

Programming Voltage
Remove

Programming Voltage

Flash Memory Operation

7-14 Flash Memory Controller

Block Write Flow and Example

A block write flow is shown in Figure 7--8 and the following example.

Figure 7--11. Block Write Flow

yes
BUSY = 1

Disable watchdog

Setup flash controller

Set BLKWRT=WRT=1

Write byte or word

no
Block Border?

yes
WAIT=0?

yes
BUSY = 1

Set BLKWRT=0

yes Another
Block?

Set WRT=0, LOCK=1
re-enable WDT

Flash Memory Operation

7-15Flash Memory Controller

; Write one block starting at 0F000h.

; Must be executed from RAM, Assumes Flash is already erased.

; 514 kHz < SMCLK < 952 kHz

; Assumes ACCVIE = NMIIE = OFIE = 0.
MOV #32,R5 ; Use as write counter
MOV #0F000h,R6 ; Write pointer
MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT

L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK

MOV #FWKEY+BLKWRT+WRT,&FCTL1 ; Enable block write

L2 MOV Write_Value,0(R6) ; Write location

L3 BIT #WAIT,&FCTL3 ; Test WAIT

JZ L3 ; Loop while WAIT=0

INCD R6 ; Point to next word

DEC R5 ; Decrement write counter

JNZ L2 ; End of block?

MOV #FWKEY,&FCTL1 ; Clear WRT,BLKWRT

L4 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L4 ; Loop while busy

MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK

... ; Re-enable WDT if needed

Flash Memory Operation

7-16 Flash Memory Controller

7.3.4 Flash Memory Access During Write or Erase

When any write or any erase operation is initiated from RAM and while
BUSY=1, the CPU may not read or write to or from any flash location.
Otherwise, an access violation occurs, ACCVIFG is set, and the result is
unpredictable. Also if a write to flash is attempted with WRT=0, the ACCVIFG
interrupt flag is set, and the flash memory is unaffected.

When a byte/word write or any erase operation is initiated from within flash
memory, the flash controller returns op-code 03FFFh to the CPU at the next
instruction fetch. Op-code 03FFFh is the JMP PC instruction. This causes the
CPU to loop until the flash operation is finished.When the operation is finished
and BUSY=0, the flash controller allows the CPU to fetch the proper op-code
and program execution resumes.

The flash access conditions while BUSY=1 are listed in Table 7--3.

Table 7--3.Flash Access While BUSY = 1

Flash
Operation

Flash
Access

WAIT Result

Read 0 ACCVIFG = 0. 03FFFh is the value read

Any erase, or
B / d i

Write 0 ACCVIFG = 1. Write is ignoredy
Byte/word write

Instruction
fetch

0 ACCVIFG = 0. CPU fetches 03FFFh. This
is the JMP PC instruction.

Any 0 ACCVIFG = 1, LOCK = 1

Read 1 ACCVIFG = 0, 03FFFh is the value read

Block write Write 1 ACCVIFG = 0, Write is written

Instruction
fetch

1 ACCVIFG = 1, LOCK = 1

Interrupts are automatically disabled during any flash operation when EEI =
0 and EEIEX = 0 and onMSP430x20xx devices where EEI and EEIEX are not
present. After the flash operation has completed, interrupts are automatically
re-enabled. Any interrupt that occurred during the operation will have its
associated flag set, and will generate an interrupt request when re-enabled.

When EEIEX = 1 and GIE = 1, an interrupt will immediately abort any flash
operation and the FAIL flag will be set. When EEI = 1, GIE = 1, and EEIEX =
0, a segment erase will be interrupted by a pending interrupt every 32 fFTG
cycles. After servicing the interrupt, the segment erase is continued for at least
32 fFTG cycles or until it is complete. During the servicing of the interrupt, the
BUSY bit remains set but the flash memory can be accessed by the CPU
without causing an access violation occurs. Nested interrupts and using the
RETI instruction inside interrupt service routines are not supported.

The watchdog timer (in watchdog mode) should be disabled before a flash
erase cycle. A reset will abort the erase and the result will be unpredictable.
After the erase cycle has completed, the watchdog may be re-enabled.

Flash Memory Operation

7-17Flash Memory Controller

7.3.5 Stopping a Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by
setting the emergency exit bit EMEX. Setting the EMEX bit stops the active
operation immediately and stops the flash controller. All flash operations
cease, the flash returns to read mode, and all bits in the FCTL1 register are
reset. The result of the intended operation is unpredictable.

7.3.6 Marginal Read Mode

Themarginal readmode can be used to verify the integrity of the flashmemory
contents. This feature is implemented in selected 2xx devices; see the
device-specific data sheet for availability. During marginal read mode
marginally programmed flash memory bit locations can be detected. Events
that could produce this situation include improper fFTG settings, or violation of
minimum VCC during erase/program operations. One method for identifying
such memory locations would be to periodically perform a checksum
calculation over a section of flashmemory (for example, a flash segment) and
repeating this procedure with the marginal read mode enabled. If they do not
match, it could indicate an insufficiently programmed flash memory location.
It is possible to refresh the affected Flash memory segment by disabling
marginal read mode, copying to RAM, erasing the flash segment, and writing
back to it from RAM.

The program checking the flash memory contents must be executed from
RAM. Executing code from flash will automatically disable the marginal read
mode. The marginal read modes are controlled by the MRG0 and MRG1
register bits. Setting MRG1 is used to detect insufficiently programmed flash
cells containing a “1” (erased bits). Setting MRG0 is used to detect
insufficiently programmed flash cells containing a “0” (programmed bits). Only
one of these bits should be set at a time. Therefore, a full marginal read check
will require twopassesof checking the flashmemorycontent’s integrity.During
marginal readmode, the flash access speed (MCLK)must be limited to 1MHz
(see the device-specific data sheet).

7.3.7 Configuring and Accessing the Flash Memory Controller

TheFCTLx registers are 16-bit, password-protected, read/write registers.Any
read or write access must use word instructions and write accesses must
include the write password 0A5h in the upper byte. Any write to any FCTLx
register with any value other than 0A5h in the upper byte is a security key
violation, sets theKEYV flag and triggers aPUCsystem reset. Any read of any
FCTLx registers reads 096h in the upper byte.

Any write to FCTL1 during an erase or byte/word write operation is an access
violation and sets ACCVIFG. Writing to FCTL1 is allowed in block write mode
when WAIT=1, but writing to FCTL1 in block write mode whenWAIT = 0 is an
access violation and sets ACCVIFG.

Any write to FCTL2 when the BUSY = 1 is an access violation.

Flash Memory Operation

7-18 Flash Memory Controller

Any FCTLx register may be read when BUSY = 1. A read will not cause an
access violation.

7.3.8 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV, and ACCVIFG.
ACCVIFG is set when an access violation occurs. When the ACCVIE bit is
re-enabled after a flash write or erase, a set ACCVIFG flag will generate an
interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not
necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG
may also be checked by software to determine if an access violation occurred.
ACCVIFG must be reset by software.

The key violation flag KEYV is set when any of the flash control registers are
written with an incorrect password. When this occurs, a PUC is generated
immediately resetting the device.

7.3.9 Programming Flash Memory Devices

There are three options for programming anMSP430 flash device. All options
support in-system programming:

- Program via JTAG

- Program via the Bootstrap Loader

- Program via a custom solution

Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface
requires four signals (5 signals on 20- and 28-pin devices), ground and
optionally VCC and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables
the JTAG port and is not reversible. Further access to the device via JTAG is
not possible For more details see the Application report Programming a
Flash-Based MSP430 Using the JTAG Interface at www.msp430.com.

Programming Flash Memory via the Bootstrap loader (BSL)

Most MSP430 flash devices contain a bootstrap loader. Refer to the device
specific data sheet for implementation details. The BSL enables users to read
or program the flash memory or RAM using a UART serial interface. Access
to the MSP430 flash memory via the BSL is protected by a 256-bit,
user-defined password. For more details see the Application report Features
of the MSP430 Bootstrap Loader at www.ti.com/msp430.

Flash Memory Operation

7-19Flash Memory Controller

Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for
in-system and external custom programming solutions as shown in
Figure 7--12. The user can choose to provide data to theMSP430 through any
means available (UART, SPI, etc.). User-developed software can receive the
data and program the flash memory. Since this type of solution is developed
by the user, it can be completely customized to fit the application needs for
programming, erasing, or updating the flash memory.

Figure 7--12. User-Developed Programming Solution

Host

Flash Memory

UART,
Px.x,
SPI,
etc.

CPU executes
user software

Commands, data, etc.

Read/write flash memory

MSP430

Flash Memory Registers

7-20 Flash Memory Controller

7.4 Flash Memory Registers

The flash memory registers are listed in Table 7--4.

Table 7--4.Flash Memory Registers

Register Short Form Register Type Address Initial State

Flash memory control register 1 FCTL1 Read/write 0x0128 0x9600 with PUC

Flash memory control register 2 FCTL2 Read/write 0x012A 0x9642 with PUC

Flash memory control register 3 FCTL3 Read/write 0x012C 0x9658 with PUC†

Flash memory control register 4‡ FCTL4 Read/write 0x01BE 0x0000 with PUC

Interrupt Enable 1 IE1 Read/write 0x0000 Reset with PUC

Interrupt Flag 1 IFG1 Read/write 0x0002
† KEYV is reset with POR
‡ Not present in all MSP430x2xx devices. See device specific data sheet.

Flash Memory Registers

7-21Flash Memory Controller

FCTL1, Flash Memory Control Register

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0

BLKWRT WRT Reserved EEIEX† EEI† MERAS ERASE Reserved

rw--0 rw--0 r0 rw--0 rw--0 rw--0 rw--0 r0
† Not present on MSP430x20xx Devices

FRKEY/
FWKEY

Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

BLKWRT Bit 7 Block write mode. WRT must also be set for block write mode. BLKWRT is
automatically reset when EMEX is set.
0 Block-write mode is off
1 Block-write mode is on

WRT Bit 6 Write. This bit is used to select any write mode. WRT is automatically reset
when EMEX is set.
0 Write mode is off
1 Write mode is on

Reserved Bit 5 Reserved. Always read as 0.

EEIEX Bit 4 EnableEmergency Interrupt Exit. Setting this bit enables an interrupt to cause
an emergency exit from a flash operation when GIE = 1. EEIEX is
automatically reset when EMEX is set.
0 Exit interrupt disabled.
1 Exit on interrupt enabled.

EEI Bits 3 Enable Erase Interrupts. Setting this bit allows a segment erase to be
interrupted by an interrupt request. After the interrupt is serviced the erase
cycle is resumed.
0 Interrupts during segment erase disabled.
1 Interrupts during segment erase enabled.

MERAS
ERASE

Bit 2
Bit 1

Masseraseanderase. Thesebits are used together to select the erasemode.
MERAS and ERASE are automatically reset when EMEX is set.

MERAS ERASE Erase Cycle

0 0 No erase

0 1 Erase individual segment only

1 0 Erase all main memory segments

1 1 LOCKA = 0: Erase main and information flash memory.
LOCKA = 1: Erase only main flash memory.

Reserved Bit 0 Reserved. Always read as 0.

Flash Memory Registers

7-22 Flash Memory Controller

FCTL2, Flash Memory Control Register

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

FSSELx FNx

rw--0 rw--1 rw-0 rw-0 rw-0 rw--0 rw-1 rw--0

FWKEYx Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

FSSELx Bits
7--6

Flash controller clock source select
00 ACLK
01 MCLK
10 SMCLK
11 SMCLK

FNx Bits
5-0

Flash controller clock divider. These six bits select the divider for the flash
controller clock. The divisor value is FNx + 1. For example, when FNx = 00h,
the divisor is 1. When FNx = 03Fh, the divisor is 64.

Flash Memory Registers

7-23Flash Memory Controller

FCTL3, Flash Memory Control Register FCTL3

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

FAIL LOCKA EMEX LOCK WAIT ACCVIFG KEYV BUSY

r(w)--0 r(w)--1 rw-0 rw-1 r-1 rw--0 rw-(0) r(w)--0

FWKEYx Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

FAIL Bit 7 Operation failure. This bit is set if the fFTG clock source fails, or a flash
operation is aborted from an interrupt when EEIEX = 1. FAIL must be reset
with software.
0 No failure
1 Failure

LOCKA Bit 6 SegmentA and Info lock. Write a 1 to this bit to change its state. Writing 0 has
no effect.
0 Segment A unlocked and all information memory is erased during a

mass erase.
1 SegmentA lockedandall informationmemory is protected fromerasure

during a mass erase.

EMEX Bit 5 Emergency exit
0 No emergency exit
1 Emergency exit

LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit
can be set anytime during a byte/word write or erase operation and the
operation will complete normally. In the block writemode if the LOCKbit is set
while BLKWRT=WAIT=1, then BLKWRT and WAIT are reset and the mode
ends normally.
0 Unlocked
1 Locked

WAIT Bit 3 Wait. Indicates the flash memory is being written to.
0 The flash memory is not ready for the next byte/word write
1 The flash memory is ready for the next byte/word write

ACCVIFG Bit 2 Access violation interrupt flag
0 No interrupt pending
1 Interrupt pending

Flash Memory Registers

7-24 Flash Memory Controller

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password
waswritten to any flash control register andgenerates aPUCwhen set. KEYV
must be reset with software.
0 FCTLx password was written correctly
1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.
0 Not Busy
1 Busy

Flash Memory Registers

7-25Flash Memory Controller

FCTL4, Flash Memory Control Register FCTL4 (optional, refer to device-specific
data sheet)

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

MRG1 MRG0

r-0 r-0 rw-0 rw-0 r-0 r-0 r-0 r-0

FWKEYx Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

Reserved Bits
7--6

Reserved. Always read as 0.

MRG1 Bit 5 Marginal read 1 mode. This bit enables the marginal 1 read mode. The
marginal read 1 bit is cleared if the CPU starts execution from the flash
memory. If both MRG1 and MRG0 are set MRG1 is active and MRG0 is
ignored.
0 Marginal 1 read mode is disabled.
1 Marginal 1 read mode is enabled.

MRG0 Bit 4 Marginal read 0 mode. This bit enables the marginal 0 read mode. The
marginalmode 0 is cleared if theCPUstarts execution from the flashmemory.
If both MRG1 and MRG0 are set MRG1 is active and MRG0 is ignored.
0 Marginal 0 read mode is disabled.
1 Marginal 0 read mode is enabled.

Reserved Bits
3--0

Reserved. Always read as 0.

Flash Memory Registers

7-26 Flash Memory Controller

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

ACCVIE

rw--0

Bits
7--6,
4-0

Thesebitsmaybeusedbyothermodules.See thedevice-specific data sheet.

ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the
ACCVIFG interrupt. Because other bits in IE1may be used for othermodules,
it is recommended to set or clear this bit using BIS.B or BIC.B instructions,
rather than MOV.B or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled

8-1Digital I/O

Digital I/O

This chapter describes the operation of the digital I/O ports.

Topic Page

8.1 Digital I/O Introduction 8-2. .

8.2 Digital I/O Operation 8-3. .

8.3 Digital I/O Registers 8-7. .

Chapter 8

Digital I/O Introduction

8-2 Digital I/O

8.1 Digital I/O Introduction

MSP430 devices have up to eight digital I/O ports implemented, P1 to P7.
Each port has eight I/O pins. Every I/O pin is individually configurable for input
or output direction, and each I/O line can be individually read or written to.

Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 I/O
lines can be individually enabled and configured to provide an interrupt on a
rising edge or falling edge of an input signal. All P1 I/O lines source a single
interrupt vector, and all P2 I/O lines source a different, single interrupt vector.

The digital I/O features include:

- Independently programmable individual I/Os

- Any combination of input or output

- Individually configurable P1 and P2 interrupts

- Independent input and output data registers

- Individually configurable pullup or pulldown resistors

Digital I/O Operation

8-3Digital I/O

8.2 Digital I/O Operation

The digital I/O is configuredwith user software. The setup and operation of the
digital I/O is discussed in the following sections.

8.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the
corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low

Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

8.2.2 Output Registers PxOUT

Each bit in eachPxOUT register is the value to be output on the corresponding
I/O pin when the pin is configured as I/O function, output direction, and the
pull-up/down resistor is disabled.

Bit = 0: The output is low

Bit = 1: The output is high

If the pin’s pull--up/down resistor is enabled, the corresponding bit in the
PxOUT register selects pull-up or pull-down.

Bit = 0: The pin is pulled down

Bit = 1: The pin is pulled up

8.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O
pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that
are selected for other functions must be set as required by the other function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction

8.2.4 Pull--Up/Down Resistor Enable Registers PxREN

Each bit in each PxREN register enables or disables the pullup/pulldown
resistor of the corresponding I/O pin. The corresponding bit in the PxOUT
register selects if the pin is pulled up or pulled down.

Bit = 0: Pullup/pulldown resistor disabled

Bit = 1: Pullup/pulldown resistor enabled

Digital I/O Operation

8-4 Digital I/O

8.2.5 Function Select Registers PxSEL and PxSEL2

Port pins are oftenmultiplexedwith other peripheralmodule functions. See the
device-specific data sheet to determine pin functions. Each PxSEL and
PxSEL2 bit is used to select the pin function -- I/O port or peripheral module
function.

PxSEL2 PxSEL Pin Function

0 0 I/O function is selected.

0 1 Primary peripheral module function is selected.

1 0 Reserved. See device-specific data sheet.

1 1 Secondary peripheral module function is selected.

Setting PxSELx = 1 does not automatically set the pin direction. Other
peripheral module functions may require the PxDIRx bits to be configured
according to the direction needed for the module function. See the pin
schematics in the device-specific data sheet.

Note: Setting PxREN = 1 When PxSEL = 1

Onsome I/Oports on theMSP430F261xandMSP430F2416/7/8/9, enabling
the pullup/pulldown resistor (PxREN = 1) while the module function is
selected (PxSEL = 1) does not disable the logic output driver. This
combination is not recommended and may result in unwanted current flow
through the internal resistor. See the device-specific data sheet pin
schematics for more information.

;Output ACLK on P2.0 on MSP430F21x1

BIS.B #01h,&P2SEL ; Select ACLK function for pin

BIS.B #01h,&P2DIR ; Set direction to output *Required*

Note: P1 and P2 Interrupts Are Disabled When PxSEL = 1

When any P1SELx or P2SELx bit is set, the corresponding pin’s interrupt
function is disabled. Therefore, signals on these pins will not generate P1 or
P2 interrupts, regardless of the state of the corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the
peripheral is a latched representation of the signal at the device pin. While
PxSELx = 1, the internal input signal follows the signal at the pin. However, if
the PxSELx = 0, the input to the peripheral maintains the value of the input
signal at the device pin before the PxSELx bit was reset.

Digital I/O Operation

8-5Digital I/O

8.2.6 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the
PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector,
and all P2 pins source a different single interrupt vector. The PxIFG register
can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set
when the selected input signal edge occurs at the pin. All PxIFGx interrupt
flags request an interrupt when their corresponding PxIE bit and the GIE bit
are set. Each PxIFG flag must be reset with software. Software can also set
each PxIFG flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If anyPxIFGx flagbecomes
set during a Px interrupt service routine, or is set after the RETI instruction of
a Px interrupt service routine is executed, the set PxIFGx flag generates
another interrupt. This ensures that each transition is acknowledged.

Note: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P2OUT, or P2DIR can result in setting the
corresponding P1IFG or P2IFG flags.

Digital I/O Operation

8-6 Digital I/O

Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.

Bit = 0: The PxIFGx flag is set with a low-to-high transition

Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PxIESx

Writing to P1IES, or P2IES can result in setting the corresponding interrupt
flags.

PxIESx PxINx PxIFGx
0 → 1 0 May be set
0 → 1 1 Unchanged
1 → 0 0 Unchanged
1 → 0 1 May be set

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.

Bit = 0: The interrupt is disabled.

Bit = 1: The interrupt is enabled.

8.2.7 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left
unconnected on the PC board, to prevent a floating input and reduce power
consumption. The value of the PxOUT bit is irrelevant, since the pin is
unconnected. Alternatively, the integrated pullup/pulldown resistor can be
enabled by setting the PxREN bit of the unused pin to prevent the floating
input. See chapter System Resets, Interrupts, and Operating Modes for
termination of unused pins.

Digital I/O Registers

8-7Digital I/O

8.3 Digital I/O Registers

The digital I/O registers are listed in Table 8--1.

Table 8--1.Digital I/O Registers

Port Register Short Form Address Register Type Initial State

P1 Input P1IN 020h Read only --

Output P1OUT 021h Read/write Unchanged

Direction P1DIR 022h Read/write Reset with PUC

Interrupt Flag P1IFG 023h Read/write Reset with PUC

Interrupt Edge Select P1IES 024h Read/write Unchanged

Interrupt Enable P1IE 025h Read/write Reset with PUC

Port Select P1SEL 026h Read/write Reset with PUC

Port Select 2 P1SEL2 041h Read/write Reset with PUC

Resistor Enable P1REN 027h Read/write Reset with PUC

P2 Input P2IN 028h Read only --

Output P2OUT 029h Read/write Unchanged

Direction P2DIR 02Ah Read/write Reset with PUC

Interrupt Flag P2IFG 02Bh Read/write Reset with PUC

Interrupt Edge Select P2IES 02Ch Read/write Unchanged

Interrupt Enable P2IE 02Dh Read/write Reset with PUC

Port Select P2SEL 02Eh Read/write 0C0h with PUC

Port Select 2 P2SEL2 042h Read/write Reset with PUC

Resistor Enable P2REN 02Fh Read/write Reset with PUC

P3 Input P3IN 018h Read only --

Output P3OUT 019h Read/write Unchanged

Direction P3DIR 01Ah Read/write Reset with PUC

Port Select P3SEL 01Bh Read/write Reset with PUC

Port Select 2 P3SEL2 043h Read/write Reset with PUC

Resistor Enable P3REN 010h Read/write Reset with PUC

P4 Input P4IN 01Ch Read only --

Output P4OUT 01Dh Read/write Unchanged

Direction P4DIR 01Eh Read/write Reset with PUC

Port Select P4SEL 01Fh Read/write Reset with PUC

Port Select 2 P4SEL2 044h Read/write Reset with PUC

Resistor Enable P4REN 011h Read/write Reset with PUC

P5 Input P5IN 030h Read only --

Output P5OUT 031h Read/write Unchanged

Direction P5DIR 032h Read/write Reset with PUC

Port Select P5SEL 033h Read/write Reset with PUC

Port Select 2 P5SEL2 045h Read/write Reset with PUC

Resistor Enable P5REN 012h Read/write Reset with PUC

Digital I/O Registers

8-8 Digital I/O

P6 Input P6IN 034h Read only --

Output P6OUT 035h Read/write Unchanged

Direction P6DIR 036h Read/write Reset with PUC

Port Select P6SEL 037h Read/write Reset with PUC

Port Select 2 P6SEL2 046h Read/write Reset with PUC

Resistor Enable P6REN 013h Read/write Reset with PUC

P7 Input P7IN 038h Read only --

Output P7OUT 03Ah Read/write Unchanged

Direction P7DIR 03Ch Read/write Reset with PUC

Port Select P7SEL 03Eh Read/write Reset with PUC

Port Select 2 P7SEL2 047h Read/write Reset with PUC

Resistor Enable P7REN 014h Read/write Reset with PUC

P8 Input P8IN 039h Read only --

Output P8OUT 03Bh Read/write Unchanged

Direction P8DIR 03Dh Read/write Reset with PUC

Port Select P8SEL 03Fh Read/write Reset with PUC

Port Select 2 P8SEL2 048h Read/write Reset with PUC

Resistor Enable P8REN 015h Read/write Reset with PUC

9-1Supply Voltage Supervisor

Supply Voltage Supervisor

This chapter describes the operation of the SVS. The SVS is implemented in
selected MSP430x2xx devices.

Topic Page

9.1 SVS Introduction 9-2. .

9.2 SVS Operation 9-4. .

9.3 SVS Registers 9-7. .

Chapter 9

SVS Introduction

9-2 Supply Voltage Supervisor

9.1 SVS Introduction

The supply voltage supervisor (SVS) is used to monitor the AVCC supply
voltage or an external voltage. The SVS can be configured to set a flag or
generateaPORresetwhen thesupply voltageor external voltagedropsbelow
a user-selected threshold.

The SVS features include:

- AVCC monitoring

- Selectable generation of POR

- Output of SVS comparator accessible by software

- Low-voltage condition latched and accessible by software

- 14 selectable threshold levels

- External channel to monitor external voltage

The SVS block diagram is shown in Figure 9--1.

SVS Introduction

9-3Supply Voltage Supervisor

Figure 9--1. SVS Block Diagram

+

--

1.2V

Brownout
Reset

VCC

Set SVSFG

tReset ~ 50us

Reset

SVSCTL Bits

0001

0010

1011

1111

1101

1100

G

D

S

SVSOUT

G

D

S

VLD SVSONPORON SVSOP SVSFG

~ 50us

SVS_POR

SVSIN

AVCC

AVCC

SVS Operation

9-4 Supply Voltage Supervisor

9.2 SVS Operation

The SVS detects if the AVCC voltage drops below a selectable level. It can be
configured toprovideaPORor set a flag,whena low-voltage conditionoccurs.
The SVS is disabled after a brownout reset to conserve current consumption.

9.2.1 Configuring the SVS

The VLDx bits are used to enable/disable the SVS and select one of 14
threshold levels (V(SVS_IT--)) for comparison with AVCC. The SVS is off when
VLDx = 0 and on when VLDx > 0. The SVSON bit does not turn on the SVS.
Instead, it reflects the on/off state of the SVS and can be used to determine
when the SVS is on.

When VLDx = 1111, the external SVSIN channel is selected. The voltage on
SVSIN is compared to an internal level of approximately 1.25 V.

9.2.2 SVS Comparator Operation

A low-voltage condition exists when AVCC drops below the selected threshold
orwhen theexternal voltagedropsbelow its 1.25-V threshold.Any low-voltage
condition sets the SVSFG bit.

The PORON bit enables or disables the device-reset function of the SVS. If
PORON = 1, a POR is generated when SVSFG is set. If PORON = 0, a
low-voltage condition sets SVSFG, but does not generate a POR.

The SVSFG bit is latched. This allows user software to determine if a
low-voltage condition occurred previously. The SVSFG bit must be reset by
user software. If the low-voltage condition is still presentwhenSVSFG is reset,
it will be immediately set again by the SVS.

SVS Operation

9-5Supply Voltage Supervisor

9.2.3 Changing the VLDx Bits

When the VLDx bits are changed from zero to any non-zero value there is a
automatic settling delay td(SVSon) implemented that allows the SVS circuitry to
settle. The td(SVSon) delay is approximately 50 μs. During this delay, the SVS
will not flag a low-voltage condition or reset the device, and the SVSON bit is
cleared. Software can test the SVSON bit to determine when the delay has
elapsed and the SVS is monitoring the voltage properly. Writing to SVSCTL
while SVSON = 0 will abort the SVS automatic settling delay, td(SVSon), and
switch the SVS to active mode immediately. In doing so, the SVS circuitry
might not be settled, resulting in unpredictable behavior.

When the VLDx bits are changed from any non-zero value to any other
non-zero value the circuitry requires the time tsettle to settle. The settling time
tsettle is a maximum of ~12 μs. See the device-specific data sheet. There is no
automatic delay implemented that prevents SVSFG to be set or to prevent a
reset of the device. The recommended flow to switch between levels is shown
in the following code.

; Enable SVS for the first time:

MOV.B #080h,&SVSCTL ; Level 2.8V, do not cause POR

; ...

; Change SVS level

MOV.B #000h,&SVSCTL ; Temporarily disable SVS

MOV.B #018h,&SVSCTL ; Level 1.9V, cause POR

; ...

SVS Operation

9-6 Supply Voltage Supervisor

9.2.4 SVS Operating Range

Each SVS level has hysteresis to reduce sensitivity to small supply voltage
changes when AVCC is close to the threshold. The SVS operation and
SVS/Brownout interoperation are shown in Figure 9--2.

Figure 9--2. Operating Levels for SVS and Brownout/Reset Circuit

VCC(start)

AVCC

V(B_IT--)

Brownout
Region

V(SVSstart)

V(SVS_IT--)

td(SVSR)

undefined

Vhys(SVS_IT--)

0

1

td(BOR)

Brownout

0

1

td(SVSon)

td(BOR)

0

1
Set SVS_POR

Brown-
Out
Region

SVS Circuit ActiveSVSOUT

Vhys(B_IT--)

Software Sets VLD>0

SVS Registers

9-7Supply Voltage Supervisor

9.3 SVS Registers

The SVS registers are listed in Table 9--1.

Table 9--1.SVS Registers

Register Short Form Register Type Address Initial State

SVS Control Register SVSCTL Read/write 056h Reset with BOR

SVSCTL, SVS Control Register
7 6 5 4 3 2 1 0

VLDx PORON SVSON SVSOP SVSFG

rw--0† rw--0† rw--0† rw--0† rw--0† r† r† rw--0†

† Reset by a brownout reset only, not by a POR or PUC.

VLDx Bits
7-4

Voltage level detect. These bits turn on the SVS and select the nominal SVS
threshold voltage level. See the device--specific data sheet for parameters.
0000 SVS is off
0001 1.9 V
0010 2.1 V
0011 2.2 V
0100 2.3 V
0101 2.4 V
0110 2.5 V
0111 2.65 V
1000 2.8 V
1001 2.9 V
1010 3.05
1011 3.2 V
1100 3.35 V
1101 3.5 V
1110 3.7 V
1111 Compares external input voltage SVSIN to 1.25 V.

PORON Bit 3 POR on. This bit enables the SVSFG flag to cause a POR device reset.
0 SVSFG does not cause a POR
1 SVSFG causes a POR

SVSON Bit 2 SVS on. This bit reflects the status of SVS operation. This bit DOESNOT turn
on the SVS. The SVS is turned on by setting VLDx > 0.
0 SVS is Off
1 SVS is On

SVSOP Bit 1 SVS output. This bit reflects the output value of the SVS comparator.
0 SVS comparator output is low
1 SVS comparator output is high

SVSFG Bit 0 SVS flag. This bit indicates a low voltage condition. SVSFG remains set after
a low voltage condition until reset by software.
0 No low voltage condition occurred
1 A low condition is present or has occurred

9-8 Supply Voltage Supervisor

10-1Watchdog Timer+

Watchdog Timer+

Thewatchdog timer+ (WDT+) is a 16-bit timer that can be used as awatchdog
or as an interval timer. This chapter describes the WDT+ The WDT+ is
implemented in all MSP430x2xx devices.

Topic Page

10.1 Watchdog Timer+ Introduction 10-2. .

10.2 Watchdog Timer+ Operation 10-4. .

10.3 Watchdog Timer+ Registers 10-7. .

Chapter 10

Watchdog Timer+ Introduction

10-2 Watchdog Timer+

10.1 Watchdog Timer+ Introduction

The primary function of the watchdog timer+ (WDT+) module is to perform a
controlled system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can be configured as an interval timer
and can generate interrupts at selected time intervals.

Features of the watchdog timer+ module include:

- Four software-selectable time intervals

- Watchdog mode

- Interval mode

- Access to WDT+ control register is password protected

- Control of RST/NMI pin function

- Selectable clock source

- Can be stopped to conserve power

- Clock fail-safe feature

The WDT+ block diagram is shown in Figure 10--1.

Note: Watchdog Timer+ Powers Up Active

After a PUC, theWDT+module is automatically configured in the watchdog
modewith an initial 32768 clock cycle reset interval using the DCOCLK. The
user must setup or halt the WDT+ prior to the expiration of the initial reset
interval.

Watchdog Timer+ Introduction

10-3Watchdog Timer+

Figure 10--1. Watchdog Timer+ Block Diagram

WDTQn
Y

0

1

2

3
Q6

Q9

Q13

Q15

16--bit
Counter

CLK

A
B

1

1

A EN

PUC

SMCLK

ACLK

Clear

Password
Compare

0

0

0

0

1

1

1

1

WDTCNTCL

WDTTMSEL

WDTNMI

WDTNMIES

WDTIS1

WDTSSEL

WDTIS0

WDTHOLD

EQU

EQU
Write Enable
Low Byte

R / W

MDB

LSB

MSB

WDTCTL

(Asyn)

Int.
Flag

Pulse
Generator

SMCLK Active

MCLK Active

ACLK Active

16--bit

Fail-Safe
Logic

Clock
Request
Logic

MCLK

Watchdog Timer+ Operation

10-4 Watchdog Timer+

10.2 Watchdog Timer+ Operation

The WDT+ module can be configured as either a watchdog or interval timer
with theWDTCTL register. TheWDTCTL register also contains control bits to
configure the RST/NMI pin. WDTCTL is a 16-bit, password-protected,
read/write register. Any read or write access must use word instructions and
write accesses must include the write password 05Ah in the upper byte. Any
write toWDTCTLwith any value other than 05Ah in the upper byte is a security
key violation and triggers a PUC system reset regardless of timer mode. Any
read of WDTCTL reads 069h in the upper byte. The WDT+ counter clock
should be slower or equal than the system (MCLK) frequency.

10.2.1 Watchdog timer+ Counter

The watchdog timer+ counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. TheWDTCNT is controlled and time intervals
selected through the watchdog timer+ control register WDTCTL.

The WDTCNT can be sourced from ACLK or SMCLK. The clock source is
selected with the WDTSSEL bit.

10.2.2 Watchdog Mode

After a PUC condition, theWDT+module is configured in the watchdogmode
with an initial 32768 cycle reset interval using the DCOCLK. The user must
setup, halt, or clear theWDT+ prior to the expiration of the initial reset interval
or another PUC will be generated. When the WDT+ is configured to operate
in watchdog mode, either writing to WDTCTL with an incorrect password, or
expirationof the selected time interval triggersaPUC.APUCresets theWDT+
to its default condition and configures the RST/NMI pin to reset mode.

10.2.3 Interval Timer Mode

Setting theWDTTMSELbit to 1 selects the interval timermode. Thismode can
be used to provide periodic interrupts. In interval timermode, theWDTIFG flag
is set at the expiration of the selected time interval. A PUC is not generated
in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged.

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an
interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt
request is serviced, or may be reset by software. The interrupt vector address
in interval timer mode is different from that in watchdog mode.

Watchdog Timer+ Operation

10-5Watchdog Timer+

Note: Modifying the Watchdog timer+

The WDT+ interval should be changed together with WDTCNTCL = 1 in a
single instruction to avoid an unexpected immediate PUC or interrupt.

The WDT+ should be halted before changing the clock source to avoid a
possible incorrect interval.

10.2.4 Watchdog Timer+ Interrupts

The WDT+ uses two bits in the SFRs for interrupt control.

- The WDT+ interrupt flag, WDTIFG, located in IFG1.0

- The WDT+ interrupt enable, WDTIE, located in IE1.0

When using the WDT+ in the watchdog mode, the WDTIFG flag sources a
reset vector interrupt. TheWDTIFG can be used by the reset interrupt service
routine to determine if the watchdog caused the device to reset. If the flag is
set, then the watchdog timer+ initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by
a different source.

When using theWDT+ in interval timer mode, theWDTIFG flag is set after the
selected time interval and requests a WDT+ interval timer interrupt if the
WDTIE and the GIE bits are set. The interval timer interrupt vector is different
from the reset vector used in watchdog mode. In interval timer mode, the
WDTIFG flag is reset automatically when the interrupt is serviced, or can be
reset with software.

10.2.5 Watchdog Timer+ Clock Fail-Safe Operation

The WDT+ module provides a fail-safe clocking feature assuring the clock to
the WDT+ cannot be disabled while in watchdog mode. This means the
low-power modes may be affected by the choice for the WDT+ clock. For
example, if ACLK is the WDT+ clock source, LPM4 will not be available,
because the WDT+ will prevent ACLK from being disabled. Also, if ACLK or
SMCLK fail while sourcing theWDT+, theWDT+ clock source is automatically
switched to MCLK. In this case, if MCLK is sourced from a crystal, and the
crystal has failed, the fail-safe feature will activate the DCO and use it as the
source for MCLK.

When the WDT+ module is used in interval timer mode, there is no fail-safe
feature for the clock source.

Watchdog Timer+ Operation

10-6 Watchdog Timer+

10.2.6 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals
are available in different low-power modes. The requirements of the user’s
application and the type of clocking used determine how theWDT+ should be
configured. For example, the WDT+ should not be configured in watchdog
modewith SMCLKas its clock source if the userwants to use low-powermode
3because theWDT+will keepSMCLKenabled for its clock source, increasing
the current consumption of LPM3.When the watchdog timer+ is not required,
the WDTHOLD bit can be used to hold the WDTCNT, reducing power
consumption.

10.2.7 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah
(WDTPW) in the upper byte:

; Periodically clear an active watchdog

MOV #WDTPW+WDTCNTCL,&WDTCTL

;

; Change watchdog timer+ interval

MOV #WDTPW+WDTCNTL+WDTSSEL,&WDTCTL

;

; Stop the watchdog

MOV #WDTPW+WDTHOLD,&WDTCTL

;

; Change WDT+ to interval timer mode, clock/8192 interval

MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS0,&WDTCTL

Watchdog Timer+ Registers

10-7Watchdog Timer+

10.3 Watchdog Timer+ Registers

The WDT+ registers are listed in Table 10--1.

Table 10--1.Watchdog timer+ Registers

Register Short Form Register Type Address Initial State

Watchdog timer+ control register WDTCTL Read/write 0120h 06900h with PUC

SFR interrupt enable register 1 IE1 Read/write 0000h Reset with PUC

SFR interrupt flag register 1 IFG1 Read/write 0002h Reset with PUC†

† WDTIFG is reset with POR

Watchdog Timer+ Registers

10-8 Watchdog Timer+

WDTCTL, Watchdog Timer+ Register

15 14 13 12 11 10 9 8

Read as 069h
WDTPW, must be written as 05Ah

7 6 5 4 3 2 1 0

WDTHOLD WDTNMIES WDTNMI WDTTMSEL WDTCNTCL WDTSSEL WDTISx

rw--0 rw--0 rw--0 rw--0 r0(w) rw--0 rw--0 rw--0

WDTPW Bits
15-8

Watchdog timer+ password. Always read as 069h. Must be written as 05Ah,
or a PUC will be generated.

WDTHOLD Bit 7 Watchdog timer+ hold. This bit stops the watchdog timer+. Setting
WDTHOLD = 1 when the WDT+ is not in use conserves power.
0 Watchdog timer+ is not stopped
1 Watchdog timer+ is stopped

WDTNMIES Bit 6 Watchdog timer+ NMI edge select. This bit selects the interrupt edge for the
NMI interruptwhenWDTNMI= 1.Modifying this bit can trigger anNMI.Modify
this bit when WDTIE = 0 to avoid triggering an accidental NMI.
0 NMI on rising edge
1 NMI on falling edge

WDTNMI Bit 5 Watchdog timer+NMI select. This bit selects the function for theRST/NMIpin.
0 Reset function
1 NMI function

WDTTMSEL Bit 4 Watchdog timer+ mode select
0 Watchdog mode
1 Interval timer mode

WDTCNTCL Bit 3 Watchdog timer+ counter clear. Setting WDTCNTCL = 1 clears the count
value to 0000h. WDTCNTCL is automatically reset.
0 No action
1 WDTCNT = 0000h

WDTSSEL Bit 2 Watchdog timer+ clock source select
0 SMCLK
1 ACLK

WDTISx Bits
1-0

Watchdog timer+ interval select. These bits select the watchdog timer+
interval to set the WDTIFG flag and/or generate a PUC.
00 Watchdog clock source /32768
01 Watchdog clock source /8192
10 Watchdog clock source /512
11 Watchdog clock source /64

Watchdog Timer+ Registers

10-9Watchdog Timer+

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

NMIIE WDTIE

rw--0

Bits
7-5

These bits may be used by other modules. See device-specific data sheet.

NMIIE Bit 4 NMI interrupt enable. This bit enables the NMI interrupt. Because other bits
in IE1 may be used for other modules, it is recommended to set or clear this
bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B
instructions.
0 Interrupt not enabled
1 Interrupt enabled

Bits
3-1

These bits may be used by other modules. See device-specific data sheet.

WDTIE Bit 0 Watchdog timer+ interrupt enable. This bit enables the WDTIFG interrupt for
interval timer mode. It is not necessary to set this bit for watchdog mode.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B
or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled

Watchdog Timer+ Registers

10-10 Watchdog Timer+

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

NMIIFG WDTIFG

rw--0 rw--(0)

Bits
7-5

These bits may be used by other modules. See device-specific data sheet.

NMIIFG Bit 4 NMI interrupt flag. NMIIFG must be reset by software. Because other bits in
IFG1 may be used for other modules, it is recommended to clear NMIIFG by
usingBIS.B orBIC.B instructions, rather than MOV.B or CLR.B instructions.
0 No interrupt pending
1 Interrupt pending

Bits
3-1

These bits may be used by other modules. See device-specific data sheet.

WDTIFG Bit 0 Watchdog timer+ interrupt flag. Inwatchdogmode,WDTIFG remains set until
reset by software. In interval mode, WDTIFG is reset automatically by
servicing the interrupt, or canbe reset by software. Because other bits in IFG1
may be used for othermodules, it is recommended to clearWDTIFG by using
BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.
0 No interrupt pending
1 Interrupt pending

11-1Hardware Multiplier

Hardware Multiplier

This chapter describes the hardware multiplier. The hardware multiplier is
implemented in some MSP430x2xx devices.

Topic Page

11.1 Hardware Multiplier Introduction 11-2. .

11.2 Hardware Multiplier Operation 11-3. .

11.3 Hardware Multiplier Registers 11-7. .

Chapter 11

Hardware Multiplier Introduction

11-2 Hardware Multiplier

11.1 Hardware Multiplier Introduction

The hardware multiplier is a peripheral and is not part of the MSP430 CPU.
Thismeans, its activities do not interfere with theCPUactivities. Themultiplier
registers are peripheral registers that are loaded and read with CPU
instructions.

The hardware multiplier supports:

- Unsigned multiply

- Signed multiply

- Unsigned multiply accumulate

- Signed multiply accumulate

- 16×16 bits, 16× 8 bits, 8× 16 bits, 8× 8 bits

The hardware multiplier block diagram is shown in Figure 11--1.

Figure 11--1. Hardware Multiplier Block Diagram

OP2 138h

16 x 16 Multipiler

32--bit Adder

32--bit Multiplexer

015

15 0

Multiplexer

C

MPY 130h

MPYS 132h

MAC 134h

MACS 136h

RESHI 13ChSSUMEXT 13Eh

OP1

RESLO 13Ah

031

MPY, MPYS MAC, MACS

MACS MPYS

MAC

MPY = 0000

rw

rw

rwrw015 r

Accessible
Register

Hardware Multiplier Operation

11-3Hardware Multiplier

11.2 Hardware Multiplier Operation

The hardwaremultiplier supports unsignedmultiply, signedmultiply, unsigned
multiply accumulate, and signed multiply accumulate operations. The type of
operation is selected by the address the first operand is written to.

The hardware multiplier has two 16-bit operand registers, OP1 and OP2, and
three result registers, RESLO, RESHI, and SUMEXT. RESLO stores the low
word of the result, RESHI stores the high word of the result, and SUMEXT
stores information about the result. The result is ready in three MCLK cycles
and can be read with the next instruction after writing to OP2, except when
using an indirect addressing mode to access the result. When using indirect
addressing for the result, a NOP is required before the result is ready.

11.2.1 Operand Registers

Theoperandone registerOP1has four addresses, shown in Table 11--1, used
to select the multiply mode. Writing the first operand to the desired address
selects the type of multiply operation but does not start any operation. Writing
the second operand to the operand two register OP2 initiates the multiply
operation. Writing OP2 starts the selected operation with the values stored in
OP1 and OP2. The result is written into the three result registers RESLO,
RESHI, and SUMEXT.

Repeated multiply operations may be performed without reloading OP1 if the
OP1 value is used for successive operations. It is not necessary to re-write the
OP1 value to perform the operations.

Table 11--1.OP1 addresses

OP1 Address Register Name Operation

0130h MPY Unsigned multiply

0132h MPYS Signed multiply

0134h MAC Unsigned multiply accumulate

0136h MACS Signed multiply accumulate

Hardware Multiplier Operation

11-4 Hardware Multiplier

11.2.2 Result Registers

The result low register RESLOholds the lower 16-bits of the calculation result.
The result high register RESHI contents depend on themultiply operation and
are listed in Table 11--2.

Table 11--2.RESHI Contents

Mode RESHI Contents

MPY Upper 16-bits of the result

MPYS The MSB is the sign of the result. The remaining bits are the
upper 15-bits of the result. Two’s complement notation is used
for the result.

MAC Upper 16-bits of the result

MACS Upper 16-bits of the result. Two’s complement notation is used
for the result.

The sum extension registers SUMEXT contents depend on the multiply
operation and are listed in Table 11--3.

Table 11--3.SUMEXT Contents

Mode SUMEXT

MPY SUMEXT is always 0000h

MPYS SUMEXT contains the extended sign of the result
00000h Result was positive or zero
0FFFFh Result was negative

MAC SUMEXT contains the carry of the result
0000h No carry for result
0001h Result has a carry

MACS SUMEXT contains the extended sign of the result
00000h Result was positive or zero
0FFFFh Result was negative

MACS Underflow and Overflow

The multiplier does not automatically detect underflow or overflow in the
MACSmode. Theaccumulator range for positive numbers is 0 to 7FFF FFFFh
and for negative numbers is 0FFFF FFFFh to 8000 0000h. An underflow
occurs when the sum of two negative numbers yields a result that is in the
range for a positive number. An overflow occurs when the sum of two positive
numbers yields a result that is in the range for a negative number. In both of
these cases, the SUMEXT register contains the sign of the result, 0FFFFh for
overflow and 0000h for underflow. User software must detect and handle
these conditions appropriately.

Hardware Multiplier Operation

11-5Hardware Multiplier

11.2.3 Software Examples

Examples for all multiplier modes follow. All 8×8 modes use the absolute
address for the registers because the assembler will not allow .B access to
word registers when using the labels from the standard definitions file.

There is nosignextensionnecessary in software.Accessing themultiplierwith
a byte instruction during a signed operation will automatically cause a sign
extension of the byte within the multiplier module.

; 16x16 Unsigned Multiply

MOV #01234h,&MPY ; Load first operand

MOV #05678h,&OP2 ; Load second operand

; ... ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.

MOV.B #012h,&0130h ; Load first operand

MOV.B #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Signed Multiply

MOV #01234h,&MPYS ; Load first operand

MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply. Absolute addressing.

MOV.B #012h,&0132h ; Load first operand

MOV.B #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Unsigned Multiply Accumulate

MOV #01234h,&MAC ; Load first operand

MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Unsigned Multiply Accumulate. Absolute addressing

MOV.B #012h,&0134h ; Load first operand

MOV.B #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Signed Multiply Accumulate

MOV #01234h,&MACS ; Load first operand

MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply Accumulate. Absolute addressing

MOV.B #012h,&0136h ; Load first operand

MOV.B #034h,R5 ; Temp. location for 2nd operand

MOV R5,&OP2 ; Load 2nd operand

; ... ; Process results

Hardware Multiplier Operation

11-6 Hardware Multiplier

11.2.4 Indirect Addressing of RESLO

When using indirect or indirect autoincrement addressingmode to access the
result registers, At least one instruction is needed between loading the second
operand and accessing one of the result registers:

; Access multiplier results with indirect addressing

MOV #RESLO,R5 ; RESLO address in R5 for indirect

MOV &OPER1,&MPY ; Load 1st operand

MOV &OPER2,&OP2 ; Load 2nd operand

NOP ; Need one cycle

MOV @R5+,&xxx ; Move RESLO

MOV @R5,&xxx ; Move RESHI

11.2.5 Using Interrupts

If an interrupt occurs after writing OP1, but before writing OP2, and the
multiplier is used in servicing that interrupt, the original multiplier mode
selection is lost and the results are unpredictable. To avoid this, disable
interrupts before using the hardware multiplier or do not use the multiplier in
interrupt service routines.

; Disable interrupts before using the hardware multiplier

DINT ; Disable interrupts

NOP ; Required for DINT

MOV #xxh,&MPY ; Load 1st operand

MOV #xxh,&OP2 ; Load 2nd operand

EINT ; Interrupts may be enable before

; Process results

Hardware Multiplier Registers

11-7Hardware Multiplier

11.3 Hardware Multiplier Registers

The hardware multiplier registers are listed in Table 11--4.

Table 11--4.Hardware Multiplier Registers

Register Short Form Register Type Address Initial State

Operand one - multiply MPY Read/write 0130h Unchanged

Operand one - signed multiply MPYS Read/write 0132h Unchanged

Operand one - multiply accumulate MAC Read/write 0134h Unchanged

Operand one - signed multiply accumulate MACS Read/write 0136h Unchanged

Operand two OP2 Read/write 0138h Unchanged

Result low word RESLO Read/write 013Ah Undefined

Result high word RESHI Read/write 013Ch Undefined

Sum extension register SUMEXT Read 013Eh Undefined

11-8 Hardware Multiplier

12-1Timer_A

Timer_A

Timer_A isa16-bit timer/counterwithmultiple capture/compare registers.This
chapter describes the operation of the Timer_A of the MSP430 2xx device
family.

Topic Page

12.1 Timer_A Introduction 12-2. .

12.2 Timer_A Operation 12-4. .

12.3 Timer_A Registers 12-19. .

Chapter 12

Timer_A Introduction

12-2 Timer_A

12.1 Timer_A Introduction

Timer_A is a 16-bit timer/counter with three capture/compare registers.
Timer_A can support multiple capture/compares, PWM outputs, and interval
timing. Timer_A also has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

- Asynchronous 16-bit timer/counter with four operating modes

- Selectable and configurable clock source

- Two or three configurable capture/compare registers

- Configurable outputs with PWM capability

- Asynchronous input and output latching

- Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 12--1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action will not take place.

Timer_A Introduction

12-3Timer_A

Figure 12--1. Timer_A Block Diagram

Comparator 2CCI

15 0

CCISx

OUTMODx

Capture
Mode

CMx

Sync

SCS

COVlogic

Output
Unit2 D Set QEQU0

OUT

OUT2 Signal

Reset

GND

VCC

CCI2A

CCI2B

EQU2

Divider
1/2/4/8

Count
Mode

16--bit Timer
TAR

RCACLK

SMCLK

TACLK

INCLK Set TAIFG

15 0

TASSELx MCxIDx

00

01

10

11

Clear

Timer Clock

EQU0

Timer Clock

Timer Clock

SCCI Y A
EN

CCR1

POR

TACLR

CCR0

Timer Block

00

01

10

11

CAP

1

0

1

0

CCR2

Set TACCR2
CCIFG

TACCR2

Timer_A Operation

12-4 Timer_A

12.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and
operation of Timer_A is discussed in the following sections.

12.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TAR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TACLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TAR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TAR will take effect immediately.

Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TACLK
or INCLK. The clock source is selected with the TASSELx bits. The selected
clock source may be passed directly to the timer or divided by 2, 4, or 8, using
the IDx bits. The timer clock divider is reset when TACLR is set.

Timer_A Operation

12-5Timer_A

12.2.2 Starting the Timer

The timer may be started, or restarted in the following ways:

- The timer counts when MCx > 0 and the clock source is active.

- When the timer mode is either up or up/down, the timer may be stopped
by writing 0 to TACCR0. The timer may then be restarted by writing a
nonzero value to TACCR0. In this scenario, the timer starts incrementing
in the up direction from zero.

12.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 12--1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 12--1.Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of
TACCR0.

10 Continuous The timer repeatedly counts from zero to 0FFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of
TACCR0 and back down to zero.

Timer_A Operation

12-6 Timer_A

Up Mode

The upmode is used if the timer periodmust be different from 0FFFFh counts.
The timer repeatedly counts up to the value of compare register TACCR0,
which defines the period, as shown in Figure 12--2. The number of timer
counts in the period is TACCR0+1. When the timer value equals TACCR0 the
timer restarts counting from zero. If up mode is selected when the timer value
is greater than TACCR0, the timer immediately restarts counting from zero.

Figure 12--2. Up Mode

0h

0FFFFh

TACCR0

TheTACCR0CCIFG interrupt flag is setwhen the timer counts to the TACCR0
value. The TAIFG interrupt flag is set when the timer counts from TACCR0 to
zero. Figure 12--3 shows the flag set cycle.

