ARC: Computer Architecture

tanguy.risset@insa-lyon.fr Lab CITI, INSA de Lyon Version du April 29, 2024

Tanguy Risset

April 29, 2024

				패키 키 프 카 키 프 가 프 가	
	Tanguy Risset	ARC: Computer Are	chitecture		1
introduction ●000	Electrons and Logic			The Russian train example	Meal: 0000

Table of Contents

- 1 introduction
- 2 History
- 3 Electrons and Logic
- 4 Processor Architecture
- 5 Automate
- 6 The Russian train example
- Mealy and Moore Automata
- 8 MIPS ISA
- Function, procÃC dure et Pile d'execution
- 10 Coming back to MIPS
- Some additionnal useful information
 Example of MIPS code
- 12 Pipelining RISC instructions: the "Von Neumann" cycle

Mea

ARC course presentation

History Electrons and Logic

000000000000

• Schedule:

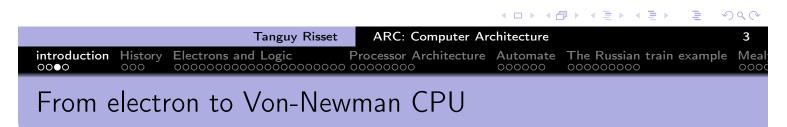
introduction

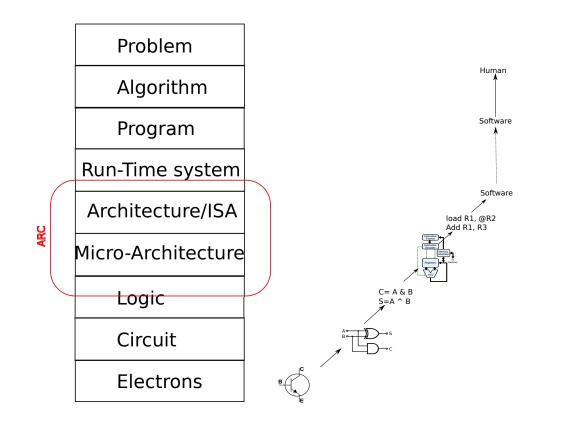
0000

- Course 6h
- labs (TP) 20h
- Evaluation (In french): un QCM et un devoir papier en fin de cours

Processor Architecture

Automate


The Russian train example

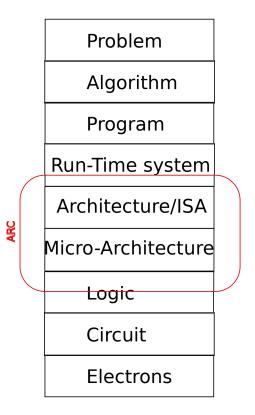

000000000

Mea

000

- skills and knowledge learned in ARC cours:
 - Bolean logic, arithmetics
 - combinatorial and sequential logic circuits, automata.
 - Processor architecture, datapath, compilation process, RISC architecture
 - Assembly code, link with high level programming languages
 - Simple processor design, simple assembly program analysis.
 - Link with compilation, operating systems and programming
- Moddle (open): frames, labs, various document
- Course based on the two IF architecture course: AC and AO (open courses on Moodle).

50


< 47 ►

< □ ▶

< ∃ >

- How to solve a problem with electrons:
- ARC is useful
 - For general knowledge of a computer scientist
 - To understand pro/cons of modern complex architectures
 - For embedded system programming

					= 0	
	Tanguy Risset	ARC: Computer Are	chitecture			5
	Electrons and Logic			The Russian train ex	xample	Meal: 0000

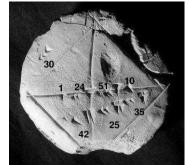
Table of Contents

1 introduction

2 History

- 3 Electrons and Logic
- 4 Processor Architecture
- 5 Automate
- 6 The Russian train example
- Mealy and Moore Automata
- 8 MIPS ISA