Figure 12--3. Up Mode Flag Setting

CCR0--1 CCR0 0h

Timer Clock

Timer

Set TAIFG

Set TACCR0 CCIFG

1h CCR0--1 CCR0 0h

Changing the Period Register TACCR0

When changingTACCR0while the timer is running, if the newperiod is greater
thanor equal to theoldperiod, or greater than thecurrent count value, the timer
counts up to the new period. If the new period is less than the current count
value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

Timer_A Operation

12-7Timer_A

Continuous Mode

In thecontinuousmode, the timer repeatedly counts up to0FFFFhand restarts
from zero as shown in Figure 12--4. The capture/compare register TACCR0
works the same way as the other capture/compare registers.

Figure 12--4. Continuous Mode

0h

0FFFFh

The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero.
Figure 12--5 shows the flag set cycle.

Figure 12--5. Continuous Mode Flag Setting

FFFEh FFFFh 0h

Timer Clock

Timer

Set TAIFG

1h FFFEh FFFFh 0h

Timer_A Operation

12-8 Timer_A

Use of the Continuous Mode

The continuousmode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TACCRx register in the
interrupt service routine. Figure 12--6 shows twoseparate time intervals t0 and
t1 being added to the capture/compare registers. In this usage, the time
interval is controlled by hardware, not software, without impact from interrupt
latency. Up to three independent time intervals or output frequencies can be
generated using all three capture/compare registers.

Figure 12--6. Continuous Mode Time Intervals

0FFFFh

TACCR0a

TACCR0b TACCR0c TACCR0d

t1

t0 t0

TACCR1a

TACCR1b TACCR1c

TACCR1d

t1 t1

t0

Time intervals can be produced with other modes as well, where TACCR0 is
used as the period register. Their handling is more complex since the sum of
the old TACCRx data and the new period can be higher than the TACCR0
value. When the previous TACCRx value plus tx is greater than the TACCR0
data, TACCR0 + 1 must be subtracted to obtain the correct time interval.

Timer_A Operation

12-9Timer_A

Up/Down Mode

The up/down mode is used if the timer period must be different from 0FFFFh
counts, and if a symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare register TACCR0 and back down to zero,
as shown in Figure 12--7. The period is twice the value in TACCR0.

Figure 12--7. Up/Down Mode

0h

TACCR0

0FFFFh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TACLR bit must be set to clear the direction. The TACLR bit
also clears the TAR value and the timer clock divider.

In up/down mode, the TACCR0 CCIFG interrupt flag and the TAIFG interrupt
flag are set only once during a period, separated by 1/2 the timer period. The
TACCR0 CCIFG interrupt flag is set when the timer counts from TACCR0 -- 1
to TACCR0, and TAIFG is set when the timer completes counting down from
0001h to 0000h. Figure 12--8 shows the flag set cycle.

Figure 12--8. Up/Down Mode Flag Setting

CCR0--1 CCR0 CCR0--1

Timer Clock

Timer

Set TAIFG

Set TACCR0 CCIFG

CCR0--2 1h 0h

Up/Down

Timer_A Operation

12-10 Timer_A

Changing the Period Register TACCR0

When changing TACCR0 while the timer is running, and counting in the down
direction, the timer continues its descent until it reaches zero. The value in
TACCR0 is latched into TACL0 immediately, however the new period takes
effect after the counter counts down to zero.

When the timer is counting in the up direction, and the new period is greater
thanor equal to theoldperiod, or greater than thecurrent count value, the timer
counts up to the new period before counting down.When the timer is counting
in the up direction, and the new period is less than the current count value, the
timer begins counting down. However, one additional count may occur before
the counter begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between
output signals (See section Timer_A Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 12--9 the tdead is:

tdead = ttimer × (TACCR1 -- TACCR2)

With: tdead Time during which both outputs need to be inactive

ttimer Cycle time of the timer clock

TACCRx Content of capture/compare register x

The TACCRx registers are not buffered. They update immediately when
written to. Therefore, any required dead time will not be maintained
automatically.

Figure 12--9. Output Unit in Up/Down Mode

0h

0FFFFh

TAIFG

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TACCR0

TACCR1

EQU1 TAIFG Interrupt EventsEQU1
EQU0

EQU1 EQU1
EQU0

TACCR2

EQU2 EQU2EQU2 EQU2

Dead Time

Timer_A Operation

12-11Timer_A

12.2.4 Capture/Compare Blocks

Two or three identical capture/compare blocks, TACCRx, are present in
Timer_A. Any of the blocks may be used to capture the timer data, or to
generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
Thecapture inputsCCIxAandCCIxBareconnected toexternal pinsor internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture occurs:

- The timer value is copied into the TACCRx register

- The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx
family devicesmayhavedifferent signals connected toCCIxAandCCIxB.See
the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock.Setting theSCSbit to synchronize the capture signalwith the timer clock
is recommended. This is illustrated in Figure 12--10.

Figure 12--10. Capture Signal (SCS = 1)

n--2 n--1

Timer Clock

Timer

Set TACCRx CCIFG

n+1 n+3 n+4

CCI

Capture

n+2n

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 12--11. COV must
be reset with software.

Timer_A Operation

12-12 Timer_A

Figure 12--11.Capture Cycle

Second
Capture
Taken
COV = 1

Capture
Taken

No
Capture
Taken

Read
Taken
Capture

Clear Bit COV

in Register TACCTLx

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

Capture

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets CCIS1 = 1 and toggles bit CCIS0 to switch the
capture signal between VCC and GND, initiating a capture each time CCIS0
changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TACCTLx ; Setup TACCTLx

XOR #CCIS0,&TACCTLx ; TACCTLx = TAR

Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TAR counts to the value in a TACCRx:

- Interrupt flag CCIFG is set

- Internal signal EQUx = 1

- EQUx affects the output according to the output mode

- The input signal CCI is latched into SCCI

Timer_A Operation

12-13Timer_A

12.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operatingmodes that generate signals based on theEQU0andEQUxsignals.

Output Modes

The output modes are defined by the OUTMODx bits and are described in
Table 12--2. TheOUTx signal is changedwith the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0, because EQUx = EQU0.

Table 12--2.Output Modes

OUTMODx Mode Description

000 Output The output signal OUTx is defined by the
OUTx bit. The OUTx signal updates
immediately when OUTx is updated.

001 Set The output is set when the timer counts
to the TACCRx value. It remains set until
a reset of the timer, or until another
output mode is selected and affects the
output.

010 Toggle/Reset The output is toggled when the timer
counts to the TACCRx value. It is reset
when the timer counts to the TACCR0
value.

011 Set/Reset The output is set when the timer counts
to the TACCRx value. It is reset when the
timer counts to the TACCR0 value.

100 Toggle The output is toggled when the timer
counts to the TACCRx value. The output
period is double the timer period.

101 Reset The output is reset when the timer counts
to the TACCRx value. It remains reset
until another output mode is selected and
affects the output.

110 Toggle/Set The output is toggled when the timer
counts to the TACCRx value. It is set
when the timer counts to the TACCR0
value.

111 Reset/Set The output is reset when the timer counts
to the TACCRx value. It is set when the
timer counts to the TACCR0 value.

Timer_A Operation

12-14 Timer_A

Output Example—Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TACCRx value,
and rolls from TACCR0 to zero, depending on the output mode. An example
is shown in Figure 12--12 using TACCR0 and TACCR1.

Figure 12--12. Output Example—Timer in Up Mode

0h

0FFFFh

EQU0
TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR1

EQU1 EQU0
TAIFG

EQU1 EQU0
TAIFG Interrupt Events

Timer_A Operation

12-15Timer_A

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TACCRx and
TACCR0 values, depending on the output mode. An example is shown in
Figure 12--13 using TACCR0 and TACCR1.

Figure 12--13. Output Example—Timer in Continuous Mode

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR1

EQU1 TAIFG EQU1 EQU0 Interrupt EventsEQU0

Timer_A Operation

12-16 Timer_A

Output Example—Timer in Up/Down Mode

The OUTx signal changes when the timer equals TACCRx in either count
direction andwhen the timer equals TACCR0, depending on the outputmode.
An example is shown in Figure 12--14 using TACCR0 and TACCR2.

Figure 12--14. Output Example—Timer in Up/Down Mode

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TACCR0

TACCR2

EQU2
TAIFG Interrupt EventsEQU2

EQU0
EQU2 EQU2

EQU0

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safemethod for switching between output modes is to use output mode 7 as
a transition state:

BIS #OUTMOD_7,&TACCTLx ; Set output mode=7

BIC #OUTMODx,&TACCTLx ; Clear unwanted bits

Timer_A Operation

12-17Timer_A

12.2.6 Timer_A Interrupts

Two interrupt vectors are associated with the 16-bit Timer_A module:

- TACCR0 interrupt vector for TACCR0 CCIFG

- TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the
associated TACCRx register. In compare mode, any CCIFG flag is set if TAR
counts to the associated TACCRx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TACCR0 Interrupt

The TACCR0 CCIFG flag has the highest Timer_A interrupt priority and has
a dedicated interrupt vector as shown in Figure 12--15. The TACCR0 CCIFG
flag is automatically reset when the TACCR0 interrupt request is serviced.

Figure 12--15. Capture/Compare TACCR0 Interrupt Flag

D
Set

Q IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

TAIV, Interrupt Vector Generator

The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and
combined to source a single interrupt vector. The interrupt vector register TAIV
is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register
(see register description). This number can be evaluated or added to the
program counter to automatically enter the appropriate software routine.
Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TACCR1 and TACCR2CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TACCR2
CCIFG flag will generate another interrupt.

Timer_A Operation

12-18 Timer_A

TAIV Software Example

The following software example shows the recommended use of TAIV and the
handling overhead. The TAIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself. The latencies are:

- Capture/compare block TACCR0 11 cycles
- Capture/compare blocks TACCR1, TACCR2 16 cycles
- Timer overflow TAIFG 14 cycles

; Interrupt handler for TACCR0 CCIFG. Cycles

CCIFG_0_HND

; ... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TAIFG, TACCR1 and TACCR2 CCIFG.

TA_HND ... ; Interrupt latency 6

ADD &TAIV,PC ; Add offset to Jump table 3

RETI ; Vector 0: No interrupt 5

JMP CCIFG_1_HND ; Vector 2: TACCR1 2

JMP CCIFG_2_HND ; Vector 4: TACCR2 2

RETI ; Vector 6: Reserved 5

RETI ; Vector 8: Reserved 5

TAIFG_HND ; Vector 10: TAIFG Flag

... ; Task starts here

RETI 5

CCIFG_2_HND ; Vector 4: TACCR2

... ; Task starts here

RETI ; Back to main program 5

CCIFG_1_HND ; Vector 2: TACCR1

... ; Task starts here

RETI ; Back to main program 5

Timer_A Registers

12-19Timer_A

12.3 Timer_A Registers

The Timer_A registers are listed in Table 12--3.

Table 12--3.Timer_A Registers

Register Short Form Register Type Address Initial State

Timer_A control TACTL Read/write 0160h Reset with POR
Timer_A counter TAR Read/write 0170h Reset with POR
Timer_A capture/compare control 0 TACCTL0 Read/write 0162h Reset with POR
Timer_A capture/compare 0 TACCR0 Read/write 0172h Reset with POR
Timer_A capture/compare control 1 TACCTL1 Read/write 0164h Reset with POR
Timer_A capture/compare 1 TACCR1 Read/write 0174h Reset with POR
Timer_A capture/compare control 2 TACCTL2† Read/write 0166h Reset with POR
Timer_A capture/compare 2 TACCR2† Read/write 0176h Reset with POR
Timer_A interrupt vector TAIV Read only 012Eh Reset with POR
† Not present on MSP430x20xx Devices

Timer_A Registers

12-20 Timer_A

TACTL, Timer_A Control Register

15 14 13 12 11 10 9 8

Unused TASSELx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TACLR TAIE TAIFG

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) w--(0) rw--(0) rw--(0)

Unused Bits
15-10

Unused

TASSELx Bits
9-8

Timer_A clock source select
00 TACLK
01 ACLK
10 SMCLK
11 INCLK

IDx Bits
7-6

Input divider. These bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits
5-4

Mode control. Setting MCx = 00h when Timer_A is not in use conserves
power.
00 Stop mode: the timer is halted.
01 Up mode: the timer counts up to TACCR0.
10 Continuous mode: the timer counts up to 0FFFFh.
11 Up/down mode: the timer counts up to TACCR0 then down to 0000h.

Unused Bit 3 Unused

TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count
direction. The TACLR bit is automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending

Timer_A Registers

12-21Timer_A

TAR, Timer_A Register

15 14 13 12 11 10 9 8

TARx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

TARx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

TARx Bits
15-0

Timer_A register. The TAR register is the count of Timer_A.

TACCRx, Timer_A Capture/Compare Register x

15 14 13 12 11 10 9 8

TACCRx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

TACCRx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

TACCRx Bits
15-0

Timer_A capture/compare register.
Comparemode: TACCRxholds the data for the comparison to the timer value
in the Timer_A Register, TAR.
Capture mode: The Timer_A Register, TAR, is copied into the TACCRx
register when a capture is performed.

Timer_A Registers

12-22 Timer_A

TACCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS SCCI Unused CAP

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) r r0 rw--(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG

rw--(0) rw--(0) rw--(0) rw--(0) r rw--(0) rw--(0) rw--(0)

CMx Bit
15-14

Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges

CCISx Bit
13-12

Capture/compare input select. These bits select the TACCRx input signal.
See the device-specific data sheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture

SCCI Bit 10 Synchronized capture/compare input. The selected CCI input signal is
latched with the EQUx signal and can be read via this bit

Unused Bit 9 Unused. Read only. Always read as 0.

CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode

OUTMODx Bits
7-5

Output mode. Modes 2, 3, 6, and 7 are not useful for TACCR0 because
EQUx = EQU0.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set

Timer_A Registers

12-23Timer_A

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TAIVx 0

r0 r0 r0 r0 r--(0) r--(0) r--(0) r0

TAIVx Bits
15-0

Timer_A Interrupt Vector value

TAIV Contents Interrupt Source Interrupt Flag
Interrupt
Priority

00h No interrupt pending --

02h Capture/compare 1 TACCR1 CCIFG Highest

04h Capture/compare 2† TACCR2 CCIFG

06h Reserved --

08h Reserved --

0Ah Timer overflow TAIFG

0Ch Reserved --

0Eh Reserved -- Lowest
† Not Implemented in MSP430x20xx, devices

12-24 Timer_A

13-1Timer_B

Timer_B

Timer_B isa16-bit timer/counterwithmultiple capture/compare registers.This
chapter describes the operation of the Timer_B of the MSP430 2xx device
family.

Topic Page

13.1 Timer_B Introduction 13-2. .

13.2 Timer_B Operation 13-4. .

13.3 Timer_B Registers 13-20. .

Chapter 13

Timer_B Introduction

13-2 Timer_B

13.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with three or seven capture/compare
registers. Timer_Bcansupportmultiple capture/compares,PWMoutputs, and
interval timing. Timer_B also has extensive interrupt capabilities. Interrupts
may be generated from the counter on overflow conditions and from each of
the capture/compare registers.

Timer_B features include :

- Asynchronous 16-bit timer/counter with four operating modes and four
selectable lengths

- Selectable and configurable clock source

- Three or seven configurable capture/compare registers

- Configurable outputs with PWM capability

- Double-buffered compare latches with synchronized loading

- Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 13--1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action does not take place.

13.1.1 Similarities and Differences From Timer_A

Timer_B is identical to Timer_A with the following exceptions:

- The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.

- Timer_B TBCCRx registers are double-buffered and can be grouped.

- All Timer_B outputs can be put into a high-impedance state.

- The SCCI bit function is not implemented in Timer_B.

Timer_B Introduction

13-3Timer_B

Figure 13--1. Timer_B Block Diagram

CCR6

Comparator 6

CCI

15 0

OUTMODx

Capture
Mode

CMx

Sync

COVlogic

Output
Unit6 D Set QEQU0

OUT

OUT6 Signal

Reset

POR

EQU6

Divider
1/2/4/8

Count
Mode

16--bit Timer
TBR

Set TBIFG

15 0
MCxIDx

Clear

TBCLR

Timer Clock

CCR0

EQU0

Timer Clock

Timer Clock

VCC

TBR=0

UP/DOWN
EQU0

CLLDx

CNTLx

Load

CCR1

CCR2

CCR3

CCR4

CCR5

Timer Block

TBCCR6

RC
10 12 168

TBCLGRPx

CCR5

CCR4

CCR1

Group
Load Logic

Group
Load Logic

TBSSELx

00

01

10

11

GND

VCC

CCI6A

CCI6B

00

01

10

11

CCISx

00

01

10

11

00

01

10

11
CAP

1

0

SCS

1

0

Set TBCCR6
CCIFG

Compare Latch TBCL6

ACLK

SMCLK

TBCLK

Timer_B Operation

13-4 Timer_B

13.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and
operation of Timer_B is discussed in the following sections.

13.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TBR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TBR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TBRmay be cleared by setting the TBCLR bit. Setting TBCLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TBCLR) to avoid errant
operating conditions.

When the timer clock is asynchronous to the CPU clock, any read from TBR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TBR will take effect immediately.

TBR Length

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the
CNTLx bits. The maximum count value, TBR(max), for the selectable lengths
is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data written to the TBR
register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider

The timer clock can be sourced from ACLK, SMCLK, or externally via TBCLK
(TBCLK or inverted TBCLK). The clock source is selected with the TBSSELx
bits. The selected clock source may be passed directly to the timer or divided
by 2,4, or 8, using the IDx bits. The clock divider is reset when TBCLR is set.

Timer_B Operation

13-5Timer_B

13.2.2 Starting the Timer

The timer may be started or restarted in the following ways:

- The timer counts when MCx > 0 and the clock source is active.

- When the timer mode is either up or up/down, the timer may be stopped
by loading 0 to TBCL0. The timer may then be restarted by loading a
nonzero value to TBCL0. In this scenario, the timer starts incrementing in
the up direction from zero.

13.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 13--1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 13--1.Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of
compare register TBCL0.

10 Continuous The timer repeatedly counts from zero to the value
selected by the CNTLx bits.

11 Up/down The timer repeatedly counts from zero up to the value of
TBCL0 and then back down to zero.

Timer_B Operation

13-6 Timer_B

Up Mode

Theupmode is used if the timer periodmust bedifferent fromTBR(max) counts.
The timer repeatedly counts up to the value of compare latch TBCL0, which
defines the period, as shown in Figure 13--2. The number of timer counts in
the period is TBCL0+1.When the timer value equals TBCL0 the timer restarts
counting from zero. If upmode is selectedwhen the timer value is greater than
TBCL0, the timer immediately restarts counting from zero.

Figure 13--2. Up Mode

0h

TBR(max)

TBCL0

The TBCCR0 CCIFG interrupt flag is set when the timer counts to the TBCL0
value. The TBIFG interrupt flag is set when the timer counts from TBCL0 to
zero. Figure 13--3 shows the flag set cycle.

Figure 13--3. Up Mode Flag Setting

TBCL0--1 TBCL0 0h

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

1h TBCL0--1 TBCL0 0h

Changing the Period Register TBCL0

When changing TBCL0 while the timer is running and when the TBCL0 load
event is immediate, CLLD0 = 00, if the new period is greater than or equal to
the old period, or greater than the current count value, the timer counts up to
the new period. If the new period is less than the current count value, the timer
rolls to zero. However, one additional countmay occur before the counter rolls
to zero.

Timer_B Operation

13-7Timer_B

Continuous Mode

In continuous mode the timer repeatedly counts up to TBR(max) and restarts
fromzeroas shown inFigure 13--4.Thecompare latchTBCL0works thesame
way as the other capture/compare registers.

Figure 13--4. Continuous Mode

0h

TBR(max)

The TBIFG interrupt flag is set when the timer counts from TBR(max) to zero.
Figure 13--5 shows the flag set cycle.

Figure 13--5. Continuous Mode Flag Setting

TBR (max)--1 TBR (max) 0h

Timer Clock

Timer

Set TBIFG

1h TBR (max) 0hTBR (max)--1

Timer_B Operation

13-8 Timer_B

Use of the Continuous Mode

The continuousmode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TBCLx latch in the interrupt
service routine. Figure 13--6 shows two separate time intervals t0 and t1 being
added to the capture/compare registers. The time interval is controlled by
hardware, not software, without impact from interrupt latency. Up to three
(Timer_B3) or 7 (Timer_B7) independent time intervals or output frequencies
can be generated using capture/compare registers.

Figure 13--6. Continuous Mode Time Intervals

0h

EQU0 Interrupt

TBCL0a

TBCL0b TBCL0c TBCL0d

t1

t0 t0

TBCL1a

TBCL1b TBCL1c

TBCL1d

t1 t1

t0

EQU1 Interrupt

TBR(max)

Time intervals can be produced with other modes as well, where TBCL0 is
used as the period register. Their handling is more complex since the sum of
the old TBCLx data and the new period can be higher than the TBCL0 value.
When the sum of the previous TBCLx value plus tx is greater than the TBCL0
data, TBCL0 + 1 must be subtracted to obtain the correct time interval.

Timer_B Operation

13-9Timer_B

Up/Down Mode

The up/downmode is used if the timer period must be different from TBR(max)
counts, and if a symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare latch TBCL0, and back down to zero, as
shown in Figure 13--7. The period is twice the value in TBCL0.

Note: TBCL0 > TBR(max)

If TBCL0 > TBR(max), the counter operates as if it were configured for
continuous mode. It does not count down from TBR(max) to zero.

Figure 13--7. Up/Down Mode

0h

TBCL0

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TBCLR bit must be used to clear the direction. The TBCLR bit
also clears the TBR value and the clock divider.

In up/down mode, the TBCCR0 CCIFG interrupt flag and the TBIFG interrupt
flag are set only once during the period, separated by 1/2 the timer period. The
TBCCR0 CCIFG interrupt flag is set when the timer counts from TBCL0--1 to
TBCL0,andTBIFG is setwhen the timer completes countingdown from0001h
to 0000h. Figure 13--8 shows the flag set cycle.

Figure 13--8. Up/Down Mode Flag Setting

TBCL0--1 TBCL0 TBCL0--1

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

TBCL0--2 1h 0h 1h

Up/Down

Timer_B Operation

13-10 Timer_B

Changing the Value of Period Register TBCL0

When changing TBCL0 while the timer is running, and counting in the down
direction, and when the TBCL0 load event is immediate, the timer continues
its descent until it reaches zero. The value in TBCCR0 is latched into TBCL0
immediately; however, the new period takes effect after the counter counts
down to zero.

If the timer is counting in the up direction when the new period is latched into
TBCL0, and the newperiod is greater than or equal to the old period, or greater
than the current count value, the timer counts up to the new period before
counting down. When the timer is counting in the up direction, and the new
period is less than the current count value when TBCL0 is loaded, the timer
begins counting down. However, one additional count may occur before the
counter begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between
output signals (see section Timer_B Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 13--9 the tdead is:

tdead = ttimer × (TBCL1 -- TBCL3)

With: tdead Time during which both outputs need to be inactive

ttimer Cycle time of the timer clock

TBCLx Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead
times.

Figure 13--9. Output Unit in Up/Down Mode

TBIFG

0h

TBR(max)

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TBCL0

TBCL1

EQU1 TBIFG Interrupt EventsEQU1
EQU0

EQU1 EQU1
EQU0

TBCL3

EQU3 EQU3EQU3 EQU3

Dead Time

Timer_B Operation

13-11Timer_B

13.2.4 Capture/Compare Blocks

Three or seven identical capture/compare blocks, TBCCRx, are present in
Timer_B. Any of the blocks may be used to capture the timer data or to
generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
Thecapture inputsCCIxAandCCIxBareconnected toexternal pinsor internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture is performed:

- The timer value is copied into the TBCCRx register

- The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x2xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock.Setting theSCSbit to synchronize the capture signalwith the timer clock
is recommended. This is illustrated in Figure 13--10.

Figure 13--10. Capture Signal (SCS=1)

n--2 n--1

Timer Clock

Timer

Set TBCCRx CCIFG

n+1 n+3 n+4

CCI

Capture

n+2n

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 13--11. COV must
be reset with software.

Timer_B Operation

13-12 Timer_B

Figure 13--11.Capture Cycle

Second
Capture
Taken
COV = 1

Capture
Taken

No
Capture
Taken

Read
Taken
Capture

Clear Bit COV

in Register TBCCTLx

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

Capture

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets bit CCIS1=1 and toggles bit CCIS0 to switch
the capture signal between VCC and GND, initiating a capture each time
CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TBCCTLx ; Setup TBCCTLx

XOR #CCIS0,&TBCCTLx ; TBCCTLx = TBR

Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TBR counts to the value in a TBCLx:

- Interrupt flag CCIFG is set

- Internal signal EQUx = 1

- EQUx affects the output according to the output mode

Timer_B Operation

13-13Timer_B

Compare Latch TBCLx

The TBCCRx compare latch, TBCLx, holds the data for the comparison to the
timer value in compare mode. TBCLx is buffered by TBCCRx. The buffered
compare latch gives the user control over when a compare period updates.
The user cannot directly access TBCLx. Compare data is written to each
TBCCRx and automatically transferred to TBCLx. The timing of the transfer
from TBCCRx to TBCLx is user-selectable with the CLLDx bits as described
in Table 13--2.

Table 13--2.TBCLx Load Events

CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when
TBCCRx is written to.

01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0

10 New data is transferred from TBCCRx to TBCLx when TBR counts to 0
for up and continuous modes. New data is transferred to from TBCCRx
to TBCLx when TBR counts to the old TBCL0 value or to 0 for up/down
mode

11 New data is transferred from TBCCRx to TBCLx when TBR
counts to the old TBCLx value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates
with the TBCLGRPx bits. When using groups, the CLLDx bits of the lowest
numbered TBCCRx in the group determine the load event for each compare
latch of the group, except when TBCLGRP = 3, as shown in Table 13--3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the
CLLDx bits of the controlling TBCCRx are set to zero, all compare latches
update immediatelywhen their correspondingTBCCRx iswritten; no compare
latches are grouped.

Twoconditionsmust exist for the compare latches to be loadedwhengrouped.
First, all TBCCRx registers of the group must be updated, even when new
TBCCRx data = old TBCCRx data. Second, the load event must occur.

Table 13--3.Compare Latch Operating Modes

TBCLGRPx Grouping Update Control

00 None Individual

01 TBCL1+TBCL2
TBCL3+TBCL4
TBCL5+TBCL6

TBCCR1
TBCCR3
TBCCR5

10 TBCL1+TBCL2+TBCL3
TBCL4+TBCL5+TBCL6

TBCCR1
TBCCR4

11 TBCL0+TBCL1+TBCL2+
TBCL3+TBCL4+TBCL5+TBCL6

TBCCR1

Timer_B Operation

13-14 Timer_B

13.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operatingmodes that generate signals based on theEQU0andEQUxsignals.
The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin,
and when the pin is pulled high, all Timer_B outputs are in a high-impedance
state.

Output Modes

The output modes are defined by the OUTMODx bits and are described in
Table 13--4. TheOUTx signal is changedwith the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQU0.

Table 13--4.Output Modes

OUTMODx Mode Description

000 Output The output signal OUTx is defined by the
OUTx bit. The OUTx signal updates
immediately when OUTx is updated.

001 Set The output is set when the timer counts
to the TBCLx value. It remains set until a
reset of the timer, or until another output
mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer
counts to the TBCLx value. It is reset
when the timer counts to the TBCL0
value.

011 Set/Reset The output is set when the timer counts
to the TBCLx value. It is reset when the
timer counts to the TBCL0 value.

100 Toggle The output is toggled when the timer
counts to the TBCLx value. The output
period is double the timer period.

101 Reset The output is reset when the timer counts
to the TBCLx value. It remains reset until
another output mode is selected and
affects the output.

110 Toggle/Set The output is toggled when the timer
counts to the TBCLx value. It is set when
the timer counts to the TBCL0 value.

111 Reset/Set The output is reset when the timer counts
to the TBCLx value. It is set when the
timer counts to the TBCL0 value.

Timer_B Operation

13-15Timer_B

Output Example—Timer in Up Mode

TheOUTxsignal is changedwhen the timer countsup to theTBCLx value, and
rolls fromTBCL0 to zero, dependingon theoutputmode.Anexample is shown
in Figure 13--12 using TBCL0 and TBCL1.

Figure 13--12. Output Example—Timer in Up Mode

0h

TBR(max)

EQU0
TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 EQU0
TBIFG

EQU1 EQU0
TBIFG Interrupt Events

Timer_B Operation

13-16 Timer_B

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TBCLx and TBCL0
values, depending on the output mode, An example is shown in Figure 13--13
using TBCL0 and TBCL1.

Figure 13--13. Output Example—Timer in Continuous Mode

0h

TBR(max)

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 TBIFG EQU1 EQU0 Interrupt EventsEQU0

Timer_B Operation

13-17Timer_B

Output Example - Timer in Up/Down Mode

The OUTx signal changes when the timer equals TBCLx in either count
direction and when the timer equals TBCL0, depending on the output mode.
An example is shown in Figure 13--14 using TBCL0 and TBCL3.

Figure 13--14. Output Example—Timer in Up/Down Mode

0h

TBR(max)

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL3

EQU3
TBIFG Interrupt EventsEQU3

EQU0
EQU3 EQU3

EQU0

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safemethod for switching between output modes is to use output mode 7 as
a transition state:

BIS #OUTMOD_7,&TBCCTLx ; Set output mode=7

BIC #OUTMODx,&TBCCTLx ; Clear unwanted bits

Timer_B Operation

13-18 Timer_B

13.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:

- TBCCR0 interrupt vector for TBCCR0 CCIFG

- TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the
associated TBCCRx register. In compare mode, any CCIFG flag is set when
TBR counts to theassociatedTBCLx value.Softwaremayalso set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TBCCR0 Interrupt Vector

The TBCCR0 CCIFG flag has the highest Timer_B interrupt priority and has
a dedicated interrupt vector as shown in Figure 13--15. The TBCCR0 CCIFG
flag is automatically reset when the TBCCR0 interrupt request is serviced.

Figure 13--15. Capture/Compare TBCCR0 Interrupt Flag

D
Set

Q IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

TBIV, Interrupt Vector Generator

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCR0 CCIFG) are
prioritized and combined to source a single interrupt vector. The interrupt
vector register TBIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt (excluding TBCCR0 CCIFG) generates
a number in the TBIV register (see register description). This number can be
evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled Timer_B interrupts do not affect the
TBIV value.

Any access, read orwrite, of the TBIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TBCCR1 and TBCCR2CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TBCCR2
CCIFG flag will generate another interrupt.

Timer_B Operation

13-19Timer_B

TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV and the
handling overhead. The TBIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for
each instruction. The software overhead for different interrupt sources
includes interrupt latency and return-from-interrupt cycles, but not the task
handling itself. The latencies are:

- Capture/compare block CCR0 11 cycles
- Capture/compare blocks CCR1 to CCR6 16 cycles
- Timer overflow TBIFG 14 cycles

The following software example shows the recommended use of TBIV for
Timer_B3.

; Interrupt handler for TBCCR0 CCIFG. Cycles

CCIFG_0_HND

... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TBIFG, TBCCR1 and TBCCR2 CCIFG.

TB_HND ... ; Interrupt latency 6

ADD &TBIV,PC ; Add offset to Jump table 3

RETI ; Vector 0: No interrupt 5

JMP CCIFG_1_HND ; Vector 2: Module 1 2

JMP CCIFG_2_HND ; Vector 4: Module 2 2

RETI ; Vector 6

RETI ; Vector 8

RETI ; Vector 10

RETI ; Vector 12

TBIFG_HND ; Vector 14: TIMOV Flag

... ; Task starts here

RETI 5

CCIFG_2_HND ; Vector 4: Module 2

... ; Task starts here

RETI ; Back to main program 5

; The Module 1 handler shows a way to look if any other

; interrupt is pending: 5 cycles have to be spent, but

; 9 cycles may be saved if another interrupt is pending

CCIFG_1_HND ; Vector 6: Module 3

... ; Task starts here

JMP TB_HND ; Look for pending ints 2

Timer_B Registers

13-20 Timer_B

13.3 Timer_B Registers

The Timer_B registers are listed in Table 13--5:

Table 13--5.Timer_B Registers

Register Short Form Register Type Address Initial State

Timer_B control TBCTL Read/write 0180h Reset with POR

Timer_B counter TBR Read/write 0190h Reset with POR

Timer_B capture/compare control 0 TBCCTL0 Read/write 0182h Reset with POR

Timer_B capture/compare 0 TBCCR0 Read/write 0192h Reset with POR

Timer_B capture/compare control 1 TBCCTL1 Read/write 0184h Reset with POR

Timer_B capture/compare 1 TBCCR1 Read/write 0194h Reset with POR

Timer_B capture/compare control 2 TBCCTL2 Read/write 0186h Reset with POR

Timer_B capture/compare 2 TBCCR2 Read/write 0196h Reset with POR

Timer_B capture/compare control 3 TBCCTL3 Read/write 0188h Reset with POR

Timer_B capture/compare 3 TBCCR3 Read/write 0198h Reset with POR

Timer_B capture/compare control 4 TBCCTL4 Read/write 018Ah Reset with POR

Timer_B capture/compare 4 TBCCR4 Read/write 019Ah Reset with POR

Timer_B capture/compare control 5 TBCCTL5 Read/write 018Ch Reset with POR

Timer_B capture/compare 5 TBCCR5 Read/write 019Ch Reset with POR

Timer_B capture/compare control 6 TBCCTL6 Read/write 018Eh Reset with POR

Timer_B capture/compare 6 TBCCR6 Read/write 019Eh Reset with POR

Timer_B interrupt vector TBIV Read only 011Eh Reset with POR

Timer_B Registers

13-21Timer_B

Timer_B Control Register TBCTL

15 14 13 12 11 10 9 8

Unused TBCLGRPx CNTLx Unused TBSSELx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TBCLR TBIE TBIFG

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) w--(0) rw--(0) rw--(0)

Unused Bit 15 Unused

TBCLGRP Bit
14-13

TBCLx group
00 Each TBCLx latch loads independently
01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update)

TBCL3+TBCL4 (TBCCR3 CLLDx bits control the update)
TBCL5+TBCL6 (TBCCR5 CLLDx bits control the update)
TBCL0 independent

10 TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update)
TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update)
TBCL0 independent

11 TBCL0+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6
(TBCCR1 CLLDx bits control the update)

CNTLx Bits
12-11

Counter Length
00 16-bit, TBR(max) = 0FFFFh
01 12-bit, TBR(max) = 0FFFh
10 10-bit, TBR(max) = 03FFh
11 8-bit, TBR(max) = 0FFh

Unused Bit 10 Unused

TBSSELx Bits
9-8

Timer_B clock source select.
00 TBCLK
01 ACLK
10 SMCLK
11 Inverted TBCLK

IDx Bits
7-6

Input divider. These bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits
5-4

Mode control. Setting MCx = 00h when Timer_B is not in use conserves
power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TBCL0
10 Continuous mode: the timer counts up to the value set by CNTLx
11 Up/down mode: the timer counts up to TBCL0 and down to 0000h

Timer_B Registers

13-22 Timer_B

Unused Bit 3 Unused

TBCLR Bit 2 Timer_B clear. Setting this bit resets TBR, the clock divider, and the count
direction. The TBCLR bit is automatically reset and is always read as zero.

TBIE Bit 1 Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

TBIFG Bit 0 Timer_B interrupt flag.
0 No interrupt pending
1 Interrupt pending

TBR, Timer_B Register

15 14 13 12 11 10 9 8

TBRx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

TBRx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

TBRx Bits
15-0

Timer_B register. The TBR register is the count of Timer_B.

Timer_B Registers

13-23Timer_B

TBCCRx, Timer_B Capture/Compare Register x

15 14 13 12 11 10 9 8

TBCCRx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

TBCCRx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

TBCCRx Bits
15-0

Timer_B capture/compare register.
Compare mode: Compare data is written to each TBCCRx and automatically
transferred to TBCLx. TBCLx holds the data for the comparison to the timer
value in the Timer_B Register, TBR.
Capture mode: The Timer_B Register, TBR, is copied into the TBCCRx
register when a capture is performed.

Timer_B Registers

13-24 Timer_B

TBCCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS CLLDx CAP

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) r--(0) rw--(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG

rw--(0) rw--(0) rw--(0) rw--(0) r rw--(0) rw--(0) rw--(0)

CMx Bit
15-14

Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges

CCISx Bit
13-12

Capture/compare input select. These bits select the TBCCRx input signal.
See the device-specific data sheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture

CLLDx Bit
10-9

Compare latch load. These bits select the compare latch load event.
00 TBCLx loads on write to TBCCRx
01 TBCLx loads when TBR counts to 0
10 TBCLx loads when TBR counts to 0 (up or continuous mode)

TBCLx loads when TBR counts to TBCL0 or to 0 (up/down mode)
11 TBCLx loads when TBR counts to TBCLx

CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode

OUTMODx Bits
7-5

Output mode. Modes 2, 3, 6, and 7 are not useful for TBCL0 because EQUx
= EQU0.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set

Timer_B Registers

13-25Timer_B

CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

Timer_B Registers

13-26 Timer_B

TBIV, Timer_B Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TBIVx 0

r0 r0 r0 r0 r--(0) r--(0) r--(0) r0

TBIVx Bits
15-0

Timer_B interrupt vector value

TBIV Contents Interrupt Source Interrupt Flag
Interrupt
Priority

00h No interrupt pending --

02h Capture/compare 1 TBCCR1 CCIFG Highest

04h Capture/compare 2 TBCCR2 CCIFG

06h Capture/compare 3† TBCCR3 CCIFG

08h Capture/compare 4† TBCCR4 CCIFG

0Ah Capture/compare 5† TBCCR5 CCIFG

0Ch Capture/compare 6† TBCCR6 CCIFG

0Eh Timer overflow TBIFG Lowest
† Not available on all devices

14-1

Universal Serial Interface

The Universal Serial Interface (USI) module provides SPI and I2C serial
communication with one hardware module. This chapter discusses both
modes. The USI module is implemented in the MSP430x20xx devices.

Topic Page

14.1 USI Introduction 14-2. .

14.2 USI Operation 14-5. .

14.3 USI Registers 14-13. .

Chapter 14

14-2

14.1 USI Introduction

TheUSImodule provides the basic functionality to support synchronous serial
communication. In its simplest form, it is an 8- or 16-bit shift register that can
be used to output data streams, or when combinedwithminimal software, can
implement serial communication. In addition, the USI includes built-in
hardware functionality to ease the implementation of SPI and I2C
communication. TheUSImodule also includes interrupts to further reduce the
necessary software overhead for serial communication and to maintain the
ultralow-power capabilities of the MSP430.

The USI module features include:

- Three-wire SPI mode support

- I2C mode support

- Variable data length

- Slave operation in LPM4 -- no internal clock required

- Selectable MSB or LSB data order

- START and STOP detection for I2C mode with automatic SCL control

- Arbitration lost detection in master mode

- Programmable clock generation

- Selectable clock polarity and phase control

Figure 14--1 shows the USI module in SPI mode. Figure 14--2 shows the USI
module in I2C mode.

14-3

Figure 14--1. USI Block Diagram: SPI Mode

8/16 Bit Shift Register

USIGE USIOE

SDI

SCLK

Set USIIFG

0

1

USICKPL

USICNTx

Shift Clock

USICKPH

USISSELx

SMCLK

SMCLK

SCLK

ACLK

000

001

010

011

TA1

TA2

USISWCLK

TA0

100

101

110

111

Clock Divider
/1/2/4/8... /128

USIDIVx

0

1 USICLK

HOLD

USIIFG

USIMST

SDO

USI16B

D

G

Q

EN

ENUSISWRST

USILSB

USIPE6

USIPE7

USIPE5

USISR

Bit Counter

USIIFGCC

USII2C = 0

14-4

Figure 14--2. USI Block Diagram: I2C Mode

8--Bit Shift Register

USISRL

MSB LSB

USIGE

D

G

Q

SDA

D Q Set USIAL,
Clear USIOE

SCL

USIIFG

USIMST

START
Detect

Set USISTTIFG

Shift Clock

0

1

Set USIIFG

USICNTx

USICKPL
USICKPH

USIOE

STOP
Detect

Set USISTP

USISTTIFG

USISSELx

SMCLK

SMCLK

SCLK

ACLK

000

001

010

011

TA1

TA2

SWCLK

TA0

100

101

110

111

Clock Divider
/1/2/4/8... /128

USIDIVx

0

1

USICLK
HOLD

SCL Hold

EN

ENUSISWRST

USISCLREL

USIPE7

USIPE6

Bit Counter

USIIFGCC

USII2C = 1
USICKPL = 1
USICKPH = 0
USILSB = 0
USI16B = 0

14-5

14.2 USI Operation

TheUSImodule is a shift register and bit counter that includes logic to support
SPI and I2C communication. The USI shift register, USISR, is directly
accessible by software and contains the data to be transmitted or the data that
has been received.

The bit counter counts the number of sampled bits and sets the USI interrupt
flag USIIFGwhen the USICNTx value becomes zero - either by decrementing
or by directly writing zero to the USICNTx bits. Writing USICNTx with a value
> 0 automatically clearsUSIIFGwhenUSIIFGCC=0, otherwiseUSIIFG is not
affected. TheUSICNTx bits stop decrementingwhen they become0. Theywill
not underflow to 0FFh.

Both the counter and the shift register are driven by the same shift clock. On
a rising shift clock edge, USICNTx decrements and USISR samples the next
bit input. The latch connected to the shift register’s output delays the change
of the output to the falling edge of shift clock. It can be made transparent by
setting the USIGE bit. This setting will immediately output the MSB or LSB of
USISR to the SDO pin, depending on the USILSB bit.

14.2.1 USI Initialization

While the USI software reset bit, USISWRST, is set, the flags USIIFG,
USISTTIFG, USISTP, and USIAL will be held in their reset state. USISR and
USICNTx are not clocked and their contents are not affected. In I2Cmode, the
SCL line is also released to the idle state by the USI hardware.

To activate USI port functionality the corresponding USIPEx bits in the USI
control register must be set. This will select the USI function for the pin and
maintains the PxIN and PxIFG functions for the pin as well. With this feature,
the port input levels can be read via the PxIN register by software and the
incoming data stream can generate port interrupts on data transitions. This is
useful, for example, to generate a port interrupt on a START edge.

14-6

14.2.2 USI Clock Generation

The USI clock generator contains a clock selection multiplexer, a divider, and
the ability to select the clock polarity as shown in the block diagrams
Figure 15--1 and Figure 14--2.

The clock source can be selected from the internal clocks ACLK or SMCLK,
from an external clock SCLK, as well as from the capture/compare outputs of
Timer_A. In addition, it is possible to clock the module by software using the
USISWCLK bit when USISSELx = 100.

The USIDIVx bits can be used to divide the selected clock by a power of 2 up
to 128. The generated clock, USICLK, is stopped when USIIFG = 1 or when
the module operates in slave mode.

TheUSICKPLbit is used to select thepolarity ofUSICLK.WhenUSICKPL = 0,
the inactive level of USICLK is low. When USICKPL = 1 the inactive level of
USICLK is high.

14.2.3 SPI Mode

The USI module is configured in SPI mode when USII2C = 0. Control bit
USICKPLselects the inactive level of theSPI clockwhileUSICKPHselects the
clock edge on which SDO is updated and SDI is sampled. Figure 14--3 shows
the clock/data relationship for an 8-bit, MSB-first transfer. USIPE5, USIPE6,
and USIPE7 must be set to enable the SCLK, SDO, and SDI port functions.

Figure 14--3. SPI Timing

USI
CKPH

USI
CKPL USICNTx

SCLK

SCLK

SCLK

SCLK

SDO/SDI

SDO/SDI

USIIFG

0

1

0

0

01

1 1

0 X

1 X

MSB

MSB

8 7 6 5 4 3 2 1

LSB

LSB

00

Load USICNTx

14-7

SPI Master Mode

TheUSImodule is configured as SPImaster by setting themaster bit USIMST
and clearing the I2C bit USII2C. Since the master provides the clock to the
slave(s) an appropriate clock source needs to be selected and SCLK
configured as output.WhenUSIPE5 = 1, SCLK is automatically configured as
an output.

When USIIFG = 0 and USICNTx > 0, clock generation is enabled and the
master will begin clocking in/out data using USISR.

Received data must be read from the shift register before new data is written
into it for transmission. In a typical application, the USI software will read
received data from USISR, write new data to be transmitted to USISR, and
enable the module for the next transfer by writing the number of bits to be
transferred to USICNTx.

SPI Slave Mode

The USI module is configured as SPI slave by clearing the USIMST and the
USII2C bits. In this mode, whenUSIPE5 = 1 SCLK is automatically configured
as an input and the USI receives the clock externally from the master.

If the USI is to transmit data, the shift register must be loaded with the data
before the master provides the first clock edge. The output must be enabled
by setting USIOE. When USICKPH = 1, the MSB will be visible on SDO
immediately after loading the shift register.

The SDO pin can be disabled by clearing the USIOE bit. This is useful if the
slave is not addressed in an environment with multiple slaves on the bus.

Once all bits are received, the data must be read from USISR and new data
loaded into USISR before the next clock edge from the master. In a typical
application, after receiving data, theUSI softwarewill read theUSISR register,
write new data to USISR to be transmitted, and enable the USI module for the
next transfer by writing the number of bits to be transferred to USICNTx.

14-8

USISR Operation

The 16-bit USISR is made up of two 8-bit registers, USISRL and USISRH.
Control bit USI16B selects the number of bits of USISR that are used for data
transmit and receive. When USI16B = 0, only the lower 8 bits, USISRL, are
used.

To transfer < 8 bits, the datamust be loaded intoUSISRL such that unusedbits
are not shifted out. The data must be MSB- or LSB-aligned depending on
USILSB. Figure 14--4 shows an example of 7-bit data handling.

Figure 14--4. Data adjustments for 7-bit SPI Data

Transmit data in memory

USISRL

Received data in memory

Transmit data in memory

USISRL

Received data in memory

7-bit SPI Mode, MSB first 7-bit SPI Mode, LSB first

USISRL USISRL

TX TX

RXRX

Shift with software Move

Move Shift with software

7-bit Data 7-bit Data

7-bit Data7-bit Data

When USI16B = 1, all 16 bits are used for data handling. When using USISR
to access both USISRL and USISRH, the data needs to be properly adjusted
when < 16 bits are used in the same manner as shown in Figure 14--4.

SPI Interrupts

There is one interrupt vector associatedwith theUSImodule, andone interrupt
flag, USIIFG, relevant for SPI operation. When USIIE and the GIE bit are set,
the interrupt flag will generate an interrupt request.

USIIFG is set when USICNTx becomes zero, either by counting or by directly
writing 0 to the USICNTx bits. USIIFG is cleared by writing a value > 0 to the
USICNTx bits when USIIFGCC = 0, or directly by software.

14-9

14.2.4 I2C Mode

TheUSImodule is configured in I2CmodewhenUSII2C=1,USICKPL=1, and
USICKPH = 0. For I2C data compatibility, USILSB and USI16B must be
cleared. USIPE6 and USIPE7 must be set to enable the SCL and SDA port
functions.

I2C Master Mode

To configure the USI module as an I2C master the USIMST bit must be set. In
master mode, clocks are generated by the USI module and output to the SCL
line while USIIFG = 0. When USIIFG = 1, the SCL will stop at the idle, or high,
level. Multi-master operation is supported as described in the Arbitration
section.

The master supports slaves that are holding the SCL line low only when
USIDIVx > 0. When USIDIVx is set to /1 clock division (USIDIVx = 0),
connected slaves must not hold the SCL line low during data transmission.
Otherwise the communication may fail.

I2C Slave Mode

To configure the USI module as an I2C slave the USIMST bit must be cleared.
In slave mode, SCL is held low if USIIFG = 1, USISTTIFG = 1 or if
USICNTx = 0.USISTTIFGmust be clearedby softwareafter the slave is setup
and ready to receive the slave address from a master.

I2C Transmitter

In transmitter mode, data is first loaded into USISRL. The output is enabled
by setting USIOE and the transmission is started by writing 8 into USICNTx.
This clears USIIFG and SCL is generated in master mode or released from
being held low in slavemode. After the transmission of all 8 bits, USIIFG is set,
and the clock signal on SCL is stopped in master mode or held low at the next
low phase in slave mode.

To receive the I2Cacknowledgementbit, theUSIOEbit is clearedwith software
and USICNTx is loaded with 1. This clears USIIFG and one bit is received into
USISRL.WhenUSIIFGbecomesset again, theLSBofUSISRL is the received
acknowledge bit and can be tested in software.

; Receive ACK/NACK

BIC.B #USIOE,&USICTL0 ; SDA input

MOV.B #01h,&USICNT ; USICNTx = 1

TEST_USIIFG

BIT.B #USIIFG,&USICTL1 ; Test USIIFG

JZ TEST_USIIFG

BIT.B #01h,&USISRL ; Test received ACK bit

JNZ HANDLE_NACK ; Handle if NACK

...Else, handle ACK

14-10

I2C Receiver

In I2C receiver mode the output must be disabled by clearing USIOE and the
USI module is prepared for reception by writing 8 into USICNTx. This clears
USIIFG andSCL is generated inmastermode or released frombeing held low
in slave mode. The USIIFG bit will be set after 8 clocks. This stops the clock
signal on SCL in master mode or holds SCL low at the next low phase in slave
mode.

To transmit an acknowledge or no-acknowledge bit, the MSB of the shift
register is loaded with 0 or 1, the USIOE bit is set with software to enable the
output, and 1 is written to the USICNTx bits. As soon as the MSB bit is shifted
out, USIIFG will be become set and the module can be prepared for the
reception of the next I2C data byte.

; Generate ACK

BIS.B #USIOE,&USICTL0 ; SDA output

MOV.B #00h,&USISRL ; MSB = 0

MOV.B #01h,&USICNT ; USICNTx = 1

TEST_USIIFG

BIT.B #USIIFG,&USICTL1 ; Test USIIFG

JZ TEST_USIIFG

...continue...

; Generate NACK

BIS.B #USIOE,&USICTL0 ; SDA output

MOV.B #0FFh,&USISRL ; MSB = 1

MOV.B #01h,&USICNT ; USICNTx = 1

TEST_USIIFG

BIT.B #USIIFG,&USICTL1 ; Test USIIFG

JZ TEST_USIIFG

...continue...

START Condition

A START condition is a high-to-low transition on SDA while SCL is high. The
START condition can be generated by setting the MSB of the shift register to
0. Setting the USIGE and USIOE bits makes the output latch transparent and
theMSBof the shift register is immediately presented toSDAand pulls the line
low. Clearing USIGE resumes the clocked-latch function and holds the 0 on
SDA until data is shifted out with SCL.

; Generate START

MOV.B #000h,&USISRL ; MSB = 0

BIS.B #USIGE+USIOE,&USICTL0 ; Latch/SDA output enabled

BIC.B #USIGE,&USICTL0 ; Latch disabled

...continue...

14-11

STOP Condition

ASTOPcondition is a low-to-high transition onSDAwhileSCL is high. To finish
the acknowledgment bit and pull SDA low to prepare the STOP condition
generation requires clearing the MSB in the shift register and loading 1 into
USICNTx. This will generate a low pulse on SCL and during the low phase
SDA is pulled low. SCL stops in the idle, or high, state since the module is in
mastermode. To generate the low-to-high transition, theMSB is set in the shift
register and USICNTx is loaded with 1. Setting the USIGE and USIOE bits
makes the output latch transparent and the MSB of USISRL releases SDA to
the idle state. Clearing USIGE stores the MSB in the output latch and the
output is disabled by clearing USIOE. SDA remains high until a START
condition is generated because of the external pullup.

; Generate STOP

BIS.B #USIOE,&USICTL0 ; SDA=output

MOV.B #000H,&USISRL ; MSB = 0

MOV.B #001H,&USICNT ; USICNT = 1 for one clock

TEST_USIIFG

BIT.B #USIIFG,&USICTL1 ; Test USIIFG

JZ TEST_USIIFG ;

MOV.B #0FFH,&USISRL ; USISRL = 1 to drive SDA high

BIS.B #USIGE,&USICTL0 ; Transparent latch enabled

BIC.B #USIGE+USIOE,&USICTL; Latch/SDA output disabled

...continue...

Releasing SCL

Setting the USISCLREL bit will release SCL if it is being held low by the USI
module without requiring USIIFG to be cleared. The USISCLREL bit will be
cleared automatically if a START condition is received and the SCL line will be
held low on the next clock.

In slave operation this bit should be used to prevent SCL from being held low
when the slave has detected that it was not addressed by the master. On the
next START condition USISCLREL will be cleared and the USISTTIFGwill be
set.

14-12

Arbitration

The USI module can detect a lost arbitration condition in multi-master I2C
systems. The I2C arbitration procedure uses the data presented on SDA by
the competing transmitters. The first master transmitter that generates a logic
high loses arbitration to the opposing master generating a logic low. The loss
of arbitration is detected in the USI module by comparing the value presented
to the bus and the value read from the bus. If the values are not equal
arbitration is lost and the arbitration lost flag, USIAL, is set. This also clears the
output enable bit USIOE and the USI module no longer drives the bus. In this
case, user software must check the USIAL flag together with USIIFG and
configure the USI to slave receiver when arbitration is lost. The USIAL flag
must be cleared by software.

To prevent other faster masters from generating clocks during the arbitration
procedure SCL is held low if another master on the bus drives SCL low and
USIIFG or USISTTIFG is set, or if USICNTx = 0.

I2C Interrupts

There is one interrupt vector associatedwith theUSImodulewith two interrupt
flags relevant for I2C operation, USIIFG and USISTTIFG. Each interrupt flag
has its own interrupt enable bit, USIIE and USISTTIE. When an interrupt is
enabled, and the GIE bit is set, a set interrupt flag will generate an interrupt
request.

USIIFG is set when USICNTx becomes zero, either by counting or by directly
writing 0 to the USICNTx bits. USIIFG is cleared by writing a value > 0 to the
USICNTx bits when USIIFGCC = 0, or directly by software.

USISTTIFG is set when a START condition is detected. The USISTTIFG flag
must be cleared by software.

The reception of a STOP condition is indicated with the USISTP flag but there
is no interrupt function associated with the USISTP flag. USISTP is cleared by
writing a value > 0 to the USICNTx bits when USIIFGCC = 0 or directly by
software.

14-13

14.3 USI Registers

The USI registers are listed in Table 14--1.

Table 14--1.USI Registers

Register Short Form Register Type Address Initial State

USI control register 0 USICTL0 Read/write 078h 01h with PUC

USI control register 1 USICTL1 Read/write 079h 01h with PUC

USI clock control USICKCTL Read/write 07Ah Reset with PUC

USI bit counter USICNT Read/write 07Bh Reset with PUC

USI low byte shift register USISRL Read/write 07Ch Unchanged

USI high byte shift register USISRH Read/write 07Dh Unchanged

The USI registers can be accessed with word instructions as shown in
Table 14--2.

Table 14--2.Word Access to USI Registers

Register Short Form
High--Byte
Register

Low--Byte
Register Address

USI control register USICTL USICTL1 USICTL0 078h

USI clock and counter control register USICCTL USICNT USICKCTL 07Ah

USI shift register USISR USISRH USISRL 07Ch

14-14

USICTL0, USI Control Register 0

7 6 5 4 3 2 1 0

USIPE7 USIPE6 USIPE5 USILSB USIMST USIGE USIOE USISWRST

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--1

USIPE7 Bit 7 USI SDI/SDA port enable
Input in SPI mode, input or open drain output in I2C mode.
0 USI function disabled
1 USI function enabled

USIPE6 Bit 6 USI SDO/SCL port enable
Output in SPI mode, input or open drain output in I2C mode.
0 USI function disabled
1 USI function enabled

USIPE5 Bit 5 USI SCLK port enable
Input in SPI slave mode, or I2C mode, output in SPI master mode.
0 USI function disabled
1 USI function enabled

USILSB Bit 4 LSB first select. This bit controls the direction of the receive and transmit
shift register.
0 MSB first
1 LSB first

USIMST Bit 3 Master select
0 Slave mode
1 Master mode

USIGE Bit 2 Output latch control
0 Output latch enable depends on shift clock
1 Output latch always enabled and transparent

USIOE Bit 1 Data output enable
0 Output disabled
1 Output enabled

USISWRST Bit 0 USI software reset
0 USI released for operation.
1 USI logic held in reset state.

14-15

USICTL1, USI Control Register 1

7 6 5 4 3 2 1 0

USICKPH USII2C USISTTIE USIIE USIAL USISTP USISTTIFG USIIFG

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--1

USICKPH Bit 7 Clock phase select
0 Data is changed on the first SCLK edge and captured on the

following edge.
1 Data is captured on the first SCLK edge and changed on the

following edge.
USII2C Bit 6 I2C mode enable

0 I2C mode disabled
1 I2C mode enabled

USISTTIE Bit 5 START condition interrupt-enable
0 Interrupt on START condition disabled
1 Interrupt on START condition enabled

USIIE Bit 4 USI counter interrupt enable
0 Interrupt disabled
1 Interrupt enabled

USIAL Bit 3 Arbitration lost
0 No arbitration lost condition
1 Arbitration lost

USISTP Bit 2 STOP condition received. USISTP is automatically cleared if USICNTx is
loaded with a value > 0 when USIIFGCC = 0.
0 No STOP condition received
1 STOP condition received

USISTTIFG Bit 1 START condition interrupt flag
0 No START condition received. No interrupt pending.
1 START condition received. Interrupt pending.

USIIFG Bit 0 USI counter interrupt flag. Set when the USICNTx = 0. Automatically
cleared if USICNTx is loaded with a value > 0 when USIIFGCC = 0.
0 No interrupt pending
1 Interrupt pending

14-16

USICKCTL, USI Clock Control Register

7 6 5 4 3 2 1 0

USIDIVx USISSELx USICKPL USISWCLK

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

USIDIVx Bits
7--5

Clock divider select
000 Divide by 1
001 Divide by 2
010 Divide by 4
011 Divide by 8
100 Divide by 16
101 Divide by 32
110 Divide by 64
111 Divide by 128

USISSELx Bits
4--2

Clock source select. Not used in slave mode.
000 SCLK (Not used in SPI mode)
001 ACLK
010 SMCLK
011 SMCLK
100 USISWCLK bit
101 TACCR0
110 TACCR1
111 TACCR2 (Reserved on MSP430F20xx devices)

USICKPL Bit 1 Clock polarity select
0 Inactive state is low
1 Inactive state is high

USISWCLK Bit 0 Software clock
0 Input clock is low
1 Input clock is high

14-17

USICNT, USI Bit Counter Register

7 6 5 4 3 2 1 0

USISCLREL USI16B USIIFGCC USICNTx

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

USISCLREL Bit 7 SCL release. The SCL line is released from low to idle. USISCLREL is
cleared if a START condition is detected.
0 SCL line is held low if USIIFG is set
1 SCL line is released

USI16B Bit 6 16-bit shift register enable
0 8-bit shift register mode. Low byte register USISRL is used.
1 16-bit shift register mode. Both high and low byte registers USISRL

and USISRH are used. USISR addresses all 16 bits simultaneously.

USIIFGCC Bit 5 USI interrupt flag clear control. When USIIFGCC = 1 the USIIFG will not be
cleared automatically when USICNTx is written with a value > 0.
0 USIIFG automatically cleared on USICNTx update
1 USIIFG is not cleared automatically

USICNTx Bits
4--0

USI bit count
The USICNTx bits set the number of bits to be received or transmitted.

14-18

USISRL, USI Low Byte Shift Register

7 6 5 4 3 2 1 0

USISRLx

rw rw rw rw rw rw rw rw

USISRLx Bits
7--0

Contents of the USI low byte shift register

USISRH, USI High Byte Shift Register

7 6 5 4 3 2 1 0

USISRHx

rw rw rw rw rw rw rw rw

USISRHx Bits
7--0

Contents of the USI high byte shift register. Ignored when USI16B = 0.

15-1Universal Serial Communication Interface, UART Mode

Universal Serial Communication Interface,
UART Mode

The universal serial communication interface (USCI) supports multiple serial
communicationmodeswith onehardwaremodule. This chapter discusses the
operation of the asynchronous UART mode.

Topic Page

15.1 USCI Overview 15-2. .

15.2 USCI Introduction: UART Mode 15-3. .

15.3 USCI Operation: UART Mode 15-5. .

15.4 USCI Registers: UART Mode 15-27. .

Chapter 15

USCI Overview

15-2 Universal Serial Communication Interface, UART Mode

15.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different fromUSCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_Amodules,
they are named USCI_A0 and USCI_A1. See the device-specific data sheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

- UART mode
- Pulse shaping for IrDA communications
- Automatic baud rate detection for LIN communications
- SPI mode

The USCI_Bx modules support:

- I2C mode
- SPI mode

USCI Introduction: UART Mode

15-3Universal Serial Communication Interface, UART Mode

15.2 USCI Introduction: UART Mode

In asynchronous mode, the USCI_Ax modules connect the MSP430 to an
external systemvia twoexternal pins,UCAxRXDandUCAxTXD.UARTmode
is selected when the UCSYNC bit is cleared.

UART mode features include:

- 7- or 8-bit data with odd, even, or non-parity

- Independent transmit and receive shift registers

- Separate transmit and receive buffer registers

- LSB-first or MSB-first data transmit and receive

- Built-in idle-line and address-bit communication protocols for
multiprocessor systems

- Receiver start-edge detection for auto-wake up from LPMx modes

- Programmable baud rate with modulation for fractional baud rate support

- Status flags for error detection and suppression

- Status flags for address detection

- Independent interrupt capability for receive and transmit

Figure 15--1 shows the USCI_Ax when configured for UART mode.

USCI Introduction: UART Mode

15-4 Universal Serial Communication Interface, UART Mode

Figure 15--1. USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)

Modulator

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UC0CLK

Prescaler/Divider

Receive Baudrate Generator

UC0BRx

16

UCBRFx

4

UCBRSx

3

UCOS16

UCRXERRError Flags

Set Flags

UCPE
UCFE
UCOE

UCABEN

Receive Shift Register

Receive Buffer UC0RXBUF

Receive State Machine

1

0

UCIREN

UCPEN UCPAR UCMSB UC7BIT

UCDORMUCMODEx

2

UCSPB

Set UCBRK

Set UCADDR/UCIDLE

0

1

UCLISTEN

UC0RX

1

0

UCIRRXPL

IrDA Decoder

UCIRRXFE
UCIRRXFLx

6

Transmit Buffer UC0TXBUF

Transmit State Machine

UCTXADDR

UCTXBRK

Transmit Shift Register

UCPEN UCPAR UCMSB UC7BIT UCIREN

UCIRTXPLx

6

0

1
IrDA Encoder

UC0TX

Transmit Clock

Receive Clock
BRCLK

UCMODEx

2

UCSPB

UCRXEIE

UCRXBRKIE

Set UC0RXIFG

Set UC0TXIFG

Set RXIFG

USCI Operation: UART Mode

15-5Universal Serial Communication Interface, UART Mode

15.3 USCI Operation: UART Mode

In UART mode, the USCI transmits and receives characters at a bit rate
asynchronous to another device. Timing for each character is based on the
selected baud rate of the USCI. The transmit and receive functions use the
same baud rate frequency.

15.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition.
Whenset, theUCSWRSTbit resets theUCAxRXIE,UCAxTXIE,UCAxRXIFG,
UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE and UCBTOE bits and
sets the UCAxTXIFG bit. Clearing UCSWRST releases the USCI for
operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:
1) Set UCSWRST (BIS.B #UCSWRST,&UCAxCTL1)

2) Initialize all USCI registers with UCSWRST = 1 (including UCAxCTL1)

3) Configure ports.

4) Clear UCSWRST via software (BIC.B #UCSWRST,&UCAxCTL1)

5) Enable interrupts (optional) via UCAxRXIE and/or UCAxTXIE

15.3.2 Character Format

The UART character format, shown in Figure 15--2, consists of a start bit,
seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit
mode), and one or two stop bits. The UCMSB bit controls the direction of the
transfer and selects LSB or MSB first. LSB-first is typically required for UART
communication.

Figure 15--2. Character Format

[Parity Bit, UCPEN = 1]

[Address Bit, UCMODEx = 10]

Mark

Space
D0 D6 D7 AD PA SP SP

[Optional Bit, Condition]

[2nd Stop Bit, UCSPB = 1]

[8th Data Bit, UC7BIT = 0]

ST

USCI Operation: UART Mode

15-6 Universal Serial Communication Interface, UART Mode

15.3.3 Asynchronous Communication Formats

When two devices communicate asynchronously, nomultiprocessor format is
required for the protocol.When three ormore devices communicate, theUSCI
supports the idle-line and address-bitmultiprocessor communication formats.

Idle-Line Multiprocessor Format

WhenUCMODEx = 01, the idle-linemultiprocessor format is selected. Blocks
of data are separated by an idle time on the transmit or receive lines as shown
in Figure 15--3. An idle receive line is detected when 10 or more continuous
ones (marks) are received after the one or two stop bits of a character. The
baud rate generator is switched off after reception of an idle line until the next
start edge is detected. When an idle line is detected the UCIDLE bit is set.

The first character received after an idle period is an address character. The
UCIDLE bit is used as an address tag for each block of characters. In idle-line
multiprocessor format, this bit is set when a received character is an address

Figure 15--3. Idle-Line Format

ST Address SP ST Data SP ST Data SP

Blocks of
Characters

Idle Periods of 10 Bits or More

UCAxTXD/RXD Expanded

UCAxTXD/RXD

First Character Within Block
Is Address. It Follows Idle
Period of 10 Bits or More

Character Within Block

Idle Period Less Than 10 Bits

Character Within Block

UCAxTXD/RXD

USCI Operation: UART Mode

15-7Universal Serial Communication Interface, UART Mode

The UCDORM bit is used to control data reception in the idle-line
multiprocessor format. When UCDORM = 1, all non-address characters are
assembled but not transferred into the UCAxRXBUF, and interrupts are not
generated. When an address character is received, the character is
transferred into UCAxRXBUF, UCAxRXIFG is set, and any applicable error
flag is set when UCRXEIE = 1.WhenUCRXEIE = 0 and an address character
is received but has a framing error or parity error, the character is not
transferred into UCAxRXBUF and UCAxRXIFG is not set.

If an address is received, user software can validate the address and must
reset UCDORM to continue receiving data. If UCDORM remains set, only
address characters will be received. When UCDORM is cleared during the
reception of a character the receive interrupt flag will be set after the reception
completed. The UCDORM bit is not modified by the USCI hardware
automatically.

For address transmission in idle-line multiprocessor format, a precise idle
period canbegeneratedby theUSCI to generate address character identifiers
on UCAxTXD. The double-buffered UCTXADDR flag indicates if the next
character loaded into UCAxTXBUF is preceded by an idle line of 11 bits.
UCTXADDR is automatically cleared when the start bit is generated.

Transmitting an Idle Frame

The following procedure sends out an idle frame to indicate an address
character followed by associated data:

1) Set UCTXADDR, then write the address character to UCAxTXBUF.
UCAxTXBUF must be ready for new data (UCAxTXIFG = 1).

This generates an idle period of exactly 11 bits followed by the address
character. UCTXADDR is reset automatically when the address character
is transferred from UCAxTXBUF into the shift register.

2) Write desired data characters to UCAxTXBUF. UCAxTXBUF must be
ready for new data (UCAxTXIFG = 1).

The data written to UCAxTXBUF is transferred to the shift register and
transmitted as soon as the shift register is ready for new data.

The idle-line time must not be exceeded between address and data
transmission or between data transmissions. Otherwise, the transmitted
data will be misinterpreted as an address.

USCI Operation: UART Mode

15-8 Universal Serial Communication Interface, UART Mode

Address-Bit Multiprocessor Format

When UCMODEx = 10, the address-bit multiprocessor format is selected.
Each processed character contains an extra bit used as an address indicator
shown in Figure 15--4. The first character in a block of characters carries a set
address bit which indicates that the character is an address. The USCI
UCADDR bit is set when a received character has its address bit set and is
transferred to UCAxRXBUF.

The UCDORM bit is used to control data reception in the address-bit
multiprocessor format. When UCDORM is set, data characters with address
bit = 0 are assembled by the receiver but are not transferred to UCAxRXBUF
and no interrupts are generated. When a character containing a set address
bit is received, the character is transferred into UCAxRXBUF, UCAxRXIFG is
set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE
= 0 and a character containing a set address bit is received, but has a framing
error or parity error, the character is not transferred into UCAxRXBUF and
UCAxRXIFG is not set.

If an address is received, user software can validate the address and must
reset UCDORM to continue receiving data. If UCDORM remains set, only
address characters with address bit = 1 will be received. The UCDORM bit is
not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag
UCAxRXIFG. If UCDORM is cleared during the reception of a character the
receive interrupt flag will be set after the reception is completed.

For address transmission in address-bit multiprocessormode, the address bit
of a character is controlled by the UCTXADDR bit. The value of the
UCTXADDRbit is loaded into the address bit of the character transferred from
UCAxTXBUF to the transmit shift register. UCTXADDR is automatically
cleared when the start bit is generated.

USCI Operation: UART Mode

15-9Universal Serial Communication Interface, UART Mode

Figure 15--4. Address-Bit Multiprocessor Format

ST Address SP ST Data SP ST Data SP

Blocks of
Characters

Idle Periods of No Significance

UCAxTXD/UCAxRXD
Expanded

UCAxTXD/UCAxRXD

First Character Within Block
Is an Address. AD Bit Is 1

AD Bit Is 0 for
Data Within Block. Idle Time Is of No Significance

UCAxTXD/UCAxRXD 1 0 0

Break Reception and Generation

When UCMODEx = 00, 01, or 10 the receiver detects a break when all data,
parity, and stop bits are low, regardless of the parity, address mode, or other
character settings.Whenabreak is detected, theUCBRKbit is set. If thebreak
interrupt enable bit, UCBRKIE, is set, the receive interrupt flag UCAxRXIFG
will also be set. In this case, the value in UCAxRXBUF is 0h since all data bits
were zero.

To transmit a break set the UCTXBRK bit, then write 0h to UCAxTXBUF.
UCAxTXBUF must be ready for new data (UCAxTXIFG = 1). This generates
a break with all bits low. UCTXBRK is automatically cleared when the start bit
is generated.

USCI Operation: UART Mode

15-10 Universal Serial Communication Interface, UART Mode

15.3.4 Automatic Baud Rate Detection

When UCMODEx = 11 UART mode with automatic baud rate detection is
selected. For automatic baud rate detection, a data frame is preceded by a
synchronization sequence that consists of a break and a synch field. A break
is detected when 11 or more continuous zeros (spaces) are received. If the
length of the break exceeds 22 bit times the break timeout error flag UCBTOE
is set. The synch field follows the break as shown in Figure 15--5.

Figure 15--5. Auto Baud Rate Detection -- Break/Synch Sequence

Break Delimiter Synch

For LIN conformance the character format should be set to 8 data bits, LSB
first, no parity and one stop bit. No address bit is available.

The synch field consists of the data 055h inside a byte field as shown in
Figure 15--6.Thesynchronization is basedon the timemeasurementbetween
the first falling edge and the last falling edge of the pattern. The transmit baud
rate generator is used for the measurement if automatic baud rate detection
is enabled by setting UCABDEN. Otherwise, the pattern is received but not
measured. The result of the measurement is transferred into the baud rate
control registers UCAxBR0, UCAxBR1, and UCAxMCTL. If the length of the
synch field exceeds the measurable time the synch timeout error flag
UCSTOE is set.

Figure 15--6. Auto Baud Rate Detection -- Synch Field
Synch

Start
Bit

Stop
Bit0 1 2 3 4 5 6 7

8 Bit Times

The UCDORM bit is used to control data reception in this mode. When
UCDORM is set, all characters are received but not transferred into the
UCAxRXBUF, and interrupts are not generated. When a break/synch field is
detected the UCBRK flag is set. The character following the break/synch field
is transferred into UCAxRXBUF and the UCAxRXIFG interrupt flag is set. Any
applicable error flag is also set. If the UCBRKIE bit is set, reception of the
break/synch sets the UCAxRXIFG. The UCBRK bit is reset by user software
or by reading the receive buffer UCAxRXBUF.

USCI Operation: UART Mode

15-11Universal Serial Communication Interface, UART Mode

When a break/synch field is received, user software must reset UCDORM to
continue receiving data. If UCDORM remains set, only the character after the
next reception of a break/synch field will be received. The UCDORM bit is not
modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag
UCAxRXIFG. If UCDORM is cleared during the reception of a character the
receive interrupt flag will be set after the reception is complete.

The automatic baud rate detection mode can be used in a full-duplex
communication systemwith some restrictions. TheUSCI cannot transmit data
while receiving the break/sync field and if a 0h byte with framing error is
received any data transmitted during this time gets corrupted. The latter case
can be discovered by checking the received data and the UCFE bit.

Transmitting a Break/Synch Field

The following procedure transmits a break/synch field:

1) Set UCTXBRK with UMODEx = 11.

2) Write 055h to UCAxTXBUF. UCAxTXBUF must be ready for new data
(UCAxTXIFG = 1).

This generates a break field of 13 bits followedbyabreakdelimiter and the
synch character. The length of the break delimiter is controlled with the
UCDELIMx bits. UCTXBRK is reset automatically when the synch
character is transferred from UCAxTXBUF into the shift register.

3) Write desired data characters to UCAxTXBUF. UCAxTXBUF must be
ready for new data (UCAxTXIFG = 1).

The data written to UCAxTXBUF is transferred to the shift register and
transmitted as soon as the shift register is ready for new data.

USCI Operation: UART Mode

15-12 Universal Serial Communication Interface, UART Mode

15.3.5 IrDA Encoding and Decoding

When UCIREN is set the IrDA encoder and decoder are enabled and provide
hardware bit shaping for IrDA communication.

IrDA Encoding

The encoder sends a pulse for every zero bit in the transmit bit stream coming
from the UART as shown in Figure 15--7. The pulse duration is defined by
UCIRTXPLx bits specifying the number of half clock periods of the clock
selected by UCIRTXCLK.

Figure 15--7. UART vs. IrDA Data Format

UART

Start
Bit Data Bits

Stop
Bit

IrDA

To set the pulse time of 3/16 bit period required by the IrDA standard the
BITCLK16 clock is selected with UCIRTXCLK = 1 and the pulse length is set
to 6 half clock cycles with UCIRTXPLx = 6 -- 1 = 5.

When UCIRTXCLK = 0, the pulse length tPULSE is based on BRCLK and is
calculated as follows:

UCIRTXPLx= tPULSE ⋅ 2 ⋅ fBRCLK− 1

When the pulse length is based on BRCLK the prescaler UCBRx must to be
set to a value greater or equal to 5.

IrDA Decoding

The decoder detects high pulses when UCIRRXPL = 0. Otherwise it detects
low pulses. In addition to the analog deglitch filter an additional programmable
digital filter stage can be enabled by setting UCIRRXFE.When UCIRRXFE is
set, only pulses longer than the programmed filter length are passed. Shorter
pulses are discarded. The equation to program the filter length UCIRRXFLx
is:

UCIRRXFLx= (tPULSE− tWAKE) ⋅ 2 ⋅ fBRCLK− 4

where:

tPULSE: Minimum receive pulse width

tWAKE: Wake time from any low power mode. Zero when
MSP430 is in active mode.

USCI Operation: UART Mode

15-13Universal Serial Communication Interface, UART Mode

15.3.6 Automatic Error Detection

Glitch suppression prevents the USCI from being accidentally started. Any
pulse on UCAxRXD shorter than the deglitch time tτ (approximately 150 ns)
will be ignored. See the device-specific data sheet for parameters.

When a low period on UCAxRXD exceeds tτ a majority vote is taken for the
start bit. If the majority vote fails to detect a valid start bit the USCI halts
character reception and waits for the next low period on UCAxRXD. The
majority vote is also used for each bit in a character to prevent bit errors.

The USCI module automatically detects framing errors, parity errors, overrun
errors, and break conditions when receiving characters. The bits UCFE,
UCPE, UCOE, and UCBRK are set when their respective condition is
detected. When the error flags UCFE, UCPE or UCOE are set, UCRXERR is
also set. The error conditions are described in Table 15--1.

Table 15--1.Receive Error Conditions

Error Condition
Error
Flag Description

Framing error UCFE

A framing error occurs when a low stop bit is
detected. When two stop bits are used, both
stop bits are checked for framing error. When a
framing error is detected, the UCFE bit is set.

Parity error UCPE

A parity error is a mismatch between the
number of 1s in a character and the value of
the parity bit. When an address bit is included
in the character, it is included in the parity
calculation. When a parity error is detected, the
UCPE bit is set.

Receive overrun UCOE

An overrun error occurs when a character is
loaded into UCAxRXBUF before the prior
character has been read. When an overrun
occurs, the UCOE bit is set.

Break condition UCBRK

When not using automatic baud rate detection,
a break is detected when all data, parity, and
stop bits are low. When a break condition is
detected, the UCBRK bit is set. A break
condition can also set the interrupt flag
UCAxRXIFG if the break interrupt enable
UCBRKIE bit is set.

When UCRXEIE = 0 and a framing error, or parity error is detected, no
character is received into UCAxRXBUF. When UCRXEIE = 1, characters are
received into UCAxRXBUF and any applicable error bit is set.

WhenUCFE, UCPE, UCOE, UCBRK, or UCRXERR is set, the bit remains set
until user software resets it or UCAxRXBUF is read. UCOE must be reset by
reading UCAxRXBUF. Otherwise it will not function properly. To detect
overflows reliably, the following flow is recommended. After a character is
received andUCAxRXIFG is set, first readUCAxSTAT to check the error flags
including the overflow flag UCOE. Read UCAxRXBUF next. This will clear all

USCI Operation: UART Mode

15-14 Universal Serial Communication Interface, UART Mode

error flags except UCOE, if UCAxRXBUF was overwritten between the read
access toUCAxSTATand toUCAxRXBUF.TheUCOE flag should be checked
after reading UCAxRXBUF to detect this condition. Note that, in this case, the
UCRXERR flag is not set.

15.3.7 USCI Receive Enable

The USCI module is enabled by clearing the UCSWRST bit and the receiver
is ready and in an idle state. The receive baud rate generator is in a ready state
but is not clocked nor producing any clocks.

The falling edge of the start bit enables the baud rate generator and the UART
state machine checks for a valid start bit. If no valid start bit is detected the
UART state machine returns to its idle state and the baud rate generator is
turned off again. If a valid start bit is detected a character will be received.

When the idle-line multiprocessor mode is selected with UCMODEx = 01 the
UARTstatemachine checks for an idle line after receivinga character. If a start
bit is detected another character is received. Otherwise the UCIDLE flag is set
after 10 ones are received and theUART statemachine returns to its idle state
and the baud rate generator is turned off.

Receive Data Glitch Suppression

Glitch suppression prevents the USCI from being accidentally started. Any
glitch on UCAxRXD shorter than the deglitch time tτ (approximately 150 ns)
will be ignored by the USCI and further action will be initiated as shown in
Figure 15--8. See the device-specific data sheet for parameters.

Figure 15--8. Glitch Suppression, USCI Receive Not Started

URXDx

URXS

tτ

When a glitch is longer than tτ, or a valid start bit occurs on UCAxRXD, the
USCI receive operation is started and a majority vote is taken as shown in
Figure 15--9. If the majority vote fails to detect a start bit the USCI halts
character reception.

USCI Operation: UART Mode

15-15Universal Serial Communication Interface, UART Mode

Figure 15--9. Glitch Suppression, USCI Activated

URXDx

URXS

tτ

Majority Vote Taken

15.3.8 USCI Transmit Enable

TheUSCImodule is enabledby clearing theUCSWRSTbit and the transmitter
is ready and in an idle state. The transmit baud rate generator is ready but is
not clocked nor producing any clocks.

A transmission is initiated by writing data to UCAxTXBUF. When this occurs,
the baud rate generator is enabled and the data in UCAxTXBUF is moved to
the transmit shift register on the next BITCLK after the transmit shift register
is empty. UCAxTXIFG is set when new data can be written into UCAxTXBUF.

Transmission continuesas longasnewdata is available inUCAxTXBUFat the
end of the previous byte transmission. If new data is not in UCAxTXBUFwhen
the previous byte has transmitted, the transmitter returns to its idle state and
the baud rate generator is turned off.

15.3.9 UART Baud Rate Generation

The USCI baud rate generator is capable of producing standard baud rates
from non-standard source frequencies. It provides two modes of operation
selected by the UCOS16 bit.

Low-Frequency Baud Rate Generation
The low-frequency mode is selected when UCOS16 = 0. This mode allows
generation of baud rates from low frequency clock sources (e.g. 9600 baud
from a 32768Hz crystal). By using a lower input frequency the power
consumption of the module is reduced. Using this mode with higher
frequencies and higher prescaler settings will cause the majority votes to be
taken in an increasingly smaller window and thus decrease the benefit of the
majority vote.

In low-frequency mode the baud rate generator uses one prescaler and one
modulator to generate bit clock timing. This combination supports fractional
divisors for baud rate generation. In this mode, the maximum USCI baud rate
is one-third the UART source clock frequency BRCLK.

USCI Operation: UART Mode

15-16 Universal Serial Communication Interface, UART Mode

Timing for each bit is shown in Figure 15--10. For each bit received, a majority
vote is taken to determine the bit value. These samples occur at the N/2 -- 1/2,
N/2, and N/2 + 1/2 BRCLK periods, where N is the number of BRCLKs per
BITCLK.

Figure 15--10. BITCLK Baud Rate Timing with UCOS16 = 0

N/2

Bit Start

BRCLK

Counter

BITCLK

N/2--1 N/2--2
1 N/2 N/2--1 1 N/2 N/2--1N/2--2

0 N/2 N/2--11

INT(N/2) + m(= 0)

INT(N/2) + m(= 1)

1 0 N/2

Bit Period

NEVEN: INT(N/2)

NODD : INT(N/2) + R(= 1)

m: corresponding modulation bit
R: Remainder from N/2 division

Majority Vote: (m= 0)

(m= 1)

Modulation is based on the UCBRSx setting as shown in Table 15--2. A 1 in
the table indicates that m = 1 and the corresponding BITCLK period is one
BRCLKperiod longer than aBITCLKperiodwithm = 0. Themodulationwraps
around after 8 bits but restarts with each new start bit.

Table 15--2.BITCLK Modulation Pattern

UCBRSx
Bit 0

(Start Bit) Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

2 0 1 0 0 0 1 0 0

3 0 1 0 1 0 1 0 0

4 0 1 0 1 0 1 0 1

5 0 1 1 1 0 1 0 1

6 0 1 1 1 0 1 1 1

7 0 1 1 1 1 1 1 1

USCI Operation: UART Mode

15-17Universal Serial Communication Interface, UART Mode

Oversampling Baud Rate Generation
The oversampling mode is selected when UCOS16 = 1. This mode supports
sampling a UART bit stream with higher input clock frequencies. This results
inmajority votes that arealways1/16of abit clockperiodapart. Thismodealso
easily supports IrDA pulses with a 3/16 bit-time when the IrDA encoder and
decoder are enabled.

This mode uses one prescaler and one modulator to generate the BITCLK16
clock that is 16 times faster than the BITCLK. An additional divider and
modulator stage generates BITCLK from BITCLK16. This combination
supports fractional divisions of both BITCLK16 and BITCLK for baud rate
generation. In this mode, the maximum USCI baud rate is 1/16 the UART
sourceclock frequencyBRCLK.WhenUCBRx is set to 0or 1 the first prescaler
and modulator stage is bypassed and BRCLK is equal to BITCLK16.

Modulation for BITCLK16 is based on the UCBRFx setting as shown in
Table 15--3. A 1 in the table indicates that the corresponding BITCLK16 period
is one BRCLK period longer than the periods m=0. The modulation restarts
with each new bit timing.

Modulation for BITCLK is based on the UCBRSx setting as shown in
Table 15--2 as previously described.

Table 15--3.BITCLK16 Modulation Pattern

UCBRF
No. of BITCLK16 Clocks after last falling BITCLK edge

UCBRFx
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

01h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

03h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

04h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1

05h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1

06h 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

07h 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1

08h 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

09h 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

0Ah 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

0Bh 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1

0Ch 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1

0Dh 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1

0Eh 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

0Fh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

USCI Operation: UART Mode

15-18 Universal Serial Communication Interface, UART Mode

15.3.10 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required
division factor N:

N=
fBRCLK

Baudrate

The division factor N is often a non-integer value thus at least one divider and
one modulator stage is used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode
can be chosen by setting UCOS16.

Low-Frequency Baud Rate Mode Setting

In the low-frequency mode, the integer portion of the divisor is realized by the
prescaler:

UCBRx = INT(N)

and the fractional portion is realized by the modulator with the following
nominal formula:

UCBRSx = round((N -- INT(N)) * 8)

Incrementing or decrementing the UCBRSx setting by one count may give a
lower maximum bit error for any given bit. To determine if this is the case, a
detailed error calculation must be performed for each bit for each UCBRSx
setting.

Oversampling Baud Rate Mode Setting

In the oversampling mode the prescaler is set to:

UCBRx = INT(N/16).

and the first stage modulator is set to:

UCBRFx = round(((N/16) -- INT(N/16)) * 16)

When greater accuracy is required, the UCBRSx modulator can also be
implemented with values from 0 -- 7. To find the setting that gives the lowest
maximum bit error rate for any given bit, a detailed error calculation must be
performed for all settings of UCBRSx from0 -- 7with the initial UCBRFx setting
and with the UCBRFx setting incremented and decremented by one.

USCI Operation: UART Mode

15-19Universal Serial Communication Interface, UART Mode

15.3.11 Transmit Bit Timing

The timing for each character is the sumof the individual bit timings. Using the
modulation features of the baud rate generator reduces the cumulative bit
error. The individual bit error can be calculated using the following steps.

Low-Frequency Baud Rate Mode Bit Timing

In low-frequency mode, calculate the length of bit i Tbit,TX[i] based on the
UCBRx and UCBRSx settings:

Tbit,TX[i]= 1
fBRCLK

UCBRx+mUCBRSx[i]

where:

mUCBRSx[i]: Modulation of bit i from Table 15--2

Oversampling Baud Rate Mode Bit Timing

In oversampling baud rate mode calculate the length of bit i Tbit,TX[i] based on
the baud rate generator UCBRx, UCBRFx and UCBRSx settings:

Tbit,TX[i]= 1
fBRCLK
16+mUCBRSx[i] ⋅ UCBRx+

15

j=0

mUCBRFx[j]
where:

15
j=0

mUCBRFx[j]: Sum of ones from the corresponding row in Table 15--3

mUCBRSx[i]: Modulation of bit i from Table 15--2

This results in an end-of-bit time tbit,TX[i] equal to the sum of all previous and
the current bit times:

tbit,TX[i]=
i

j=0

Tbit,TX[j]

To calculate bit error, this time is compared to the ideal bit time tbit,ideal,TX[i]:

tbit,ideal,TX[i]= 1
Baudrate

(i+ 1)

This results in an error normalized to one ideal bit time (1/baudrate):

ErrorTX[i]= tbit,TX[i]− tbit,ideal,TX[i] ⋅ Baudrate ⋅ 100%

USCI Operation: UART Mode

15-20 Universal Serial Communication Interface, UART Mode

15.3.12 Receive Bit Timing

Receive timing error consists of two error sources. The first is the bit-to-bit
timing error similar to the transmit bit timing error. The second is the error
between a start edge occurring and the start edge being accepted by theUSCI
module. Figure 15--11 shows theasynchronous timing errors betweendata on
theUCAxRXDpinand the internal baud-rate clock.This results in anadditional
synchronization error. The synchronization error tSYNC is between
--0.5 BRCLKs and +0.5 BRCLKs independent of the selected baud rate
generation mode.

Figure 15--11.Receive Error

1 2 3 4 5 6

0i

t0tideal
7 8

1

t1

2

9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7

t0 t1 t2

ST D0 D1

D0 D1ST

Synchronization Error ± 0.5x BRCLK

Majority Vote Taken Majority Vote Taken Majority Vote Taken

BRCLK

UCAxRXD

RXD synch.

tactual

Sample
RXD synch.

The ideal sampling time tbit,ideal,RX[i] is in the middle of a bit period:

tbit,ideal,RX[i]= 1
Baudrate

(i+ 0.5)

The real sampling time tbit,RX[i] is equal to the sumof all previous bits according
to the formulas shown in the transmit timing section, plus one half BITCLK for
the current bit i, plus the synchronization error tSYNC.

This results in the following tbit,RX[i] for the low-frequency baud rate mode

tbit,RX[i]= tSYNC+
i−1

j=0

Tbit,RX[j]+ 1
fBRCLK
INT(1

2
UCBRx)+mUCBRSx[i]

where:

Tbit,RX[i]= 1
fBRCLK

UCBRx+mUCBRSx[i]

mUCBRSx[i]: Modulation of bit i from Table 15--2

USCI Operation: UART Mode

15-21Universal Serial Communication Interface, UART Mode

For the oversampling baud rate mode the sampling time tbit,RX[i] of bit i is
calculated by:

tbit,RX[i]= tSYNC+
i−1

j=0

Tbit,RX[j]

+ 1
fBRCLK
8+mUCBRSx[i] ⋅ UCBRx+

7+mUCBRSx[i]

j=0

mUCBRFx[j]
where:

Tbit,RX[i]= 1
fBRCLK
16+mUCBRSx[i] ⋅ UCBRx+

15

j=0

mUCBRFx[j]

7+mUCBRSx[i]

j=0

mUCBRFx[j]: Sum of ones from columns 0 -- 7+mUCBRSx[i]

from the corresponding row in Table 15--3

mUCBRSx[i]: Modulation of bit i from Table 15--2

This results in an error normalized to one ideal bit time (1/baudrate) according
to the following formula:

ErrorRX[i]= tbit,RX[i]− tbit,ideal,RX[i] ⋅ Baudrate ⋅ 100%

15.3.13 Typical Baud Rates and Errors

Standard baud rate data for UCBRx, UCBRSx and UCBRFx are listed in
Table 15--4 and Table 15--5 for a 32768-Hz crystal sourcing ACLK and typical
SMCLK frequencies. Ensure that the selected BRCLK frequency does not
exceed the device-specific maximum USCI input frequency (see the
device-specific data sheet).

The receive error is the accumulated time versus the ideal scanning time in the
middle of each bit. The worst case error is given for the reception of an 8-bit
character with parity and one stop bit including synchronization error.

The transmit error is the accumulated timing error versus the ideal time of the
bit period. The worst case error is given for the transmission of an 8-bit
character with parity and stop bit.

USCI Operation: UART Mode

15-22 Universal Serial Communication Interface, UART Mode

Table 15--4.Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0

BRCLK
frequency

[Hz]

Baud
Rate
[Baud]

UCBRx UCBRSx UCBRFx Max. TX Error [%] Max. RX Error [%]

32,768 1200 27 2 0 --2.8 1.4 --5.9 2.0

32,768 2400 13 6 0 --4.8 6.0 --9.7 8.3

32,768 4800 6 7 0 --12.1 5.7 --13.4 19.0

32,768 9600 3 3 0 --21.1 15.2 --44.3 21.3

1,048,576 9600 109 2 0 --0.2 0.7 --1.0 0.8

1,048,576 19200 54 5 0 --1.1 1.0 --1.5 2.5

1,048,576 38400 27 2 0 --2.8 1.4 --5.9 2.0

1,048,576 56000 18 6 0 --3.9 1.1 --4.6 5.7

1,048,576 115200 9 1 0 --1.1 10.7 --11.5 11.3

1,048,576 128000 8 1 0 --8.9 7.5 --13.8 14.8

1,048,576 256000 4 1 0 --2.3 25.4 --13.4 38.8

1,000,000 9600 104 1 0 --0.5 0.6 --0.9 1.2

1,000,000 19200 52 0 0 --1.8 0 --2.6 0.9

1,000,000 38400 26 0 0 --1.8 0 --3.6 1.8

1,000,000 56000 17 7 0 --4.8 0.8 --8.0 3.2

1,000,000 115200 8 6 0 --7.8 6.4 --9.7 16.1

1,000,000 128000 7 7 0 --10.4 6.4 --18.0 11.6

1,000,000 256000 3 7 0 --29.6 0 --43.6 5.2

4,000,000 9600 416 6 0 --0.2 0.2 --0.2 0.4

4,000,000 19200 208 3 0 --0.2 0.5 --0.3 0.8

4,000,000 38400 104 1 0 --0.5 0.6 --0.9 1.2

4,000,000 56000 71 4 0 --0.6 1.0 --1.7 1.3

4,000,000 115200 34 6 0 --2.1 0.6 --2.5 3.1

4,000,000 128000 31 2 0 --0.8 1.6 --3.6 2.0

4,000,000 256000 15 5 0 --4.0 3.2 --8.4 5.2

8,000,000 9600 833 2 0 --0.1 0 --0.2 0.1

8,000,000 19200 416 6 0 --0.2 0.2 --0.2 0.4

8,000,000 38400 208 3 0 --0.2 0.5 --0.3 0.8

8,000,000 56000 142 7 0 --0.6 0.1 --0.7 0.8

8,000,000 115200 69 4 0 --0.6 0.8 --1.8 1.1

8,000,000 128000 62 4 0 --0.8 0 --1.2 1.2

8,000,000 256000 31 2 0 --0.8 1.6 --3.6 2.0

USCI Operation: UART Mode

15-23Universal Serial Communication Interface, UART Mode

Table 15--4.Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 (Continued)

12,000,000 9600 1250 0 0 0 0 --0.05 0.05

12,000,000 19200 625 0 0 0 0 --0.2 0

12,000,000 38400 312 4 0 --0.2 0 --0.2 0.2

12,000,000 56000 214 2 0 --0.3 0.2 --0.4 0.5

12,000,000 115200 104 1 0 --0.5 0.6 --0.9 1.2

12,000,000 128000 93 6 0 --0.8 0 --1.5 0.4

12,000,000 256000 46 7 0 --1.9 0 --2.0 2.0

16,000,000 9600 1666 6 0 --0.05 0.05 --0.05 0.1

16,000,000 19200 833 2 0 --0.1 0.05 --0.2 0.1

16,000,000 38400 416 6 0 --0.2 0.2 --0.2 0.4

16,000,000 56000 285 6 0 --0.3 0.1 --0.5 0.2

16,000,000 115200 138 7 0 --0.7 0 --0.8 0.6

16,000,000 128000 125 0 0 0 0 --0.8 0

16,000,000 256000 62 4 0 --0.8 0 --1.2 1.2

USCI Operation: UART Mode

15-24 Universal Serial Communication Interface, UART Mode

Table 15--5.Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1

BRCLK
frequency

[Hz]

Baud
Rate
[Baud]

UCBRx UCBRSx UCBRFx Max. TX Error [%] Max. RX Error [%]

1,048,576 9600 6 0 13 --2.3 0 --2.2 0.8

1,048,576 19200 3 1 6 --4.6 3.2 --5.0 4.7

1,000,000 9600 6 0 8 --1.8 0 --2.2 0.4

1,000,000 19200 3 0 4 --1.8 0 --2.6 0.9

1,000,000 57600 1 7 0 --34.4 0 --33.4 0

4,000,000 9600 26 0 1 0 0.9 0 1.1

4,000,000 19200 13 0 0 --1.8 0 --1.9 0.2

4,000,000 38400 6 0 8 --1.8 0 --2.2 0.4

4,000,000 57600 4 5 3 --3.5 3.2 --1.8 6.4

4,000,000 115200 2 3 2 --2.1 4.8 --2.5 7.3

4,000,000 230400 1 7 0 --34.4 0 --33.4 0

8,000,000 9600 52 0 1 --0.4 0 --0.4 0.1

8,000,000 19200 26 0 1 0 0.9 0 1.1

8,000,000 38400 13 0 0 --1.8 0 --1.9 0.2

8,000,000 57600 8 0 11 0 0.88 0 1.6

8,000,000 115200 4 5 3 --3.5 3.2 --1.8 6.4

8,000,000 230400 2 3 2 --2.1 4.8 --2.5 7.3

8,000,000 460800 1 7 0 --34.4 0 --33.4 0

12,000,000 9600 78 0 2 0 0 --0.05 0.05

12,000,000 19200 39 0 1 0 0 0 0.2

12,000,000 38400 19 0 8 --1.8 0 --1.8 0.1

12,000,000 57600 13 0 0 --1.8 0 --1.9 0.2

12,000,000 115200 6 0 8 --1.8 0 --2.2 0.4

12,000,000 230400 3 0 4 --1.8 0 --2.6 0.9

16,000,000 9600 104 0 3 0 0.2 0 0.3

16,000,000 19200 52 0 1 --0.4 0 --0.4 0.1

16,000,000 38400 26 0 1 0 0.9 0 1.1

16,000,000 57600 17 0 6 0 0.9 --0.1 1.0

16,000,000 115200 8 0 11 0 0.9 0 1.6

16,000,000 230400 4 5 3 --3.5 3.2 --1.8 6.4

16,000,000 460800 2 3 2 --2.1 4.8 --2.5 7.3

USCI Operation: UART Mode

15-25Universal Serial Communication Interface, UART Mode

15.3.14 Using the USCI Module in UART Mode with Low Power Modes

The USCImodule provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clocksource reverts to thesettingsof its control bits.Automatic clockactivation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

15.3.15 USCI Interrupts

The USCI has one interrupt vector for transmission and one interrupt vector
for reception.

USCI Transmit Interrupt Operation

The UCAxTXIFG interrupt flag is set by the transmitter to indicate that
UCAxTXBUF is ready to accept another character. An interrupt request is
generated if UCAxTXIE and GIE are also set. UCAxTXIFG is automatically
reset if a character is written to UCAxTXBUF.

UCAxTXIFG is set after a PUC or when UCSWRST = 1. UCAxTXIE is reset
after a PUC or when UCSWRST = 1.

USCI Receive Interrupt Operation

The UCAxRXIFG interrupt flag is set each time a character is received and
loaded into UCAxRXBUF. An interrupt request is generated if UCAxRXIE and
GIE are also set. UCAxRXIFG and UCAxRXIE are reset by a system reset
PUC signal or whenUCSWRST= 1. UCAxRXIFG is automatically reset when
UCAxRXBUF is read.

Additional interrupt control features include:

- When UCAxRXEIE = 0 erroneous characters will not set UCAxRXIFG.

- When UCDORM = 1, non-address characters will not set UCAxRXIFG in
multiprocessor modes. In plain UART mode, no characters will set
UCAxRXIFG.

- When UCBRKIE = 1 a break condition will set the UCBRK bit and the
UCAxRXIFG flag.

USCI Operation: UART Mode

15-26 Universal Serial Communication Interface, UART Mode

USCI Interrupt Usage

USCI_Ax and USCI_Bx share the same interrupt vectors. The receive
interrupt flags UCAxRXIFG and UCBxRXIFG are routed to one interrupt
vector, the transmit interrupt flags UCAxTXIFG and UCBxTXIFG share
another interrupt vector.

Shared Interrupt Vectors Software Example

The following software example shows an extract of an interrupt service
routine to handle data receive interrupts from USCI_A0 in either UART or SPI
mode and USCI_B0 in SPI mode.

USCIA0_RX_USCIB0_RX_ISR

BIT.B #UCA0RXIFG, &IFG2 ; USCI_A0 Receive Interrupt?

JNZ USCIA0_RX_ISR

USCIB0_RX_ISR?

; Read UCB0RXBUF (clears UCB0RXIFG)

...

RETI

USCIA0_RX_ISR

; Read UCA0RXBUF (clears UCA0RXIFG)

...

RETI

The following software example shows an extract of an interrupt service
routine to handle data transmit interrupts fromUSCI_A0 in either UART or SPI
mode and USCI_B0 in SPI mode.

USCIA0_TX_USCIB0_TX_ISR
BIT.B #UCA0TXIFG, &IFG2 ; USCI_A0 Transmit Interrupt?
JNZ USCIA0_TX_ISR

USCIB0_TX_ISR
; Write UCB0TXBUF (clears UCB0TXIFG)
...
RETI

USCIA0_TX_ISR
; Write UCA0TXBUF (clears UCA0TXIFG)
...
RETI

USCI Registers: UART Mode

15-27Universal Serial Communication Interface, UART Mode

15.4 USCI Registers: UART Mode

The USCI registers applicable in UART mode are listed in Table 15--6 and
Table 15--7.

Table 15--6.USCI_A0 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A0 control register 0 UCA0CTL0 Read/write 060h Reset with PUC

USCI_A0 control register 1 UCA0CTL1 Read/write 061h 001h with PUC

USCI_A0 Baud rate control register 0 UCA0BR0 Read/write 062h Reset with PUC

USCI_A0 baud rate control register 1 UCA0BR1 Read/write 063h Reset with PUC

USCI_A0 modulation control register UCA0MCTL Read/write 064h Reset with PUC

USCI_A0 status register UCA0STAT Read/write 065h Reset with PUC

USCI_A0 receive buffer register UCA0RXBUF Read 066h Reset with PUC

USCI_A0 transmit buffer register UCA0TXBUF Read/write 067h Reset with PUC

USCI_A0 Auto baud control register UCA0ABCTL Read/write 05Dh Reset with PUC

USCI_A0 IrDA transmit control register UCA0IRTCTL Read/write 05Eh Reset with PUC

USCI_A0 IrDA receive control register UCA0IRRCTL Read/write 05Fh Reset with PUC

SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits
To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits usingBIS.B orBIC.B instructions, rather than
MOV.B or CLR.B instructions.

Table 15--7.USCI_A1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A1 control register 0 UCA1CTL0 Read/write 0D0h Reset with PUC

USCI_A1 control register 1 UCA1CTL1 Read/write 0D1h 001h with PUC

USCI_A1 baud rate control register 0 UCA1BR0 Read/write 0D2h Reset with PUC

USCI_A1 baud rate control register 1 UCA1BR1 Read/write 0D3h Reset with PUC

USCI_A1 modulation control register UCA10MCTL Read/write 0D4h Reset with PUC

USCI_A1 status register UCA1STAT Read/write 0D5h Reset with PUC

USCI_A1 receive buffer register UCA1RXBUF Read 0D6h Reset with PUC

USCI_A1 transmit buffer register UCA1TXBUF Read/write 0D7h Reset with PUC

USCI_A1 auto baud control register UCA1ABCTL Read/write 0CDh Reset with PUC

USCI_A1 IrDA transmit control register UCA1IRTCTL Read/write 0CEh Reset with PUC

USCI_A1 IrDA receive control register UCA1IRRCTL Read/write 0CFh Reset with PUC

USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC

USCI_A1/B1 interrupt flag register UC1IFG Read/write 007h 00Ah with PUC

USCI Registers: UART Mode

15-28 Universal Serial Communication Interface, UART Mode

UCAxCTL0, USCI_Ax Control Register 0

7 6 5 4 3 2 1 0

UCPEN UCPAR UCMSB UC7BIT UCSPB UCMODEx UCSYNC=0

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

UCPEN Bit 7 Parity enable
0 Parity disabled.
1 Parity enabled. Parity bit is generated (UCAxTXD) and expected

(UCAxRXD). In address-bit multiprocessor mode, the address bit is
included in the parity calculation.

UCPAR Bit 6 Parity select. UCPAR is not used when parity is disabled.
0 Odd parity
1 Even parity

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift
register.
0 LSB first
1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data

UCSPB Bit 3 Stop bit select. Number of stop bits.
0 One stop bit
1 Two stop bits

UCMODEx Bits
2--1

USCI mode. The UCMODEx bits select the asynchronous mode when
UCSYNC = 0.
00 UART Mode.
01 Idle-Line Multiprocessor Mode.
10 Address-Bit Multiprocessor Mode.
11 UART Mode with automatic baud rate detection.

UCSYNC Bit 0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous Mode

USCI Registers: UART Mode

15-29Universal Serial Communication Interface, UART Mode

UCAxCTL1, USCI_Ax Control Register 1

7 6 5 4 3 2 1 0

UCSSELx UCRXEIE UCBRKIE UCDORM UCTXADDR UCTXBRK UCSWRST

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--1

UCSSELx Bits
7-6

USCI clock source select. These bits select the BRCLK source clock.
00 UCLK
01 ACLK
10 SMCLK
11 SMCLK

UCRXEIE Bit 5 Receive erroneous-character interrupt-enable
0 Erroneous characters rejected and UCAxRXIFG is not set
1 Erroneous characters received will set UCAxRXIFG

UCBRKIE Bit 4 Receive break character interrupt-enable
0 Received break characters do not set UCAxRXIFG.
1 Received break characters set UCAxRXIFG.

UCDORM Bit 3 Dormant. Puts USCI into sleep mode.
0 Not dormant. All received characters will set UCAxRXIFG.
1 Dormant. Only characters that are preceded by an idle-line or with

addressbit setwill setUCAxRXIFG. InUARTmodewith automatic baud
rate detection only the combination of a break and synch field will set
UCAxRXIFG.

UCTXADDR Bit 2 Transmit address. Next frame to be transmitted will be marked as address
depending on the selected multiprocessor mode.
0 Next frame transmitted is data
1 Next frame transmitted is an address

UCTXBRK Bit 1 Transmit break. Transmits a break with the next write to the transmit buffer.
In UART mode with automatic baud rate detection 055h must be written
into UCAxTXBUF to generate the required break/synch fields. Otherwise
0h must be written into the transmit buffer.
0 Next frame transmitted is not a break
1 Next frame transmitted is a break or a break/synch

UCSWRST Bit 0 Software reset enable
0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

USCI Registers: UART Mode

15-30 Universal Serial Communication Interface, UART Mode

UCAxBR0, USCI_Ax Baud Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

UCAxBR1, USCI_Ax Baud Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx

rw rw rw rw rw rw rw rw

UCBRx Clock prescaler setting of the Baud rate generator. The 16-bit value of
(UCAxBR0 + UCAxBR1 × 256) forms the prescaler value.

UCAxMCTL, USCI_Ax Modulation Control Register

7 6 5 4 3 2 1 0

UCBRFx UCBRSx UCOS16

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

UCBRFx Bits
7--4

First modulation stage select. These bits determine the modulation pattern
for BITCLK16 when UCOS16 = 1. Ignored with UCOS16 = 0. Table 15--3
shows the modulation pattern.

UCBRSx Bits
3--1

Second modulation stage select. These bits determine the modulation
pattern for BITCLK. Table 15--2 shows the modulation pattern.

UCOS16 Bit 0 Oversampling mode enabled
0 Disabled
1 Enabled

USCI Registers: UART Mode

15-31Universal Serial Communication Interface, UART Mode

UCAxSTAT, USCI_Ax Status Register

7 6 5 4 3 2 1 0

UCLISTEN UCFE UCOE UCPE UCBRK UCRXERR UCADDR
UCIDLE UCBUSY

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 r--0

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. UCAxTXD is internally fed back to the receiver.

UCFE Bit 6 Framing error flag
0 No error
1 Character received with low stop bit

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UCAxRXBUF before the previous character was read. UCOE is cleared
automatically when UCxRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.
0 No error
1 Overrun error occurred

UCPE Bit 4 Parity error flag. When UCPEN = 0, UCPE is read as 0.
0 No error
1 Character received with parity error

UCBRK Bit 3 Break detect flag
0 No break condition
1 Break condition occurred

UCRXERR Bit 2 Receive error flag. This bit indicates a character was received with error(s).
When UCRXERR = 1, on or more error flags (UCFE, UCPE, UCOE) is also
set. UCRXERR is cleared when UCAxRXBUF is read.
0 No receive errors detected
1 Receive error detected

UCADDR Bit 1 Address received in address-bit multiprocessor mode.
0 Received character is data
1 Received character is an address

UCIDLE Idle line detected in idle-line multiprocessor mode.
0 No idle line detected
1 Idle line detected

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in
progress.
0 USCI inactive
1 USCI transmitting or receiving

USCI Registers: UART Mode

15-32 Universal Serial Communication Interface, UART Mode

UCAxRXBUF, USCI_Ax Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits
7--0

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCAxRXBUF resets the
receive-error bits, the UCADDR or UCIDLE bit, and UCAxRXIFG. In 7-bit
data mode, UCAxRXBUF is LSB justified and the MSB is always reset.

UCAxTXBUF, USCI_Ax Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits
7--0

The transmit data buffer is user accessible and holds the data waiting to
be moved into the transmit shift register and transmitted on UCAxTXD.
Writing to the transmit data buffer clears UCAxTXIFG. The MSB of
UCAxTXBUF is not used for 7-bit data and is reset.

USCI Registers: UART Mode

15-33Universal Serial Communication Interface, UART Mode

UCAxIRTCTL, USCI_Ax IrDA Transmit Control Register

7 6 5 4 3 2 1 0

UCIRTXPLx UCIR
TXCLK UCIREN

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

UCIRTXPLx Bits
7--2

Transmit pulse length
Pulse Length tPULSE = (UCIRTXPLx + 1) / (2 * fIRTXCLK)

UCIRTXCLK Bit 1 IrDA transmit pulse clock select
0 BRCLK
1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK

UCIREN Bit 0 IrDA encoder/decoder enable.
0 IrDA encoder/decoder disabled
1 IrDA encoder/decoder enabled

UCAxIRRCTL, USCI_Ax IrDA Receive Control Register

7 6 5 4 3 2 1 0

UCIRRXFLx UCIRRXPL UCIRRXFE

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

UCIRRXFLx Bits
7--2

Receive filter length. The minimum pulse length for receive is given by:
tMIN = (UCIRRXFLx + 4) / (2 * fIRTXCLK)

UCIRRXPL Bit 1 IrDA receive input UCAxRXD polarity
0 IrDA transceiver delivers a high pulse when a light pulse is seen
1 IrDA transceiver delivers a low pulse when a light pulse is seen

UCIRRXFE Bit 0 IrDA receive filter enabled
0 Receive filter disabled
1 Receive filter enabled

USCI Registers: UART Mode

15-34 Universal Serial Communication Interface, UART Mode

UCAxABCTL, USCI_Ax Auto Baud Rate Control Register

7 6 5 4 3 2 1 0

Reserved UCDELIMx UCSTOE UCBTOE Reserved UCABDEN

r--0 r--0 rw--0 rw--0 rw--0 rw--0 r--0 rw--0

Reserved Bits
7-6

Reserved

UCDELIMx Bits
5--4

Break/synch delimiter length
00 1 bit time
01 2 bit times
10 3 bit times
11 4 bit times

UCSTOE Bit 3 Synch field time out error
0 No error
1 Length of synch field exceeded measurable time.

UCBTOE Bit 2 Break time out error
0 No error
1 Length of break field exceeded 22 bit times.

Reserved Bit 1 Reserved

UCABDEN Bit 0 Automatic baud rate detect enable
0 Baud rate detection disabled. Length of break and synch field is not

measured.
1 Baud rate detection enabled. Length of break and synch field is

measured and baud rate settings are changed accordingly.

USCI Registers: UART Mode

15-35Universal Serial Communication Interface, UART Mode

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UCA0TXIE UCA0RXIE

rw--0 rw--0

Bits
7-2

These bits may be used by other modules (see the device-specific data
sheet).

UCA0TXIE Bit 1 USCI_A0 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA0RXIE Bit 0 USCI_A0 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UCA0
TXIFG

UCA0
RXIFG

rw--1 rw--0

Bits
7-2

These bits may be used by other modules (see the device-specific data
sheet).

UCA0
TXIFG

Bit 1 USCI_A0 transmit interrupt flag. UCA0TXIFG is set when UCA0TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCA0
RXIFG

Bit 0 USCI_A0 receive interrupt flag. UCA0RXIFG is set when UCA0RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

USCI Registers: UART Mode

15-36 Universal Serial Communication Interface, UART Mode

UC1IE, USCI_A1 Interrupt Enable Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCA1TXIE UCA1RXIE

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

Unused Bits
7-4

Unused

Bits
3-2

These bits may be used by other USCImodules (see the device-specific data
sheet).

UCA1TXIE Bit 1 USCI_A1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA1RXIE Bit 0 USCI_A1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UC1IFG, USCI_A1 Interrupt Flag Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCA1
TXIFG

UCA1
RXIFG

rw--0 rw--0 rw--0 rw--0 rw--1 rw--0

Unused Bits
7-4

Unused

Bits
3-2

These bits may be used by other USCImodules (see the device-specific data
sheet).

UCA1
TXIFG

Bit 1 USCI_A1 transmit interrupt flag. UCA1TXIFG is set when UCA1TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCA1
RXIFG

Bit 0 USCI_A1 receive interrupt flag. UCA1RXIFG is set when UCA1RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

16-1Universal Serial Communication Interface, SPI Mode

Universal Serial Communication Interface,
SPI Mode

The universal serial communication interface (USCI) supports multiple serial
communicationmodeswith onehardwaremodule. This chapter discusses the
operation of the synchronous peripheral interface or SPI mode.

Topic Page

16.1 USCI Overview 16-2. .

16.2 USCI Introduction: SPI Mode 16-3. .

16.3 USCI Operation: SPI Mode 16-5. .

16.4 USCI Registers: SPI Mode 16-15. .

Chapter 16

USCI Overview

16-2 Universal Serial Communication Interface, SPI Mode

16.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different fromUSCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_Amodules,
they are named USCI_A0 and USCI_A1. See the device-specific data sheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

- UART mode
- Pulse shaping for IrDA communications
- Automatic baud rate detection for LIN communications
- SPI mode

The USCI_Bx modules support:

- I2C mode
- SPI mode

USCI Introduction: SPI Mode

16-3Universal Serial Communication Interface, SPI Mode

16.2 USCI Introduction: SPI Mode

In synchronous mode, the USCI connects the MSP430 to an external system
via three or four pins: UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI
mode is selected when the UCSYNC bit is set and SPI mode (3-pin or 4-pin)
is selected with the UCMODEx bits.

SPI mode features include:

- 7- or 8-bit data length

- LSB-first or MSB-first data transmit and receive

- 3-pin and 4-pin SPI operation

- Master or slave modes

- Independent transmit and receive shift registers

- Separate transmit and receive buffer registers

- Continuous transmit and receive operation

- Selectable clock polarity and phase control

- Programmable clock frequency in master mode

- Independent interrupt capability for receive and transmit

- Slave operation in LPM4

Figure 16--1 shows the USCI when configured for SPI mode.

USCI Introduction: SPI Mode

16-4 Universal Serial Communication Interface, SPI Mode

Figure 16--1. USCI Block Diagram: SPI Mode

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

N/A

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

Receive Shift Register

Receive Buffer UCxRXBUF

Receive State Machine

UCMSB UC7BIT

1

0

UCMST

UCxSOMI

Transmit Buffer UCxTXBUF

Transmit State Machine

Transmit Shift Register

UCMSB UC7BIT

BRCLK

Set UCxRXIFG

Set UCxTXIFG

0

1

UCLISTEN

Clock Direction,
Phase and Polarity

UCCKPH UCCKPL

UCxSIMO

UCxCLK

Set UCOE

Transmit Enable
Control

2

UCMODEx

UCxSTE

Set UCFE

USCI Operation: SPI Mode

16-5Universal Serial Communication Interface, SPI Mode

16.3 USCI Operation: SPI Mode

In SPI mode, serial data is transmitted and received bymultiple devices using
a shared clock provided by themaster. An additional pin, UCxSTE, is provided
to enable a device to receive and transmit data and is controlled by themaster.

Three or four signals are used for SPI data exchange:

- UCxSIMO Slave in, master out
Master mode: UCxSIMO is the data output line.
Slave mode: UCxSIMO is the data input line.

- UCxSOMI Slave out, master in
Master mode: UCxSOMI is the data input line.
Slave mode: UCxSOMI is the data output line.

- UCxCLK USCI SPI clock
Master mode: UCxCLK is an output.
Slave mode: UCxCLK is an input.

- UCxSTE Slave transmit enable. Used in 4-pin mode to allow multiple
masters onasinglebus.Not used in3-pinmode.Table 16--1
describes the UCxSTE operation.

Table 16--1.UCxSTE Operation

UCMODEx UCxSTE Active State UCxSTE Slave Master

01 hi h
0 inactive active

01 high
1 active inactive

10 low
0 active inactive

10 low
1 inactive active

USCI Operation: SPI Mode

16-6 Universal Serial Communication Interface, SPI Mode

16.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition.
When set, the UCSWRST bit resets the UCxRXIE, UCxTXIE, UCxRXIFG,
UCOE, and UCFE bits and sets the UCxTXIFG flag. Clearing UCSWRST
releases the USCI for operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:
1) Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)

2) Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)

3) Configure ports.

4) Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1)

5) Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

16.3.2 Character Format

The USCI module in SPI mode supports 7- and 8-bit character lengths
selected by the UC7BIT bit. In 7-bit data mode, UCxRXBUF is LSB justified
and the MSB is always reset. The UCMSB bit controls the direction of the
transfer and selects LSB or MSB first.

Note: Default Character Format
The default SPI character transmission is LSB first. For communication with
other SPI interfaces it MSB-first mode may be required.

Note: Character Format for Figures
Figures throughout this chapter use MSB first format.

USCI Operation: SPI Mode

16-7Universal Serial Communication Interface, SPI Mode

16.3.3 Master Mode

Figure 16--2. USCI Master and External Slave

Receive Buffer
UCxRXBUF

Receive Shift Register

Transmit Buffer
UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register (DSR)

UCx
SOMI SOMI

UCxSIMO SIMOMASTER SLAVE

Px.x STE

UCxSTE SS
Port.x

UCxCLK SCLK
MSP430 USCI COMMON SPI

Figure 16--2 shows the USCI as a master in both 3-pin and 4-pin
configurations. The USCI initiates data transfer when data is moved to the
transmit data buffer UCxTXBUF. TheUCxTXBUFdata ismoved to the TXshift
register when the TX shift register is empty, initiating data transfer on
UCxSIMO starting with either the most-significant or least-significant bit
dependingon theUCMSBsetting.DataonUCxSOMI is shifted into the receive
shift register on the opposite clock edge. When the character is received, the
receive data is moved from the RX shift register to the received data buffer
UCxRXBUF and the receive interrupt flag, UCxRXIFG, is set, indicating the
RX/TX operation is complete.

A set transmit interrupt flag, UCxTXIFG, indicates that data has moved from
UCxTXBUF to the TX shift register and UCxTXBUF is ready for new data. It
does not indicate RX/TX completion.

To receive data into the USCI in master mode, data must be written to
UCxTXBUF because receive and transmit operations operate concurrently.

USCI Operation: SPI Mode

16-8 Universal Serial Communication Interface, SPI Mode

Four-Pin SPI Master Mode

In 4-pin master mode, UCxSTE is used to prevent conflicts with another
master and controls the master as described in Table 16--1. When UCxSTE
is in the master-inactive state:

- UCxSIMO and UCxCLK are set to inputs and no longer drive the bus

- The error bit UCFE is set indicating a communication integrity violation to
be handled by the user.

- The internal state machines are reset and the shift operation is aborted.

If data is written into UCxTXBUFwhile themaster is held inactive by UCxSTE,
it will be transmit as soon as UCxSTE transitions to the master-active state.
If an active transfer is aborted by UCxSTE transitioning to the master-inactive
state, the data must be re-written into UCxTXBUF to be transferred when
UCxSTE transitions back to themaster-active state. TheUCxSTE input signal
is not used in 3-pin master mode.

USCI Operation: SPI Mode

16-9Universal Serial Communication Interface, SPI Mode

16.3.4 Slave Mode

Figure 16--3. USCI Slave and External Master

Receive Buffer
UCxRXBUF

Receive Shift Register

Transmit Buffer
UCxTXBUF

Transmit Shift Register

SPI Receive Buffer

Data Shift Register DSR

UCx
SOMISOMI

UCxSIMOSIMOMASTER SLAVE

Px.x UCxSTE

STE SS
Port.x

UCxCLKSCLK
MSP430 USCICOMMON SPI

Figure 16--3 shows theUSCI as a slave in both 3-pin and 4-pin configurations.
UCxCLK is used as the input for the SPI clock and must be supplied by the
external master. The data-transfer rate is determined by this clock and not by
the internal bit clock generator. Data written to UCxTXBUF and moved to the
TX shift register before the start of UCxCLK is transmitted on UCxSOMI. Data
on UCxSIMO is shifted into the receive shift register on the opposite edge of
UCxCLK andmoved to UCxRXBUFwhen the set number of bits are received.
When data is moved from the RX shift register to UCxRXBUF, the UCxRXIFG
interrupt flag is set, indicating that data has been received. The overrun error
bit, UCOE, is set when the previously received data is not read from
UCxRXBUF before new data is moved to UCxRXBUF.

Four-Pin SPI Slave Mode

In 4-pin slave mode, UCxSTE is used by the slave to enable the transmit and
receive operations and is provided by the SPI master.When UCxSTE is in the
slave-active state, the slave operates normally.WhenUCxSTE is in the slave-
inactive state:

- Any receive operation in progress on UCxSIMO is halted

- UCxSOMI is set to the input direction

- Theshift operation is halteduntil theUCxSTE line transitions into theslave
transmit active state.

The UCxSTE input signal is not used in 3-pin slave mode.

USCI Operation: SPI Mode

16-10 Universal Serial Communication Interface, SPI Mode

16.3.5 SPI Enable

When the USCI module is enabled by clearing the UCSWRST bit it is ready
to receive and transmit. In master mode the bit clock generator is ready, but
is not clocked nor producing any clocks. In slave mode the bit clock generator
is disabled and the clock is provided by the master.

A transmit or receive operation is indicated by UCBUSY = 1.

A PUC or set UCSWRST bit disables the USCI immediately and any active
transfer is terminated.

Transmit Enable

In master mode, writing to UCxTXBUF activates the bit clock generator and
the data will begin to transmit.

In slave mode, transmission begins when a master provides a clock and, in
4-pin mode, when the UCxSTE is in the slave-active state.

Receive Enable

The SPI receives data when a transmission is active. Receive and transmit
operations operate concurrently.

USCI Operation: SPI Mode

16-11Universal Serial Communication Interface, SPI Mode

16.3.6 Serial Clock Control

UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit
clock is providedby theUSCIbit clockgenerator on theUCxCLKpin.Theclock
used to generate the bit clock is selected with the UCSSELx bits. When
UCMST = 0, the USCI clock is provided on the UCxCLKpin by themaster, the
bit clock generator is not used, and the UCSSELx bits are don’t care. The SPI
receiver and transmitter operate in parallel and use the same clock source for
data transfer.

The 16-bit value of UCBRx in the bit rate control registers UCxxBR1 and
UCxxBR0 is the division factor of the USCI clock source, BRCLK. The
maximum bit clock that can be generated in master mode is BRCLK.
Modulation is not used in SPI mode and UCAxMCTL should be cleared when
using SPImode for USCI_A. TheUCAxCLK/UCBxCLK frequency is given by:

fBitClock=
fBRCLK
UCBRx

Serial Clock Polarity and Phase

The polarity and phase of UCxCLK are independently configured via the
UCCKPLandUCCKPHcontrol bits of theUSCI.Timing for eachcase is shown
in Figure 16--4.

Figure 16--4. USCI SPI Timing with UCMSB = 1

CKPH CKPL Cycle#

UCxCLK

UCxCLK

UCxCLK

UCxCLK

UCxSIMO/
UCxSOMI

UCxSIMO
UCxSOMI

Move to UCxTXBUF

RX Sample Points

0

1

0

0

01

1 1

0 X

1 X

MSB

MSB

1 2 3 4 5 6 7 8

LSB

LSB

TX Data Shifted Out

UCxSTE

UC UC

USCI Operation: SPI Mode

16-12 Universal Serial Communication Interface, SPI Mode

16.3.7 Using the SPI Mode with Low Power Modes

The USCImodule provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clocksource reverts to thesettingsof its control bits.Automatic clockactivation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

In SPI slave mode no internal clock source is required because the clock is
provided by the external master. It is possible to operate the USCI in SPI slave
mode while the device is in LPM4 and all clock sources are disabled. The
receive or transmit interrupt can wake up the CPU from any low power mode.

USCI Operation: SPI Mode

16-13Universal Serial Communication Interface, SPI Mode

16.3.8 SPI Interrupts

The USCI has one interrupt vector for transmission and one interrupt vector
for reception.

SPI Transmit Interrupt Operation

The UCxTXIFG interrupt flag is set by the transmitter to indicate that
UCxTXBUF is ready to accept another character. An interrupt request is
generated if UCxTXIE and GIE are also set. UCxTXIFG is automatically reset
if a character is written to UCxTXBUF. UCxTXIFG is set after a PUC or when
UCSWRST = 1. UCxTXIE is reset after a PUC or when UCSWRST = 1.

Note: Writing to UCxTXBUF in SPI Mode

Data written to UCxTXBUF when UCxTXIFG = 0 may result in erroneous
data transmission.

SPI Receive Interrupt Operation

The UCxRXIFG interrupt flag is set each time a character is received and
loaded intoUCxRXBUF.An interrupt request is generated ifUCxRXIEandGIE
are also set.UCxRXIFGandUCxRXIEare reset by a system reset PUCsignal
or when UCSWRST = 1. UCxRXIFG is automatically reset when UCxRXBUF
is read.

USCI Operation: SPI Mode

16-14 Universal Serial Communication Interface, SPI Mode

USCI Interrupt Usage

USCI_Ax and USCI_Bx share the same interrupt vectors. The receive
interrupt flags UCAxRXIFG and UCBxRXIFG are routed to one interrupt
vector, the transmit interrupt flags UCAxTXIFG and UCBxTXIFG share
another interrupt vector.

Shared Interrupt Vectors Software Example

The following software example shows an extract of an interrupt service
routine to handle data receive interrupts from USCI_A0 in either UART or SPI
mode and USCI_B0 in SPI mode.

USCIA0_RX_USCIB0_RX_ISR

BIT.B #UCA0RXIFG, &IFG2 ; USCI_A0 Receive Interrupt?

JNZ USCIA0_RX_ISR

USCIB0_RX_ISR?

; Read UCB0RXBUF (clears UCB0RXIFG)

...

RETI

USCIA0_RX_ISR

; Read UCA0RXBUF (clears UCA0RXIFG)

...

RETI

The following software example shows an extract of an interrupt service
routine to handle data transmit interrupts fromUSCI_A0 in either UART or SPI
mode and USCI_B0 in SPI mode.

USCIA0_TX_USCIB0_TX_ISR
BIT.B #UCA0TXIFG, &IFG2 ; USCI_A0 Transmit Interrupt?
JNZ USCIA0_TX_ISR

USCIB0_TX_ISR
; Write UCB0TXBUF (clears UCB0TXIFG)
...
RETI

USCIA0_TX_ISR
; Write UCA0TXBUF (clears UCA0TXIFG)
...
RETI

USCI Registers: SPI Mode

16-15Universal Serial Communication Interface, SPI Mode

16.4 USCI Registers: SPI Mode

The USCI registers applicable in SPI mode for USCI_A0 and USCI_B0 are
listed in Table 16--2. Registers applicable in SPI mode for USCI_A1 and
USCI_B1 are listed in Table 16--3.

Table 16--2.USCI_A0 and USCI_B0 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A0 control register 0 UCA0CTL0 Read/write 060h Reset with PUC

USCI_A0 control register 1 UCA0CTL1 Read/write 061h 001h with PUC

USCI_A0 baud rate control register 0 UCA0BR0 Read/write 062h Reset with PUC

USCI_A0 baud rate control register 1 UCA0BR1 Read/write 063h Reset with PUC

USCI_A0 modulation control register UCA0MCTL Read/write 064h Reset with PUC

USCI_A0 status register UCA0STAT Read/write 065h Reset with PUC

USCI_A0 receive buffer register UCA0RXBUF Read 066h Reset with PUC

USCI_A0 transmit buffer register UCA0TXBUF Read/write 067h Reset with PUC

USCI_B0 control register 0 UCB0CTL0 Read/write 068h 001h with PUC

USCI_B0 control register 1 UCB0CTL1 Read/write 069h 001h with PUC

USCI_B0 bit rate control register 0 UCB0BR0 Read/write 06Ah Reset with PUC

USCI_B0 bit rate control register 1 UCB0BR1 Read/write 06Bh Reset with PUC

USCI_B0 status register UCB0STAT Read/write 06Dh Reset with PUC

USCI_B0 receive buffer register UCB0RXBUF Read 06Eh Reset with PUC

USCI_B0 transmit buffer register UCB0TXBUF Read/write 06Fh Reset with PUC

SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits
To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits usingBIS.B orBIC.B instructions, rather than
MOV.B or CLR.B instructions.

USCI Registers: SPI Mode

16-16 Universal Serial Communication Interface, SPI Mode

Table 16--3.USCI_A1 and USCI_B1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_A1 control register 0 UCA1CTL0 Read/write 0D0h Reset with PUC

USCI_A1 control register 1 UCA1CTL1 Read/write 0D1h 001h with PUC

USCI_A1 baud rate control register 0 UCA1BR0 Read/write 0D2h Reset with PUC

USCI_A1 baud rate control register 1 UCA1BR1 Read/write 0D3h Reset with PUC

USCI_A1 modulation control register UCA10MCTL Read/write 0D4h Reset with PUC

USCI_A1 status register UCA1STAT Read/write 0D5h Reset with PUC

USCI_A1 receive buffer register UCA1RXBUF Read 0D6h Reset with PUC

USCI_A1 transmit buffer register UCA1TXBUF Read/write 0D7h Reset with PUC

USCI_B1 control register 0 UCB1CTL0 Read/write 0D8h 001h with PUC

USCI_B1 control register 1 UCB1CTL1 Read/write 0D9h 001h with PUC

USCI_B1 bit rate control register 0 UCB1BR0 Read/write 0DAh Reset with PUC

USCI_B1 bit rate control register 1 UCB1BR1 Read/write 0DBh Reset with PUC

USCI_B1 status register UCB1STAT Read/write 0DDh Reset with PUC

USCI_B1 receive buffer register UCB1RXBUF Read 0DEh Reset with PUC

USCI_B1 transmit buffer register UCB1TXBUF Read/write 0DFh Reset with PUC

USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC

USCI_A1/B1 interrupt flag register UC1IFG Read/write 007h 00Ah with PUC

USCI Registers: SPI Mode

16-17Universal Serial Communication Interface, SPI Mode

UCAxCTL0, USCI_Ax Control Register 0
UCBxCTL0, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0

UCCKPH UCCKPL UCMSB UC7BIT UCMST UCMODEx UCSYNC=1

rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0

UCCKPH Bit 7 Clock phase select.
0 Data is changed on the first UCLK edge and captured on the

following edge.
1 Data is captured on the first UCLK edge and changed on the

following edge.
UCCKPL Bit 6 Clock polarity select.

0 The inactive state is low.
1 The inactive state is high.

UCMSB Bit 5 MSB first select. Controls the direction of the receive and transmit shift
register.
0 LSB first
1 MSB first

UC7BIT Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 8-bit data
1 7-bit data

UCMST Bit 3 Master mode select
0 Slave mode
1 Master mode

UCMODEx Bits
2-1

USCI mode. The UCMODEx bits select the synchronous mode when
UCSYNC = 1.
00 3-Pin SPI
01 4-Pin SPI with UCxSTE active high: slave enabled when UCxSTE = 1
10 4-Pin SPI with UCxSTE active low: slave enabled when UCxSTE = 0
11 I2C Mode

UCSYNC Bit 0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous Mode

USCI Registers: SPI Mode

16-18 Universal Serial Communication Interface, SPI Mode

UCAxCTL1, USCI_Ax Control Register 1
UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0

UCSSELx Unused UCSWRST

rw-0 rw-0
rw-0†

r0‡ rw-0 rw-0 rw-0 rw-0 rw-1

† UCAxCTL1 (USCI_Ax)
‡ UCBxCTL1 (USCI_Bx)

UCSSELx Bits
7-6

USCI clock source select. These bits select the BRCLK source clock in
master mode. UCxCLK is always used in slave mode.
00 NA
01 ACLK
10 SMCLK
11 SMCLK

Unused Bits
5-1

Unused

UCSWRST Bit 0 Software reset enable
0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

USCI Registers: SPI Mode

16-19Universal Serial Communication Interface, SPI Mode

UCAxBR0, USCI_Ax Bit Rate Control Register 0
UCBxBR0, USCI_Bx Bit Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx -- low byte

rw rw rw rw rw rw rw rw

UCAxBR1, USCI_Ax Bit Rate Control Register 1
UCBxBR1, USCI_Bx Bit Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx -- high byte

rw rw rw rw rw rw rw rw

UCBRx Bit clock prescaler setting.
The 16-bit value of (UCxxBR0 + UCxxBR1 × 256) forms the prescaler
value.

USCI Registers: SPI Mode

16-20 Universal Serial Communication Interface, SPI Mode

UCAxSTAT, USCI_Ax Status Register
UCBxSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0

UCLISTEN UCFE UCOE Unused Unused Unused Unused UCBUSY

rw-0 rw-0 rw-0
rw-0†

r0‡ rw-0 rw-0 rw-0 r-0

† UCAxSTAT (USCI_Ax)
‡ UCBxSTAT (USCI_Bx)

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.
0 Disabled
1 Enabled. The transmitter output is internally fed back to the receiver.

UCFE Bit 6 Framing error flag. This bit indicates a bus conflict in 4-wire master mode.
UCFE is not used in 3-wire master or any slave mode.
0 No error
1 Bus conflict occurred

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UCxRXBUF before the previous character was read. UCOE is cleared
automatically when UCxRXBUF is read, and must not be cleared by
software. Otherwise, it will not function correctly.
0 No error
1 Overrun error occurred

Unused Bits
4--1

Unused

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in
progress.
0 USCI inactive
1 USCI transmitting or receiving

USCI Registers: SPI Mode

16-21Universal Serial Communication Interface, SPI Mode

UCAxRXBUF, USCI_Ax Receive Buffer Register
UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits
7-0

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCxRXBUF resets the
receive-error bits, and UCxRXIFG. In 7-bit data mode, UCxRXBUF is LSB
justified and the MSB is always reset.

UCAxTXBUF, USCI_Ax Transmit Buffer Register
UCBxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits
7-0

The transmit data buffer is user accessible and holds the data waiting to
be moved into the transmit shift register and transmitted. Writing to the
transmit data buffer clears UCxTXIFG. The MSB of UCxTXBUF is not
used for 7-bit data and is reset.

USCI Registers: SPI Mode

16-22 Universal Serial Communication Interface, SPI Mode

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE

rw-0 rw-0 rw-0 rw-0

Bits
7-4

These bits may be used by other modules (see the device-specific data
sheet).

UCB0TXIE Bit 3 USCI_B0 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCB0RXIE Bit 2 USCI_B0 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA0TXIE Bit 1 USCI_A0 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA0RXIE Bit 0 USCI_A0 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

USCI Registers: SPI Mode

16-23Universal Serial Communication Interface, SPI Mode

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UCB0
TXIFG

UCB0
RXIFG

UCA0
TXIFG

UCA0
RXIFG

rw-1 rw-0 rw-1 rw-0

Bits
7-4

These bits may be used by other modules (see the device-specific data
sheet).

UCB0
TXIFG

Bit 3 USCI_B0 transmit interrupt flag. UCB0TXIFG is set when UCB0TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCB0
RXIFG

Bit 2 USCI_B0 receive interrupt flag. UCB0RXIFG is set when UCB0RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

UCA0
TXIFG

Bit 1 USCI_A0 transmit interrupt flag. UCA0TXIFG is set when UCA0TXBUF
empty.
0 No interrupt pending
1 Interrupt pending

UCA0
RXIFG

Bit 0 USCI_A0 receive interrupt flag. UCA0RXIFG is set when UCA0RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

USCI Registers: SPI Mode

16-24 Universal Serial Communication Interface, SPI Mode

UC1IE, USCI_A1/USCI_B1 Interrupt Enable Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCB1TXIE UCB1RXIE UCA1TXIE UCA1RXIE

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

Unused Bits
7-4

Unused

UCB1TXIE Bit 3 USCI_B1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCB1RXIE Bit 2 USCI_B1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA1TXIE Bit 1 USCI_A1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCA1RXIE Bit 0 USCI_A1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

USCI Registers: SPI Mode

16-25Universal Serial Communication Interface, SPI Mode

UC1IFG, USCI_A1/USCI_B1 Interrupt Flag Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCB1
TXIFG

UCB1
RXIFG

UCA1
TXIFG

UCA1
RXIFG

rw--0 rw--0 rw--0 rw--0 rw--1 rw--0 rw--1 rw--0

Unused Bits
7-4

Unused

UCB1
TXIFG

Bit 3 USCI_B1 transmit interrupt flag. UCB1TXIFG is set when UCB1TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCB1
RXIFG

Bit 2 USCI_B1 receive interrupt flag. UCB1RXIFG is set when UCB1RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

UCA1
TXIFG

Bit 1 USCI_A1 transmit interrupt flag. UCA1TXIFG is set when UCA1TXBUF
empty.
0 No interrupt pending
1 Interrupt pending

UCA1
RXIFG

Bit 0 USCI_A1 receive interrupt flag. UCA1RXIFG is set when UCA1RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

16-26 Universal Serial Communication Interface, SPI Mode

17-1Universal Serial Communication Interface, I2C Mode

Universal Serial Communication Interface,
I2C Mode

The universal serial communication interface (USCI) supports multiple serial
communicationmodeswith onehardwaremodule. This chapter discusses the
operation of the I2C mode.

Topic Page

17.1 USCI Overview 17-2. .

17.2 USCI Introduction: I2C Mode 17-3. .

17.3 USCI Operation: I2C Mode 17-5. .

17.4 USCI Registers: I2C Mode 17-25. .

Chapter 17

USCI Overview

17-2 Universal Serial Communication Interface, I2C Mode

17.1 USCI Overview

The universal serial communication interface (USCI) modules support
multiple serial communication modes. Different USCI modules support
different modes. Each different USCI module is named with a different letter.
For example, USCI_A is different fromUSCI_B, etc. If more than one identical
USCI module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two USCI_Amodules,
they are named USCI_A0 and USCI_A1. See the device-specific data sheet
to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

- UART mode
- Pulse shaping for IrDA communications
- Automatic baud rate detection for LIN communications
- SPI mode

The USCI_Bx modules support:

- I2C mode
- SPI mode

USCI Introduction: I2C Mod

17-3Universal Serial Communication Interface, I2C Mode

17.2 USCI Introduction: I2C Mode

In I2Cmode, theUSCImodule providesan interfacebetween theMSP430and
I2C-compatible devices connected by way of the two-wire I2C serial bus.
External components attached to the I2C bus serially transmit and/or receive
serial data to/from the USCI module through the 2-wire I2C interface.

The I2C mode features include:

- Compliance to the Philips Semiconductor I2C specification v2.1
J 7-bit and 10-bit device addressing modes
J General call
J START/RESTART/STOP
J Multi-master transmitter/receiver mode
J Slave receiver/transmitter mode
J Standard mode up to100 kbps and fast mode up to 400 kbps support

- Programmable UCxCLK frequency in master mode

- Designed for low power

- Slave receiver START detection for auto-wake up from LPMx modes

- Slave operation in LPM4

Figure 17--1 shows the USCI when configured in I2C mode.

USCI Introduction: I2C Mod

17-4 Universal Serial Communication Interface, I2C Mode

Figure 17--1. USCI Block Diagram: I2C Mode

ACLK

SMCLK

SMCLK

00

01

10

11

UCSSELx

UC1CLK

Prescaler/Divider

Bit Clock Generator

UCxBRx

16

BRCLK

Slave Address UC1SA

Transmit Shift Register

UCMST

Transmit Buffer UC1TXBUF

I2C State Machine

Own Address UC1OA

Receive Shift Register

UCA10

Receive Buffer UC1RXBUF

UCGCEN

UCxSDA

UCxSCL

UCSLA10

USCI Operation: I2C Mode

17-5Universal Serial Communication Interface, I2C Mode

17.3 USCI Operation: I2C Mode

The I2C mode supports any slave or master I2C-compatible device.
Figure 17--2 shows an example of an I2C bus. Each I2C device is recognized
by a unique address and can operate as either a transmitter or a receiver. A
device connected to the I2C bus can be considered as the master or the slave
when performing data transfers. A master initiates a data transfer and
generates the clock signal SCL. Any device addressed by a master is
considered a slave.

I2C data is communicated using the serial data pin (SDA) and the serial clock
pin (SCL). Both SDA and SCL are bidirectional, and must be connected to a
positive supply voltage using a pullup resistor.

Figure 17--2. I2C Bus Connection Diagram

MSP430

VCC

Serial Data (SDA)
Serial Clock (SCL)

Device A

Device B Device C

Note: SDA and SCL Levels

The MSP430 SDA and SCL pins must not be pulled up above the MSP430
VCC level.

USCI Operation: I2C Mode

17-6 Universal Serial Communication Interface, I2C Mode

17.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the
UCSWRST bit is automatically set, keeping the USCI in a reset condition. To
select I2C operation the UCMODEx bits must be set to 11. After module
initialization, it is ready for transmit or receive operation. Clearing UCSWRST
releases the USCI for operation.

Configuring and reconfiguring the USCI module should be done when
UCSWRST is set to avoid unpredictable behavior. Setting UCSWRST in I2C
mode has the following effects:

- I2C communication stops
- SDA and SCL are high impedance
- UCBxI2CSTAT, bits 6-0 are cleared
- UCBxTXIE and UCBxRXIE are cleared
- UCBxTXIFG and UCBxRXIFG are cleared
- All other bits and registers remain unchanged.

Note: Initializing or Reconfiguring the USCI Module

The recommended USCI initialization/re-configuration process is:
1) Set UCSWRST (BIS.B #UCSWRST,&UCxCTL1)

2) Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)

3) Configure ports.

4) Clear UCSWRST via software (BIC.B #UCSWRST,&UCxCTL1)

5) Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

USCI Operation: I2C Mode

17-7Universal Serial Communication Interface, I2C Mode

17.3.2 I2C Serial Data

One clock pulse is generated by the master device for each data bit
transferred. The I2C mode operates with byte data. Data is transferred most
significant bit first as shown in Figure 17--3.

The first byte after a START condition consists of a 7-bit slave address and the
R/W bit. When R/W = 0, the master transmits data to a slave. When R/W = 1,
the master receives data from a slave. The ACK bit is sent from the receiver
after each byte on the 9th SCL clock.

Figure 17--3. I2C Module Data Transfer

SDA

SCL

MSB Acknowledgement
Signal From Receiver

Acknowledgement
Signal From Receiver

1 2 7 8 9 1 2 8 9
ACK ACK

START
Condition (S)

STOP
Condition (P)R/W

START and STOP conditions are generated by the master and are shown in
Figure 17--3. A START condition is a high-to-low transition on the SDA line
while SCL is high. A STOP condition is a low-to-high transition on the SDA line
while SCL is high. The bus busy bit, UCBBUSY, is set after a START and
cleared after a STOP.

Data on SDA must be stable during the high period of SCL as shown in
Figure 17--4. The high and low state of SDAcan only changewhenSCL is low,
otherwise START or STOP conditions will be generated.

Figure 17--4. Bit Transfer on the I2C Bus

Data Line
Stable Data

Change of Data Allowed

SDA

SCL

USCI Operation: I2C Mode

17-8 Universal Serial Communication Interface, I2C Mode

17.3.3 I2C Addressing Modes

The I2C mode supports 7-bit and 10-bit addressing modes.

7-Bit Addressing

In the 7-bit addressing format, shown in Figure 17--5, the first byte is the 7-bit
slave address and theR/Wbit. TheACKbit is sent from the receiver after each
byte.

Figure 17--5. I2C Module 7-Bit Addressing Format

S Slave Address R/W ACK Data ACK Data ACK P

7 8 81 1 1 1 1 1

10-Bit Addressing

In the 10-bit addressing format, shown in Figure 17--6, the first byte is made
up of 11110b plus the two MSBs of the 10-bit slave address and the R/W bit.
The ACK bit is sent from the receiver after each byte. The next byte is the
remaining 8 bits of the 10-bit slave address, followed by the ACK bit and the
8-bit data.

Figure 17--6. I2C Module 10-Bit Addressing Format

S

1

Slave Address 1st byte

7

Slave Address 2nd byteACKR/W

11 8

ACK

1

Data

8

ACK

1

P

1

1 1 1 1 0 X X

Repeated Start Conditions

The direction of data flow on SDA can be changed by the master, without first
stopping a transfer, by issuing a repeated START condition. This is called a
RESTART.After aRESTART is issued, theslaveaddress is again sent outwith
the new data direction specified by the R/W bit. The RESTART condition is
shown in Figure 17--7.

Figure 17--7. I2C Module Addressing Format with Repeated START Condition

1 7 8 7 81 1 1 1 1 1 1 1

S Slave Address R/W ACK Data ACK S Slave Address R/W ACK Data ACK P

1 Any
Number

1 Any Number

USCI Operation: I2C Mode

17-9Universal Serial Communication Interface, I2C Mode

17.3.4 I2C Module Operating Modes

In I2C mode the USCI module can operate in master transmitter, master
receiver, slave transmitter, or slave receiver mode. The modes are discussed
in the following sections. Time lines are used to illustrate the modes.

Figure 17--8 shows how to interpret the time line figures. Data transmitted by
themaster is represented by grey rectangles, data transmitted by the slave by
white rectangles. Data transmitted by the USCI module, either as master or
slave, is shown by rectangles that are taller than the others.

Actions taken by the USCImodule are shown in grey rectangles with an arrow
indicating where in the the data stream the action occurs. Actions that must
be handled with software are indicated with white rectangles with an arrow
pointing to where in the data stream the action must take place.

Figure 17--8. I2C Time line Legend

...

USCI Master

USCI Slave

Other Master

Other Slave

... Bits set or reset by software

Bits set or reset by hardware

USCI Operation: I2C Mode

17-10 Universal Serial Communication Interface, I2C Mode

Slave Mode

TheUSCImodule is configured as an I2C slave by selecting the I2Cmodewith
UCMODEx = 11 and UCSYNC = 1 and clearing the UCMST bit.

Initially the USCI module must to be configured in receiver mode by clearing
the UCTR bit to receive the I2C address. Afterwards, transmit and receive
operations are controlled automatically depending on the R/W bit received
together with the slave address.

The USCI slave address is programmedwith the UCBxI2COA register. When
UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing
is selected. The UCGCEN bit selects if the slave responds to a general call.

When a START condition is detected on the bus, the USCImodule will receive
the transmitted address and compare it against its own address stored in
UCBxI2COA. The UCSTTIFG flag is set when address received matches the
USCI slave address.

I2C Slave Transmitter Mode

Slave transmitter mode is entered when the slave address transmitted by the
master is identical to its own address with a set R/W bit. The slave transmitter
shifts the serial data out on SDA with the clock pulses that are generated by
themaster device. The slavedevicedoesnot generate the clock, but it will hold
SCL low while intervention of the CPU is required after a byte has been
transmitted.

If the master requests data from the slave the USCI module is automatically
configured as a transmitter andUCTRandUCBxTXIFGbecome set. TheSCL
line is held low until the first data to be sent is written into the transmit buffer
UCBxTXBUF. Then the address is acknowledged, the UCSTTIFG flag is
cleared, and the data is transmitted. As soon as the data is transferred into the
shift register the UCBxTXIFG is set again. After the data is acknowledged by
the master the next data byte written into UCBxTXBUF is transmitted or if the
buffer is empty the bus is stalled during the acknowledge cycle by holdingSCL
low until new data is written into UCBxTXBUF. If the master sends a NACK
succeeded by a STOP condition the UCSTPIFG flag is set. If the NACK is
succeeded by a repeated START condition the USCI I2C state machine
returns to its address-reception state.

Figure 17--9 illustrates the slave transmitter operation.

USCI Operation: I2C Mode

17-11Universal Serial Communication Interface, I2C Mode

Figure 17--9. I2C Slave Transmitter Mode

S SLA/R A DATA A P

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=?0
UCBxTXBUF discarded

Reception of own
address and
transmission of data
bytes

Bus stalled (SCL held low)
until data available

DATADATA A

UCSTPIFG=1
UCSTTIFG=0

A

A

DATA A S SLA/R

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCBxTXBUF discarded

DATA A S SLA/W

UCTR=0 (Receiver)
UCSTTIFG=1

Arbitration lost as
master and
addressed as slave

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

UCBxTXIFG=0

Repeated start --
continue as
slave transmitter

Repeated start --
continue as
slave receiver

Write data to UCBxTXBUF

UCBxTXIFG=1

UCBxTXIFG=0

UCBxTXIFG=0

Write data to UCBxTXBUF

USCI Operation: I2C Mode

17-12 Universal Serial Communication Interface, I2C Mode

I2C Slave Receiver Mode

Slave receiver mode is entered when the slave address transmitted by the
master is identical to its ownaddressandaclearedR/Wbit is received. In slave
receiver mode, serial data bits received on SDA are shifted in with the clock
pulses that are generated by the master device. The slave device does not
generate theclock, but it canholdSCL low if interventionof theCPU is required
after a byte has been received.

If the slave should receive data from the master the USCI module is
automatically configured as a receiver andUCTR is cleared.After the first data
byte is received the receive interrupt flag UCBxRXIFG is set. The USCI
module automatically acknowledges the received data and can receive the
next data byte.

If the previous data wasn not read from the receive buffer UCBxRXBUF at the
end of a reception, the bus is stalled by holding SCL low. As soon as
UCBxRXBUF is read the new data is transferred into UCBxRXBUF, an
acknowledge is sent to the master, and the next data can be received.

Setting the UCTXNACK bit causes a NACK to be transmitted to the master
during the next acknowledgment cycle. A NACK is sent even if UCBxRXBUF
is not ready to receive the latest data. If the UCTXNACK bit is set while SCL
is held low the bus will be released, a NACK is transmitted immediately, and
UCBxRXBUF is loaded with the last received data. Since the previous data
was not read that data will be lost. To avoid loss of data the UCBxRXBUF
needs to be read before UCTXNACK is set.

When the master generates a STOP condition the UCSTPIFG flag is set.

If the master generates a repeated START condition the USCI I2C state
machine returns to its address reception state.

Figure 17--10 illustrates the the I2C slave receiver operation.

USCI Operation: I2C Mode

17-13Universal Serial Communication Interface, I2C Mode

Figure 17--10. I2C Slave Receiver Mode

S SLA/W A DATA A P or SReception of own
address and data
bytes. All are
acknowledged.

UCBxRXIFG=1

DATADATA A A

UCTXNACK=1

Refer to:
”Slave Transmitter”
Timing Diagram

Bus not stalled even if
UCBxRXBUF not read

P or SDATA A

A
Arbitration lost as
master and
addressed as slave

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBxTXIFG=0
UCSTPIFG=0

Last byte is not
acknowledged.

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the
general call
address.

UCTXNACK=0

Bus stalled
(SCL held low)
if UCBxRXBUF not read

Read data from UCBxRXBUF

USCI Operation: I2C Mode

17-14 Universal Serial Communication Interface, I2C Mode

I2C Slave 10-bit Addressing Mode

The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in
Figure 17--11. In 10-bit addressingmode, the slave is in receivemodeafter the
full address is received. The USCI module indicates this by setting the
UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into
transmitter mode themaster sends a repeated START condition together with
the first byte of the address butwith theR/Wbit set. Thiswill set theUCSTTIFG
flag if it was previously cleared by software and the USCI modules switches
to transmitter mode with UCTR = 1.

Figure 17--11.I2C Slave 10-bit Addressing Mode

S

S 11110 xx/W A SLA (2.) A P or SReception of own
address and data
bytes. All are
acknowledged.

UCBxRXIFG=1

DATA DATAA A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

Gen Call A

UCTR=0 (Receiver)
UCSTTIFG=1
UCGC=1

Reception of the
general call
address.

P or S

UCBxRXIFG=1

DATA DATAA A

S 11110 xx/W A SLA (2.) A

UCTR=0 (Receiver)
UCSTTIFG=1
UCSTPIFG=0

11110 xx/R A

UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

UCSTTIFG=0

DATA A P or SReception of own
address and
transmission of data
bytes

Slave Transmitter

Slave Receiver

USCI Operation: I2C Mode

17-15Universal Serial Communication Interface, I2C Mode

Master Mode

The USCI module is configured as an I2C master by selecting the I2C mode
with UCMODEx = 11 and UCSYNC = 1 and setting the UCMST bit. When the
master is part of a multi-master system, UCMM must be set and its own
address must be programmed into the UCBxI2COA register. When UCA10 =
0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is
selected. The UCGCEN bit selects if the USCI module responds to a general
call.

I2C Master Transmitter Mode

After initialization, master transmitter mode is initiated by writing the desired
slave address to the UCBxI2CSA register, selecting the size of the slave
addresswith theUCSLA10 bit, settingUCTR for transmittermode, and setting
UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START
condition, and transmits the slave address. The UCBxTXIFG bit is set when
the START condition is generated and the first data to be transmitted can be
written into UCBxTXBUF. As soon as the slave acknowledges the address the
UCTXSTT bit is cleared.

The data written into UCBxTXBUF is transmitted if arbitration is not lost during
transmission of the slave address. UCBxTXIFG is set again as soon as the
data is transferred from the buffer into the shift register. If there is no data
loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during
the acknowledge cycle with SCL low until data is written into UCBxTXBUF.
Data is transmitted or the bus is held as long as theUCTXSTPbit orUCTXSTT
bit is not set.

Setting UCTXSTPwill generate a STOP condition after the next acknowledge
from the slave. If UCTXSTP is set during the transmission of the slave’s
address or while the USCI module waits for data to be written into
UCBxTXBUF, a STOP condition is generated even if no data was transmitted
to the slave. When transmitting a single byte of data, the UCTXSTP bit must
be set while the byte is being transmitted, or anytime after transmission
begins, without writing new data into UCBxTXBUF. Otherwise, only the
address will be transmitted.When the data is transferred from the buffer to the
shift register, UCBxTXIFG will become set indicating data transmission has
begun and the UCTXSTP bit may be set.

Setting UCTXSTT will generate a repeated START condition. In this case,
UCTRmaybeset or cleared toconfigure transmitter or receiver, andadifferent
slave address may be written into UCBxI2CSA if desired.

If the slave does not acknowledge the transmitted data the not-acknowledge
interrupt flag UCNACKIFG is set. The master must react with either a STOP
condition or a repeated START condition. If data was already written into
UCBxTXBUF it will be discarded. If this data should be transmitted after a
repeatedSTART itmust bewritten intoUCBxTXBUFagain.Any setUCTXSTT
is discarded, too. To trigger a repeated start UCTXSTT needs to be set again.

USCI Operation: I2C Mode

17-16 Universal Serial Communication Interface, I2C Mode

Figure 17--12 illustrates the I2C master transmitter operation.

Figure 17--12. I2C Master Transmitter Mode

Other master continues

S SLA/W A DATA A P
Successful
transmission to a
slave receiver

UCBxTXIFG=1

DATADATA A A

UCTXSTP=1
UCBxTXIFG=0

Next transfer started
with a repeated start
condition

DATA A S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA A S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1
3) UCBxTXIFG=0

Not acknowledge
received after slave
address

P

S SLA/W

S SLA/R

UCTXSTP=1

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in
slave address or
data byte

A

A

Other master continues

Arbitration lost and
addressed as slave

Other master continuesA

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
UCBxTXIFG=0
UCSTPIFG=0

USCI continues as Slave Receiver

Not acknowledge
received after a data
byte

UCTXSTT=0 UCTXSTP=0

UCTXSTP=0

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Bus stalled (SCL held low)
until data available

Write data to UCBxTXBUF

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

UCBxTXIFG=1
UCBxTXBUF discarded

UCTXSTT=0
UCNACKIFG=1
UCBxTXIFG=0
UCBxTXBUF discarded

UCBxTXIFG=1
UCBxTXBUF discarded

UCNACKIFG=1
UCBxTXIFG=0
UCBxTXBUF discarded

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

USCI Operation: I2C Mode

17-17Universal Serial Communication Interface, I2C Mode

I2C Master Receiver Mode

After initialization, master receiver mode is initiated by writing the desired
slave address to the UCBxI2CSA register, selecting the size of the slave
address with the UCSLA10 bit, clearing UCTR for receiver mode, and setting
UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START
condition, and transmits the slave address. As soon as the slave
acknowledges the address the UCTXSTT bit is cleared.

After the acknowledge of the address from the slave the first data byte from
the slave is received and acknowledged and the UCBxRXIFG flag is set. Data
is received from the slave ss long as UCTXSTP or UCTXSTT is not set. If
UCBxRXBUF is not read the master holds the bus during reception of the last
data bit and until the UCBxRXBUF is read.

If the slave does not acknowledge the transmitted address the
not-acknowledge interrupt flag UCNACKIFG is set. The master must react
with either a STOP condition or a repeated START condition.

Setting the UCTXSTP bit will generate a STOP condition. After setting
UCTXSTP, aNACK followed by aSTOPcondition is generated after reception
of the data from the slave, or immediately if the USCI module is currently
waiting for UCBxRXBUF to be read.

If a master wants to receive a single byte only, the UCTXSTP bit must be set
while the byte is being received. For this case, the UCTXSTT may be polled
to determine when it is cleared:

BIS.B #UCTXSTT,&UCBOCTL1 ;Transmit START cond.

POLL_STT BIT.B #UCTXSTT,&UCBOCTL1 ;Poll UCTXSTT bit

JC POLL_STT ;When cleared,

BIS.B #UCTXSTP,&UCB0CTL1 ;transmit STOP cond.

Setting UCTXSTT will generate a repeated START condition. In this case,
UCTRmaybeset or cleared toconfigure transmitter or receiver, andadifferent
slave address may be written into UCBxI2CSA if desired.

Figure 17--13 illustrates the I2C master receiver operation.

Note: Consecutive Master Transactions Without Repeated Start

When performing multiple consecutive I2C master transactions without the
repeated start feature, the current transactionmust be completed before the
next one is initiated. This can be done by ensuring that the transmit stop
condition flagUCTXSTP is clearedbefore thenext I2C transaction is initiated
with setting UCTXSTT = 1. Otherwise, the current transaction might be
affected.

USCI Operation: I2C Mode

17-18 Universal Serial Communication Interface, I2C Mode

Figure 17--13. I2C Master Receiver Mode

Other master continues

S SLA/R A DATA A P

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Successful
reception from a
slave transmitter

UCBxRXIFG=1

DATADATA A

UCTXSTP=1

Next transfer started
with a repeated start
condition

DATA S SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA S SLA/R

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Not acknowledge
received after slave
address

UCTXSTT=0
UCNACKIFG=1

P

S SLA/W

S SLA/R

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Arbitration lost in
slave address or
data byte

A

Other master continues

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

Arbitration lost and
addressed as slave

Other master continuesA

UCALIFG=1
UCMST=0
UCTR=1 (Transmitter)
UCSTTIFG=1
UCBxTXIFG=1
UCSTPIFG=0

USCI continues as Slave Transmitter

A

A

A

UCTXSTT=0 UCTXSTP=0

UCBxTXIFG=1

UCALIFG=1
UCMST=0
(UCSTTIFG=0)

UCTXSTP=1

UCTXSTP=0

USCI Operation: I2C Mode

17-19Universal Serial Communication Interface, I2C Mode

I2C Master 10-bit Addressing Mode

The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in
Figure 17--14.

Figure 17--14. I2C Master 10-bit Addressing Mode
Master Transmitter

S A A P

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

Successful
transmission to a
slave receiver

UCBxTXIFG=1
UCBxTXIFG=1

DATADATA A A

UCTXSTP=1

UCTXSTT=0 UCTXSTP=0

11110 xx/W SLA (2.)

S A P

1) UCTR=0 (Receiver)
2) UCTXSTT=1

Successful
reception from a
slave transmitter

DATADATA A

UCTXSTP=1

A

UCTXSTT=0 UCTXSTP=0

A A11110 xx/W SLA (2.) 11110xx/R

Master Receiver

S

UCBxRXIFG=1

USCI Operation: I2C Mode

17-20 Universal Serial Communication Interface, I2C Mode

Arbitration

If two or more master transmitters simultaneously start a transmission on the
bus, an arbitration procedure is invoked. Figure 17--15 illustrates the
arbitration procedure between two devices. The arbitration procedure uses
the data presented on SDA by the competing transmitters. The first master
transmitter that generates a logic high is overruled by the opposing master
generating a logic low. The arbitration procedure gives priority to the device
that transmits the serial data stream with the lowest binary value. The master
transmitter that lost arbitration switches to the slave receiver mode, and sets
the arbitration lost flag UCALIFG. If two or more devices send identical first
bytes, arbitration continues on the subsequent bytes.

Figure 17--15. Arbitration Procedure Between Two Master Transmitters

1

0 0 0

1

0 0 0

1 1

111

n
Device #1 Lost Arbitration
and Switches Off

Bus Line
SCL

Data From
Device #1

Data From
Device #2

Bus Line
SDA

If the arbitration procedure is in progress when a repeated START condition
or STOP condition is transmitted on SDA, the master transmitters involved in
arbitration must send the repeated START condition or STOP condition at the
same position in the format frame. Arbitration is not allowed between:

- A repeated START condition and a data bit
- A STOP condition and a data bit
- A repeated START condition and a STOP condition

USCI Operation: I2C Mode

17-21Universal Serial Communication Interface, I2C Mode

17.3.5 I2C Clock Generation and Synchronization

The I2C clock SCL is provided by the master on the I2C bus. When the USCI
is inmastermode, BITCLK is provided by theUSCI bit clock generator and the
clock source is selected with the UCSSELx bits. In slave mode the bit clock
generator is not used and the UCSSELx bits are don’t care.

The16-bit valueofUCBRx in registersUCBxBR1andUCBxBR0 is thedivision
factor of the USCI clock source, BRCLK. The maximum bit clock that can be
used in single master mode is fBRCLK/4. In multi-master mode the maximum
bit clock is fBRCLK/8. The BITCLK frequency is given by:

fBitClock=
fBRCLK
UCBRx

The minimum high and low periods of the generated SCL are

tLOW,MIN= tHIGH,MIN=
UCBRx∕2
fBRCLK

when UCBRx is even and

tLOW,MIN= tHIGH,MIN=
(UCBRx− 1)∕2

fBRCLK
when UCBRx is odd.

The USCI clock source frequency and the prescaler setting UCBRx must to
be chosen such that theminimum low and high period times of the I2C specifi-
cation are met.

During the arbitration procedure the clocks from the differentmasters must be
synchronized. A device that first generates a low period on SCL overrules the
other devices forcing them to start their own low periods. SCL is then held low
by the device with the longest low period. The other devicesmust wait for SCL
to be released before starting their high periods. Figure 17--16 illustrates the
clock synchronization. This allows a slow slave to slow down a fast master.

Figure 17--16. Synchronization of Two I2C Clock Generators During Arbitration

Wait
State Start HIGH

Period

SCL From
Device #1

SCL From
Device #2

Bus Line
SCL

USCI Operation: I2C Mode

17-22 Universal Serial Communication Interface, I2C Mode

Clock Stretching

TheUSCImodule supports clock stretching and alsomakes useof this feature
as described in the operation mode sections.

The UCSCLLOW bit can be used to observe if another device pulls SCL low
while the USCI module already released SCL due to the following conditions:

- USCI is acting as master and a connected slave drives SCL low.

- USCI is acting as master and another master drives SCL low during
arbitration.

TheUCSCLLOWbit is also active if theUSCI holdsSCL low because it is wait-
ing as transmitter for data beingwritten intoUCBxTXBUFor as receiver for the
data being read from UCBxRXBUF.

The UCSCLLOW bit might get set for a short time with each rising SCL edge
because the logic observes the external SCL and compares it to the internally
generated SCL.

17.3.6 Using the USCI Module in I2C Mode with Low Power Modes

The USCImodule provides automatic clock activation for SMCLK for use with
low-power modes. When SMCLK is the USCI clock source, and is inactive
because the device is in a low-power mode, the USCI module automatically
activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the USCI module returns to its idle
condition. After the USCI module returns to the idle condition, control of the
clocksource reverts to thesettingsof its control bits.Automatic clockactivation
is not provided for ACLK.

When the USCI module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the USCI module forces SMCLK active.

In I2C slave mode no internal clock source is required because the clock is
provided by the external master. It is possible to operate the USCI in I2C slave
mode while the device is in LPM4 and all internal clock sources are disabled.
The receive or transmit interrupts can wake up the CPU from any low power
mode.

USCI Operation: I2C Mode

17-23Universal Serial Communication Interface, I2C Mode

17.3.7 USCI Interrupts in I2C Mode

Their are two interrupt vectors for the USCImodule in I2Cmode. One interrupt
vector is associated with the transmit and receive interrupt flags. The other
interrupt vector is associated with the four state change interrupt flags. Each
interrupt flaghas its own interrupt enable bit.Whenan interrupt is enabled, and
the GIE bit is set, the interrupt flag will generate an interrupt request. DMA
transfers are controlled by theUCBxTXIFGandUCBxRXIFG flags on devices
with a DMA controller.

I2C Transmit Interrupt Operation

The UCBxTXIFG interrupt flag is set by the transmitter to indicate that
UCBxTXBUF is ready to accept another character. An interrupt request is
generated if UCBxTXIE and GIE are also set. UCBxTXIFG is automatically
reset if a character is written to UCBxTXBUF or if a NACK is received.
UCBxTXIFG is set when UCSWRST = 1 and the I2C mode is selected.
UCBxTXIE is reset after a PUC or when UCSWRST = 1.

I2C Receive Interrupt Operation

The UCBxRXIFG interrupt flag is set when a character is received and loaded
intoUCBxRXBUF. An interrupt request is generated if UCBxRXIEandGIEare
also set. UCBxRXIFG and UCBxRXIE are reset after a PUC signal or when
UCSWRST = 1. UCxRXIFG is automatically reset when UCxRXBUF is read.

I2C State Change Interrupt Operation.

Table 17--1 Describes the I2C state change interrupt flags.

Table 17--1.I2C State Change Interrupt Flags

Interrupt Flag Interrupt Condition

UCALIFG Arbitration-lost. Arbitration can be lost when two or more
transmitters start a transmission simultaneously, or when the
USCI operates as master but is addressed as a slave by another
master in the system. The UCALIFG flag is set when arbitration is
lost. When UCALIFG is set the UCMST bit is cleared and the I2C
controller becomes a slave.

UCNACKIFG Not-acknowledge interrupt. This flag is set when an acknowledge
is expected but is not received. UCNACKIFG is automatically
cleared when a START condition is received.

UCSTTIFG Start condition detected interrupt. This flag is set when the I2C
module detects a START condition together with its own address
while in slave mode. UCSTTIFG is used in slave mode only and
is automatically cleared when a STOP condition is received.

UCSTPIFG Stop condition detected interrupt. This flag is set when the I2C
module detects a STOP condition while in slave mode.
UCSTPIFG is used in slave mode only and is automatically
cleared when a START condition is received.

USCI Operation: I2C Mode

17-24 Universal Serial Communication Interface, I2C Mode

Interrupt Vector Assignment

USCI_Ax and USCI_Bx share the same interrupt vectors. In I2C mode the
state change interrupt flags UCSTTIFG, UCSTPIFG, UCIFG, UCALIFG from
USCI_Bx and UCAxRXIFG from USCI_Ax are routed to one interrupt vector.
The I2C transmit and receive interrupt flags UCBxTXIFG and UCBxRXIFG
fromUSCI_BxandUCAxTXIFG fromUSCI_Ax shareanother interrupt vector.

Shared Interrupt Vectors Software Example

The following software example shows an extract of the interrupt service
routine to handle data receive interrupts from USCI_A0 in either UART or SPI
mode and state change interrupts from USCI_B0 in I2C mode.

USCIA0_RX_USCIB0_I2C_STATE_ISR

BIT.B #UCA0RXIFG, &IFG2 ; USCI_A0 Receive Interrupt?

JNZ USCIA0_RX_ISR

USCIB0_I2C_STATE_ISR

; Decode I2C state changes ...

; Decode I2C state changes ...

...

RETI

USCIA0_RX_ISR

; Read UCA0RXBUF ... - clears UCA0RXIFG

...

RETI

The following software example shows an extract of the interrupt service
routine that handles data transmit interrupts from USCI_A0 in either UART or
SPI mode and the data transfer interrupts from USCI_B0 in I2C mode.

USCIA0_TX_USCIB0_I2C_DATA_ISR

BIT.B #UCA0TXIFG, &IFG2 ; USCI_A0 Transmit Interrupt?

JNZ USCIA0_TX_ISR

USCIB0_I2C_DATA_ISR

BIT.B #UCB0RXIFG, &IFG2

JNZ USCIB0_I2C_RX

USCIB0_I2C_TX

; Write UCB0TXBUF... - clears UCB0TXIFG

...

RETI

USCIB0_I2C_RX
; Read UCB0RXBUF... - clears UCB0RXIFG

...
RETI

USCIA0_TX_ISR
; Write UCA0TXBUF ... - clears UCA0TXIFG

...
RETI

USCI Registers: I2C Mode

17-25Universal Serial Communication Interface, I2C Mode

17.4 USCI Registers: I2C Mode

The USCI registers applicable in I2C mode for USCI_B0 are listed in
Table 17--2 and for USCI_B1 in Table 17--3.

Table 17--2.USCI_B0 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_B0 control register 0 UCB0CTL0 Read/write 068h 001h with PUC

USCI_B0 control register 1 UCB0CTL1 Read/write 069h 001h with PUC

USCI_B0 bit rate control register 0 UCB0BR0 Read/write 06Ah Reset with PUC

USCI_B0 bit rate control register 1 UCB0BR1 Read/write 06Bh Reset with PUC

USCI_B0 I2C interrupt enable register UCB0I2CIE Read/write 06Ch Reset with PUC

USCI_B0 status register UCB0STAT Read/write 06Dh Reset with PUC

USCI_B0 receive buffer register UCB0RXBUF Read 06Eh Reset with PUC

USCI_B0 transmit buffer register UCB0TXBUF Read/write 06Fh Reset with PUC

USCI_B0 I2C own address register UCB0I2COA Read/write 0118h Reset with PUC

USCI_B0 I2C slave address register UCB0I2CSA Read/write 011Ah Reset with PUC

SFR interrupt enable register 2 IE2 Read/write 001h Reset with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 00Ah with PUC

Note: Modifying SFR bits
To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits usingBIS.B orBIC.B instructions, rather than
MOV.B or CLR.B instructions.

Table 17--3.USCI_B1 Control and Status Registers

Register Short Form Register Type Address Initial State

USCI_B1 control register 0 UCB1CTL0 Read/write 0D8h Reset with PUC

USCI_B1 control register 1 UCB1CTL1 Read/write 0D9h 001h with PUC

USCI_B1 baud rate control register 0 UCB1BR0 Read/write 0DAh Reset with PUC

USCI_B1 baud rate control register 1 UCB1BR1 Read/write 0DBh Reset with PUC

USCI_B1 I2C Interrupt enable register UCB1I2CIE Read/write 0DCh Reset with PUC

USCI_B1 status register UCB1STAT Read/write 0DDh Reset with PUC

USCI_B1 receive buffer register UCB1RXBUF Read 0DEh Reset with PUC

USCI_B1 transmit buffer register UCB1TXBUF Read/write 0DFh Reset with PUC

USCI_B1 I2C own address register UCB1I2COA Read/write 017Ch Reset with PUC

USCI_B1 I2C slave address register UCB1I2CSA Read/write 017Eh Reset with PUC

USCI_A1/B1 interrupt enable register UC1IE Read/write 006h Reset with PUC

USCI_A1/B1 interrupt flag register UC1IFG Read/write 007h 00Ah with PUC

USCI Registers: I2C Mode

17-26 Universal Serial Communication Interface, I2C Mode

UCBxCTL0, USCI_Bx Control Register 0

7 6 5 4 3 2 1 0

UCA10 UCSLA10 UCMM Unused UCMST UCMODEx=11 UCSYNC=1

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 r--1

UCA10 Bit 7 Own addressing mode select
0 Own address is a 7-bit address
1 Own address is a 10-bit address

UCSLA10 Bit 6 Slave addressing mode select
0 Address slave with 7-bit address
1 Address slave with 10-bit address

UCMM Bit 5 Multi-master environment select
0 Single master environment. There is no other master in the system.

The address compare unit is disabled.
1 Multi master environment

Unused Bit 4 Unused
UCMST Bit 3 Master mode select. When a master looses arbitration in a multi-master

environment (UCMM = 1) the UCMST bit is automatically cleared and the
module acts as slave.
0 Slave mode
1 Master mode

UCMODEx Bits
2--1

USCI Mode. The UCMODEx bits select the synchronous mode when
UCSYNC = 1.
00 3-pin SPI
01 4-pin SPI (master/slave enabled if STE = 1)
10 4-pin SPI (master/slave enabled if STE = 0)
11 I2C mode

UCSYNC Bit 0 Synchronous mode enable
0 Asynchronous mode
1 Synchronous mode

USCI Registers: I2C Mode

17-27Universal Serial Communication Interface, I2C Mode

UCBxCTL1, USCI_Bx Control Register 1

7 6 5 4 3 2 1 0

UCSSELx Unused UCTR UCTXNACK UCTXSTP UCTXSTT UCSWRST

rw--0 rw--0 r0 rw--0 rw--0 rw--0 rw--0 rw--1

UCSSELx Bits
7-6

USCI clock source select. These bits select the BRCLK source clock.
00 UCLKI
01 ACLK
10 SMCLK
11 SMCLK

Unused Bit 5 Unused
UCTR Bit 4 Transmitter/Receiver

0 Receiver
1 Transmitter

UCTXNACK Bit 3 Transmit a NACK. UCTXNACK is automatically cleared after a NACK is
transmitted.
0 Acknowledge normally
1 Generate NACK

UCTXSTP Bit 2 Transmit STOP condition in master mode. Ignored in slave mode. In
master receiver mode the STOP condition is preceded by a NACK.
UCTXSTP is automatically cleared after STOP is generated.
0 No STOP generated
1 Generate STOP

UCTXSTT Bit 1 Transmit START condition in master mode. Ignored in slave mode. In
master receiver mode a repeated START condition is preceded by a
NACK. UCTXSTT is automatically cleared after START condition and
address information is transmitted.
Ignored in slave mode.
0 Do not generate START condition
1 Generate START condition

UCSWRST Bit 0 Software reset enable
0 Disabled. USCI reset released for operation.
1 Enabled. USCI logic held in reset state.

USCI Registers: I2C Mode

17-28 Universal Serial Communication Interface, I2C Mode

UCBxBR0, USCI_Bx Baud Rate Control Register 0

7 6 5 4 3 2 1 0

UCBRx -- low byte

rw rw rw rw rw rw rw rw

UCBxBR1, USCI_Bx Baud Rate Control Register 1

7 6 5 4 3 2 1 0

UCBRx -- high byte

rw rw rw rw rw rw rw rw

UCBRx Bit clock prescaler setting.
The 16-bit value of (UCBxBR0 + UCBxBR1 × 256} forms the prescaler
value.

USCI Registers: I2C Mode

17-29Universal Serial Communication Interface, I2C Mode

UCBxSTAT, USCI_Bx Status Register

7 6 5 4 3 2 1 0

Unused UC
SCLLOW UCGC UCBBUSY UCNACK

IFG UCSTPIFG UCSTTIFG UCALIFG

rw--0 r--0 rw--0 r--0 rw--0 rw--0 rw--0 rw--0

Unused Bit 7 Unused.
UC
SCLLOW

Bit 6 SCL low
0 SCL is not held low
1 SCL is held low

UCGC Bit 5 General call address received. UCGC is automatically cleared when a
START condition is received.
0 No general call address received
1 General call address received

UCBBUSY Bit 4 Bus busy
0 Bus inactive
1 Bus busy

UCNACK
IFG

Bit 3 Not-acknowledge received interrupt flag. UCNACKIFG is automatically
cleared when a START condition is received.
0 No interrupt pending
1 Interrupt pending

UCSTPIFG Bit 2 Stop condition interrupt flag. UCSTPIFG is automatically cleared when a
START condition is received.
0 No interrupt pending
1 Interrupt pending

UCSTTIFG Bit 1 Start condition interrupt flag. UCSTTIFG is automatically cleared if a STOP
condition is received.
0 No interrupt pending
1 Interrupt pending

UCALIFG Bit 0 Arbitration lost interrupt flag
0 No interrupt pending
1 Interrupt pending

USCI Registers: I2C Mode

17-30 Universal Serial Communication Interface, I2C Mode

UCBxRXBUF, USCI_Bx Receive Buffer Register

7 6 5 4 3 2 1 0

UCRXBUFx

r r r r r r r r

UCRXBUFx Bits
7--0

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCBxRXBUF resets
UCBxRXIFG.

UCBxTXBUF, USCI_Bx Transmit Buffer Register

7 6 5 4 3 2 1 0

UCTXBUFx

rw rw rw rw rw rw rw rw

UCTXBUFx Bits
7--0

The transmit data buffer is user accessible and holds the data waiting to
be moved into the transmit shift register and transmitted. Writing to the
transmit data buffer clears UCBxTXIFG.

USCI Registers: I2C Mode

17-31Universal Serial Communication Interface, I2C Mode

UCBxI2COA, USCIBx I2C Own Address Register

15 14 13 12 11 10 9 8

UCGCEN 0 0 0 0 0 I2COAx

rw--0 r0 r0 r0 r0 r0 rw--0 rw--0

7 6 5 4 3 2 1 0

I2COAx

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

UCGCEN Bit 15 General call response enable
0 Do not respond to a general call
1 Respond to a general call

I2COAx Bits
9-0

I2C own address. The I2COAx bits contain the local address of the USCI_Bx
I2C controller. The address is right-justified. In 7-bit addressing mode Bit 6 is
the MSB, Bits 9-7 are ignored. In 10-bit addressing mode Bit 9 is the MSB.

UCBxI2CSA, USCI_Bx I2C Slave Address Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 I2CSAx

r0 r0 r0 r0 r0 r0 rw--0 rw--0

7 6 5 4 3 2 1 0

I2CSAx

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

I2CSAx Bits
9-0

I2C slave address. The I2CSAx bits contain the slave address of the external
device to be addressed by the USCI_Bx module. It is only used in master
mode. The address is right-justified. In 7-bit slave addressing mode Bit 6 is
the MSB, Bits 9-7 are ignored. In 10-bit slave addressing mode Bit 9 is the
MSB.

USCI Registers: I2C Mode

17-32 Universal Serial Communication Interface, I2C Mode

UCBxI2CIE, USCI_Bx I2C Interrupt Enable Register

7 6 5 4 3 2 1 0

Reserved UCNACKIE UCSTPIE UCSTTIE UCALIE

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

Reserved Bits
7--4

Reserved

UCNACKIE Bit 3 Not-acknowledge interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCSTPIE Bit 2 Stop condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCSTTIE Bit 1 Start condition interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCALIE Bit 0 Arbitration lost interrupt enable
0 Interrupt disabled
1 Interrupt enabled

USCI Registers: I2C Mode

17-33Universal Serial Communication Interface, I2C Mode

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UCB0TXIE UCB0RXIE

rw--0 rw--0

Bits
7-4

These bits may be used by other modules (see the device-specific data
sheet).

UCB0TXIE Bit 3 USCI_B0 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCB0RXIE Bit 2 USCI_B0 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

Bits
1-0

These bits may be used by other modules (see the device-specific data
sheet).

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UCB0
TXIFG

UCB0
RXIFG

rw--1 rw--0

Bits
7-4

These bits may be used by other modules (see the device-specific data
sheet).

UCB0
TXIFG

Bit 3 USCI_B0 transmit interrupt flag. UCB0TXIFG is set when UCB0TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCB0
RXIFG

Bit 2 USCI_B0 receive interrupt flag. UCB0RXIFG is set when UCB0RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

Bits
1-0

These bits may be used by other modules (see the device-specific data
sheet).

USCI Registers: I2C Mode

17-34 Universal Serial Communication Interface, I2C Mode

UC1IE, USCI_B1 Interrupt Enable Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCB1TXIE UCB1RXIE

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

Unused Bits
7-4

Unused

UCB1TXIE Bit 3 USCI_B1 transmit interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCB1RXIE Bit 2 USCI_B1 receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

Bits
1-0

These bits may be used by other USCImodules (see the device-specific data
sheet).

UC1IFG, USCI_B1 Interrupt Flag Register

7 6 5 4 3 2 1 0

Unused Unused Unused Unused UCB1
TXIFG

UCB1
RXIFG

rw--0 rw--0 rw--0 rw--0 rw--1 rw--0

Unused Bits
7-4

Unused.

UCB1
TXIFG

Bit 3 USCI_B1 transmit interrupt flag. UCB1TXIFG is set when UCB1TXBUF is
empty.
0 No interrupt pending
1 Interrupt pending

UCB1
RXIFG

Bit 2 USCI_B1 receive interrupt flag. UCB1RXIFG is set when UCB1RXBUF has
received a complete character.
0 No interrupt pending
1 Interrupt pending

Bits
1-0

These bits may be used by other modules (see the device-specific data
sheet).

18-1OA

OA

TheOA is a general purpose operational amplifier. This chapter describes the
OA. Two OA modules are implemented in the MSP430x22x4 devices.

Topic Page

18.1 OA Introduction 18-2. .

18.2 OA Operation 18-4. .

18.3 OA Registers 18-12. .

Chapter 18

OA Introduction

18-2 OA

18.1 OA Introduction

The OA operational amplifiers support front-end analog signal conditioning
prior to analog-to-digital conversion.

Features of the OA include:

- Single supply, low-current operation

- Rail-to-rail output

- Programmable settling time vs. power consumption

- Software selectable configurations

- Software selectable feedback resistor ladder for PGA implementations

Note: Multiple OA Modules

Some devices may integrate more than one OA module. In the case where
more than one OA is present on a device, the multiple OA modules operate
identically.

Throughout this chapter, nomenclature appears such as OAxCTL0 to
describe register names. When this occurs, the x is used to indicate which
OA module is being discussed. In cases where operation is identical, the
register is simply referred to as OAxCTL0.

The block diagram of the OA module is shown in Figure 18--1.

OA Introduction

18-3OA

Figure 18--1. OA Block Diagram

000

001

100

011

010

111

110

101

3

3

000

001

100

011

010

111

110

101

3

4R

4R

2R

2R

R

R

R

R

OAFBRx

OAxTAP

OAFCx

OAxRBOTTOM

OA1RBOTTOM(OA0)
OA2RBOTTOM(OA1)
OA0RBOTTOM(OA2)

000

001

100

011

010

111

110

101

OAPMx

OAxOUT

OAx

+

--

A1 (OA0)
A3 (OA1)
A5 (OA2)

A12 (OA0)
A13 (OA1)
A14 (OA2)

001

else

OAFCx = 6

0

1

OANx = 3

OAPx = 3

OA1TAP (OA0)
OA2TAP (OA1)
OA0TAP (OA2)

OAxRTOP

000

1

OAPx

OAxI0

OA0I1

00

01

10

11

OAxIA

OAxIB

OA2OUT (OA0)
OA0OUT (OA1)
OA1OUT (OA2)

0

1

OAFCx = 5 OANx

OAxI0

OAxI1

00

01

10

11

OAxIA

OAxIB

OANEXT
OAFCx = 6

OAxRBOTTOM

A12/OA0O
A13/OA1O
A14/OA2O

A1/OA0O
A3/OA1O
A5/OA2O

OANx

OAxI0

OAxI1

00

01

10

11

OAxIA

AVCC

1
0

OARRIP

0
1

OAFBRx > 0

1

OAFCx = 0
OAADCx

OAxFB
OA2OUT (OA0)
OA0OUT (OA1)
OA1OUT (OA2)

2
F
ee
ba
ck

S
w
itc
h
M
at
rix

OA Operation

18-4 OA

18.2 OA Operation

The OA module is configured with user software. The setup and operation of
the OA is discussed in the following sections.

18.2.1 OA Amplifier

The OA is a configurable, low-current, rail-to-rail output operational amplifier.
It can be configured as an inverting amplifier, or a non-inverting amplifier, or
can be combined with other OA modules to form differential amplifiers. The
output slew rate of the OA can be configured for optimized settling time vs.
power consumptionwith theOAPMx bits.WhenOAPMx= 00 theOA is off and
the output is high-impedance. When OAPMx > 0, the OA is on. See the
device-specific data sheet for parameters.

18.2.2 OA Input

TheOAhas configurable input selection. The signals for the + and -- inputs are
individually selected with the OANx and OAPx bits and can be selected as
external signals or internal signals. OAxI0 and OAxI1 are external signals
provided for eachOAmodule.OA0I1 provides a non-inverting input that is tied
together internally for all OA modules. OAxIA and OAxIB provide
device-dependent inputs. Refer to the device data sheet for signal
connections.

When the external inverting input is not needed for a mode, setting the
OANEXT bit makes the internal inverting input externally available.

OA Operation

18-5OA

18.2.3 OA Output and Feedback Routing

The OA has configurable output selection controlled by the OAADCx bits and
the OAFCx bits. The OA output signals can be routed to ADC12 inputs A12
(OA0), A13 (OA1), or A14 (OA2) internally, or can be routed to these ADC
inputs and their external pins. The OA output signals can also be routed to
ADC inputs A1 (OA0), A3 (OA1), or A5 (OA2) and the corresponding external
pin. The OA output is also connected to an internal R-ladder with the OAFCx
bits. The R-ladder tap is selected with the OAFBRx bits to provide
programmable gain amplifier functionality.

Table 18--1 shows the OA output and feedback routing configurations. When
OAFCx = 0 the OA is in general-purpose mode and feedback is achieved
externally to the device. When OAFCx > 0 and when OAADCx = 00 or 11, the
output of the OA is kept internal to the device.WhenOAFCx > 0 andOAADCx
= 01 or 10, the OA output is routed both internally and externally.

Table 18--1.OA Output Configurations

OAFCx OAADCx OA Output and Feedback Routing

= 0 x0 OAxOUT connected to external pins and ADC input A1, A3,
or A5.

= 0 x1 OAxOUT connected to external pins and ADC input A12,
A13, or A14.

> 0 00 OAxOUT used for internal routing only.

> 0 01 OAxOUT connected to external pins and ADC input A12,
A13, or A14.

> 0 10 OAxOUT connected to external pins and ADC input A1, A3,
or A5.

> 0 11 OAxOUT connected internally to ADC input A12, A13 , or
A14. External A12, A13, or A14 pin connections are
disconnected from the ADC.

OA Operation

18-6 OA

18.2.4 OA Configurations

TheOA can be configured for different amplifier functions with theOAFCx bits
as listed in Table 18--2.

Table 18--2.OA Mode Select

OAFCx OA Mode

000 General-purpose opamp

001 Unity gain buffer for three-opamp differential amplifier

010 Unity gain buffer

011 Comparator

100 Non-inverting PGA amplifier

101 Cascaded non-inverting PGA amplifier

110 Inverting PGA amplifier

111 Differential amplifier

General Purpose Opamp Mode

In this mode the feedback resistor ladder is isolated from the OAx and the
OAxCTL0 bits define the signal routing. The OAx inputs are selected with the
OAPx and OANx bits. The OAx output is connected to the ADC12 input
channel as selected by the OAxCTL0 bits.

Unity Gain Mode for Differential Amplifier

In thismode theoutput of theOAx is connected to the inverting input of theOAx
providing a unity gain buffer. The non-inverting input is selected by the OAPx
bits. The external connection for the inverting input is disabled and the OANx
bits are don’t care. The output of the OAx is also routed through the resistor
ladder as part of the three-opamp differential amplifier. This mode is only for
construction of the three-opamp differential amplifier.

Unity Gain Mode

In thismode theoutput of theOAx is connected to the inverting input of theOAx
providing a unity gain buffer. The non-inverting input is selected by the OAPx
bits. The external connection for the inverting input is disabled and the OANx
bits are don’t care. The OAx output is connected to the ADC12 input channel
as selected by the OAxCTL0 bits.

OA Operation

18-7OA

Comparator Mode

In this mode the output of the OAx is isolated from the resistor ladder. RTOP
is connected to AVSS and RBOTTOM is connected to AVCC when OARRIP = 0.
When OARRIP = 1, the connection of the resistor ladder is reversed. RTOP is
connected to AVCC and RBOTTOM is connected to AVSS. The OAxTAP signal
is connected to the inverting input of the OAx providing a comparator with a
programmable threshold voltage selected by the OAFBRx bits. The
non-inverting input is selected by the OAPx bits. Hysteresis can be added by
an external positive feedback resistor. The external connection for the
inverting input is disabled and the OANx bits are don’t care. The OAx output
is connected to the ADC12 input channel as selected by the OAxCTL0 bits.

Non-Inverting PGA Mode

In this mode the output of the OAx is connected to RTOP and RBOTTOM is
connected to AVSS. The OAxTAP signal is connected to the inverting input of
theOAxprovidinganon-invertingamplifier configurationwith aprogrammable
gain of [1+OAxTAP ratio]. The OAxTAP ratio is selected by the OAFBRx bits.
If the OAFBRx bits = 0, the gain is unity. The non-inverting input is selected
by the OAPx bits. The external connection for the inverting input is disabled
and the OANx bits are don’t care. The OAx output is connected to the ADC12
input channel as selected by the OAxCTL0 bits.

Cascaded Non-Inverting PGA Mode

Thismode allows internal routing of theOAsignals to cascade two or threeOA
in non-inverting mode. In this mode the non-inverting input of the OAx is
connected to OA2OUT (OA0), OA0OUT (OA1), or OA1OUT (OA2) when
OAPx = 11. The OAx outputs are connected to the ADC12 input channel as
selected by the OAxCTL0 bits.

Inverting PGA Mode

In this mode the output of the OAx is connected to RTOP and RBOTTOM is
connected to an analogmultiplexer thatmultiplexes theOAxI0,OAxI1,OAxIA,
or the output of one of the remaining OAs, selected with the OANx bits. The
OAxTAP signal is connected to the inverting input of the OAx providing an
inverting amplifier with a gain of --OAxTAP ratio. TheOAxTAP ratio is selected
by theOAFBRx bits. The non-inverting input is selected by theOAPx bits. The
OAx output is connected to the ADC12 input channel as selected by the
OAxCTL0 bits.

Note: Using OAx Negative Input Simultaneously as ADC Input

When the pin connected to the negative input multiplexer is also used as an
input to the ADC, conversion errors up to 5mV may be observed due to
internal wiring voltage drops.

OA Operation

18-8 OA

Differential Amplifier Mode

This mode allows internal routing of the OA signals for a two-opamp or
three-opamp instrumentation amplifier. Figure 18--2 shows a two-opamp
configuration with OA0 and OA1. In this mode the output of the OAx is
connected toRTOPby routing throughanotherOAx in the InvertingPGAmode.
RBOTTOM is unconnected providing a unity gain buffer. This buffer is combined
with one or two remaining OAx to form the differential amplifier. The OAx
output is connected to the ADC12 input channel as selected by the OAxCTL0
bits.

Figure 18--2 shows an example of a two-opamp differential amplifier using
OA0 andOA1. The control register settings and are shown in Table 18--3. The
gain for the amplifier is selected by the OAFBRx bits for OA1 and is shown in
Table 18--4. The OAx interconnections are shown in Figure 18--3.

Table 18--3.Two-Opamp Differential Amplifier Control Register Settings

Register Settings (binary)

OA0CTL0 xx xx xx 0 0

OA0CTL1 000 111 0 x

OA1CTL0 11 xx xx x x

OA1CTL1 xxx 110 0 x

Table 18--4.Two-Opamp Differential Amplifier Gain Settings

OA1 OAFBRx Gain

000 0

001 1/3

010 1

011 1 2/3

100 3

101 4 1/3

110 7

111 15

Figure 18--2. Two-Opamp Differential Amplifier

OA0

+

--

OA1

+

--

1

2)12(

R

xRVV
Vdiff

−
=

R2R1

V2

V1

OA Operation

18-9OA

Figure 18--3. Two-Opamp Differential Amplifier OAx Interconnections

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

OAPMx

+

--

001

else

0

1

OAxRTOP

000

OAPx

OAxI0

OA0I1

00

01

10

11

OAxIA

OAxIB
0

1 OA0

000

001

100

011

010

111

110

101

3

000

001

100

011

010

111

110

101

3

4R

4R

2R

2R

R

R

R

R

OAFBRx
000

001

100

011

010

111

110

101

OAPMx

OA1

+

--

001

else

0

1

OAxRTOP

000

OAPx

OAxI0

OA0I1

00

01

10

11

OAxIA

OAxIB
0

1

00

01

10

11

OAxFB

OAADCx

2

OA Operation

18-10 OA

Figure 18--4 shows an example of a three-opamp differential amplifier using
OA0, OA1 and OA2 (Three opamps are not available on all devices. See
device-specific data sheet for implementation.). The control register settings
are shown in Table 18--5. The gain for the amplifier is selected by theOAFBRx
bits of OA0 and OA2. The OAFBRx settings for both OA0 and OA2 must be
equal. The gain settings are shown in Table 18--6. The OAx interconnections
are shown in Figure 18--5.

Table 18--5.Three-Opamp Differential Amplifier Control Register Settings

Register Settings (binary)

OA0CTL0 xx xx xx 0 0

OA0CTL1 xxx 001 0 x

OA1CTL0 xx xx xx 0 0

OA1CTL1 000 111 0 x

OA2CTL0 11 11 xx x x

OA2CTL1 xxx 110 0 x

Table 18--6.Three-Opamp Differential Amplifier Gain Settings

OA0/OA2 OAFBRx Gain

000 0

001 1/3

010 1

011 1 2/3

100 3

101 4 1/3

110 7

111 15

Figure 18--4. Three-Opamp Differential Amplifier

OA1

+

--

OA2

+

--

1

2)12(

R

xRVV
Vdiff

−
=

R2R1

V2

V1

OA0

+

--

R2R1

OA Operation

18-11OA

Figure 18--5. Three-Opamp Differential Amplifier OAx Interconnections

000

001

100

011

010

111

110

101

OAPMx

OA0

+

--

001

else

0

1

000

OAPx

OAxI0

OA0I1
00

01

10

11

OAxIA

OAxIB
0

1

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

OAPMx

OA1

+

--001

else

0

1
OAxRTOP

000

OAPx

OAxI0

OA0I1
00

01

10

11

OAxIA

OAxIB
0

1

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

3

4R

4R

2R

2R

R

R

R

R

OAFBRx000

001

100

011

010

111

110

101

001

else

0

1
OA0TAP (OA2)

OAxRTOP

000

00

01

10

11

000

001

100

011

010

111

110

101

000

001

100

011

010

111

110

101

4R

4R

2R

2R

R

R

R

R

OAPMx

OA2

+

--

OAxFB

OAADCx

2

3

OAFBRx

OA Registers

18-12 OA

18.3 OA Registers

The OA registers are listed in Table 18--7.

Table 18--7.OA Registers

Register Short Form Register Type Address Initial State

OA0 control register 0 OA0CTL0 Read/write 0C0h Reset with POR

OA0 control register 1 OA0CTL1 Read/write 0C1h Reset with POR

OA1 control register 0 OA1CTL0 Read/write 0C2h Reset with POR

OA1 control register 1 OA1CTL1 Read/write 0C3h Reset with POR

OA2 control register 0 OA2CTL0 Read/write 0C4h Reset with POR

OA2 control register 1 OA2CTL1 Read/write 0C5h Reset with POR

OA Registers

18-13OA

OAxCTL0, Opamp Control Register 0

7 6 5 4 3 2 1 0

OANx OAPx OAPMx OAADCx

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

OANx Bits
7-6

Inverting input select. These bits select the input signal for the OA inverting
input.
00 OAxI0
01 OAxI1
10 OAxIA (see the device-specific data sheet for connected signal)
11 OAxIB (see the device-specific data sheet for connected signal)

OAPx Bits
5-4

Non-inverting input select. These bits select the input signal for the OA
non-inverting input.
00 OAxI0
01 OA0I1
10 OAxIA (see the device-specific data sheet for connected signal)
11 OAxIB (see the device-specific data sheet for connected signal)

OAPMx Bits
3-2

Slew rate select. These bits select the slew rate vs. current consumption
for the OA.
00 Off, output high Z
01 Slow
10 Medium
11 Fast

OAADCx Bits
1--0

OA output select. These bits, together with the OAFCx bits, control the
routing of the OAx output when OAPMx > 0.
When OAFCx = 0:
00 OAxOUT connected to external pins and ADC input A1, A3, or A5
01 OAxOUT connected to external pins and ADC input A12, A13, or A14
10 OAxOUT connected to external pins and ADC input A1, A3, or A5
11 OAxOUT connected to external pins and ADC input A12, A13, or A14
When OAFCx > 0:
00 OAxOUT used for internal routing only
01 OAxOUT connected to external pins and ADC input A12, A13, or A14
10 OAxOUT connected to external pins and ADC input A1, A3, or A5
11 OAxOUT connected internally to ADC input A12, A13 , or A14.

External A12, A13, or A14 pin connections are disconnected from the
ADC.

OA Registers

18-14 OA

OAxCTL1, Opamp Control Register 1

7 6 5 4 3 2 1 0

OAFBRx OAFCx OANEXT OARRIP

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

OAFBRx Bits
7-5

OAx feedback resistor select
000 Tap 0 -- 0R/16R
001 Tap 1 -- 4R/12R
010 Tap 2 -- 8R/8R
011 Tap 3 -- 10R/6R
100 Tap 4 -- 12R/4R
101 Tap 5 -- 13R/3R
110 Tap 6 -- 14R/2R
111 Tap 7 -- 15R/1R

OAFCx Bits
4-2

OAx function control. This bit selects the function of OAx
000 General purpose opamp
001 Unity gain buffer for three-opamp differential amplifier
010 Unity gain buffer
011 Comparator
100 Non-inverting PGA amplifier
101 Cascaded non-inverting PGA amplifier
110 Inverting PGA amplifier
111 Differential amplifier

OANEXT Bit 1 OAx inverting input externally available. This bit, when set, connects the
inverting OAx input to the external pin when the integrated resistor network
is used.
0 OAx inverting input not externally available
1 OAx inverting input externally available

OARRIP Bit 0 OAx reverse resistor connection in comparator mode
0 RTOP is connected to AVSS and RBOTTOM is connected to AVCC when

OAFCx = 3
1 RTOP is connected to AVCC and RBOTTOM is connected to AVSS when

OAFCx = 3.

19-1Comparator_A+

Comparator_A+

Comparator_A+ is an analog voltage comparator. This chapter describes the
operation of the Comparator_A+ of the 2xx family.

Topic Page

19.1 Comparator_A+ Introduction 19-2. .

19.2 Comparator_A+ Operation 19-4. .

19.3 Comparator_A+ Registers 19-10. .

Chapter 19

Comparator_A+ Introduction

19-2 Comparator_A+

19.1 Comparator_A+ Introduction

The Comparator_A+ module supports precision slope analog-to-digital
conversions, supply voltage supervision, and monitoring of external analog
signals.

Features of Comparator_A+ include:

- Inverting and non-inverting terminal input multiplexer

- Software selectable RC-filter for the comparator output

- Output provided to Timer_A capture input

- Software control of the port input buffer

- Interrupt capability

- Selectable reference voltage generator

- Comparator and reference generator can be powered down

- Input Multiplexer

The Comparator_A+ block diagram is shown in Figure 19--1.

Comparator_A+ Introduction

19-3Comparator_A+

Figure 19--1. Comparator_A+ Block Diagram

CA1

CA2

CA3

CA4

CA5

CA6

CA7

CAOUT

+

--

CAEX

0.5xVCC

0.25xVCC

Set_CAIFG

CCI1B
+

--

0V

G
D
S

P2CA0

CAF

CARSEL

CAON

CAREFx

1 0

00

01

10

11

00

01

10

11

1

0

1

0

1

0

1

0

1

0

0V

1 0

Tau ~ 2.0ns

VCAREF

VCC

P2CA4

P2CA1

000

001

010

011

100

101

110

111

CASHORT

P2CA2
P2CA3

CA0

CA1

CA2

00

01

10

11

Comparator_A+ Operation

19-4 Comparator_A+

19.2 Comparator_A+ Operation

The Comparator_A+ module is configured with user software. The setup and
operation of Comparator_A+ is discussed in the following sections.

19.2.1 Comparator

The comparator compares the analog voltages at the + and – input terminals.
If the + terminal is more positive than the – terminal, the comparator output
CAOUT is high. The comparator can be switched on or off using control bit
CAON. The comparator should be switched off when not in use to reduce
current consumption. When the comparator is switched off, the CAOUT is
always low.

19.2.2 Input Analog Switches

The analog input switches connect or disconnect the two comparator input
terminals to associated port pins using the P2CAx bits. Both comparator
terminal inputs can be controlled individually. The P2CAx bits allow:

- Application of an external signal to the + and – terminals of the comparator

- Routing of an internal reference voltage to an associated output port pin

Internally, the input switch is constructed as a T-switch to suppress distortion
in the signal path.

Note: Comparator Input Connection

When the comparator is on, the input terminals should be connected to a
signal, power, or ground. Otherwise, floating levels may cause unexpected
interrupts and increased current consumption.

The CAEX bit controls the input multiplexer, exchanging which input signals
are connected to the comparator’s + and – terminals. Additionally, when the
comparator terminals are exchanged, the output signal from the comparator
is inverted. This allows the user to determine or compensate for the
comparator input offset voltage.

Comparator_A+ Operation

19-5Comparator_A+

19.2.3 Input Short Switch

TheCASHORTbit shorts the comparator_A+ inputs. This can be used to build
a simple sample-and-hold for the comparator as shown in Figure 19--2.

Figure 19--2. Comparator_A+ Sample--And--Hold

Sampling Capacitor, C s

CASHORT

Analog Inputs

The requiredsampling time is proportional to thesizeof the sampling capacitor
(CS), the resistance of the input switches in series with the short switch (Ri),
and the resistance of the external source (RS). The total internal resistance
(RI) is typically in the range of 2 -- 10 kΩ. The sampling capacitor CS should
be greater than 100pF. The time constant, Tau, to charge the sampling
capacitor CS can be calculated with the following equation:

Tau = (RI + RS) x CS

Depending on the required accuracy 3 to 10Tau should be used as a sampling
time. With 3 Tau the sampling capacitor is charged to approximately 95% of
the input signals voltage level, with 5 Tau it is charge to more than 99% and
with 10 Tau the sampled voltage is sufficient for 12--bit accuracy.

Comparator_A+ Operation

19-6 Comparator_A+

19.2.4 Output Filter

The output of the comparator can be used with or without internal filtering.
When control bit CAF is set, the output is filtered with an on-chip RC-filter.

Any comparator output oscillates if the voltage difference across the input
terminals is small. Internal and external parasitic effects and cross coupling on
and between signal lines, power supply lines, and other parts of the system
are responsible for this behavior as shown in Figure 19--3. The comparator
output oscillation reduces accuracy and resolution of the comparison result.
Selecting the output filter can reduce errors associated with comparator
oscillation.

Figure 19--3. RC-Filter Response at the Output of the Comparator

+ Terminal

-- Terminal Comparator Inputs

Comparator Output
Unfiltered at CAOUT

Comparator Output
Filtered at CAOUT

19.2.5 Voltage Reference Generator

The voltage reference generator is used to generate VCAREF, which can be
applied to either comparator input terminal. The CAREFx bits control the
output of the voltage generator. The CARSEL bit selects the comparator
terminal to which VCAREF is applied. If external signals are applied to both
comparator input terminals, the internal reference generator should be turned
off to reduce current consumption. The voltage reference generator can
generate a fraction of the device’s VCC or a fixed transistor threshold voltage
of ~ 0.55 V.

Comparator_A+ Operation

19-7Comparator_A+

19.2.6 Comparator_A+, Port Disable Register CAPD

Thecomparator input andoutput functionsaremultiplexedwith theassociated
I/O port pins, which are digital CMOS gates. When analog signals are applied
to digital CMOS gates, parasitic current can flow from VCC to GND. This
parasitic current occurs if the input voltage is near the transition level of the
gate. Disabling the port pin buffer eliminates the parasitic current flow and
therefore reduces overall current consumption.

The CAPDx bits, when set, disable the corresponding P2 input and output
buffers as shown in Figure 19--4. When current consumption is critical, any
port pin connected to analog signals should be disabled with its CAPDx bit.

Selecting an input pin to the comparator multiplexer with the P2CAx bits
automatically disables the input and output buffers for that pin, regardless of
the state of the associated CAPDx bit.

Figure 19--4. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer

VCC

VSS

ICCVOVI

0 VCC
VIVCC

ICC

CAPD.x = 1

19.2.7 Comparator_A+ Interrupts

One interrupt flag and one interrupt vector are associated with the
Comparator_A+ as shown in Figure 19--5. The interrupt flag CAIFG is set on
either the rising or falling edge of the comparator output, selected by the
CAIES bit. If both the CAIE and the GIE bits are set, then the CAIFG flag
generates an interrupt request. The CAIFG flag is automatically reset when
the interrupt request is serviced or may be reset with software.

Figure 19--5. Comparator_A+ Interrupt System

D Q IRQ, Interrupt Service Requested

Reset

VCC

POR

SET_CAIFG

IRACC, Interrupt Request Accepted

CAIE

CAIES

0

1

Comparator_A+ Operation

19-8 Comparator_A+

19.2.8 Comparator_A+ Used to Measure Resistive Elements

The Comparator_A+ can be optimized to precisely measure resistive
elements using single slope analog-to-digital conversion. For example,
temperature can be converted into digital data using a thermistor, by
comparing the thermistor’s capacitor discharge time to that of a reference
resistor as shown in Figure 19--6. A reference resister Rref is compared to
Rmeas.

Figure 19--6. Temperature Measurement System

+

--

CA0 CCI1B
Capture
Input
Of Timer_A

+

--

Rmeas

Rref
Px.x

Px.y

0.25xVCC

The MSP430 resources used to calculate the temperature sensed by Rmeas
are:

- Two digital I/O pins to charge and discharge the capacitor.

- I/O set to output high (VCC) to charge capacitor, reset to discharge.

- I/O switched to high-impedance input with CAPDx set when not in use.

- One output charges and discharges the capacitor via Rref.

- One output discharges capacitor via Rmeas.

- The + terminal is connected to the positive terminal of the capacitor.

- The – terminal is connected to a reference level, for example 0.25 x VCC.

- The output filter should be used to minimize switching noise.

- CAOUTused to gate Timer_ACCI1B, capturing capacitor discharge time.

More than one resistive element can be measured. Additional elements are
connected to CA0 with available I/O pins and switched to high impedance
when not being measured.

Comparator_A+ Operation

19-9Comparator_A+

The thermistor measurement is based on a ratiometric conversion principle.
The ratio of two capacitor discharge times is calculated as shown in
Figure 19--7.

Figure 19--7. Timing for Temperature Measurement Systems

VC
VCC

0.25 × VCC

Phase I:
Charge

Phase II:
Discharge

Phase III:
Charge

tref

Phase IV:
Discharge

tmeas

t

Rmeas
Rref

The VCC voltage and the capacitor value should remain constant during the
conversion, but are not critical since they cancel in the ratio:

Nmeas
Nref

=
–Rmeas×C× ln

Vref
VCC

–Rref× C× ln
Vref
VCC

Nmeas
Nref

=
Rmeas
Rref

Rmeas= Rref×
Nmeas
Nref

Comparator_A+ Registers

19-10 Comparator_A+

19.3 Comparator_A+ Registers

The Comparator_A+ registers are listed in Table 19--1:

Table 19--1.Comparator_A+ Registers

Register Short Form Register Type Address Initial State

Comparator_A+ control register 1 CACTL1 Read/write 059h Reset with POR

Comparator_A+ control register 2 CACTL2 Read/write 05Ah Reset with POR

Comparator_A+ port disable CAPD Read/write 05Bh Reset with POR

Comparator_A+ Registers

19-11Comparator_A+

CACTL1, Comparator_A+ Control Register 1

7 6 5 4 3 2 1 0

CAEX CARSEL CAREFx CAON CAIES CAIE CAIFG

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

CAEX Bit 7 Comparator_A+ exchange. This bit exchanges the comparator inputs and
inverts the comparator output.

CARSEL Bit 6 Comparator_A+ reference select. This bit selects which terminal the
VCAREF is applied to.
When CAEX = 0:
0 VCAREF is applied to the + terminal
1 VCAREF is applied to the – terminal
When CAEX = 1:
0 VCAREF is applied to the – terminal
1 VCAREF is applied to the + terminal

CAREF Bits
5-4

Comparator_A+ reference. These bits select the reference voltage VCAREF.
00 Internal reference off. An external reference can be applied.
01 0.25*VCC
10 0.50*VCC
11 Diode reference is selected

CAON Bit 3 Comparator_A+ on. This bit turns on the comparator. When the
comparator is off it consumes no current. The reference circuitry is enabled
or disabled independently.
0 Off
1 On

CAIES Bit 2 Comparator_A+ interrupt edge select
0 Rising edge
1 Falling edge

CAIE Bit 1 Comparator_A+ interrupt enable
0 Disabled
1 Enabled

CAIFG Bit 0 The Comparator_A+ interrupt flag
0 No interrupt pending
1 Interrupt pending

Comparator_A+ Registers

19-12 Comparator_A+

CACTL2, Comparator_A+, Control Register

7 6 5 4 3 2 1 0

CASHORT P2CA4 P2CA3 P2CA2 P2CA1 P2CA0 CAF CAOUT

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) r--(0)

CASHORT Bit 7 Input short. This bit shorts the + and -- input terminals.
0 Inputs not shorted.
1 Inputs shorted.

P2CA4 Bit 6 Input select. This bit together with P2CA0 selects the + terminal input when
CAEX = 0 and the -- terminal input when CAEX = 1.

P2CA3
P2CA2
P2CA1

Bits
5-3

Input select. These bits select the -- terminal input when CAEX = 0 and the
+ terminal input when CAEX = 1.
000 No connection
001 CA1
010 CA2
011 CA3
100 CA4
101 CA5
110 CA6
111 CA7

P2CA0 Bit 2 Input select. This bit, together with P2CA4, selects the + terminal input
when CAEX = 0 and the -- terminal input when CAEX = 1.
00 No connection
01 CA0
10 CA1
11 CA2

CAF Bit 1 Comparator_A+ output filter
0 Comparator_A+ output is not filtered
1 Comparator_A+ output is filtered

CAOUT Bit 0 Comparator_A+ output. This bit reflects the value of the comparator output.
Writing this bit has no effect.

Comparator_A+ Registers

19-13Comparator_A+

CAPD, Comparator_A+, Port Disable Register

7 6 5 4 3 2 1 0

CAPD7 CAPD6 CAPD5 CAPD4 CAPD3 CAPD2 CAPD1 CAPD0

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

CAPDx Bits
7-0

Comparator_A+ port disable. These bits individually disable the input
buffer for the pins of the port associated with Comparator_A+. For
example, if CA0 is on pin P2.3, the CAPDx bits can be used to individually
enable or disable each P2.x pin buffer. CAPD0 disables P2.0, CAPD1
disables P2.1, etc.
0 The input buffer is enabled.
1 The input buffer is disabled.

19-14 Comparator_A+

20-1ADC10

ADC10

The ADC10 module is a high-performance 10-bit analog-to-digital converter.
This chapter describes the operation of the ADC10 module of the 2xx family.

Topic Page

20.1 ADC10 Introduction 20-2. .

20.2 ADC10 Operation 20-4. .

20.3 ADC10 Registers 20-24. .

Chapter 20

ADC10 Introduction

20-2 ADC10

20.1 ADC10 Introduction

The ADC10 module supports fast, 10-bit analog-to-digital conversions. The
module implements a 10-bit SAR core, sample select control, reference
generator, and data transfer controller (DTC).

The DTC allows ADC10 samples to be converted and stored anywhere in
memory without CPU intervention. The module can be configured with user
software to support a variety of applications.

ADC10 features include:

- Greater than 200 ksps maximum conversion rate

- Monotonic 10-bit converter with no missing codes

- Sample-and-hold with programmable sample periods

- Conversion initiation by software or Timer_A

- Software selectable on-chip reference voltage generation (1.5 V or 2.5 V)

- Software selectable internal or external reference

- Eight external input channels (twelve on MSP430x22xx devices)

- Conversion channels for internal temperature sensor, VCC, and external
references

- Selectable conversion clock source

- Single-channel, repeated single-channel, sequence, and repeated
sequence conversion modes

- ADC core and reference voltage can be powered down separately

- Data transfer controller for automatic storage of conversion results

The block diagram of ADC10 is shown in Figure 20--1.

ADC10 Introduction

20-3ADC10

Figure 20--1. ADC10 Block Diagram

Sample
and
Hold 10--bit SAR Divider

/1 .. /8

AVCC

ACLK

MCLK

SMCLK

ADC10SC

TA1

TA0

Data Transfer
Controller RAM, Flash, Peripherials

VR-- VR+

VeREF+

VREF+

ADC10ON

INCHx

REFBURST

ADC10SSELx

ADC10DIVx

SHSx

ADC10SHTx MSC

ENC
BUSY

ADC10DF

ADC10CLK

SREF2

ADC10TB ADC10B1ADC10CT

ISSH

ADC10SR

ADC10OSC

Ref_x

S/H Convert

SAMPCON

1

0

Sync
Sample Timer
/4/8/16/64

SHI

ADC10SA

n

4

A0
A1
A2
A3
A4
A5
A6
A7

REFON
INCHx=0Ah

2_5V

1.5V or 2.5V
Reference

on

Ref_x

SREF1

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

000111

01

SREF010

CONSEQx

AVSS

1

0

INCHx=0Bh

Auto

ADC10MEM

R

R

0

1

REFOUT
SREF1

1001
1000

0010
0001

0011
0100
0101
0110
0111

0000

1011
1010

0001

1111
1110
1101
1100A12†

A13†

A14†

A15†

†MSP430x22xx devices only. Channels A12-A15 tied to channel A11 in other devices
‡TA1 on MSP430x20x2 devices

VREF--/VeREF--
AVCC

AVSS

AVCC

TA2‡

ADC10 Operation

20-4 ADC10

20.2 ADC10 Operation

TheADC10module is configuredwith user software. The setup and operation
of the ADC10 is discussed in the following sections.

20.2.1 10-Bit ADC Core

The ADC core converts an analog input to its 10-bit digital representation and
stores the result in the ADC10MEM register. The core uses two
programmable/selectable voltage levels (VR+andVR--) to define theupperand
lower limits of the conversion. The digital output (NADC) is full scale (03FFh)
when the input signal is equal to or higher than VR+, and zero when the input
signal is equal to or lower than VR--. The input channel and the reference
voltage levels (VR+ and VR--) are defined in the conversion-control memory.
Conversion results may be in straight binary format or 2s-complement format.
The conversion formula for the ADC result when using straight binary format
is:

NADC= 1023×
Vin – VR–
VR+– VR–

The ADC10 core is configured by two control registers, ADC10CTL0 and
ADC10CTL1. The core is enabledwith theADC10ONbit.With few exceptions
the ADC10 control bits can only be modified when ENC = 0. ENCmust be set
to 1 before any conversion can take place.

Conversion Clock Selection

The ADC10CLK is used both as the conversion clock and to generate the
samplingperiod. TheADC10source clock is selectedusing theADC10SSELx
bits and can be divided from 1-8 using the ADC10DIVx bits. Possible
ADC10CLK sources are SMCLK, MCLK, ACLK and an internal oscillator
ADC10OSC .

The ADC10OSC, generated internally, is in the 5-MHz range, but varies with
individual devices, supply voltage, and temperature. See the device-specific
data sheet for the ADC10OSC specification.

The user must ensure that the clock chosen for ADC10CLK remains active
until the end of a conversion. If the clock is removed during a conversion, the
operation will not complete, and any result will be invalid.

ADC10 Operation

20-5ADC10

20.2.2 ADC10 Inputs and Multiplexer

Theeight external and four internal analog signals are selected as the channel
for conversion by the analog input multiplexer. The input multiplexer is a
break-before-make type to reduce input-to-input noise injection resulting from
channel switching as shown in Figure 20--2. The input multiplexer is also a
T-switch to minimize the coupling between channels. Channels that are not
selected are isolated from the A/D and the intermediate node is connected to
analog ground (VSS) so that the stray capacitance is grounded to help
eliminate crosstalk.

The ADC10 uses the charge redistribution method. When the inputs are
internally switched, the switching action may cause transients on the input
signal. These transients decay and settle before causing errant conversion.

Figure 20--2. Analog Multiplexer

R ~ 100Ohm

ESD Protection

INCHx

Input
Ax

Analog Port Selection

The ADC10 external inputs Ax, VeREF+, and VREF-- share terminals with
general purpose I/O ports, which are digital CMOS gates (see device-specific
data sheet).When analog signals are applied to digital CMOS gates, parasitic
current can flow from VCC to GND. This parasitic current occurs if the input
voltage is near the transition level of the gate. Disabling the port pin buffer
eliminates the parasitic current flow and therefore reduces overall current
consumption. The ADC10AEx bits provide the ability to disable the port pin
input and output buffers.

; P2.3 on MSP430x22xx device configured for analog input

BIS.B #08h,&ADC10AE0 ; P2.3 ADC10 function and enable

ADC10 Operation

20-6 ADC10

20.2.3 Voltage Reference Generator

The ADC10 module contains a built-in voltage reference with two selectable
voltage levels. Setting REFON = 1 enables the internal reference. When
REF2_5V = 1, the internal reference is 2.5 V. When REF2_5V = 0, the
reference is 1.5 V. The internal reference voltage may be used internally and,
when REFOUT = 0, externally on pin VREF+.

External references may be supplied for VR+ and VR-- through pins A4 and A3
respectively. When external references are used, or when VCC is used as the
reference, the internal reference may be turned off to save power.

An external positive reference VeREF+ can be buffered by setting SREF0 = 1
and SREF1 = 1. This allows using an external reference with a large internal
resistance at the cost of the buffer current. When REFBURST = 1 the
increased current consumption is limited to the sample and conversion period.

External storage capacitance is not required for the ADC10 reference source
as on the ADC12.

Internal Reference Low-Power Features

The ADC10 internal reference generator is designed for low power
applications. The reference generator includes a band-gap voltage source
andaseparate buffer. The current consumptionof each is specified separately
in the device-specific data sheet. When REFON = 1, both are enabled and
when REFON = 0 both are disabled. The total settling time when REFON
becomes set is ± 30 μs.

When REFON = 1, but no conversion is active, the buffer is automatically
disabled and automatically re-enabled when needed. When the buffer is
disabled, it consumes no current. In this case, the band-gap voltage source
remains enabled.

When REFOUT = 1, the REFBURST bit controls the operation of the internal
reference buffer. When REFBURST = 0, the buffer will be on continuously,
allowing the reference voltage to be present outside the device continuously.
When REFBURST = 1, the buffer is automatically disabled when the ADC10
is not actively converting, and automatically re-enabled when needed.

The internal reference buffer also has selectable speed vs. power settings.
When the maximum conversion rate is below 50 ksps, setting ADC10SR = 1
reduces the current consumption of the buffer approximately 50%.

20.2.4 Auto Power-Down

The ADC10 is designed for low power applications. When the ADC10 is not
actively converting, the core is automatically disabled and automatically
re-enabled when needed. The ADC10OSC is also automatically enabled
when needed and disabled when not needed. When the core or oscillator is
disabled, it consumes no current.

ADC10 Operation

20-7ADC10

20.2.5 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of sample input
signal SHI. The source for SHI is selected with the SHSx bits and includes the
following:

- The ADC10SC bit
- The Timer_A Output Unit 1
- The Timer_A Output Unit 0
- The Timer_A Output Unit 2

The polarity of the SHI signal source can be inverted with the ISSH bit. The
SHTx bits select the sample period tsample to be 4, 8, 16, or 64 ADC10CLK
cycles. The sampling timer sets SAMPCON high for the selected sample
period after synchronization with ADC10CLK. Total sampling time is tsample
plus tsync.The high-to-low SAMPCON transition starts the analog-to-digital
conversion, which requires 13 ADC10CLK cycles as shown in Figure 20--3.

Figure 20--3. Sample Timing

Start
Sampling

Stop
Sampling

Conversion
Complete

SAMPCON

SHI

tsample tconvert

tsync

13 x ADC10CLKs

Start
Conversion

ADC10CLK

Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON =
1, the selected Ax input can be modeled as an RC low-pass filter during the
sampling time tsample, as shown below in Figure 20--4. An internal MUX-on
input resistanceRI (max. 2 kΩ) in series with capacitor CI (max. 27 pF) is seen
by the source. The capacitor CI voltage VC must be charged to within ½ LSB
of the source voltage VS for an accurate 10-bit conversion.

ADC10 Operation

20-8 ADC10

Figure 20--4. Analog Input Equivalent Circuit

RS RI
VS VC

MSP430

CI

VI

VI = Input voltage at pin Ax
VS = External source voltage
RS = External source resistance
RI = Internal MUX-on input resistance
CI = Input capacitance
VC = Capacitance-charging voltage

The resistance of the source RS and RI affect tsample.The following equations
can be used to calculate the minimum sampling time for a 10-bit conversion.

tsample> (RS+RI)× ln(211)×CI

Substituting the values for RI and CI given above, the equation becomes:

tsample> (RS+ 2k)× 7.625× 27pF

For example, if RS is 10 kΩ, tsample must be greater than 2.47 μs.

When the reference buffer is used in burst mode, the sampling time must be
greater than the sampling time calculated and the settling time of the buffer,
tREFBURST:

tsample>(RS+RI)× ln(211)× CI
tREFBURST

For example, if VRef is 1.5 V and RS is 10 kΩ, tsample must be greater than 2.47
μswhenADC10SR = 0, or 2.5 μswhenADC10SR=1.See thedevice-specific
data sheet for parameters.

To calculate the buffer settling time when using an external reference, the
formula is:

tREFBURST= SR× VRef− 0.5ms

Where:

SR: Buffer slew rate
(~1 μs/V when ADC10SR = 0 and ~2 μs/V when ADC10SR = 1)

Vref: External reference voltage

ADC10 Operation

20-9ADC10

20.2.6 Conversion Modes

The ADC10 has four operating modes selected by the CONSEQx bits as
discussed in Table 20--1.

Table 20--1.Conversion Mode Summary

CONSEQx Mode Operation

00 Single channel
single-conversion

A single channel is converted once.

01 Sequence-of-
channels

A sequence of channels is converted once.

10 Repeat single
channel

A single channel is converted repeatedly.

11 Repeat sequence-
of-channels

A sequence of channels is converted
repeatedly.

ADC10 Operation

20-10 ADC10

Single-Channel Single-Conversion Mode

Asingle channel selected by INCHx is sampled and converted once. TheADC
result is written to ADC10MEM. Figure 20--5 shows the flow of the
single-channel, single-conversion mode. When ADC10SC triggers a
conversion, successive conversions can be triggered by the ADC10SC bit.
When any other trigger source is used, ENC must be toggled between each
conversion.

Figure 20--5. Single-Channel Single-Conversion Mode

ADC10
Off

x = INCHx
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel

ENC =

ENC =
SHS = 0
and

ENC = 1 or
and

ADC10SC =

SAMPCON =

Convert

ENC = 0

ENC = 0†

12 x ADC10CLK

Conversion
Completed,
Result to

ADC10MEM,
ADC10IFG is Set

1 x ADC10CLK

† Conversion result is unpredictable

ENC = 0†

ADC10ON = 1

CONSEQx = 00

(4/8/16/64) x ADC10CLK

x = input channel Ax

ADC10 Operation

20-11ADC10

Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The sequence
begins with the channel selected by INCHx and decrements to channel A0.
Each ADC result is written to ADC10MEM. The sequence stops after
conversion of channel A0. Figure 20--6 shows the sequence-of-channels
mode. When ADC10SC triggers a sequence, successive sequences can be
triggered by the ADC10SC bit . When any other trigger source is used, ENC
must be toggled between each sequence.

Figure 20--6. Sequence-of-Channels Mode

ADC10
Off

x = INCHx
Wait for Enable

ENC =

Wait for Trigger

Sample,
Input Channel Ax

ENC =

ENC =
SHS = 0
and

ENC = 1 or
and

ADC10SC =

SAMPCON =

Convert

12 x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQx = 01

MSC = 1
and
x ≠ 0

x = 0

If x > 0 then x = x --1

MSC = 0
and
x ≠ 0

(4/8/16/64) x ADC10CLK

If x > 0 then x = x --1

x = input channel Ax

ADC10 Operation

20-12 ADC10

Repeat-Single-Channel Mode

A single channel selected by INCHx is sampled and converted continuously.
Each ADC result is written to ADC10MEM. Figure 20--7 shows the
repeat-single-channel mode.

Figure 20--7. Repeat-Single-Channel Mode

ADC10
Off

x = INCHx
Wait for Enable

ENC =

Wait for Trigger

ENC =

ENC =
SHS = 0
and

ENC = 1 or
and

ADC10SC =

SAMPCON =

(4/8/16/64) × ADC10CLK

Convert

12 x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQx = 10

MSC = 1
and

ENC = 1

ENC = 0

MSC = 0
and

ENC = 1

Sample,
Input Channel Ax

x = input channel Ax

ADC10 Operation

20-13ADC10

Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The sequence
begins with the channel selected by INCHx and decrements to channel A0.
Each ADC result is written to ADC10MEM. The sequence ends after
conversion of channel A0, and the next trigger signal re-starts the sequence.
Figure 20--8 shows the repeat-sequence-of-channels mode.

Figure 20--8. Repeat-Sequence-of-Channels Mode

ADC10
Off

x = INCHx
Wait for Enable

ENC =

Wait for Trigger

Sample
Input Channel Ax

ENC =

ENC =
SHS = 0
and

ENC = 1 or
and

ADC10SC =

Convert

12 x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1

CONSEQx = 11

MSC = 1
and

(ENC = 1
or

x ≠ 0)

ENC = 0
and
x = 0MSC = 0

and
(ENC = 1

or
x ≠ 0)

If x = 0 then x = INCH
else x = x --1

(4/8/16/64) x ADC10CLK

If x = 0 then x = INCH
else x = x --1

x = input channel Ax

SAMPCON =

ADC10 Operation

20-14 ADC10

Using the MSC Bit

To configure the converter to perform successive conversions automatically
andas quickly as possible, amultiple sample and convert function is available.
When MSC = 1 and CONSEQx > 0 the first rising edge of the SHI signal
triggers the first conversion. Successive conversions are triggered
automatically as soon as the prior conversion is completed. Additional rising
edges on SHI are ignored until the sequence is completed in the
single-sequencemodeor until theENCbit is toggled in repeat-single-channel,
or repeated-sequencemodes. The function of theENCbit is unchangedwhen
using the MSC bit.

Stopping Conversions

Stopping ADC10 activity depends on the mode of operation. The
recommendedways to stop anactive conversion or conversion sequenceare:

- Resetting ENC in single-channel single-conversion mode stops a
conversion immediately and the results are unpredictable. For correct
results, poll the ADC10BUSY bit until reset before clearing ENC.

- Resetting ENC during repeat-single-channel operation stops the
converter at the end of the current conversion.

- Resetting ENC during a sequence or repeat sequence mode stops the
converter at the end of the sequence.

- Any conversion mode may be stopped immediately by setting the
CONSEQx=0 and resetting the ENC bit. Conversion data is unreliable.

ADC10 Operation

20-15ADC10

20.2.7 ADC10 Data Transfer Controller

The ADC10 includes a data transfer controller (DTC) to automatically transfer
conversion results from ADC10MEM to other on-chip memory locations. The
DTC is enabled by setting the ADC10DTC1 register to a nonzero value.

When the DTC is enabled, each time the ADC10 completes a conversion and
loads the result to ADC10MEM, a data transfer is triggered. No software
intervention is required to manage the ADC10 until the predefined amount of
conversion data has been transferred. Each DTC transfer requires one CPU
MCLK.Toavoidanybuscontentionduring theDTC transfer, theCPU ishalted,
if active, for the one MCLK required for the transfer.

A DTC transfer must not be initiated while the ADC10 is busy. Software must
ensure that no active conversion or sequence is in progress when the DTC is
configured:

; ADC10 activity test

BIC.W #ENC,&ADC10CTL0 ;

busy_test BIT.W #BUSY,&ADC10CTL1;

JNZ busy_test ;

MOV.W #xxx,&ADC10SA ; Safe

MOV.B #xx,&ADC10DTC1 ;

; continue setup

ADC10 Operation

20-16 ADC10

One-Block Transfer Mode

The one-block mode is selected if the ADC10TB is reset. The value n in
ADC10DTC1 defines the total number of transfers for a block. The block start
address is defined anywhere in the MSP430 address range using the 16-bit
register ADC10SA. The block ends at ADC10SA+2n–2. The one-block
transfer mode is shown in Figure 20--9.

Figure 20--9. One-Block Transfer

ADC10SA

ADC10SA+2

ADC10SA+2n--2

ADC10SA+2n--4

1st transfer

’n’th transfer

2nd transfer

TB=0

DTC

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer, the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. No additional DTC transfers
will occur until a write to ADC10SA. When using the DTC in the one-block
mode, the ADC10IFG flag is set only after a complete block has been
transferred. Figure 20--10 shows a state diagram of the one-block mode.

ADC10 Operation

20-17ADC10

Figure 20--10. State Diagram for Data Transfer Control in One-Block Transfer Mode

DTC idle

DTC reset

n=0 (ADC10DTC1)

Initialize
Start Address in ADC10SA

Wait until ADC10MEM
is written

Wait
for

CPU ready

Write to ADC10MEM
completed

Transfer data to
Address AD

AD = AD + 2
x = x -- 1

Synchronize
with MCLK

1 x MCLK cycle

n is latched
in counter ’x’

x > 0

DTC init

Wait for write to
ADC10SA

Write to
ADC10SA

Write to ADC10SA

x = 0

Prepare
DTC

DTC
operation

Write to ADC10SA
or

n = 0

Write to ADC10SA

x = n

AD = SA

n = 0

ADC10IFG=1

ADC10TB = 0
and

ADC10CT = 0

ADC10TB = 0
and

ADC10CT = 1

n ≠ 0

ADC10 Operation

20-18 ADC10

Two-Block Transfer Mode

The two-block mode is selected if the ADC10TB bit is set. The value n in
ADC10DTC1 defines the number of transfers for one block. The address
range of the first block is defined anywhere in theMSP430 address rangewith
the 16-bit register ADC10SA. The first block ends at ADC10SA+2n–2. The
address range for the second block is defined as SA+2n to SA+4n–2. The
two-block transfer mode is shown in Figure 20--11.

Figure 20--11.Two-Block Transfer

ADC10SA

ADC10SA+2

ADC10SA+2n--2

ADC10SA+2n--4

1st transfer

’n’th transfer

2nd transfer

ADC10SA+4n--2

ADC10SA+4n--4

2 x ’n’th transfer

TB=1

DTC

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue, with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. At this point, block one is full
and both the ADC10IFG flag the ADC10B1 bit are set. The user can test the
ADC10B1 bit to determine that block one is full.

The DTC continues with block two. The internal transfer counter is
automatically reloaded with ’n’. At the next load of the ADC10MEM, the DTC
begins transferring conversion results to block two. After n transfers have
completed, block two is full. The ADC10IFG flag is set and the ADC10B1 bit
is cleared. User software can test the cleared ADC10B1 bit to determine that
block two is full. Figure 20--12 shows a state diagram of the two-block mode.

ADC10 Operation

20-19ADC10

Figure 20--12. State Diagram for Data Transfer Control in Two-Block Transfer Mode

DTC idle

DTC reset

ADC10B1 = 0
ADC10TB = 1

n=0 (ADC10DTC1)

Initialize
Start Address in ADC10SA

Wait until ADC10MEM
is written

Wait
for

CPU ready

Write to ADC10MEM
completed

Transfer data to
Address AD

AD = AD + 2
x = x -- 1

Synchronize
with MCLK

1 x MCLK cycle

n is latched
in counter ’x’

x > 0

DTC init

Wait for write to
ADC10SA

Write to
ADC10SA

Write to ADC10SA

x = 0

Prepare
DTC

DTC
operation

Write to ADC10SA
or

n = 0

ADC10IFG=1

Toggle
ADC10B1

Write to ADC10SA

x = n

If ADC10B1 = 0
then AD = SA

ADC10B1 = 1
or

ADC10CT=1

ADC10CT = 0
and

ADC10B1 = 0

n = 0
n ≠ 0

ADC10 Operation

20-20 ADC10

Continuous Transfer

A continuous transfer is selected if ADC10CT bit is set. The DTC will not stop
after block one in (one-block mode) or block two (two-block mode) has been
transferred. The internal address pointer and transfer counter are set equal to
ADC10SA and n respectively. Transfers continue starting in block one. If the
ADC10CT bit is reset, DTC transfers cease after the current completion of
transfers into block one (in the one-block mode) or block two (in the two-block
mode) have been transfer.

DTC Transfer Cycle Time

For each ADC10MEM transfer, the DTC requires one or two MCLK clock
cycles to synchronize, one for theactual transfer (while theCPU is halted), and
one cycle of wait time. Because the DTC uses MCLK, the DTC cycle time is
dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DTC uses the MCLK
source for each transfer, without re-enabling the CPU. If the MCLK source is
off, the DTC temporarily restarts MCLK, sourced with DCOCLK, only during
a transfer. The CPU remains off and after the DTC transfer, MCLK is again
turned off. The maximum DTC cycle time for all operating modes is show in
Table 20--2.

Table 20--2.Maximum DTC Cycle Time

CPU Operating Mode Clock Source Maximum DTC Cycle Time

Active mode MCLK=DCOCLK 3 MCLK cycles

Active mode MCLK=LFXT1CLK 3 MCLK cycles

Low-power mode LPM0/1 MCLK=DCOCLK 4 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 4 MCLK cycles + 2 μs†

Low-power mode LPM0/1 MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM3 MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM4 MCLK=LFXT1CLK 4 MCLK cycles + 2 μs†

† The additional 2 μs are needed to start the DCOCLK. See the device-specific data sheet for
parameters.

ADC10 Operation

20-21ADC10

20.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel INCHx = 1010. Any other configuration is done as if an external
channel was selected, including reference selection, conversion-memory
selection, etc.

The typical temperature sensor transfer function is shown in Figure 20--13.
When using the temperature sensor, the sample period must be greater than
30 μs. The temperature sensor offset error is large. Deriving absolute
temperature values in the application requires calibration. See the
device-specific data sheet for the parameters.

Selecting the temperature sensor automatically turns on the on-chip reference
generator as a voltagesource for the temperature sensor.However, it doesnot
enable the VREF+ output or affect the reference selections for the conversion.
The reference choices for converting the temperature sensor are the same as
with any other channel.

Figure 20--13. Typical Temperature Sensor Transfer Function

Celsius

Volts

0 50 100

1.000

0.800

0.900

1.100

1.200

1.300

--50

0.700

VTEMP=0.00355(TEMPC)+0.986

ADC10 Operation

20-22 ADC10

20.2.9 ADC10 Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and
grounding techniques should be followed toeliminate ground loops, unwanted
parasitic effects, and noise.

Ground loopsare formedwhen return current from theA/D flows throughpaths
that are common with other analog or digital circuitry. If care is not taken, this
current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 20--14 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion
result. A noise-free design is important to achieve high accuracy.

Figure 20--14. ADC10 Grounding and Noise Considerations (internal Vref).

Digital
Power Supply
Decoupling

100nF10uF

Analog
Power Supply
Decoupling
(if available)

100nF10uF

DVCC

DVSS

AVCC

AVSS

Figure 20--15. ADC10 Grounding and Noise Considerations (external Vref).

Digital
Power Supply
Decoupling

100nF10uF

100nF10uF

Using an External
Positive Reference

Using an External
Negative Reference

DVCC

DVSS

AVCC

AVSS

VREF-/VeREF-

VREF+/VeREF+

Analog
Power Supply
Decoupling
(if available)

ADC10 Operation

20-23ADC10

20.2.10 ADC10 Interrupts

One interrupt and one interrupt vector are associated with the ADC10 as
shown in Figure 20--16. When the DTC is not used (ADC10DTC1 = 0)
ADC10IFG is set when conversion results are loaded into ADC10MEM.When
DTC is used (ADC10DTC1 > 0) ADC10IFG is set when a block transfer
completes and the internal transfer counter ’n’ = 0. If both the ADC10IE and
the GIE bits are set, then the ADC10IFG flag generates an interrupt request.
The ADC10IFG flag is automatically reset when the interrupt request is
serviced or may be reset by software.

Figure 20--16. ADC10 Interrupt System

D Q IRQ, Interrupt Service Requested

Reset
ADC10CLK

POR

’n’ = 0
Set ADC10IFG

IRACC, Interrupt Request Accepted

ADC10IE

ADC10 Registers

20-24 ADC10

20.3 ADC10 Registers

The ADC10 registers are listed in Table 20--3.

Table 20--3.ADC10 Registers

Register Short Form Register Type Address Initial State

ADC10 input enable register 0 ADC10AE0 Read/write 04Ah Reset with POR

ADC10 input enable register 1 ADC10AE1 Read/write 04Bh Reset with POR

ADC10 control register 0 ADC10CTL0 Read/write 01B0h Reset with POR

ADC10 control register 1 ADC10CTL1 Read/write 01B2h Reset with POR

ADC10 memory ADC10MEM Read 01B4h Unchanged

ADC10 data transfer control register 0 ADC10DTC0 Read/write 048h Reset with POR

ADC10 data transfer control register 1 ADC10DTC1 Read/write 049h Reset with POR

ADC10 data transfer start address ADC10SA Read/write 01BCh 0200h with POR

ADC10 Registers

20-25ADC10

ADC10CTL0, ADC10 Control Register 0

15 14 13 12 11 10 9 8

SREFx ADC10SHTx ADC10SR REFOUT REFBURST

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

MSC REF2_5V REFON ADC10ON ADC10IE ADC10IFG ENC ADC10SC

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

Modifiable only when ENC = 0

SREFx Bits
15-13

Select reference
000 VR+ = VCC and VR-- = VSS
001 VR+ = VREF+ and VR-- = VSS
010 VR+ = VeREF+ and VR-- = VSS
011 VR+ = Buffered VeREF+ and VR-- = VSS
100 VR+ = VCC and VR-- = VREF--/ VeREF--
101 VR+ = VREF+ and VR-- = VREF--/ VeREF--
110 VR+ = VeREF+ and VR-- = VREF--/ VeREF--
111 VR+ = Buffered VeREF+ and VR-- = VREF--/ VeREF--

ADC10
SHTx

Bits
12-11

ADC10 sample-and-hold time
00 4 x ADC10CLKs
01 8 x ADC10CLKs
10 16 x ADC10CLKs
11 64 x ADC10CLKs

ADC10SR Bit 10 ADC10 sampling rate. This bit selects the reference buffer drive capability for
the maximum sampling rate. Setting ADC10SR reduces the current
consumption of the reference buffer.
0 Reference buffer supports up to ~200 ksps
1 Reference buffer supports up to ~50 ksps

REFOUT Bit 9 Reference output
0 Reference output off
1 Reference output on

REFBURST Bit 8 Reference burst.
0 Reference buffer on continuously
1 Reference buffer on only during sample-and-conversion

ADC10 Registers

20-26 ADC10

MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes.
0 The sampling requires a rising edge of the SHI signal to trigger each

sample-and-conversion.
1 The first rising edge of the SHI signal triggers the sampling timer, but

further sample-and-conversions are performed automatically as soon
as the prior conversion is completed

REF2_5V Bit 6 Reference-generator voltage. REFON must also be set.
0 1.5 V
1 2.5 V

REFON Bit 5 Reference generator on
0 Reference off
1 Reference on

ADC10ON Bit 4 ADC10 on
0 ADC10 off
1 ADC10 on

ADC10IE Bit 3 ADC10 interrupt enable
0 Interrupt disabled
1 interrupt enabled

ADC10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loadedwith a conversion
result. It is automatically resetwhen the interrupt request is accepted, or itmay
be reset by software. When using the DTC this flag is set when a block of
transfers is completed.
0 No interrupt pending
1 Interrupt pending

ENC Bit 1 Enable conversion
0 ADC10 disabled
1 ADC10 enabled

ADC10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start.
ADC10SC and ENC may be set together with one instruction. ADC10SC is
reset automatically.
0 No sample-and-conversion start
1 Start sample-and-conversion

ADC10 Registers

20-27ADC10

ADC10CTL1, ADC10 Control Register 1

15 14 13 12 11 10 9 8

INCHx SHSx ADC10DF ISSH

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

ADC10DIVx ADC10SSELx CONSEQx ADC10
BUSY

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) r--0

Modifiable only when ENC = 0

INCHx Bits
15-12

Input channel select. These bits select the channel for a single-conversion or
the highest channel for a sequence of conversions.
0000 A0
0001 A1
0010 A2
0011 A3
0100 A4
0101 A5
0110 A6
0111 A7
1000 VeREF+
1001 VREF--/VeREF--
1010 Temperature sensor
1011 (VCC – VSS) / 2
1100 (VCC – VSS) / 2, A12 on MSP430x22xx devices
1101 (VCC – VSS) / 2, A13 on MSP430x22xx devices
1110 (VCC – VSS) / 2, A14 on MSP430x22xx devices
1111 (VCC – VSS) / 2, A15 on MSP430x22xx devices

SHSx Bits
11-10

Sample-and-hold source select
00 ADC10SC bit
01 Timer_A.OUT1
10 Timer_A.OUT0
11 Timer_A.OUT2 (Timer_A.OUT1 on MSP430x20x2 devices)

ADC10DF Bit 9 ADC10 data format
0 Straight binary
1 2s complement

ISSH Bit 8 Invert signal sample-and-hold
0 The sample-input signal is not inverted.
1 The sample-input signal is inverted.

ADC10 Registers

20-28 ADC10

ADC10DIVx Bits
7-5

ADC10 clock divider
000 /1
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

ADC10
SSELx

Bits
4-3

ADC10 clock source select
00 ADC10OSC
01 ACLK
10 MCLK
11 SMCLK

CONSEQx Bits
2-1

Conversion sequence mode select
00 Single-channel-single-conversion
01 Sequence-of-channels
10 Repeat-single-channel
11 Repeat-sequence-of-channels

ADC10
BUSY

Bit 0 ADC10 busy. This bit indicates an active sample or conversion operation
0 No operation is active.
1 A sequence, sample, or conversion is active.

ADC10 Registers

20-29ADC10

ADC10AE0, Analog (Input) Enable Control Register 0

7 6 5 4 3 2 1 0

ADC10AE0x

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

ADC10AE0x Bits
7-0

ADC10 analog enable. These bits enable the corresponding pin for analog
input. BIT0 corresponds to A0, BIT1 corresponds to A1, etc.
0 Analog input disabled
1 Analog input enabled

ADC10AE1, Analog (Input) Enable Control Register 1 (MSP430x22xx only)

7 6 5 4 3 2 1 0

ADC10AE1x Reserved Reserved Reserved Reserved

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

ADC10AE1x Bits
7-4

ADC10 analog enable. These bits enable the corresponding pin for analog
input. BIT4 corresponds to A12, BIT5 corresponds to A13, BIT6 corresponds
to A14, and BIT7 corresponds to A15.
0 Analog input disabled
1 Analog input enabled

ADC10 Registers

20-30 ADC10

ADC10MEM, Conversion-Memory Register, Binary Format

15 14 13 12 11 10 9 8

0 0 0 0 0 0 Conversion Results

r0 r0 r0 r0 r0 r0 r r

7 6 5 4 3 2 1 0

Conversion Results

r r r r r r r r

Conversion
Results

Bits
15-0

The 10-bit conversion results are right justified, straight-binary format. Bit 9
is the MSB. Bits 15-10 are always 0.

ADC10MEM, Conversion-Memory Register, 2s Complement Format

15 14 13 12 11 10 9 8

Conversion Results

r r r r r r r r

7 6 5 4 3 2 1 0

Conversion Results 0 0 0 0 0 0

r r r0 r0 r0 r0 r0 r0

Conversion
Results

Bits
15-0

The 10-bit conversion results are left-justified, 2s complement format. Bit 15
is the MSB. Bits 5-0 are always 0.

ADC10 Registers

20-31ADC10

ADC10DTC0, Data Transfer Control Register 0

7 6 5 4 3 2 1 0

Reserved ADC10TB ADC10CT ADC10B1 ADC10
FETCH

r0 r0 r0 r0 rw--(0) rw--(0) r--(0) rw--(0)

Reserved Bits
7-4

Reserved. Always read as 0.

ADC10TB Bit 3 ADC10 two-block mode
0 One-block transfer mode
1 Two-block transfer mode

ADC10CT Bit 2 ADC10 continuous transfer
0 Data transfer stops when one block (one-block mode) or two blocks

(two-block mode) have completed.
1 Data is transferred continuously. DTC operation is stopped only if

ADC10CT cleared, or ADC10SA is written to.

ADC10B1 Bit 1 ADC10 block one. This bit indicates for two-block mode which block is filled
with ADC10 conversion results. ADC10B1 is valid only after ADC10IFG has
been set the first time during DTC operation. ADC10TB must also be set.
0 Block 2 is filled
1 Block 1 is filled

ADC10
FETCH

Bit 0 This bit should normally be reset.

ADC10 Registers

20-32 ADC10

ADC10DTC1, Data Transfer Control Register 1

7 6 5 4 3 2 1 0

DTC Transfers

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

DTC
Transfers

Bits
7-0

DTC transfers. These bits define the number of transfers in each block.
0 DTC is disabled
01h--0FFh Number of transfers per block

ADC10SA, Start Address Register for Data Transfer

15 14 13 12 11 10 9 8

ADC10SAx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(1) rw--(0)

7 6 5 4 3 2 1 0

ADC10SAx 0

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) r0

ADC10SAx Bits
15-1

ADC10 start address. These bits are the start address for the DTC. A write
to register ADC10SA is required to initiate DTC transfers.

Unused Bit 0 Unused, Read only. Always read as 0.

21-1ADC12

ADC12

The ADC12 module is a high-performance 12-bit analog-to-digital converter.
This chapter describes the ADC12 of the MSP430 2xx device family.

Topic Page

21.1 ADC12 Introduction 21-2. .

21.2 ADC12 Operation 21-4. .

21.3 ADC12 Registers 21-20. .

Chapter 21

ADC12 Introduction

21-2 ADC12

21.1 ADC12 Introduction

The ADC12 module supports fast, 12-bit analog-to-digital conversions. The
module implements a 12-bit SAR core, sample select control, reference
generator and a 16 word conversion-and-control buffer. The
conversion-and-control buffer allowsup to 16 independentADCsamples tobe
converted and stored without any CPU intervention.

ADC12 features include:

- Greater than 200-ksps maximum conversion rate

- Monotonic 12-bit converter with no missing codes

- Sample-and-hold with programmable sampling periods controlled by
software or timers.

- Conversion initiation by software, Timer_A, or Timer_B

- Software selectable on-chip reference voltage generation (1.5 V or 2.5 V)

- Software selectable internal or external reference

- Eight individually configurable external input channels

- Conversion channels for internal temperature sensor, AVCC, and external
references

- Independent channel-selectable reference sources for both positive and
negative references

- Selectable conversion clock source

- Single-channel, repeat-single-channel, sequence, and repeat-sequence
conversion modes

- ADC core and reference voltage can be powered down separately

- Interrupt vector register for fast decoding of 18 ADC interrupts

- 16 conversion-result storage registers

The block diagram of ADC12 is shown in Figure 21--1.

ADC12 Introduction

21-3ADC12

Figure 21--1. ADC12 Block Diagram

Sample
and
Hold

VeREF+

12--bit SAR

VR--

--
16 x 12
Memory
Buffer

--

--
16 x 8
Memory
Control

--

VR+

VREF+

VeREF--VREF-- /

ADC12SC

TA1

TB1

TB0

Divider
/1 .. /8

ADC12DIVx

ADC12CLK

ENC

MSC

SHP SHT0x

SAMPCON

SHI

S/H Convert

Sync
Sample Timer
/4 .. /1024

INCHx

4

A0
A1
A2
A3
A4
A5
A6
A7

ADC12MEM0

ADC12MEM15

ADC12MCTL0

ADC12MCTL15

CSTARTADDx

4

4

SHT1x

CONSEQx

ACLK

MCLK

SMCLK

ADC12SSELx

ADC12OSC

00

01

10

11

00

01

10

11

SHSx

00

01

10

11

00

01

10

11

ISSH

1

0

0

1

SREF2 01

SREF10001 SREF010

ADC12ON

BUSY

REFON
INCHx=0Ah

1.5 V or 2.5 V
Reference

on

Ref_x

Ref_x

INCHx=0Bh

11

R

R

0000

1001
1000

0010
0001

0011
0100
0101
0110
0111

1011
1010

0001

1111
1110
1101
1100

REF2_5V

AVCC

AVCC

AVCC

AVSS

AVSS

GND
GND
GND
GND

ADC12 Operation

21-4 ADC12

21.2 ADC12 Operation

TheADC12module is configuredwith user software. The setup and operation
of the ADC12 is discussed in the following sections.

21.2.1 12-Bit ADC Core

The ADC core converts an analog input to its 12-bit digital representation and
stores the result in conversion memory. The core uses two
programmable/selectable voltage levels (VR+andVR--) to define theupperand
lower limits of the conversion. The digital output (NADC) is full scale (0FFFh)
when the input signal is equal to or higher than VR+, and zero when the input
signal is equal to or lower than VR--. The input channel and the reference
voltage levels (VR+ and VR--) are defined in the conversion-control memory.
The conversion formula for the ADC result NADC is:

NADC= 4095×
Vin − VR−
VR+− VR−

The ADC12 core is configured by two control registers, ADC12CTL0 and
ADC12CTL1. The core is enabled with the ADC12ON bit. The ADC12 can be
turned off when not in use to save power. With few exceptions the ADC12
control bits can only be modified when ENC = 0. ENC must be set to 1 before
any conversion can take place.

Conversion Clock Selection

The ADC12CLK is used both as the conversion clock and to generate the
sampling period when the pulse sampling mode is selected. The ADC12
source clock is selected using the ADC12SSELx bits and can be divided from
1-8 using the ADC12DIVx bits. Possible ADC12CLK sources are SMCLK,
MCLK, ACLK, and an internal oscillator ADC12OSC.

The ADC12OSC, generated internally, is in the 5-MHz range, but varies with
individual devices, supply voltage, and temperature. See the device-specific
datasheet for the ADC12OSC specification.

The user must ensure that the clock chosen for ADC12CLK remains active
until the end of a conversion. If the clock is removed during a conversion, the
operation will not complete and any result will be invalid.

ADC12 Operation

21-5ADC12

21.2.2 ADC12 Inputs and Multiplexer

Theeight external and four internal analog signals are selected as the channel
for conversion by the analog input multiplexer. The input multiplexer is a
break-before-make type to reduce input-to-input noise injection resulting from
channel switching as shown in Figure 21--2. The input multiplexer is also a
T-switch to minimize the coupling between channels. Channels that are not
selected are isolated from the A/D and the intermediate node is connected to
analog ground (AVSS) so that the stray capacitance is grounded to help
eliminate crosstalk.

The ADC12 uses the charge redistribution method. When the inputs are
internally switched, the switching action may cause transients on the input
signal. These transients decay and settle before causing errant conversion.

Figure 21--2. Analog Multiplexer

R ~ 100 Ohm

ESD Protection

ADC12MCTLx.0--3

Input
Ax

Analog Port Selection

The ADC12 inputs are multiplexed with the port P6 pins, which are digital
CMOS gates. When analog signals are applied to digital CMOS gates,
parasitic current can flow fromVCC to GND. This parasitic current occurs if the
input voltage is near the transition level of the gate.Disabling theport pin buffer
eliminates the parasitic current flow and therefore reduces overall current
consumption. The P6SELx bits provide the ability to disable the port pin input
and output buffers.

; P6.0 and P6.1 configured for analog input

BIS.B #3h,&P6SEL ; P6.1 and P6.0 ADC12 function

ADC12 Operation

21-6 ADC12

21.2.3 Voltage Reference Generator

The ADC12 module contains a built-in voltage reference with two selectable
voltage levels, 1.5Vand 2.5V. Either of these reference voltagesmay beused
internally and externally on pin VREF+.

Setting REFON=1 enables the internal reference. When REF2_5V = 1, the
internal reference is 2.5 V, the reference is 1.5 V when REF2_5V = 0. The
reference can be turned off to save power when not in use.

For proper operation the internal voltage reference generator must be
supplied with storage capacitance across VREF+ and AVSS. The
recommended storage capacitance is a parallel combination of 10-μF and
0.1-μF capacitors. From turn-on, a maximum of 17 msmust be allowed for the
voltage reference generator to bias the recommended storage capacitors. If
the internal reference generator is not used for the conversion, the storage
capacitors are not required.

Note: Reference Decoupling

Approximately 200 μA is required from any reference used by the ADC12
while the two LSBs are being resolved during a conversion. A parallel
combination of 10-μF and 0.1-μF capacitors is recommended for any
reference used as shown in Figure 21--11.

External referencesmaybe supplied for VR+andVR-- through pinsVeREF+ and
VREF--/VeREF-- respectively.

ADC12 Operation

21-7ADC12

21.2.4 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of the sample
input signal SHI. The source for SHI is selected with the SHSx bits and
includes the following:

- The ADC12SC bit
- The Timer_A Output Unit 1
- The Timer_B Output Unit 0
- The Timer_B Output Unit 1

The polarity of the SHI signal source can be inverted with the ISSH bit. The
SAMPCON signal controls the sample period and start of conversion. When
SAMPCON is high, sampling is active. The high-to-low SAMPCON transition
starts the analog-to-digital conversion, which requires 13 ADC12CLK cycles.
Two different sample-timingmethods are defined by control bit SHP, extended
sample mode and pulse mode.

Extended Sample Mode

The extended samplemode is selectedwhenSHP= 0. TheSHI signal directly
controls SAMPCONand defines the length of the sample period tsample.When
SAMPCON is high, sampling is active. The high-to-low SAMPCON transition
starts theconversionafter synchronizationwithADC12CLK.SeeFigure 21--3.

Figure 21--3. Extended Sample Mode

Start
Sampling

Stop
Sampling

Conversion
Complete

SAMPCON

SHI

tsample tconvert

t sync

13 x ADC12CLK

Start
Conversion

ADC12CLK

ADC12 Operation

21-8 ADC12

Pulse Sample Mode

The pulse sample mode is selected when SHP = 1. The SHI signal is used to
trigger the sampling timer. The SHT0x and SHT1x bits in ADC12CTL0 control
the interval of the sampling timer that defines the SAMPCON sample period
tsample. The sampling timer keeps SAMPCON high after synchronization with
AD12CLK for a programmed interval tsample. The total sampling time is tsample
plus tsync. See Figure 21--4.

The SHTx bits select the sampling time in 4x multiples of ADC12CLK. SHT0x
selects the sampling time for ADC12MCTL0 to 7 and SHT1x selects the
sampling time for ADC12MCTL8 to 15.

Figure 21--4. Pulse Sample Mode

Start
Sampling

Stop
Sampling

Conversion
Complete

SAMPCON

SHI

tsample tconvert

tsync

13 x ADC12CLK

Start
Conversion

ADC12CLK

ADC12 Operation

21-9ADC12

Sample Timing Considerations

WhenSAMPCON=0allAx inputsarehigh impedance.WhenSAMPCON = 1,
the selected Ax input can be modeled as an RC low-pass filter during the
sampling time tsample, as shown below in Figure 21--5. An internal MUX-on
input resistance RI (maximum of 2 kΩ) in series with capacitor CI (maximum
of 40 pF) is seen by the source. The capacitor CI voltage VCmust be charged
to within 1/2 LSB of the source voltage VS for an accurate 12-bit conversion.

Figure 21--5. Analog Input Equivalent Circuit

RS RI
VS VC

MSP430

CI

VI

VI = Input voltage at pin Ax
VS = External source voltage
RS = External source resistance
RI = Internal MUX-on input resistance
CI = Input capacitance
VC = Capacitance-charging voltage

The resistance of the source RS and RI affect tsample. The following equation
can be used to calculate the minimum sampling time tsample for a 12-bit
conversion:

tsample> (RS+RI)× ln(213)×CI+ 800ns

Substituting the values for RI and CI given above, the equation becomes:

tsample> (RS+ 2kΩ)× 9.011× 40pF+ 800ns

For example, if RS is 10 kΩ, tsample must be greater than 5.13 μs.

ADC12 Operation

21-10 ADC12

21.2.5 Conversion Memory

There are 16 ADC12MEMx conversion memory registers to store conversion
results. Each ADC12MEMx is configured with an associated ADC12MCTLx
control register. The SREFx bits define the voltage reference and the INCHx
bits select the input channel. The EOS bit defines the end of sequence when
a sequential conversion mode is used. A sequence rolls over from
ADC12MEM15 to ADC12MEM0 when the EOS bit in ADC12MCTL15 is not
set.

The CSTARTADDx bits define the first ADC12MCTLx used for any
conversion. If the conversionmode is single-channel or repeat-single-channel
the CSTARTADDx points to the single ADC12MCTLx to be used.

If the conversion mode selected is either sequence-of-channels or
repeat-sequence-of-channels, CSTARTADDx points to the first
ADC12MCTLx location to be used in a sequence. A pointer, not visible to
software, is incremented automatically to the next ADC12MCTLx in a
sequencewhen each conversion completes. The sequence continues until an
EOSbit in ADC12MCTLx is processed - this is the last control byte processed.

When conversion results are written to a selected ADC12MEMx, the
corresponding flag in the ADC12IFGx register is set.

21.2.6 ADC12 Conversion Modes

The ADC12 has four operating modes selected by the CONSEQx bits as
discussed in Table 21--1.

Table 21--1.Conversion Mode Summary

CONSEQx Mode Operation

00 Single channel
single-conversion

A single channel is converted once.

01 Sequence-of-
channels

A sequence of channels is converted once.

10 Repeat-single-
channel

A single channel is converted repeatedly.

11 Repeat-sequence-
of-channels

A sequence of channels is converted
repeatedly.

ADC12 Operation

21-11ADC12

Single-Channel Single-Conversion Mode

A single channel is sampled and converted once. The ADC result is written to
the ADC12MEMx defined by the CSTARTADDx bits. Figure 21--6 shows the
flow of the Single-Channel, Single-Conversion mode. When ADC12SC
triggers a conversion, successive conversions can be triggered by the
ADC12SC bit. When any other trigger source is used, ENC must be toggled
between each conversion.

Figure 21--6. Single-Channel, Single-Conversion Mode

ADC12
off

x = CSTARTADDx
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel Defined in
ADC12MCTLx

ENC =

ENC =
SHSx = 0

and
ENC = 1 or

and
ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =

ENC = 0

ENC = 0†

12 x ADC12CLK

Conversion
Completed,

Result Stored Into
ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ENC = 0†

ADC12ON = 1
CONSEQx = 00

x = pointer to ADC12MCTLx
† Conversion result is unpredictable

ADC12 Operation

21-12 ADC12

Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The ADC results are
written to the conversionmemories startingwith theADCMEMxdefined by the
CSTARTADDx bits. The sequence stops after the measurement of the
channel with a set EOS bit. Figure 21--7 shows the sequence-of-channels
mode. When ADC12SC triggers a sequence, successive sequences can be
triggered by the ADC12SC bit. When any other trigger source is used, ENC
must be toggled between each sequence.

Figure 21--7. Sequence-of-Channels Mode

ADC12
off

x = CSTARTADDx
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel Defined in
ADC12MCTLx

ENC =

ENC =
SHSx = 0

and
ENC = 1 or

and
ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =

12 x ADC12CLK

Conversion
Completed,

Result Stored Into
ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ADC12ON = 1

CONSEQx = 01

MSC = 1
and

SHP = 1
and

EOS.x = 0

EOS.x = 1

If x < 15 then x = x + 1
else x = 0

If x < 15 then x = x + 1
else x = 0

(MSC = 0
or

SHP = 0)
and

EOS.x = 0

x = pointer to ADC12MCTLx

ADC12 Operation

21-13ADC12

Repeat-Single-Channel Mode

A single channel is sampled and converted continuously. TheADC results are
written to the ADC12MEMx defined by the CSTARTADDx bits. It is necessary
to read the result after the completed conversion because only one
ADC12MEMx memory is used and is overwritten by the next conversion.
Figure 21--8 shows repeat-single-channel mode

Figure 21--8. Repeat-Single-Channel Mode

ADC12
off

x = CSTARTADDx
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel Defined in
ADC12MCTLx

ENC =

ENC =
SHSx = 0

and
ENC = 1 or

and
ADC12SC =

SAMPCON =

SAMPCON = 1

Convert

SAMPCON =
12 x ADC12CLK

Conversion
Completed,

Result Stored Into
ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ADC12ON = 1

CONSEQx = 10

MSC = 1
and

SHP = 1
and

ENC = 1

ENC = 0

(MSC = 0
or

SHP = 0)
and

ENC = 1

x = pointer to ADC12MCTLx

ADC12 Operation

21-14 ADC12

Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The ADC
results are written to the conversion memories starting with the ADC12MEMx
definedby theCSTARTADDxbits. The sequence ends after themeasurement
of the channel with a set EOS bit and the next trigger signal re-starts the
sequence. Figure 21--9 shows the repeat-sequence-of-channels mode.

Figure 21--9. Repeat-Sequence-of-Channels Mode

ADC12
off

x = CSTARTADDx
Wait for Enable

ENC =

Wait for Trigger

Sample, Input
Channel Defined in
ADC12MCTLx

ENC =

ENC =
SHSx = 0

and
ENC = 1 or

and
ADC12SC =

SAMPCON =

SAMPCON = 1

SAMPCON =

12 x ADC12CLK

Conversion
Completed,

Result Stored Into
ADC12MEMx,

ADC12IFG.x is Set

1 x ADC12CLK

ADC12ON = 1

CONSEQx = 11

MSC = 1
and

SHP = 1
and

(ENC = 1
or

EOS.x = 0)

ENC = 0
and

EOS.x = 1

(MSC = 0
or

SHP = 0)
and

(ENC = 1
or

EOS.x = 0)

If EOS.x = 1 then x =
CSTARTADDx

else {if x < 15 then x = x + 1 else
x = 0}

If EOS.x = 1 then x =
CSTARTADDx

else {if x < 15 then x = x + 1 else
x = 0}

x = pointer to ADC12MCTLx

Convert

ADC12 Operation

21-15ADC12

Using the Multiple Sample and Convert (MSC) Bit

To configure the converter to perform successive conversions automatically
andas quickly as possible, amultiple sample and convert function is available.
When MSC = 1, CONSEQx > 0, and the sample timer is used, the first rising
edge of the SHI signal triggers the first conversion. Successive conversions
are triggered automatically as soon as the prior conversion is completed.
Additional rising edges on SHI are ignored until the sequence is completed in
the single-sequence mode or until the ENC bit is toggled in
repeat-single-channel, or repeated-sequencemodes.The functionof theENC
bit is unchanged when using the MSC bit.

Stopping Conversions

Stopping ADC12 activity depends on the mode of operation. The
recommendedways to stop anactive conversion or conversion sequenceare:

- Resetting ENC in single-channel single-conversion mode stops a
conversion immediately and the results are unpredictable. For correct
results, poll the busy bit until reset before clearing ENC.

- Resetting ENC during repeat-single-channel operation stops the
converter at the end of the current conversion.

- Resetting ENC during a sequence or repeat-sequence mode stops the
converter at the end of the sequence.

- Any conversion mode may be stopped immediately by setting the
CONSEQx = 0 and resetting ENC bit. Conversion data are unreliable.

Note: No EOS Bit Set For Sequence

If no EOS bit is set and a sequence mode is selected, resetting the ENC bit
does not stop the sequence. To stop the sequence, first select a
single-channel mode and then reset ENC.

ADC12 Operation

21-16 ADC12

21.2.7 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel INCHx = 1010. Any other configuration is done as if an external
channel was selected, including reference selection, conversion-memory
selection, etc.

The typical temperature sensor transfer function is shown in Figure 21--10.
When using the temperature sensor, the sample period must be greater than
30 μs. The temperature sensor offset error can be large, and may need to be
calibrated for most applications. See device-specific datasheet for
parameters.

Selecting the temperature sensor automatically turns on the on-chip reference
generator as a voltagesource for the temperature sensor.However, it doesnot
enable the VREF+ output or affect the reference selections for the conversion.
The reference choices for converting the temperature sensor are the same as
with any other channel.

Figure 21--10. Typical Temperature Sensor Transfer Function

Celsius

Volts

0 50 100

1.000

0.800

0.900

1.100

1.200

1.300

--50

0.700

VTEMP=0.00355(TEMPC)+0.986

ADC12 Operation

21-17ADC12

21.2.8 ADC12 Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and
grounding techniques should be followed toeliminate ground loops, unwanted
parasitic effects, and noise.

Ground loopsare formedwhen return current from theA/D flows throughpaths
that are common with other analog or digital circuitry. If care is not taken, this
current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 21--11 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion
result. A noise-free design using separate analog and digital ground planes
with a single-point connection is recommend to achieve high accuracy.

Figure 21--11.ADC12 Grounding and Noise Considerations

DVCC

DVSS

AVCC

AVSS

VeREF+

Digital
Power Supply
Decoupling

10 uF 100 nF

+Using an External
Positive
Reference

VREF+

VREF-- / VeREF--

Using the Internal
Reference
Generator

10 uF 100 nF

100 nF

+

+

10 uF 100 nF

+

Using an External
Negative
Reference

10 uF

+Analog
Power Supply
Decoupling

10 uF 100 nF

ADC12 Operation

21-18 ADC12

21.2.9 ADC12 Interrupts

The ADC12 has 18 interrupt sources:

- ADC12IFG0-ADC12IFG15

- ADC12OV, ADC12MEMx overflow

- ADC12TOV, ADC12 conversion time overflow

TheADC12IFGx bits are set when their corresponding ADC12MEMxmemory
register is loaded with a conversion result. An interrupt request is generated
if the corresponding ADC12IEx bit and the GIE bit are set. The ADC12OV
condition occurs when a conversion result is written to any ADC12MEMx
before its previous conversion result was read. The ADC12TOV condition is
generated when another sample-and-conversion is requested before the
current conversion is completed. The DMA is triggered after the conversion in
single channel modes or after the completion of a sequence--of--channel
modes.

ADC12IV, Interrupt Vector Generator

All ADC12 interrupt sources are prioritized and combined to source a single
interrupt vector. The interrupt vector register ADC12IV is used to determine
which enabled ADC12 interrupt source requested an interrupt.

The highest priority enabled ADC12 interrupt generates a number in the
ADC12IV register (see register description). This number can be evaluated or
added to the program counter to automatically enter the appropriate software
routine. Disabled ADC12 interrupts do not affect the ADC12IV value.

Any access, read or write, of the ADC12IV register automatically resets the
ADC12OV condition or the ADC12TOV condition if either was the highest
pending interrupt. Neither interrupt condition has an accessible interrupt flag.
The ADC12IFGx flags are not reset by an ADC12IV access. ADC12IFGx bits
are reset automatically by accessing their associated ADC12MEMx register
or may be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt
is generated. For example, if the ADC12OV and ADC12IFG3 interrupts are
pendingwhen the interrupt service routineaccesses theADC12IV register, the
ADC12OV interrupt condition is reset automatically. After the RETI instruction
of the interrupt service routine is executed, theADC12IFG3generatesanother
interrupt.

ADC12 Operation

21-19ADC12

ADC12 Interrupt Handling Software Example

The following software example shows the recommended use of ADC12IV
and the handling overhead. The ADC12IV value is added to the PC to
automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself. The latencies are:

- ADC12IFG0 - ADC12IFG14, ADC12TOV and ADC12OV 16 cycles

- ADC12IFG15 14 cycles

The interrupt handler for ADC12IFG15 shows a way to check immediately if
a higher prioritized interrupt occurred during the processing of ADC12IFG15.
This saves nine cycles if another ADC12 interrupt is pending.

; Interrupt handler for ADC12.
INT_ADC12 ; Enter Interrupt Service Routine 6

ADD &ADC12IV,PC; Add offset to PC 3
RETI ; Vector 0: No interrupt 5
JMP ADOV ; Vector 2: ADC overflow 2
JMP ADTOV ; Vector 4: ADC timing overflow 2
JMP ADM0 ; Vector 6: ADC12IFG0 2

... ; Vectors 8-32 2
JMP ADM14 ; Vector 34: ADC12IFG14 2

;
; Handler for ADC12IFG15 starts here. No JMP required.
;

ADM15 MOV &ADC12MEM15,xxx; Move result, flag is reset

... ; Other instruction needed?

JMP INT_ADC12 ; Check other int pending

;

; ADC12IFG14-ADC12IFG1 handlers go here

;

ADM0 MOV &ADC12MEM0,xxx ; Move result, flag is reset

... ; Other instruction needed?

RETI ; Return 5

;

ADTOV ... ; Handle Conv. time overflow

RETI ; Return 5

;

ADOV ... ; Handle ADCMEMx overflow

RETI ; Return 5

ADC12 Registers

21-20 ADC12

21.3 ADC12 Registers

The ADC12 registers are listed in Table 21--2.

Table 21--2.ADC12 Registers

Register Short Form Register Type Address Initial State

ADC12 control register 0 ADC12CTL0 Read/write 01A0h Reset with POR

ADC12 control register 1 ADC12CTL1 Read/write 01A2h Reset with POR

ADC12 interrupt flag register ADC12IFG Read/write 01A4h Reset with POR

ADC12 interrupt enable register ADC12IE Read/write 01A6h Reset with POR

ADC12 interrupt vector word ADC12IV Read 01A8h Reset with POR

ADC12 memory 0 ADC12MEM0 Read/write 0140h Unchanged

ADC12 memory 1 ADC12MEM1 Read/write 0142h Unchanged

ADC12 memory 2 ADC12MEM2 Read/write 0144h Unchanged

ADC12 memory 3 ADC12MEM3 Read/write 0146h Unchanged

ADC12 memory 4 ADC12MEM4 Read/write 0148h Unchanged

ADC12 memory 5 ADC12MEM5 Read/write 014Ah Unchanged

ADC12 memory 6 ADC12MEM6 Read/write 014Ch Unchanged

ADC12 memory 7 ADC12MEM7 Read/write 014Eh Unchanged

ADC12 memory 8 ADC12MEM8 Read/write 0150h Unchanged

ADC12 memory 9 ADC12MEM9 Read/write 0152h Unchanged

ADC12 memory 10 ADC12MEM10 Read/write 0154h Unchanged

ADC12 memory 11 ADC12MEM11 Read/write 0156h Unchanged

ADC12 memory 12 ADC12MEM12 Read/write 0158h Unchanged

ADC12 memory 13 ADC12MEM13 Read/write 015Ah Unchanged

ADC12 memory 14 ADC12MEM14 Read/write 015Ch Unchanged

ADC12 memory 15 ADC12MEM15 Read/write 015Eh Unchanged

ADC12 memory control 0 ADC12MCTL0 Read/write 080h Reset with POR

ADC12 memory control 1 ADC12MCTL1 Read/write 081h Reset with POR

ADC12 memory control 2 ADC12MCTL2 Read/write 082h Reset with POR

ADC12 memory control 3 ADC12MCTL3 Read/write 083h Reset with POR

ADC12 memory control 4 ADC12MCTL4 Read/write 084h Reset with POR

ADC12 memory control 5 ADC12MCTL5 Read/write 085h Reset with POR

ADC12 memory control 6 ADC12MCTL6 Read/write 086h Reset with POR

ADC12 memory control 7 ADC12MCTL7 Read/write 087h Reset with POR

ADC12 memory control 8 ADC12MCTL8 Read/write 088h Reset with POR

ADC12 memory control 9 ADC12MCTL9 Read/write 089h Reset with POR

ADC12 memory control 10 ADC12MCTL10 Read/write 08Ah Reset with POR

ADC12 memory control 11 ADC12MCTL11 Read/write 08Bh Reset with POR

ADC12 memory control 12 ADC12MCTL12 Read/write 08Ch Reset with POR

ADC12 memory control 13 ADC12MCTL13 Read/write 08Dh Reset with POR

ADC12 memory control 14 ADC12MCTL14 Read/write 08Eh Reset with POR

ADC12 memory control 15 ADC12MCTL15 Read/write 08Fh Reset with POR

ADC12 Registers

21-21ADC12

ADC12CTL0, ADC12 Control Register 0

15 14 13 12 11 10 9 8

SHT1x SHT0x

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

MSC REF2_5V REFON ADC120N ADC12OVIE ADC12
TOVIE ENC ADC12SC

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

Modifiable only when ENC = 0

SHT1x Bits
15-12

Sample-and-hold time. These bits define the number of ADC12CLK cycles in
the sampling period for registers ADC12MEM8 to ADC12MEM15.

SHT0x Bits
11-8

Sample-and-hold time. These bits define the number of ADC12CLK cycles in
the sampling period for registers ADC12MEM0 to ADC12MEM7.

SHTx Bits ADC12CLK cycles

0000 4

0001 8

0010 16

0011 32

0100 64

0101 96

0110 128

0111 192

1000 256

1001 384

1010 512

1011 768

1100 1024

1101 1024

1110 1024

1111 1024

ADC12 Registers

21-22 ADC12

MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes.
0 The sampling timer requires a rising edge of the SHI signal to trigger

each sample-and-conversion.
1 The first rising edge of the SHI signal triggers the sampling timer, but

further sample-and-conversions are performed automatically as soon
as the prior conversion is completed.

REF2_5V Bit 6 Reference generator voltage. REFON must also be set.
0 1.5 V
1 2.5 V

REFON Bit 5 Reference generator on
0 Reference off
1 Reference on

ADC12ON Bit 4 ADC12 on
0 ADC12 off
1 ADC12 on

ADC12OVIE Bit 3 ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to
enable the interrupt.
0 Overflow interrupt disabled
1 Overflow interrupt enabled

ADC12
TOVIE

Bit 2 ADC12 conversion-time-overflow interrupt enable. The GIE bit must also be
set to enable the interrupt.
0 Conversion time overflow interrupt disabled
1 Conversion time overflow interrupt enabled

ENC Bit 1 Enable conversion
0 ADC12 disabled
1 ADC12 enabled

ADC12SC Bit 0 Start conversion. Software-controlled sample-and-conversion start.
ADC12SC and ENC may be set together with one instruction. ADC12SC is
reset automatically.
0 No sample-and-conversion-start
1 Start sample-and-conversion

ADC12 Registers

21-23ADC12

ADC12CTL1, ADC12 Control Register 1

15 14 13 12 11 10 9 8

CSTARTADDx SHSx SHP ISSH

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

ADC12DIVx ADC12SSELx CONSEQx ADC12
BUSY

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) r--(0)

Modifiable only when ENC = 0

CSTART
ADDx

Bits
15-12

Conversion start address. These bits select which ADC12
conversion-memory register is used for a single conversion or for the first
conversion in a sequence. The value of CSTARTADDx is 0 to 0Fh,
corresponding to ADC12MEM0 to ADC12MEM15.

SHSx Bits
11-10

Sample-and-hold source select
00 ADC12SC bit
01 Timer_A.OUT1
10 Timer_B.OUT0
11 Timer_B.OUT1

SHP Bit 9 Sample-and-hold pulse-mode select. This bit selects the source of the
sampling signal (SAMPCON) to be either the output of the sampling timer or
the sample-input signal directly.
0 SAMPCON signal is sourced from the sample-input signal.
1 SAMPCON signal is sourced from the sampling timer.

ISSH Bit 8 Invert signal sample-and-hold
0 The sample-input signal is not inverted.
1 The sample-input signal is inverted.

ADC12DIVx Bits
7-5

ADC12 clock divider
000 /1
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

ADC12 Registers

21-24 ADC12

ADC12
SSELx

Bits
4-3

ADC12 clock source select
00 ADC12OSC
01 ACLK
10 MCLK
11 SMCLK

CONSEQx Bits
2-1

Conversion sequence mode select
00 Single-channel, single-conversion
01 Sequence-of-channels
10 Repeat-single-channel
11 Repeat-sequence-of-channels

ADC12
BUSY

Bit 0 ADC12 busy. This bit indicates an active sample or conversion operation.
0 No operation is active.
1 A sequence, sample, or conversion is active.

ADC12MEMx, ADC12 Conversion Memory Registers

15 14 13 12 11 10 9 8

0 0 0 0 Conversion Results

r0 r0 r0 r0 rw rw rw rw

7 6 5 4 3 2 1 0

Conversion Results

rw rw rw rw rw rw rw rw

Conversion
Results

Bits
15-0

The 12-bit conversion results are right-justified. Bit 11 is the MSB. Bits 15-12
are always 0. Writing to the conversion memory registers will corrupt the
results.

ADC12 Registers

21-25ADC12

ADC12MCTLx, ADC12 Conversion Memory Control Registers

7 6 5 4 3 2 1 0

EOS SREFx INCHx

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

Modifiable only when ENC = 0

EOS Bit 7 End of sequence. Indicates the last conversion in a sequence.
0 Not end of sequence
1 End of sequence

SREFx Bits
6-4

Select reference
000 VR+ = AVCC and VR-- = AVSS
001 VR+ = VREF+ and VR-- = AVSS
010 VR+ = VeREF+ and VR-- = AVSS
011 VR+ = VeREF+ and VR-- = AVSS
100 VR+ = AVCC and VR-- = VREF--/ VeREF--
101 VR+ = VREF+ and VR-- = VREF--/ VeREF--
110 VR+ = VeREF+ and VR-- = VREF--/ VeREF--
111 VR+ = VeREF+ and VR-- = VREF--/ VeREF--

INCHx Bits
3-0

Input channel select
0000 A0
0001 A1
0010 A2
0011 A3
0100 A4
0101 A5
0110 A6
0111 A7
1000 VeREF+
1001 VREF--/VeREF--
1010 Temperature diode
1011 (AVCC – AVSS) / 2
1100 GND
1101 GND
1110 GND
1111 GND

ADC12 Registers

21-26 ADC12

ADC12IE, ADC12 Interrupt Enable Register

15 14 13 12 11 10 9 8

ADC12IE15 ADC12IE14 ADC12IE13 ADC12IE12 ADC12IE11 ADC12IE10 ADC12IFG9 ADC12IE8

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

ADC12IE7 ADC12IE6 ADC12IE5 ADC12IE4 ADC12IE3 ADC12IE2 ADC12IE1 ADC12IE0

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

ADC12IEx Bits
15-0

Interrupt enable. These bits enable or disable the interrupt request for the
ADC12IFGx bits.
0 Interrupt disabled
1 Interrupt enabled

ADC12IFG, ADC12 Interrupt Flag Register

15 14 13 12 11 10 9 8

ADC12
IFG15

ADC12
IFG14

ADC12
IFG13

ADC12
IFG12

ADC12
IFG11

ADC12
IFG10

ADC12
IFG9

ADC12
IFG8

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

ADC12
IFG7

ADC12
IFG6

ADC12
IFG5

ADC12
IFG4

ADC12
IFG3

ADC12
IFG2

ADC12
IFG1

ADC12
IFG0

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

ADC12IFGx Bits
15-0

ADC12MEMx Interrupt flag. These bits are set when corresponding
ADC12MEMx is loaded with a conversion result. The ADC12IFGx bits are
reset if the corresponding ADC12MEMx is accessed, or may be reset with
software.
0 No interrupt pending
1 Interrupt pending

ADC12 Registers

21-27ADC12

ADC12IV, ADC12 Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 ADC12IVx 0

r0 r0 r--(0) r--(0) r--(0) r--(0) r--(0) r0

ADC12IVx Bits
15-0

ADC12 interrupt vector value

ADC12IV
Contents Interrupt Source Interrupt Flag

Interrupt
Priority

000h No interrupt pending --

002h ADC12MEMx overflow -- Highest

004h Conversion time overflow --

006h ADC12MEM0 interrupt flag ADC12IFG0

008h ADC12MEM1 interrupt flag ADC12IFG1

00Ah ADC12MEM2 interrupt flag ADC12IFG2

00Ch ADC12MEM3 interrupt flag ADC12IFG3

00Eh ADC12MEM4 interrupt flag ADC12IFG4

010h ADC12MEM5 interrupt flag ADC12IFG5

012h ADC12MEM6 interrupt flag ADC12IFG6

014h ADC12MEM7 interrupt flag ADC12IFG7

016h ADC12MEM8 interrupt flag ADC12IFG8

018h ADC12MEM9 interrupt flag ADC12IFG9

01Ah ADC12MEM10 interrupt flag ADC12IFG10

01Ch ADC12MEM11 interrupt flag ADC12IFG11

01Eh ADC12MEM12 interrupt flag ADC12IFG12

020h ADC12MEM13 interrupt flag ADC12IFG13

022h ADC12MEM14 interrupt flag ADC12IFG14

024h ADC12MEM15 interrupt flag ADC12IFG15 Lowest

21-28 ADC12

22-1TLV Structure

TLV Structure

The Tag-Length-Value (TLV) structure is used in selected MSP430x2xx
devices to provide device-specific information in the device’s flash memory
SegmentA, such as calibration data. For the device-dependent
implementation, see the device-specific data sheet.

Topic Page

22.1 TLV Introduction 22-2. .

22.2 Supported Tags 22-3. .

22.3 Calculating the Checksum of SegmentA 22-7. .

22.4 Parsing the TLV Structure of SegmentA 22-8. .

Chapter 22

TLV Introduction

22-2 TLV Structure

22.1 TLV Introduction

TheTLVstructurestoresdevicespecific data in theSegmentA.TheSegmentA
content of an example device is shown in Table 22--1.

Table 22--1.Example SegmentA structure

Word
Address

Upper Byte Lower Byte Tag Address and
Offset

0x10FE CALBC1_1MHZ CALDCO1_1MHZ 0x10F6 + 0x0008

0x10FC CALBC1_8MHZ CALDCO1_8MHZ 0x10F6 + 0x0006

0x10FA CALBC1_12MHZ CALDCO1_12MHZ 0x10F6 + 0x0004

0x10F8 CALBC1_16MHZ CALDCO1_16MHZ 0x10F6 + 0x0002

0x10F6 0x08 (LENGTH) TAG_DCO_30 0x10F6

0x10F4 0xFF 0xFF

0x10F2 0xFF 0xFF

0x10F0 0xFF 0xFF

0x10EE 0xFF 0xFF

0x10EC 0x08 (LENGTH) TAG_EMPTY 0x10EC

0x10EA CAL_ADC_25T85 0x10DA + 0x0010

0x10E8 CAL_ADC_25T30 0x10DA + 0x000E

0x10E6 CAL_ADC_25VREF_FACTOR 0x10DA + 0x000C

0x10E4 CAL_ADC_15T85 0x10DA + 0x000A

0x10E2 CAL_ADC_15T30 0x10DA + 0x0008

0x10E0 CAL_ADC_15VREF_FACTOR 0x10DA + 0x0006

0x10DE CAL_ADC_OFFSET 0x10DA + 0x0004

0x10DC CAL_ADC_GAIN_FACTOR 0x10DA + 0x0002

0x10DA 0x10 (LENGTH) TAG_ADC12_1 0x10DA

0x10D8 0xFF 0xFF

0x10D6 0xFF 0xFF

0x10D4 0xFF 0xFF

0x10D2 0xFF 0xFF

0x10D0 0xFF 0xFF

0x10CE 0xFF 0xFF

0x10CC 0xFF 0xFF

0x10CA 0xFF 0xFF

0x10C8 0xFF 0xFF

0x10C6 0xFF 0xFF

0x10C4 0xFF 0xFF

0x10C2 0x16 (LENGTH) TAG_EMPTY 0x10C2

0x10C0 2th complement of bit-wise XOR 0x10C0

The first two bytes of SegmentA (0x10C0 and 0x10C1) hold the checksum of
the remainder of the segment (addresses 0x10C2 to 0x10FF).

Supported Tags

22-3TLV Structure

The first tag is located at address 0x10C2 and, in this example, is the
TAG_EMPTY tag. The following byte (0x10C3) holds the length of the
following structure. The length of this TAG_EMPTY structure is 0x16 and,
therefore, the next tag, TAG_ADC12_1, is found at address 0x10DA. Again,
the following byte holds the length of the TAG_ADC12_1 structure.

The TLV structure maps the entire address range 0x10C2 to 0x10FF of the
SegmentA. A program routine looking for tags starting at the SegmentA
address 0x10C2 can extract all information even if is stored at a different
(device-specific) absolute address.

22.2 Supported Tags

Each device contains a subset of the tags shown in Table 22--2. See the
device-specific data sheet for details.

Table 22--2.Supported Tags (Device Specific)

Tag Description Value

TAG_EMPTY Identifies an unused memory area 0xFE

TAG_DCO_30 Calibration values for the DCO at room temperature
and DVCC = 3 V

0x01

TAG_ADC12_1 Calibration values for the ADC12 module 0x08

22.2.1 DCO Calibration TLV Structure

For DCO calibration, the BCS+ registers (BCSCTL1 and DCOCTL) are used.
The values stored in the flash information memory segment A are written to
the BCS+ registers.

Table 22--3.DCO Calibration Data (Device Specific)

Label Description Offset

CALBC1_1MHZ Value for the BCSCTL1 register for 1 MHz,
TA = 25°C

0x07

CALDCO_1MHZ Value for the DCOCTL register for 1 MHz,
TA = 25°C

0x06

CALBC1_8MHZ Value for the BCSCTL1 register for 8 MHz,
TA = 25°C

0x05

CALDCO_8MHZ Value for the DCOCTL register for 8 MHz,
TA = 25°C

0x04

CALBC1_12MHZ Value for the BCSCTL1 register for 12 MHz,
TA = 25°C

0x03

CALDCO_12MHZ Value for the DCOCTL register for 12 MHz,
TA = 25°C

0x02

CALBC1_16MHZ Value for the BCSCTL1 register for 16 MHz,
TA = 25°C

0x01

CALDCO_16MHZ Value for the DCOCTL register for 16 MHz,
TA = 25°C

0x00

Supported Tags

22-4 TLV Structure

Code Example Using Absolute Addressing Mode

The calibration data for the DCO is available in all 2xx devices and is stored
at the same absolute addresses. The device-specific SegmentA content is
applied using the absolute addressing mode if the following code is used.

; Calibrate the DCO to 1 MHz

CLR.B &DCOCTL ; Select lowest DCOx

; and MODx settings

MOV.B &CALBC1_1MHZ,&BCSCTL1 ; Set RSELx

MOV.B &CALDCO_1MHZ,&DCOCTL ; Set DCOx and MODx

The TLV structure allows use of the address of the TAG_DCO_30 tag to
address theDCOregisters.Thecodeexampleshowshow toaddress theDCO
calibration data using the TAG_DCO_30 tag.

Code Example Using the TLV Structure

; Calibrate the DCO to 8 MHz

; It is assumed that R10 contains the address of the
TAG_DCO_30 tag

CLR.B &DCOCTL ; Select lowest DCOx and

; MODx settings

MOV.B 7(R10),&BCSCTL1 ; Set RSEL

MOV.B 6(R10),&DCOCTL ; Set DCOx and MODx

22.2.2 TAG_ADC12_1 Calibration TLV structure

The calibration data for the ADC12 module consists of eight words.

Table 22--4.TAG_ADC12_1 Calibration Data (Device Specific)

Label Description Offset

CAL_ADC_25T85 VREF2_5 = 1, TA = 85°C, 12-bit conversion result 0x0E

CAL_ADC_25T30 VREF2_5 = 1, TA = 30°C, 12-bit conversion result 0x0C

CAL_ADC_25VREF_FACTOR VREF2_5 = 1, TA = 30°C 0x0A

CAL_ADC_15T85 VREF2_5 = 0, TA = 85°C, 12-bit conversion result 0x08

CAL_ADC_15T30 VREF2_5 = 0, TA = 30°C, 12-bit conversion result 0x06

CAL_ADC_15VREF_FACTOR VREF2_5 = 0, TA = 30°C 0x04

CAL_ADC_OFFSET VeREF = 2.5V, TA = 85°C, fADC12CLK = 5 MHz 0x02

CAL_ADC_GAIN_FACTOR VeREF = 2.5V, TA = 85°C, fADC12CLK = 5 MHz 0x00

Temperature Sensor Calibration Data

The temperature sensor is calibrated using the internal voltage references. At
VREF2_5 = 0 and 1, the conversion result at 30°C and 85°C is written at the
respective SegmentA location (see Table 22--4).

Supported Tags

22-5TLV Structure

Integrated Voltage Reference Calibration Data

The reference voltages (VREF2_5 = 0 and 1) are measured at room
temperature. Themeasured value is normalizedby1.5/2.5Vbefore stored into
the flash information memory segment A.

CAL_ADC_15VREF_FACTOR=
VeREF
1.5V

× 215

The conversion result is corrected by multiplying it with the
CAL_ADC_15VREF_FACTOR (or CAL_ADC_25VREF_FACTOR) and
dividing the result by 215.

ADC(corrected)= ADC(raw)× CAL_ADC_15VREF_FACTOR× 1
215

Example Using the Reference Calibration

In the example, the integrated 1.5-V reference voltage is used during a
conversion.

- Conversion result: 0x0100
- Reference voltage calibration factor (CAL_ADC_15VREF_FACTOR):

0x7BBB

The following steps showanexample of how theADC12conversion result can
be corrected by using the hardware multiplier:

- Multiply the conversion result by 2 (this step simplifies the final division).
- Multiply the result by CAL_ADC_15VREF_FACTOR.
- Divide the result by 216 (use the upper word of the 32-bit multiplication

result RESHI).

In the example:

- 0x0100 × 0x0002 = 0x0200
- 0x0200 × 0x7BBB = 0x00F7_7600
- 0x00F7_7600÷ 0x0001_0000 = 0x0000_00F7 (= 247)

The code example using the hardware multiplier follows.

; The ADC conversion result is stored in ADC12MEM0

; It is assumed that R9 contains the address of the

; TAG_ADC12_1.

; The corrected value is available in ADC_COR

MOV.W &ADC12MEM0,R10 ; move result to R10

RLA.W R10 ; R10 x 2

MOV.W R10,&MPY ; unsigned multiply OP1

MOV.W CAL_ADC_15VREF_FACTOR(R9),&OP2

; calibration value OP2

MOV.W &RESHI,&ADC_COR ; result: upper 16-bit MPY

Supported Tags

22-6 TLV Structure

Offset and Gain Calibration Data

The offset of the ADC12 is determined and stored as a twos-complement
number in SegmentA. The offset error correction is done by adding the
CAL_ADC_OFFSET to the conversion result.

ADC(offset_corrected)= ADC(raw)+CAL_ADC_OFFSET

The gain of the ADC12, stored at offset 0x00, is calculated by the following
equation.

CAL_ADC_GAIN_FACTOR= 1
GAIN

× 215

The conversion result is gain corrected by multiplying it with the
CAL_ADC_GAIN_FACTOR and dividing the result by 215.

ADC(gain_corrected)= ADC(raw)×CAL_ADC_GAIN_FACTOR× 1
215

If both gain and offset are corrected, the gain correction is done first.

ADC(gain_corrected)= ADC(raw)×CAL_ADC_GAIN_FACTOR× 1
215

ADC(final)= ADC(gain_corrected)+ CAL_ADC_OFFSET

Example Using Gain and Offset Calibration

In the following example, an external reference voltage is used during a
conversion.

- Conversion result: 0x0800 (= 2048)
- Gain calibration factor: 0x8010 (gain error: +2 LSB)
- Offset calibration: 0xFFFE (2th complement of --2)

The following steps show an example of how the ADC12 conversion result is
corrected by using the hardware multiplier:

- Multiply the conversion result by 2 (this step simplifies the final division).
- Multiply the result by CAL_ADC_GAIN_FACTOR.
- Divide the result by 216 (use the upper word of the 32-bit multiplication

result RESHI)
- Add CAL_ADC_OFFSET to the result.

In the example:

- 0x0800 × 0x0002 = 0x1000
- 0x1000 × 0x8010 = 0x0801_0000
- 0x0801_0000÷ 0x0001_0000 = 0x0000_0801 (= 2049)
- 0x801 + 0xFFFE = 0x07FF (= 2047)

Checking Integrity of SegmentA

22-7TLV Structure

The code example using the hardware multiplier follows.

; The ADC conversion result is stored in ADC12MEM0

; It is assumed that R9 contains the address of the
TAG_ADC12_1.

; The corrected value is available in ADC_COR

MOV.W &ADC12MEM0,R10 ; move result to R10

RLA.W R10 ; R10 * 2

MOV.W R10,&MPY ; unsigned multiply OP1

MOV.W CAL_ADC_GAIN_FACTOR(R9),&OP2

; calibration value OP2

MOV.W &RESHI,&ADC_COR ; use upper 16-bit MPY

ADD.W CAL_ADC_OFFSET(R9),&ADC_COR

; add offset correction

22.3 Checking Integrity of SegmentA

The 64-byte SegmentA contains a 2-byte checksum of the data stored at
0x10C2 up to 0x10FF at addresses 0x10C0 and 0x10C1. The checksum is a
bit-wise XOR of 31 words stored in the twos-complement data format.

A code example to calculate the checksum follows.

; Checking the SegmentA integrity by calculating the 2’s

; complement of the 31 words at 0x10C2 - 0x10FE.

; It is assumed that the SegmentA Start Address is stored

; in R10. R11 is initialized to 0x00.

; The label TLV_CHKSUM is set to 0x10C0.

ADD.W #2,R10 ; Skip the checksum

LP0 XOR.W @R10+,R11 ; Add a word to checksum

CMP.W #0x10FF,R10 ; Last word included?

JN LP0 ; No, add more data

ADD.W &TLV_CHKSUM,R11 ; Add checksum

JNZ CSNOK ; Checksum not ok

... ; Use SegmentA data

CSNOK ... ; Do not use SegmentA Data

Parsing TLV Structure of Segment A

22-8 TLV Structure

22.4 Parsing TLV Structure of Segment A

Example code to analyze SegmentA follows:

; It is assumed that the SegmentA start address

; is stored in R10.

LP1 ADD.W #2,R10 ; Skip two bytes

CMP.W #0x10FF,R10 ; SegmentA end reached?

JGE DONE ; Yes, done

CMP.B #TAG_EMPTY,0(R10)

; TAG_EMPTY?

JNZ T1 ; No, continue

JMP LP2 ; Yes, done with TAG_EMPTY

T1 CMP.B #TAG_ADC12_1,0(R10)

; TAG_ADC12_1?

JNZ T2 ; No, continue

... ; Yes, found TAG_ADC12_1

JMP LP2 ; Done with TAG_ADC12_1

T2 CMP.B #DCO_30,0(R10) ; TAG_DCO_30?

JNZ T3 ; No, continue

CLR.B &DCOCTL ; Select lowest DCOx

MOV.B 7(R10),&BCSCTL1 ; Yes, use e.g. 8MHz data and

MOV.B 6(R10),&DCOCTL ; set DCOx and MODx

JMP LP2 ; Done with TAG_DCO_30

T3 ... ; Test for “next tag”

... ;

JMP LP2 ; Done with “next tag”

LP2 MOV.B 1(R10),R11 ; Store LENGTH in R11

ADD.W R11,R10 ; Add LENGTH to R10

JMP LP1 ; Jump to continue analysis

DONE ;

23-1DAC12

DAC12

TheDAC12module is a 12-bit, voltage output digital-to-analog converter. This
chapter describes the operation of the DAC12 module of the MSP430 2xx
device family.

Topic Page

23.1 DAC12 Introduction 23-2. .

23.2 DAC12 Operation 23-4. .

23.3 DAC12 Registers 23-10. .

Chapter 23

DAC12 Introduction

23-2 DAC12

23.1 DAC12 Introduction

The DAC12 module is a 12-bit, voltage output DAC. The DAC12 can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA
controller. When multiple DAC12 modules are present, they may be grouped
together for synchronous update operation.

Features of the DAC12 include:

- 12-bit monotonic output

- 8- or 12-bit voltage output resolution

- Programmable settling time vs power consumption

- Internal or external reference selection

- Straight binary or 2s compliment data format

- Self-calibration option for offset correction

- Synchronized update capability for multiple DAC12s

Note: Multiple DAC12 Modules

Some devices may integrate more than one DAC12 module. In the case
where more than one DAC12 is present on a device, the multiple DAC12
modules operate identically.

Throughout this chapter, nomenclature appears such as DAC12_xDAT or
DAC12_xCTL to describe register names. When this occurs, the x is used
to indicate which DAC12 module is being discussed. In cases where
operation is identical, the register is simply referred to as DAC12_xCTL.

The block diagram of the 2xx DAC12 module is shown in Figure 23--1.

DAC12 Introduction

23-3DAC12

Figure 23--1. DAC12 Block Diagram

DAC12_0
DAC12_0OUT

2.5V or 1.5V reference from ADC12

DAC12SREFx

VR-- VR+

DAC12_0DAT

DAC12_0Latch

DAC12_1
DAC12LSELx

VR-- VR+

DAC12_1DAT

DAC12_1Latch
TB2

TA1

DAC12DF
DAC12RES

AVSS

00

01

10

11

00

01

10

11

00

01

10

11

VeREF+

VREF+

DAC12DF
DAC12RES

Latch Bypass

DAC12LSELx

TB2

TA1

00

01

10

11

00

01

10

11

Latch Bypass

DAC12IR

To ADC12 module

DAC12_1DAT Updated

DAC12_0DAT Updated

1

0

0

1

DAC12ENC

0

1

DAC12ENC

DAC12GRP

1

0

DAC12GRP

DAC12SREFx

AVSS

00

01

10

11

x3

/3

DAC12_1OUT

DAC12AMPx

3

x3

DAC12IR

/3

Group
Load
Logic

DAC12AMPx

3

DAC12 Operation

23-4 DAC12

23.2 DAC12 Operation

TheDAC12module is configuredwith user software. The setup and operation
of the DAC12 is discussed in the following sections.

23.2.1 DAC12 Core

The DAC12 can be configured to operate in 8- or 12-bit mode using the
DAC12RES bit. The full-scale output is programmable to be 1× or 3× the
selected reference voltage via the DAC12IR bit. This feature allows the user
to control the dynamic range of the DAC12. The DAC12DF bit allows the user
to select between straight binary data and 2s-compliment data for the DAC.
When using straight binary data format, the formula for the output voltage is
given in Table 23--1.

Table 23--1.DAC12 Full-Scale Range (Vref = VeREF+ or VREF+)

Resolution DAC12RES DAC12IR Output Voltage Formula

12 bit 0 0
Vout = Vref× 3× DAC12_xDAT

4096

12 bit 0 1
Vout = Vref× DAC12_xDAT

4096

8 bit 1 0
Vout = Vref× 3× DAC12_xDAT

256

8 bit 1 1
Vout = Vref× DAC12_xDAT

256

In 8-bit mode the maximum useable value for DAC12_xDAT is 0FFh and in
12-bit mode the maximum useable value for DAC12_xDAT is 0FFFh. Values
greater than these may be written to the register, but all leading bits are
ignored.

DAC12 Port Selection

The DAC12 outputs are multiplexed with the port P6 pins and ADC12 analog
inputs, and also the VeREF+ pins. When DAC12AMPx > 0, the DAC12
function is automatically selected for the pin, regardless of the state of the
associatedPxSELx andPxDIRx bits. TheDAC12OPSbit selects between the
P6 pins and the VeREF+ pins for the DAC outputs. For example, when
DAC12OPS = 0, DAC12_0 outputs on P6.6 and DAC12_1 outputs on P6.7.
When DAC12OPS = 1, DAC12_0 outputs on VeREF+ and DAC12_1 outputs
on P6.5. See the port pin schematic in the device-specific data sheet for more
details.

DAC12 Operation

23-5DAC12

23.2.2 DAC12 Reference

The reference for the DAC12 is configured to use either an external reference
voltage or the internal 1.5-V/2.5-V reference from the ADC12module with the
DAC12SREFx bits. When DAC12SREFx = {0,1} the VREF+ signal is used as
the referenceandwhenDAC12SREFx= {2,3} theVeREF+ signal is usedas the
reference.

To use the ADC12 internal reference, it must be enabled and configured via
the applicable ADC12 control bits.

DAC12 Reference Input and Voltage Output Buffers

The reference input and voltage output buffers of the DAC12 can be
configured for optimized settling time vs power consumption. Eight
combinations are selected using the DAC12AMPx bits. In the low/low setting,
the settling time is the slowest, and the current consumption of both buffers is
the lowest. The medium and high settings have faster settling times, but the
current consumption increases. See the device-specific data sheet for
parameters.

23.2.3 Updating the DAC12 Voltage Output

The DAC12_xDAT register can be connected directly to the DAC12 core or
double buffered. The trigger for updating theDAC12 voltageoutput is selected
with the DAC12LSELx bits.

When DAC12LSELx = 0 the data latch is transparent and the DAC12_xDAT
register is applied directly to the DAC12 core. the DAC12 output updates
immediately when new DAC12 data is written to the DAC12_xDAT register,
regardless of the state of the DAC12ENC bit.

When DAC12LSELx = 1, DAC12 data is latched and applied to the DAC12
core after new data is written to DAC12_xDAT. When DAC12LSELx = 2 or 3,
data is latched on the rising edge from the Timer_A CCR1 output or Timer_B
CCR2output respectively.DAC12ENCmust be set to latch thenewdatawhen
DAC12LSELx > 0.

DAC12 Operation

23-6 DAC12

23.2.4 DAC12_xDAT Data Format

The DAC12 supports both straight binary and 2s compliment data formats.
When using straight binary data format, the full-scale output value is 0FFFh
in 12-bit mode (0FFh in 8-bit mode) as shown in Figure 23--2.

Figure 23--2. Output Voltage vs DAC12 Data, 12-Bit, Straight Binary Mode

Full-Scale Output

0 0FFFh

0

Output Voltage

DAC Data

When using 2s compliment data format, the range is shifted such that a
DAC12_xDAT value of 0800h (0080h in 8-bit mode) results in a zero output
voltage, 0000h is the mid-scale output voltage, and 07FFh (007Fh for 8-bit
mode) is the full-scale voltage output as shown in Figure 23--3.

Figure 23--3. Output Voltage vs DAC12 Data, 12-Bit, 2s Compliment Mode

Full-Scale Output

0800h (--2048) 07FFh (+2047)0

0

Output Voltage

DAC Data

Mid-Scale Output

DAC12 Operation

23-7DAC12

23.2.5 DAC12 Output Amplifier Offset Calibration

The offset voltage of the DAC12 output amplifier can be positive or negative.
When the offset is negative, the output amplifier attempts to drive the voltage
negative, but cannot do so.Theoutput voltage remainsat zerountil theDAC12
digital input produces a sufficient positive output voltage to overcome the
negative offset voltage, resulting in the transfer function shown inFigure 23--4.

Figure 23--4. Negative Offset

Output Voltage

0

DAC DataNegative Offset

When the output amplifier has a positive offset, a digital input of zero does not
result in a zero output voltage. The DAC12 output voltage reaches the
maximum output level before the DAC12 data reaches the maximum code.
This is shown in Figure 23--5.

Figure 23--5. Positive Offset

Vcc

Output Voltage

0

DAC Data Full-Scale Code

The DAC12 has the capability to calibrate the offset voltage of the output
amplifier. Setting the DAC12CALON bit initiates the offset calibration. The
calibration should complete before using the DAC12. When the calibration is
complete, the DAC12CALON bit is automatically reset. The DAC12AMPx bits
should be configured before calibration. For best calibration results, port and
CPU activity should be minimized during calibration.

DAC12 Operation

23-8 DAC12

23.2.6 Grouping Multiple DAC12 Modules

Multiple DAC12s can be grouped together with the DAC12GRP bit to
synchronize the update of each DAC12 output. Hardware ensures that all
DAC12 modules in a group update simultaneously independent of any
interrupt or NMI event.

DAC12_0 and DAC12_1 are grouped by setting the DAC12GRP bit of
DAC12_0.TheDAC12GRPbit ofDAC12_1 is don’t care.WhenDAC12_0and
DAC12_1 are grouped:

- The DAC12_1 DAC12LSELx bits select the update trigger for both DACs

- The DAC12LSELx bits for both DACs must be > 0

- The DAC12ENC bits of both DACs must be set to 1

When DAC12_0 and DAC12_1 are grouped, both DAC12_xDAT registers
must be written to before the outputs update - even if data for one or both of
the DACs is not changed. Figure 23--6 shows a latch-update timing example
for grouped DAC12_0 and DAC12_1.

When DAC12_0 DAC12GRP = 1 and both DAC12_x DAC12LSELx > 0 and
either DAC12ENC = 0, neither DAC12 will update.

Figure 23--6. DAC12 Group Update Example, Timer_A3 Trigger

DAC12_0
DAC12GRP

DAC12_0
DAC12ENC

TimerA_OUT1

DAC12_0
Latch Trigger

DAC12_0 Updated

DAC12_0 DAC12LSELx = 2 DAC12_0 DAC12LSELx > 0 AND
DAC12_1 DAC12LSELx = 2

DAC12_0DAT
New Data

DAC12_1DAT
New Data

DAC12_0 and DAC12_1
Updated Simultaneously

Note: DAC12 Settling Time

The DMA controller is capable of transferring data to the DAC12 faster than
the DAC12 output can settle. The user must assure the DAC12 settling time
is not violated when using the DMA controller. See the device-specific data
sheet for parameters.

DAC12 Operation

23-9DAC12

23.2.7 DAC12 Interrupts

TheDAC12 interrupt vector is sharedwith theDMAcontroller onsomedevices
(see device-specific data sheet for interrupt assignment). In this case,
software must check the DAC12IFG and DMAIFG flags to determine the
source of the interrupt.

The DAC12IFG bit is set when DAC12LSELx > 0 and DAC12 data is latched
from the DAC12_xDAT register into the data latch. When DAC12LSELx = 0,
the DAC12IFG flag is not set.

A set DAC12IFG bit indicates that the DAC12 is ready for new data. If both the
DAC12IE andGIE bits are set, the DAC12IFG generates an interrupt request.
The DAC12IFG flag is not reset automatically. It must be reset by software.

DAC12 Registers

23-10 DAC12

23.3 DAC12 Registers

The DAC12 registers are listed in Table 23--2.

Table 23--2.DAC12 Registers

Register Short Form Register Type Address Initial State

DAC12_0 control DAC12_0CTL Read/write 01C0h Reset with POR

DAC12_0 data DAC12_0DAT Read/write 01C8h Reset with POR

DAC12_1 control DAC12_1CTL Read/write 01C2h Reset with POR

DAC12_1 data DAC12_1DAT Read/write 01CAh Reset with POR

DAC12 Registers

23-11DAC12

DAC12_xCTL, DAC12 Control Register

15 14 13 12 11 10 9 8

DAC12OPS DAC12SREFx DAC12RES DAC12LSELx DAC12
CALON DAC12IR

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

DAC12AMPx DAC12DF DAC12IE DAC12IFG DAC12ENC DAC12
GRP

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

Modifiable only when DAC12ENC = 0

DAC12OPS Bit 15 DAC12 output select
0 DAC12_0 output on P6.6, DAC12_1 output on P6.7
1 DAC12_0 output on VeREF+, DAC12_1 output on P6.5

DAC12
SREFx

Bits
14-13

DAC12 select reference voltage
00 VREF+
01 VREF+
10 VeREF+
11 VeREF+

DAC12
RES

Bit 12 DAC12 resolution select
0 12-bit resolution
1 8-bit resolution

DAC12
LSELx

Bits
11-10

DAC12 load select. Selects the load trigger for the DAC12 latch. DAC12ENC
must be set for the DAC to update, except when DAC12LSELx = 0.
00 DAC12 latch loadswhenDAC12_xDATwritten (DAC12ENC is ignored)
01 DAC12 latch loads when DAC12_xDAT written, or, when grouped,

when all DAC12_xDAT registers in the group have been written.
10 Rising edge of Timer_A.OUT1 (TA1)
11 Rising edge of Timer_B.OUT2 (TB2)

DAC12
CALON

Bit 9 DAC12 calibration on. This bit initiates theDAC12offset calibration sequence
and is automatically reset when the calibration completes.
0 Calibration is not active
1 Initiate calibration/calibration in progress

DAC12IR Bit 8 DAC12 input range. This bit sets the reference input andvoltageoutput range.
0 DAC12 full-scale output = 3x reference voltage
1 DAC12 full-scale output = 1x reference voltage

DAC12 Registers

23-12 DAC12

DAC12
AMPx

Bits
7-5

DAC12 amplifier setting. These bits select settling time vs current
consumption for the DAC12 input and output amplifiers.

DAC12AMPx Input Buffer Output Buffer

000 Off DAC12 off, output high Z

001 Off DAC12 off, output 0 V

010 Low speed/current Low speed/current

011 Low speed/current Medium speed/current

100 Low speed/current High speed/current

101 Medium speed/current Medium speed/current

110 Medium speed/current High speed/current

111 High speed/current High speed/current

DAC12DF Bit 4 DAC12 data format
0 Straight binary
1 2s complement

DAC12IE Bit 3 DAC12 interrupt enable
0 Disabled
1 Enabled

DAC12IFG Bit 2 DAC12 Interrupt flag
0 No interrupt pending
1 Interrupt pending

DAC12
ENC

Bit 1 DAC12 enable conversion. This bit enables the DAC12 module when
DAC12LSELx > 0. when DAC12LSELx = 0, DAC12ENC is ignored.
0 DAC12 disabled
1 DAC12 enabled

DAC12
GRP

Bit 0 DAC12 group. Groups DAC12_x with the next higher DAC12_x. Not used for
DAC12_1.
0 Not grouped
1 Grouped

DAC12 Registers

23-13DAC12

DAC12_xDAT, DAC12 Data Register

15 14 13 12 11 10 9 8

0 0 0 0 DAC12 Data

r(0) r(0) r(0) r(0) rw--(0) rw--(0) rw--(0) rw--(0)

7 6 5 4 3 2 1 0

DAC12 Data

rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0) rw--(0)

Unused Bits
15-12

Unused. These bits are always 0 and do not affect the DAC12 core.

DAC12 Data Bits
11-0

DAC12 data

DAC12 Data Format DAC12 Data

12-bit binary The DAC12 data are right-justified. Bit 11 is the MSB.

12-bit 2s complement The DAC12 data are right-justified. Bit 11 is the MSB
(sign).

8-bit binary The DAC12 data are right-justified. Bit 7 is the MSB.
Bits 11-8 are don’t care and do not effect the DAC12
core.

8-bit 2s complement The DAC12 data are right-justified. Bit 7 is the MSB
(sign). Bits 11-8 are don’t care and do not effect the
DAC12 core.

23-14 DAC12

24-1SD16_A

SD16_A

TheSD16_Amodule is a single-converter 16-bit, sigma-deltaanalog-to-digital
conversion module with high impedance input buffer. This chapter describes
the SD16_A. The SD16_A module is implemented in the MSP430x20x3
devices.

Topic Page

24.1 SD16_A Introduction 24-2. .

24.2 SD16_A Operation 24-4. .

24.3 SD16_A Registers 24-16. .

Chapter 24

SD16_A Introduction

24-2 SD16_A

24.1 SD16_A Introduction

The SD16_A module consists of one sigma-delta analog-to-digital converter
with a high-impedance input buffer and an internal voltage reference. It has up
to eight fully differential multiplexed analog input pairs including a built-in
temperature sensor and a divided supply voltage. The converter is based on
a second-order oversampling sigma-delta modulator and digital decimation
filter. The decimation filter is a comb type filter with selectable oversampling
ratios of up to 1024. Additional filtering can be done in software.

The high impedance input buffer is not implemented in MSP430x20x3
devices.

Features of the SD16_A include:

- 16-bit sigma-delta architecture

- Up to eight multiplexed differential analog inputs per channel
(The number of inputs is device dependent, see the device-specific data
sheet.)

- Software selectable on-chip reference voltage generation (1.2V)

- Software selectable internal or external reference

- Built-in temperature sensor

- Up to 1.1 MHz modulator input frequency

- High impedance input buffer
(not implemented on all devices, see the device-specific data sheet)

- Selectable low-power conversion mode

The block diagram of the SD16_A module is shown in Figure 24--1.

SD16_A Introduction

24-3SD16_A

Figure 24--1. SD16_A Block Diagram

15 0

SD16DIVx

ACLK

TACLK

SD16SSELx

00

01

10

11

00

01

10

11

MCLK

SMCLK

AVCC
VREF

Divider
1/2/4/8

A0 000

SD16INCHx

+
--

001+
--

010+
--

011+
--

100+
--

101+
--

110+
--

111+
--

A1

A2

A3

A4

A5

A6

2ndOrder
Σ∆ Modulator

SD16GAINx

SD16DF

SD16LP

SD16SC

SD16OSRx

SD16SNGL

SD16MEM0

Reference

A7

SD16VMIDON

SD16REFON

fM

Reference
1.2V

Start Conversion
Logic

AVSS

SD16XDIVx

Divider
1/3/16/48

SD16XOSR

BUF

1

0

SD16UNI

1

AVCC

SD16INCHx=101
Temp.
sensor

PGA
1..32

5R

R

5R

SD16BUFx†

† Not Implemented in MSP430x20x3 devices

Reference

SD16_A Operation

24-4 SD16_A

24.2 SD16_A Operation

The SD16_A module is configured with user software. The setup and
operation of the SD16_A is discussed in the following sections.

24.2.1 ADC Core

The analog-to-digital conversion is performed by a 1-bit second-order
sigma-deltamodulator.Asingle-bit comparatorwithin themodulatorquantizes
the input signal with the modulator frequency fM. The resulting 1-bit data
stream is averaged by the digital filter for the conversion result.

24.2.2 Analog Input Range and PGA

The full-scale input voltage range for each analog input pair is dependent on
the gain setting of the programmable gain amplifier of each channel. The
maximum full-scale range is ±VFSR where VFSR is defined by:

VFSR=
VREF∕2
GAINPGA

For a 1.2V reference, the maximum full-scale input range for a gain of 1 is:

 VFSR=
1.2V∕2
1
= 0.6V

See the device-specific data sheet for full-scale input specifications.

24.2.3 Voltage Reference Generator

The SD16_A module has a built-in 1.2V reference. It is enabled by the
SD16REFON bit. When using the internal reference an external 100-nF
capacitor connected fromVREF toAVSS is recommended to reduce noise. The
internal reference voltage can be used off-chip when SD16VMIDON = 1. The
buffered output can provide up to 1mA of drive. When using the internal
reference off-chip, a 470-nF capacitor connected from VREF to AVSS is
required. See the device-specific data sheet for parameters.

An external voltage reference can be applied to the VREF input when
SD16REFON and SD16VMIDON are both reset.

24.2.4 Auto Power-Down

The SD16_A is designed for low power applications.When the SD16_A is not
actively converting, it is automatically disabled and automatically re-enabled
when a conversion is started. The reference is not automatically disabled, but
can be disabled by setting SD16REFON = 0. When the SD16_A or reference
are disabled, they consume no current.

SD16_A Operation

24-5SD16_A

24.2.5 Analog Input Pair Selection

The SD16_A can convert up to 8 differential input pairs multiplexed into the
PGA. Up to five analog input pairs (A0-A4) are available externally on the
device. A resistive divider tomeasure the supply voltage is available using the
A5multiplexer input. An internal temperature sensor is available using the A6
multiplexer input. Input A7 is a shorted connection between the + and -- input
pair and can be used to calibrate the offset of the SD16_A input stage.

Analog Input Setup

The analog input is configured using the SD16INCTL0 and the SD16AE
registers. TheSD16INCHx bits select one of eight differential input pairs of the
analog multiplexer. The gain for the PGA is selected by the SD16GAINx bits.
A total of six gain settings are available. The SD16AEx bits enable or disable
the analog input pin. Setting any SD16AEx bit disables the multiplexed digital
circuitry for the associated pin. See the device-specific data sheet for pin
diagrams.

During conversion any modification to the SD16INCHx and SD16GAINx bits
will become effective with the next decimation step of the digital filter. After
these bits are modified, the next three conversions may be invalid due to the
settling time of the digital filter. This can be handled automatically with the
SD16INTDLYx bits. When SD16INTDLY = 00h, conversion interrupt requests
will not begin until the 4th conversion after a start condition.

On devices implementing the high impedance input buffer it can be enabled
using the SD16BUFx bits. The speed settings are selected based on the
SD16_A modulator frequency as shown in Table 24--1.

Table 24--1.High Input Impedance Buffer

SD16BUFx Buffer SD16 Modulator Frequency fM

00 Buffer disabled

01 Low speed/current fM < 200kHz

10 Medium speed/current 200kHz < fM < 700kHz

11 High speed/current 700kHz < fM < 1.1MHz

An external RC anti-aliasing filter is recommended for the SD16_A to prevent
aliasing of the input signal. The cutoff frequency should be < 10 kHz for a
1-Mhz modulator clock and OSR = 256. The cutoff frequency may set to a
lower frequency for applications that have lower bandwidth requirements.

SD16_A Operation

24-6 SD16_A

24.2.6 Analog Input Characteristics

The SD16_A uses a switched-capacitor input stage that appears as an
impedance to external circuitry as shown in Figure 24--2.

Figure 24--2. Analog Input Equivalent Circuit

RS 1 kΩ
VS+

MSP430

CS

VS+ = Positive external source voltage
VS-- = Negative external source voltage
RS = External source resistance
CS = Sampling capacitance

RS 1 kΩ
VS--

CS

AVCC / 2

† Not implemented in MSP430x20x3 devices

†

†

When the buffers are used, RS does not affect the sampling frequency fS.
However, when the buffers are not used or are not present on the device, the
maximumsampling frequency fSmay be calculated from theminimumsettling
time tSettling of the sampling circuit given by:

tSettling≥ (RS+ 1kΩ)× CS× lnGAIN× 217× VAx
VREF

where

fS= 1
2× tSettling

and VAx= maxAVCC

2 − VS+, AVCC

2 − VS−,
with VS+ and VS-- referenced to AVSS.

CS varies with the gain setting as shown in Table 24--2.

Table 24--2.Sampling Capacitance

PGA Gain Sampling Capacitance CS

1 1.25 pF

2, 4 2.5 pF

8 5 pF

16, 32 10 pF

SD16_A Operation

24-7SD16_A

24.2.7 Digital Filter

The digital filter processes the 1-bit data stream from the modulator using a
SINC3 comb filter. The transfer function is described in the z-Domain by:

H(z)= 1
OSR

× 1− z−OSR
1− z−1

3

and in the frequency domain by:

Hf =⎪
⎡
⎣
sincOSRπ f

fM

sincπ f
fM
 ⎪
⎤
⎦

3

=⎪
⎧
⎩

1
OSR

×
sinOSR× π× f

fM

sinπ× f
fM
 ⎪
⎫
⎭

3

where the oversampling rate, OSR, is the ratio of the modulator frequency fM
to the sample frequency fS. Figure 24--3 shows the filter’s frequency response
for an OSR of 32. The first filter notch is at fS = fM/OSR. The notch’s frequency
can be adjusted by changing the modulator’s frequency, fM, using
SD16SSELx and SD16DIVx and the oversampling rate using the SD16OSRx
and SD16XOSR bits.

The digital filter for each enabled ADC channel completes the decimation of
the digital bit-stream and outputs new conversion results to the SD16MEM0
register at the sample frequency fS.

Figure 24--3. Comb Filter’s Frequency Response with OSR = 32

--140

--120

--100

--80

--60

--40

--20

0

Frequency

G
A
IN

[d
B
]

fS fM

SD16_A Operation

24-8 SD16_A

Figure 24--4 shows the digital filter step response and conversion points. For
step changes at the input after start of conversion a settling time must be
allowed before a valid conversion result is available. The SD16INTDLYx bits
can provide sufficient filter settling time for a full-scale change at the ADC
input. If the step occurs synchronously to the decimation of the digital filter the
valid data will be available on the third conversion. An asynchronous step will
require one additional conversion before valid data is available.

Figure 24--4. Digital Filter Step Response and Conversion Points

1

2

3

4
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

2

3

Asynchronous Step Synchronous Step

%
V
F
S
R

Conversion Conversion

SD16_A Operation

24-9SD16_A

Digital Filter Output

The number of bits output by the digital filter is dependent on the oversampling
ratio and ranges from 15 to 30 bits. Figure 24--5 shows the digital filter output
and their relation to SD16MEM0 for each OSR, LSBACC, and SD16UNI
setting. For example, for OSR = 1024, LSBACC = 0, and SD16UNI = 1, the
SD16MEM0 register contains bits 28 -- 13 of the digital filter output. When
OSR = 32, the one (SD16UNI = 0) or two (SD16UNI=1) LSBsare always zero.

TheSD16LSBACCandSD16LSBTOGbits give access to the least significant
bits of the digital filter output. When SD16LSBACC = 1 the 16 least significant
bits of the digital filter’s output are read from SD16MEM0 using word
instructions. The SD16MEM0 register can also be accessed with byte
instructions returning only the 8 least significant bits of the digital filter output.

When SD16LSBTOG = 1 the SD16LSBACC bit is automatically toggled each
time SD16MEM0 is read. This allows the complete digital filter output result to
be readwith two readsofSD16MEM0.Setting or clearingSD16LSBTOGdoes
not change SD16LSBACC until the next SD16MEM0 access.

Figure 24--5. Used Bits of Digital Filter Output

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=512, LSBACC=0, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=1024, LSBACC=0, SD16UNI=1

SD16_A Operation

24-10 SD16_A

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=32, LSBACC=x, SD16UNI=1

OSR=32, LSBACC=x, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=64, LSBACC=0, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=128, LSBACC=0, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=1, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=0, SD16UNI=0

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=1, SD16UNI=1

04812162024 15 3 269 723 22 21 19 18 17 15 14 13 11 1028 27 26 2529

OSR=256, LSBACC=0, SD16UNI=1

SD16_A Operation

24-11SD16_A

24.2.8 Conversion Memory Register: SD16MEM0

The SD16MEM0 register is associated with the SD16_A channel. Conversion
results aremoved to the SD16MEM0 register with each decimation step of the
digital filter. The SD16IFG bit is set when new data is written to SD16MEM0.
SD16IFG is automatically cleared when SD16MEM0 is read by the CPU or
may be cleared with software.

Output Data Format

The output data format is configurable in two’s complement, offset binary or
unipolar mode as shown in Table 24--3.The data format is selected by the
SD16DF and SD16UNI bits.

Table 24--3.Data Format

SD16UNI SD16DF Format Analog Input SD16MEM0† Digital Filter Output
(OSR = 256)

Bipolar
+FSR FFFF FFFFFF

0 0
Bipolar
Offset ZERO 8000 8000000 0 Offset
Binary --FSR 0000 000000

Bipolar
+FSR 7FFF 7FFFFF

0 1
Bipolar
Twos ZERO 0000 0000000 1 Twos

compliment --FSR 8000 800000

+FSR FFFF FFFFFF

1 0 Unipolar ZERO 0000 8000001 0 Unipolar

--FSR 0000 000000
† Independent of SD16OSRx and SD16XOSR settings; SD16LSBACC = 0.

Note: Offset Measurements and Data Format

Any offset measurement done either externally or using the internal
differential pair A7 would be appropriate only when the channel is operating
under bipolar mode with SD16UNI = 0.

SD16_A Operation

24-12 SD16_A

Figure 24--6 shows the relationship between the full-scale input voltage range
from --VFSR to +VFSR and the conversion result. The data formats are
illustrated.

Figure 24--6. Input Voltage vs. Digital Output

Input
Voltage

SD16MEMx

--VFSR

+V FSR

7FFFh

8000h

Bipolar Output: 2’s complement

Input
Voltage

SD16MEMx

--VFSR +V FSR

FFFFh

8000h

Bipolar Output: Offset Binary

0000h

0000h

Input
Voltage

SD16MEMx

--VFSR +V FSR

FFFFh

Unipolar Output

0000h

24.2.9 Conversion Modes

The SD16_A module can be configured for two modes of operation, listed in
Table 24--4. The SD16SNGL bit selects the conversion mode.

Table 24--4.Conversion Mode Summary

SD16SNGL Mode Operation

1 Single conversion The channel is converted once.

0 Continuous conversion The channel is converted continuously.

Single Conversion

Setting theSD16SCbit of the channel initiates one conversion on that channel
when SD16SNGL = 1. The SD16SC bit will automatically be cleared after
conversion completion.

Clearing SD16SC before the conversion is completed immediately stops
conversion of the channel, the channel is powered down and the
corresponding digital filter is turned off. The value in SD16MEM0 can change
when SD16SC is cleared. It is recommended that the conversion data in
SD16MEM0 be read prior to clearing SD16SC to avoid reading an invalid
result.

SD16_A Operation

24-13SD16_A

Continuous Conversion

When SD16SNGL = 0 continuous conversion mode is selected. Conversion
of the channel will begin when SD16SC is set and continue until the SD16SC
bit is cleared by software.

Clearing SD16SC immediately stops conversion of the selected channel, the
channel is powered down and the corresponding digital filter is turned off. The
value inSD16MEM0canchangewhenSD16SC is cleared. It is recommended
that the conversion data in SD16MEM0 be read prior to clearing SD16SC to
avoid reading an invalid result.

Figure 24--7 shows conversion operation.

Figure 24--7. Single Channel Operation

SD16SNGL = 1

Time

Conversion

SD16SC

SD16SNGL = 0

Conversion

SD16SC

Conversion Conversion

Set by SW Auto--clear

Set by SW

Conv

Cleared by SW

= Result written to SD16MEM0

SD16_A Operation

24-14 SD16_A

24.2.10 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input pair
SD16INCHx = 110 and sets SD16REFON= 1. Any other configuration is done
as if an external analog input pair was selected, including SD16INTDLYx and
SD16GAINx settings. Because the internal reference must be on to use the
temperature sensor, it is not possible to use an external reference for the
conversion of the temperature sensor voltage. Also, the internal referencewill
be in contention with any used external reference. In this case, the
SD16VMIDON bit may be set to minimize the affects of the contention on the
conversion.

The typical temperature sensor transfer function is shown in Figure 24--8.
When switching inputs of an SD16_A channel to the temperature sensor,
adequate delaymust be provided usingSD16INTDLYx to allow the digital filter
to settle and assure that conversion results are valid. The temperature sensor
offset error can be large, andmay need to be calibrated for most applications.
See device-specific data sheet for temperature sensor parameters.

Figure 24--8. Typical Temperature Sensor Transfer Function

Celsius

Volts

0 50 100

0.350

0.250

0.300

0.400

0.450

0.500

--50

0.200

VSensor,typ = TCSensor(273 + T[oC]) + VOffset, sensor [mV]

SD16_A Operation

24-15SD16_A

24.2.11 Interrupt Handling

The SD16_A has 2 interrupt sources for its ADC channel:

- SD16IFG

- SD16OVIFG

The SD16IFG bit is set when the SD16MEM0 memory register is written with
a conversion result. An interrupt request is generated if the corresponding
SD16IE bit and the GIE bit are set. The SD16_A overflow condition occurs
whena conversion result iswritten toSD16MEM0 location before the previous
conversion result was read.

SD16IV, Interrupt Vector Generator

All SD16_A interrupt sources are prioritized and combined to source a single
interrupt vector. SD16IV is used to determinewhich enabledSD16_A interrupt
source requested an interrupt. The highest priority SD16_A interrupt request
that is enabled generates a number in the SD16IV register (see register
description). This number can be evaluated or added to the program counter
to automatically enter the appropriate software routine. Disabled SD16_A
interrupts do not affect the SD16IV value.

Any access, read or write, of the SD16IV register has no effect on the
SD16OVIFG or SD16IFG flags. The SD16IFG flags are reset by reading the
SD16MEM0 register or by clearing the flags in software. SD16OVIFG bits can
only be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt
is generated. For example, if the SD16OVIFG and one or more SD16IFG
interrupts arependingwhen the interrupt service routineaccesses theSD16IV
register, the SD16OVIFG interrupt condition is serviced first and the
corresponding flag(s) must be cleared in software. After the RETI instruction
of the interrupt service routine is executed, the highest priority SD16IFG
pending generates another interrupt request.

Interrupt Delay Operation

The SD16INTDLYx bits control the timing for the first interrupt service request
for the corresponding channel. This feature delays the interrupt request for a
completed conversion by up to four conversion cycles allowing the digital filter
to settle prior to generating an interrupt request. Thedelay is applied each time
the SD16SC bit is set or when the SD16GAINx or SD16INCHx bits for the
channel are modified. SD16INTDLYx disables overflow interrupt generation
for the channel for the selected number of delay cycles. Interrupt requests for
the delayed conversions are not generated during the delay.

SD16_A Registers

24-16 SD16_A

24.3 SD16_A Registers

The SD16_A registers are listed in Table 24--5:

Table 24--5.SD16_A Registers

Register Short Form Register Type Address Initial State

SD16_A control SD16CTL Read/write 0100h Reset with PUC

SD16_A interrupt vector SD16IV Read/write 0110h Reset with PUC

SD16_A channel 0 control SD16CCTL0 Read/write 0102h Reset with PUC

SD16_A conversion memory SD16MEM0 Read/write 0112h Reset with PUC

SD16_A input control SD16INCTL0 Read/write 0B0h Reset with PUC

SD16_A analog enable SD16AE Read/write 0B7h Reset with PUC

SD16_A Registers

24-17SD16_A

SD16CTL, SD16_A Control Register

15 14 13 12 11 10 9 8

Reserved SD16XDIVx SD16LP

r0 r0 r0 r0 rw--0 rw--0 rw--0 rw--0

7 6 5 4 3 2 1 0

SD16DIVx SD16SSELx SD16
VMIDON

SD16
REFON SD16OVIE Reserved

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 r0

Reserved Bits
15-12

Reserved

SD16XDIVx Bits
11-9

SD16_A clock divider
000 /1
001 /3
010 /16
011 /48
1xx Reserved

SD16LP Bit 8 Low power mode. This bit selects a reduced speed, reduced power mode
0 Low-power mode is disabled
1 Low-power mode is enabled. The maximum clock frequency for the

SD16_A is reduced.

SD16DIVx Bits
7-6

SD16_A clock divider
00 /1
01 /2
10 /4
11 /8

SD16SSELx Bits
5-4

SD16_A clock source select
00 MCLK
01 SMCLK
10 ACLK
11 External TACLK

SD16
VMIDON

Bit 3 VMID buffer on
0 Off
1 On

SD16
REFON

Bit 2 Reference generator on
0 Reference off
1 Reference on

SD16OVIE Bit 1 SD16_A overflow interrupt enable. The GIE bit must also be set to enable the
interrupt.
0 Overflow interrupt disabled
1 Overflow interrupt enabled

Reserved Bit 0 Reserved

SD16_A Registers

24-18 SD16_A

SD16CCTL0, SD16_A Control Register 0

15 14 13 12 11 10 9 8

Reserved SD16BUFx† SD16UNI SD16XOSR SD16SNGL SD16OSRx

r0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

7 6 5 4 3 2 1 0

SD16
LSBTOG

SD16
LSBACC

SD16
OVIFG SD16DF SD16IE SD16IFG SD16SC Reserved

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 r--0
† Reserved in MSP430x20x3 devices

Reserved Bit 15 Reserved

SD16BUFx Bits
14--13

High-impedance input buffer mode
00 Buffer disabled
01 Slow speed/current
10 Medium speed/current
11 High speed/current

SD16UNI Bit 12 Unipolar mode select
0 Bipolar mode
1 Unipolar mode

SD16XOSR Bit 11 Extended oversampling ratio. This bit, along with the SD16OSRx bits,
select the oversampling ratio. See SD16OSRx bit description for settings.

SD16SNGL Bit 10 Single conversion mode select
0 Continuous conversion mode
1 Single conversion mode

SD16OSRx Bits
9-8

Oversampling ratio
When SD16XOSR = 0
00 256
01 128
10 64
11 32
When SD16XOSR = 1
00 512
01 1024
10 Reserved
11 Reserved

SD16
LSBTOG

Bit 7 LSB toggle. This bit, when set, causes SD16LSBACC to toggle each time
the SD16MEM0 register is read.
0 SD16LSBACC does not toggle with each SD16MEM0 read
1 SD16LSBACC toggles with each SD16MEM0 read

SD16_A Registers

24-19SD16_A

SD16
LSBACC

Bit 6 LSB access. This bit allows access to the upper or lower 16-bits of the
SD16_A conversion result.
0 SD16MEMx contains the most significant 16-bits of the conversion.
1 SD16MEMx contains the least significant 16-bits of the conversion.

SD16OVIFG Bit 5 SD16_A overflow interrupt flag
0 No overflow interrupt pending
1 Overflow interrupt pending

SD16DF Bit 4 SD16_A data format
0 Offset binary
1 2’s complement

SD16IE Bit 3 SD16_A interrupt enable
0 Disabled
1 Enabled

SD16IFG Bit 2 SD16_A interrupt flag. SD16IFG is set when new conversion results are
available. SD16IFG is automatically reset when the corresponding
SD16MEMx register is read, or may be cleared with software.
0 No interrupt pending
1 Interrupt pending

SD16SC Bit 1 SD16_A start conversion
0 No conversion start
1 Start conversion

Reserved Bit 0 Reserved

SD16_A Registers

24-20 SD16_A

SD16INCTL0, SD16_A Input Control Register

7 6 5 4 3 2 1 0

SD16INTDLYx SD16GAINx SD16INCHx

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

SD16
INTDLYx

Bits
7-6

Interrupt delay generation after conversion start. These bits select the
delay for the first interrupt after conversion start.
00 Fourth sample causes interrupt
01 Third sample causes interrupt
10 Second sample causes interrupt
11 First sample causes interrupt

SD16GAINx Bits
5-3

SD16_A preamplifier gain
000 x1
001 x2
010 x4
011 x8
100 x16
101 x32
110 Reserved
111 Reserved

SD16INCHx Bits
2-0

SD16_A channel differential pair input
000 A0
001 A1
010 A2
011 A3
100 A4
101 A5-- (AVCC -- AVSS) / 11
110 A6 -- Temperature Sensor
111 A7 -- Short for PGA offset measurement

SD16_A Registers

24-21SD16_A

SD16MEM0, SD16_A Conversion Memory Register

15 14 13 12 11 10 9 8

Conversion Results

r r r r r r r r

7 6 5 4 3 2 1 0

Conversion Results

r r r r r r r r

Conversion
Result

Bits
15-0

Conversion Results. The SD16MEMx register holds the upper or lower
16-bits of the digital filter output, depending on the SD16LSBACC bit.

SD16AE, SD16_A Analog Input Enable Register

7 6 5 4 3 2 1 0

SD16AE7 SD16AE6 SD16AE5 SD16AE4 SD16AE3 SD16AE2 SD16AE1 SD16AE0

rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0 rw--0

SD16AEx Bits
7-0

SD16_A analog enable
0 External input disabled. Negative inputs are internally connected to

VSS.
1 External input enabled.

SD16_A Registers

24-22 SD16_A

SD16IV, SD16_A Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 SD16IVx 0

r0 r0 r0 r--0 r--0 r--0 r--0 r0

SD16IVx Bits
15-0

SD16_A interrupt vector value

SD16IV
Contents Interrupt Source Interrupt Flag

Interrupt
Priority

000h No interrupt pending --

002h SD16MEMx overflow SD16CCTLx
SD16OVIFG

Highest

004h SD16_A Interrupt SD16CCTL0
SD16IFG

006h Reserved --

008h Reserved --

00Ah Reserved --

00Ch Reserved --

00Eh Reserved --

010h Reserved -- Lowest

25-1Embedded Emulation Module (EEM)

Embedded Emulation Module (EEM)

This chapter describes the Embedded Emulation Module (EEM) that is
implemented in all MSP430 flash devices.

Topic Page

25.1 EEM Introduction 25-2. .

25.2 EEM Building Blocks 25-4. .

25.3 EEM Configurations 25-6. .

Chapter 25

EEM Introduction

25-2 Embedded Emulation Module (EEM)

25.1 EEM Introduction

Every MSP430 flash-based microcontroller implements an embedded
emulation module (EEM). It is accessed and controlled through JTAG. Each
implementation is device dependent and is described in section 25.3 EEM
Configurations and the device-specific data sheet.

In general, the following features are available:

- Non--intrusive code execution with real--time breakpoint control

- Single step, step into and step over functionality

- Full support of all low-power modes

- Support for all system frequencies, for all clock sources

- Up to eight (device dependent) hardware triggers/breakpoints onmemory
address bus (MAB) or memory data bus (MDB)

- Up to two (device dependent) hardware triggers/breakpoints on CPU
register write accesses

- MAB, MDB ,and CPU register access triggers can be combined to form
up to eight (device dependent) complex triggers/breakpoints

- Trigger sequencing (device dependent)

- Storage of internal bus and control signals using an integrated trace buffer
(device dependent)

- Clock control for timers, communication peripherals, and other modules
on a global device level or on a per-module basis during an emulation stop

Figure 25--1 showsasimplifiedblock diagramof the largest currently available
2xx EEM implementation.

For more details on how the features of the EEM can be used together with
the IAR Embedded Workbencht debugger see the application report
Advanced Debugging Using the Enhanced Emulation Module (SLAA263) at
www.msp430.com. Code Composer Essentials (CCE) and most other
debuggers supporting MSP430 have the same or a similar feature set. For
details see the user’s guide of the applicable debugger.

EEM Introduction

25-3Embedded Emulation Module (EEM)

Figure 25--1. Large Implementation of the Embedded Emulation Module (EEM)

CPU Stop

Trigger
Blocks

MB0

MB1

MB2

MB3

MB4

MB5

MB6

MB7

CPU0

CPU1

&

0

Trigger Sequencer

”AND” Matrix -- Combination Triggers

&

1

&

2

&

3

&

4

&

5

&

6

&

7

Start/Stop State Storage

OR

OR

EEM Introduction

25-4 Embedded Emulation Module (EEM)

25.2 EEM Building Blocks

25.2.1 Triggers

Theevent control in theEEMof theMSP430systemconsists of triggers,which
are internal signals indicating that a certain event has happened. These
triggers may be used as simple breakpoints, but it is also possible to combine
two or more triggers to allow detection of complex events and trigger various
reactions besides stopping the CPU.

In general, the triggers can be used to control the following functional blocks
of the EEM:

- Breakpoints (CPU stop)

- State storage

- Sequencer

There are two different types of triggers, the memory trigger and the CPU
register write trigger.

Each memory trigger block can be independently selected to compare either
the MAB or the MDBwith a given value. Depending on the implemented EEM
the comparison can be =, ≠, ≥, or ≤. The comparison can also be limited to
certain bits with the use of a mask. The mask is either bit-wise or byte-wise,
depending upon the device. In addition to selecting the bus and the
comparison, the condition under which the trigger is active can be selected.
The conditions include read access, write access, DMA access, and
instruction fetch.

Each CPU register write trigger block can be independently selected to
compare what is written into a selected register with a given value. The
observed register can be selected for each trigger independently. The
comparison can be =, ≠, ≥, or ≤. The comparison can also be limited to certain
bits with the use of a bit mask.

Both types of triggers can be combined to form more complex triggers. For
example, a complex trigger can signal when a particular value is written into
a user-specified address.

EEM Introduction

25-5Embedded Emulation Module (EEM)

25.2.2 Trigger Sequencer

The trigger sequencer allows the definition of a certain sequence of trigger
signals before an event is accepted for a break or state storage event. Within
the trigger sequencer, it is possible to use the following features:

- Four states (State 0 to State 3)

- Two transitions per state to any other state

- Reset trigger that resets the sequencer to State 0.

The Trigger sequencer always starts at State 0 and must execute to State 3
to generate an action. If State 1 or State 2 are not required, they can be
bypassed.

25.2.3 State Storage (Internal Trace Buffer)

The state storage function uses a built-in buffer to store MAB, MDB, and CPU
control signal information (ie. read,write, or instruction fetch) in anon-intrusive
manner. The built-in buffer can hold up to eight entries. The flexible
configuration allows the user to record the information of interest very
efficiently.

25.2.4 Clock Control

The EEM provides device dependent flexible clock control. This is useful in
applications where a running clock is needed for peripherals after the CPU is
stopped (e.g. to allow a UART module to complete its transfer of a character
or to allow a timer to continue generating a PWM signal).

The clock control is flexible and supports both modules that need a running
clock and modules that must be stopped when the CPU is stopped due to a
breakpoint.

EEM Configurations

25-6 Embedded Emulation Module (EEM)

25.3 EEM Configurations

Table 25--1 gives an overview of the EEM configurations in the MSP430 2xx
family. The implemented configuration is device dependent -- please refer to
the device data sheet.

Table 25--1.2xx EEM Configurations

Feature XS S M L

Memory Bus Triggers 2
(=, ≠ only)

3 5 8

Memory Bus Trigger Mask for 1) Low byte
2) High byte

1) Low byte
2) High byte

1) Low byte
2) High byte

All 16 or 20 bits

CPU Register-Write Triggers 0 1 1 2

Combination Triggers 2 4 6 8

Sequencer No No Yes Yes

State Storage No No No Yes

In general the following features can be found on any 2xx device:

- At least two MAB/MDB triggers supporting:

J Distinction between CPU, DMA, read, and write accesses

J =, ≠, ≥, or ≤ comparison (in XS only =, ≠)

- At least two trigger Combination registers

- Hardware breakpoints using the CPU Stop reaction

- Clock control with individual control of module clocks
(in some XS configurations the control of module clocks is hardwired)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	Read This First
	About This Manual
	Related Documentation From Texas Instruments
	FCC Warning
	Notational Conventions
	Glossary
	Register Bit Conventions

	Contents
	1 Introduction
	1.1 Architecture
	1.2 Flexible Clock System
	1.3 Embedded Emulation
	1.4 Address Space
	1.4.1 Flash ROM
	1.4.2 RAM
	1.4.3 Peripheral Modules
	1.4.4 Special Function Registers SFRs
	1.4.5 Memory Organization

	1.5 MSP430x2xx Family Enhancements

	2 System Resets Interrupts and Operating Modes
	2.1 System Reset and Initialization
	2.1.1 Brownout Reset BOR
	2.1.2 Device Initial Conditions After System Reset
	Software Initialization

	2.2 Interrupts
	2.2.1 (Non)-Maskable Interrupts (NMI)
	Reset NMI Pin
	Flash Access Violation
	Oscillator Fault
	Example of an NMI Interrupt Handler

	2.2.2 Maskable Interrupts
	2.2.3 Interrupt Processing
	Interrupt Acceptance
	Return From Interrupt
	Interrupt Nesting

	2.2.4 Interrupt Vectors

	2.3 Operating Modes
	2.3.1 Entering and Exiting Low Power Modes

	2.4 Principles for Low Power Applications
	2.5 Connection of Unused Pins

	3 RISC 16-Bit CPU
	3.1 CPU Introduction
	3.2 CPU Registers
	3.2.1 Program Counter PC
	3.2.2 Stack Pointer SP
	3.2.3 Status Register SR
	3.2.4 Constant Generator Registers CG1 and CG2
	Constant Generator Expanded Instruction Set

	3.2.5 General Purpose Registers R4 R15

	3.3 Addressing Modes
	3.3.1 Register Mode
	3.3.2 Indexed Mode
	3.3.3 Symbolic Mode
	3.3.4 Absolute Mode
	3.3.5 Indirect Register Mode
	3.3.6 Indirect Autoincrement Mode
	3.3.7 Immediate Mode

	3.4 Instruction Set
	3.4.1 Double Operand Format I Instructions
	3.4.2 Single Operand Format II Instructions
	3.4.3 Jumps
	3.4.4 Instruction Cycles and Lengths
	Interrupt and Reset Cycles
	Format II Single Operand Instruction Cycles and Lengths
	Format III Jump Instruction Cycles and Lengths
	Format I Double Operand Instruction Cycles and Lengths

	3.4.5 Instruction Set Description

	4 16-Bit MSP430X CPU
	4.1 CPU Introduction
	4.2 Interrupts
	4.3 CPU Registers
	4.3.1 The Program Counter PC
	4.3.2 Stack Pointer SP
	4.3.3 Status Register SR
	4.3.4 The Constant Generator Registers CG1 and CG2
	Constant Generator Expanded Instruction Set

	4.3.5 The General Purpose Registers R4 to R15

	4.4 Addressing Modes
	4.4.1 Register Mode
	4.4.2 Indexed Mode
	Indexed Mode in Lower 64 KB Memory
	MSP430 Instruction with Indexed Mode in Upper Memory
	MSP430X Instruction with Indexed Mode

	4.4.3 Symbolic Mode
	Symbolic Mode in Lower 64 KB
	MSP430 Instruction with Symbolic Mode in Upper Memory
	MSP430X Instruction with Symbolic Mode

	4.4.4 Absolute Mode
	Absolute Mode in Lower 64 KB
	MSP430X Instruction with Absolute Mode

	4.4.5 Indirect Register Mode
	4.4.6 Indirect Autoincrement Mode
	4.4.7 Immediate Mode
	MSP430 Instructions with Immediate Mode
	MSP430X Instructions with Immediate Mode

	4.5 MSP430 and MSP430X Instructions
	4.5.1 MSP430 Instructions
	MSP430 Double Operand Format I Instructions
	Single Operand Format II Instructions
	Jumps
	Emulated Instructions
	MSP430 Instruction Execution

	4.5.2 MSP430X Extended Instructions
	Register Mode Extension Word
	Non Register Mode Extension Word
	Extended Double Operand Format I Instructions
	Extended Single Operand Format II Instructions
	Extended Emulated Instructions
	MSP430X Address Instructions
	MSP430X Instruction Execution

	4.6 Instruction Set Description
	4.6.1 Extended Instruction Binary Descriptions
	4.6.2 MSP430 Instructions
	4.6.3 Extended Instructions
	4.6.4 Address Instructions

	5 Basic Clock Module
	5.1 Basic Clock Module Introduction
	5.2 Basic Clock Module Operation
	5.2.1 Basic Clock Module Features for Low Power Applications
	5.2.2 Internal Very Low Power Low Frequency Oscillator
	5.2.3 LFXT1 Oscillator
	5.2.4 XT2 Oscillator
	5.2.5 Digitally Controlled Oscillator DCO
	Disabling the DCO
	Adjusting the DCO frequency
	Using an External Resistor ROSC for the DCO

	5.2.6 DCO Modulator
	5.2.7 Basic Clock Module Fail Safe Operation
	Sourcing MCLK from a Crystal

	5.2.8 Synchronization of Clock Signals

	5.3 Basic Clock Module Registers
	DCOCTL DCO Control Register
	BCSCTL1 Basic Clock System Control Register 1
	BCSCTL2 Basic Clock System Control Register 2
	BCSCTL3 Basic Clock System Control Register 3
	IE1 Interrupt Enable Register 1
	IFG1 Interrupt Flag Register 1

	6 DMA Controller
	6.1 DMA Introduction
	6.2 DMA Operation
	6.2.1 DMA Addressing Modes
	6.2.2 DMA Transfer Modes
	Single Transfer
	Block Transfers
	Burst Block Transfers

	6.2.3 Initiating DMA Transfers
	Edge Sensitive Triggers
	Level Sensitive Triggers
	Halting Executing Instructions for DMA Transfers

	6.2.4 Stopping DMA Transfers
	6.2.5 DMA Channel Priorities
	6.2.6 DMA Transfer Cycle Time
	6.2.7 Using DMA with System Interrupts
	6.2.8 DMA Controller Interrupts
	6.2.9 Using the USCI B I2C Module with the DMA Controller
	6.2.10 Using ADC12 with the DMA Controller
	6.2.11 Using DAC12 With the DMA Controller
	6.2.12 Writing to Flash With the DMA Controller

	6.3 DMA Registers
	DMACTL0 DMA Control Register 0
	DMACTL1 DMA Control Register 1
	DMAxCTL DMA Channel x Control Register
	DMAxSA DMA Source Address Register
	DMAxDA DMA Destination Address Register
	DMAxSA DMA Source Address Register
	DMAxSZ DMA Size Address Register
	DMAIV DMA Interrupt Vector Register

	7 Flash Memory Controller
	7.1 Flash Memory Introduction
	7.2 Flash Memory Segmentation
	7.2.1 SegmentA

	7.3 Flash Memory Operation
	7.3.1 Flash Memory Timing Generator
	Flash Timing Generator Clock Selection

	7.3.2 Erasing Flash Memory
	Initiating an Erase from Within Flash Memory
	Initiating an Erase from RAM

	7.3.3 Writing Flash Memory
	Byte Word Write
	Initiating a Byte Word Write from Within Flash Memory
	Initiating a Byte Word Write from RAM
	Block Write
	Block Write Flow and Example

	7.3.4 Flash Memory Access During Write or Erase
	7.3.5 Stopping a Write or Erase Cycle
	7.3.6 Marginal Read Mode
	7.3.7 Configuring and Accessing the Flash Memory Controller
	7.3.8 Flash Memory Controller Interrupts
	7.3.9 Programming Flash Memory Devices
	Programming Flash Memory via JTAG
	Programming Flash Memory via the Bootstrap loader BSL
	Programming Flash Memory via a Custom Solution

	7.4 Flash Memory Registers
	FCTL1 Flash Memory Control Register
	FCTL2 Flash Memory Control Register
	FCTL3 Flash Memory Control Register FCTL3
	FCTL4 Flash Memory Control Register FCTL4 optional refer to device specific data sheet
	IE1 Interrupt Enable Register 1

	8 Digital I/O
	8.1 Digital I/O Introduction
	8.2 Digital I/O Operation
	8.2.1 Input Register PxIN
	8.2.2 Output Registers PxOUT
	8.2.3 Direction Registers PxDIR
	8.2.4 Pullup Pulldown Resistor Enable Registers PxREN
	8.2.5 Function Select Registers PxSEL and PxSEL2
	8.2.6 P1 and P2 Interrupts
	Interrupt Flag Registers P1IFG P2IFG
	Interrupt Edge Select Registers P1IES P2IES
	Interrupt Enable P1IE P2IE

	8.2.7 Configuring Unused Port Pins

	8.3 Digital I/O Registers

	9 Supply Voltage Supervisor
	9.1 SVS Introduction
	9.2 SVS Operation
	9.2.1 Configuring the SVS
	9.2.2 SVS Comparator Operation
	9.2.3 Changing the VLDx Bits
	9.2.4 SVS Operating Range

	9.3 SVS Registers
	SVSCTL SVS Control Register

	10 Watchdog Timer
	10.1 Watchdog Timer Introduction
	10.2 Watchdog Timer Operation
	10.2.1 Watchdog timer Counter
	10.2.2 Watchdog Mode
	10.2.3 Interval Timer Mode
	10.2.4 Watchdog Timer Interrupts
	10.2.5 Watchdog Timer Clock Fail Safe Operation
	10.2.6 Operation in Low Power Modes
	10.2.7 Software Examples

	10.3 Watchdog Timer Registers
	WDTCTL Watchdog Timer Register
	IE1 Interrupt Enable Register 1
	IFG1 Interrupt Flag Register 1

	11 Hardware Multiplier
	11.1 Hardware Multiplier Introduction
	11.2 Hardware Multiplier Operation
	11.2.1 Operand Registers
	11.2.2 Result Registers
	MACS Underflow and Overflow

	11.2.3 Software Examples
	11.2.4 Indirect Addressing of RESLO
	11.2.5 Using Interrupts

	11.3 Hardware Multiplier Registers

	12 Timer A
	12.1 Timer A Introduction
	12.2 Timer A Operation
	12.2.1 16 Bit Timer Counter
	Clock Source Select and Divider

	12.2.2 Starting the Timer
	12.2.3 Timer Mode Control
	Up Mode
	Continuous Mode
	Use of the Continuous Mode
	Up Down Mode
	Use of the Up Down Mode

	12.2.4 Capture Compare Blocks
	Capture Mode
	Compare Mode

	12.2.5 Output Unit
	Output Modes

	12.2.6 Timer A Interrupts
	TACCR0 Interrupt
	TAIV Interrupt Vector Generator

	12.3 Timer A Registers
	TACTL Timer A Control Register
	TAR Timer A Register
	TACCRx Timer A Capture Compare Register x
	TACCTLx Capture Compare Control Register
	TAIV Timer A Interrupt Vector Register

	13 Timer B
	13.1 Timer B Introduction
	13.1.1 Similarities and Differences From Timer A

	13.2 Timer B Operation
	13.2.1 16 Bit Timer Counter
	TBR Length
	Clock Source Select and Divider

	13.2.2 Starting the Timer
	13.2.3 Timer Mode Control
	Up Mode
	Continuous Mode
	Use of the Continuous Mode
	Up Down Mode
	Use of the Up Down Mode

	13.2.4 Capture Compare Blocks
	Capture Mode
	Compare Mode

	13.2.5 Output Unit
	Output Modes

	13.2.6 Timer B Interrupts
	TBIV Interrupt Vector Generator
	TBIV Interrupt Handler Examples

	13.3 Timer B Registers
	Timer B Control Register TBCTL
	TBR Timer B Register
	TBCCRx Timer B Capture Compare Register x
	TBCCTLx Capture Compare Control Register
	TBIV Timer B Interrupt Vector Register

	14 Universal Serial Interface
	14.1 USI Introduction
	14.2 USI Operation
	14.2.1 USI Initialization
	14.2.2 USI Clock Generation
	14.2.3 SPI Mode
	14.2.4 I2C Mode
	I2C Master Mode
	I2C Slave Mode
	I2C Transmitter
	I2C Receiver
	I2C Interrupts

	14.3 USI Registers
	USICTL0 USI Control Register 0
	USICTL1 USI Control Register 1
	USICKCTL USI Clock Control Register
	USICNT USI Bit Counter Register
	USISRL USI Low Byte Shift Register
	USISRH USI High Byte Shift Register

	15 Universal Serial Communication Interface UART Mode
	15.1 USCI Overview
	15.2 USCI Introduction UART Mode
	15.3 USCI Operation UART Mode
	15.3.1 USCI Initialization and Reset
	15.3.2 Character Format
	15.3.3 Asynchronous Communication Formats
	Idle Line Multiprocessor Format
	Transmitting an Idle Frame
	Address Bit Multiprocessor Format
	Break Reception and Generation

	15.3.4 Automatic Baud Rate Detection
	Transmitting a Break Synch Field

	15.3.5 IrDA Encoding and Decoding
	IrDA Encoding
	IrDA Decoding

	15.3.6 Automatic Error Detection
	15.3.7 USCI Receive Enable
	Receive Data Glitch Suppression

	15.3.8 USCI Transmit Enable
	15.3.9 UART Baud Rate Generation
	Low Frequency Baud Rate Generation
	Oversampling Baud Rate Generation

	15.3.10 Setting a Baud Rate
	Low Frequency Baud Rate Mode Setting
	Oversampling Baud Rate Mode Setting

	15.3.11 Transmit Bit Timing
	Low Frequency Baud Rate Mode Bit Timing
	Oversampling Baud Rate Mode Bit Timing

	15.3.12 Receive Bit Timing
	15.3.13 Typical Baud Rates and Errors
	15.3.14 Using the USCI Module in UART Mode with Low Power Modes
	15.3.15 USCI Interrupts
	USCI Transmit Interrupt Operation
	USCI Receive Interrupt Operation
	USCI Interrupt Usage

	15.4 USCI Registers UART Mode
	UCAxCTL0 USCI Ax Control Register 0
	UCAxCTL1 USCI Ax Control Register 1
	UCAxBR0 USCI Ax Baud Rate Control Register 0
	UCAxBR1 USCI Ax Baud Rate Control Register 1
	UCAxMCTL USCI Ax Modulation Control Register
	UCAxSTAT USCI Ax Status Register
	UCAxRXBUF USCI Ax Receive Buffer Register
	UCAxTXBUF USCI Ax Transmit Buffer Register
	UCAxIRTCTL USCI Ax IrDA Transmit Control Register
	UCAxIRRCTL USCI Ax IrDA Receive Control Register
	UCAxABCTL USCI Ax Auto Baud Rate Control Register
	IE2 Interrupt Enable Register 2
	IFG2 Interrupt Flag Register 2
	UC1IE USCI A1 Interrupt Enable Register
	UC1IFG USCI A1 Interrupt Flag Register

	16 Universal Serial Communication Interface SPI Mode
	16.1 USCI Overview
	16.2 USCI Introduction SPI Mode
	16.3 USCI Operation SPI Mode
	16.3.1 USCI Initialization and Reset
	16.3.2 Character Format
	16.3.3 Master Mode
	Four Pin SPI Master Mode

	16.3.4 Slave Mode
	Four Pin SPI Slave Mode

	16.3.5 SPI Enable
	Transmit Enable
	Receive Enable

	16.3.6 Serial Clock Control
	Serial Clock Polarity and Phase

	16.3.7 Using the SPI Mode with Low Power Modes
	16.3.8 SPI Interrupts
	SPI Transmit Interrupt Operation
	SPI Receive Interrupt Operation
	USCI Interrupt Usage

	16.4 USCI Registers SPI Mode
	UCAxCTL0 USCI Ax Control Register 0UCBxCTL0 USCI Bx Control Register 0
	UCAxCTL1 USCI Ax Control Register 1UCBxCTL1 USCI Bx Control Register 1
	UCAxBR0 USCI Ax Bit Rate Control Register 0UCBxBR0 USCI Bx Bit Rate Control Register 0
	UCAxBR1 USCI Ax Bit Rate Control Register 1UCBxBR1 USCI Bx Bit Rate Control Register 1
	UCAxSTAT USCI Ax Status Register UCBxSTAT USCI Bx Status Register
	UCAxRXBUF USCI Ax Receive Buffer Register UCBxRXBUF USCI Bx Receive Buffer Register
	UCAxTXBUF USCI Ax Transmit Buffer Register UCBxTXBUF USCI Bx Transmit Buffer Register
	IE2 Interrupt Enable Register 2
	IFG2 Interrupt Flag Register 2
	UC1IE USCI A1 USCI B1 Interrupt Enable Register
	UC1IFG USCI A1 USCI B1 Interrupt Flag Register

	17 Universal Serial Communication Interface I2C Mode
	17.1 USCI Overview
	17.2 USCI Introduction I2C Mode
	17.3 USCI Operation I2C Mode
	17.3.1 USCI Initialization and Reset
	17.3.2 I2C Serial Data
	17.3.3 I2C Addressing Modes
	7-Bit Addressing
	10-Bit Addressing
	Repeated Start Conditions

	17.3.4 I2C Module Operating Modes
	Slave Mode
	Master Mode

	17.3.5 I2C Clock Generation and Synchronization
	Clock Stretching

	17.3.6 Using the USCI Module in I2C Mode with Low Power Modes
	17.3.7 USCI Interrupts in I2C Mode
	I2C Transmit Interrupt Operation
	I2C Receive Interrupt Operation
	I2C State Change Interrupt Operation
	Interrupt Vector Assignment

	17.4 USCI Registers I2C Mode
	UCBxCTL0 USCI Bx Control Register 0
	UCBxCTL1 USCI Bx Control Register 1
	UCBxBR0 USCI Bx Baud Rate Control Register 0
	UCBxBR1 USCI Bx Baud Rate Control Register 1
	UCBxSTAT USCI Bx Status Register
	UCBxRXBUF USCI Bx Receive Buffer Register
	UCBxTXBUF USCI Bx Transmit Buffer Register
	UCBxI2COA USCIBx I2C Own Address Register
	UCBxI2CSA USCI Bx I2C Slave Address Register
	UCBxI2CIE USCI Bx I2C Interrupt Enable Register
	IE2 Interrupt Enable Register 2
	IFG2 Interrupt Flag Register 2
	UC1IE USCI B1 Interrupt Enable Register
	UC1IFG USCI B1 Interrupt Flag Register

	18 OA
	18.1 OA Introduction
	18.2 OA Operation
	18.2.1 OA Amplifier
	18.2.2 OA Input
	18.2.3 OA Output and Feedback Routing
	18.2.4 OA Configurations
	General Purpose Opamp Mode
	Unity Gain Mode for Differential Amplifier
	Unity Gain Mode
	Comparator Mode
	Non Inverting PGA Mode
	Cascaded Non Inverting PGA Mode
	Inverting PGA Mode
	Differential Amplifier Mode

	18.3 OA Registers
	OAxCTL0 Opamp Control Register 0
	OAxCTL1 Opamp Control Register 1

	19 Comparator A
	19.1 Comparator A Introduction
	19.2 Comparator A Operation
	19.2.1 Comparator
	19.2.2 Input Analog Switches
	19.2.3 Input Short Switch
	19.2.4 Output Filter
	19.2.5 Voltage Reference Generator
	19.2.6 Comparator A Port Disable Register CAPD
	19.2.7 Comparator A Interrupts
	19.2.8 Comparator A Used to Measure Resistive Elements

	19.3 Comparator A Registers
	CACTL1 Comparator A Control Register 1
	CACTL2 Comparator A Control Register
	CAPD Comparator A Port Disable Register

	20 ADC10
	20.1 ADC10 Introduction
	20.2 ADC10 Operation
	20.2.1 10 Bit ADC Core
	Conversion Clock Selection

	20.2.2 ADC10 Inputs and Multiplexer
	20.2.3 Voltage Reference Generator
	Internal Reference Low Power Features

	20.2.4 Auto Power Down
	20.2.5 Sample and Conversion Timing
	Sample Timing Considerations

	20.2.6 Conversion Modes
	Single Channel Single Conversion Mode
	Sequence of Channels Mode
	Repeat Single Channel Mode
	Repeat Sequence of Channels Mode
	Using the MSC Bit
	Stopping Conversions

	20.2.7 ADC10 Data Transfer Controller
	One Block Transfer Mode
	Two Block Transfer Mode
	Continuous Transfer
	DTC Transfer Cycle Time

	20.2.8 Using the Integrated Temperature Sensor
	20.2.9 ADC10 Grounding and Noise Considerations
	20.2.10 ADC10 Interrupts

	20.3 ADC10 Registers
	ADC10CTL0 ADC10 Control Register 0
	ADC10CTL1 ADC10 Control Register 1
	ADC10AE0 Analog Input Enable Control Register 0
	ADC10AE1 Analog Input Enable Control Register 1 MSP430x22xx only
	ADC10MEM Conversion Memory Register Binary Format
	ADC10MEM Conversion Memory Register 2s Complement Format
	ADC10DTC0 Data Transfer Control Register 0
	ADC10DTC1 Data Transfer Control Register 1
	ADC10SA Start Address Register for Data Transfer

	21 ADC12
	21.1 ADC12 Introduction
	21.2 ADC12 Operation
	21.2.1 12 Bit ADC Core
	Conversion Clock Selection

	21.2.2 ADC12 Inputs and Multiplexer
	Analog Port Selection

	21.2.3 Voltage Reference Generator
	21.2.4 Sample and Conversion Timing
	Extended Sample Mode
	Pulse Sample Mode
	Sample Timing Considerations

	21.2.5 Conversion Memory
	21.2.6 ADC12 Conversion Modes
	Single Channel Single Conversion Mode
	Sequence of Channels Mode
	Repeat Single Channel Mode
	Repeat Sequence of Channels Mode
	Using the Multiple Sample and Convert MSC Bit
	Stopping Conversions

	21.2.7 Using the Integrated Temperature Sensor
	21.2.8 ADC12 Grounding and Noise Considerations
	21.2.9 ADC12 Interrupts
	ADC12IV Interrupt Vector Generator
	ADC12 Interrupt Handling Software Example

	21.3 ADC12 Registers
	ADC12CTL0 ADC12 Control Register 0
	ADC12CTL1 ADC12 Control Register 1
	ADC12MEMx ADC12 Conversion Memory Registers
	ADC12MCTLx ADC12 Conversion Memory Control Registers
	ADC12IE ADC12 Interrupt Enable Register
	ADC12IFG ADC12 Interrupt Flag Register
	ADC12IV ADC12 Interrupt Vector Register

	22 TLV Structure
	22.1 TLV Introduction
	22.2 Supported Tags
	22.2.1 DCO Calibration TLV Structure
	Code Example Using Absolute Addressing Mode
	Code Example Using the TLV Structure

	22.2.2 TAG ADC12 1 Calibration TLV structure
	Temperature Sensor Calibration Data
	Integrated Voltage Reference Calibration Data
	Example Using the Reference Calibration
	Offset and Gain Calibration Data
	Example Using Gain and Offset Calibration

	22.3 Checking Integrity of SegmentA
	22.4 Parsing TLV Structure of Segment A

	23 DAC12
	23.1 DAC12 Introduction
	23.2 DAC12 Operation
	23.2.1 DAC12 Core
	DAC12 Port Selection

	23.2.2 DAC12 Reference
	DAC12 Reference Input and Voltage Output Buffers

	23.2.3 Updating the DAC12 Voltage Output
	23.2.4 DAC12 xDAT Data Format
	23.2.5 DAC12 Output Amplifier Offset Calibration
	23.2.6 Grouping Multiple DAC12 Modules
	23.2.7 DAC12 Interrupts

	23.3 DAC12 Registers
	DAC12 xCTL DAC12 Control Register
	DAC12 xDAT DAC12 Data Register

	24 SD16 A
	24.1 SD16 A Introduction
	24.2 SD16 A Operation
	24.2.1 ADC Core
	24.2.2 Analog Input Range and PGA
	24.2.3 Voltage Reference Generator
	24.2.4 Auto Power Down
	24.2.5 Analog Input Pair Selection
	Analog Input Setup

	24.2.6 Analog Input Characteristics
	24.2.7 Digital Filter
	Digital Filter Output

	24.2.8 Conversion Memory Register SD16MEM0
	Output Data Format

	24.2.9 Conversion Modes
	Single Conversion
	Continuous Conversion

	24.2.10 Using the Integrated Temperature Sensor
	24.2.11 Interrupt Handling
	SD16IV Interrupt Vector Generator
	Interrupt Delay Operation

	24.3 SD16 A Registers
	SD16CTL SD16 A Control Register
	SD16CCTL0 SD16 A Control Register 0
	SD16INCTL0 SD16 A Input Control Register
	SD16MEM0 SD16 A Conversion Memory Register
	SD16AE SD16 A Analog Input Enable Register
	SD16IV SD16 A Interrupt Vector Register

	25 Embedded Emulation Module (EEM)
	25.1 EEM Introduction
	25.2 EEM Building Blocks
	25.2.1 Triggers
	25.2.2 Trigger Sequencer
	25.2.3 State Storage Internal Trace Buffer
	25.2.4 Clock Control

	25.3 EEM Configurations

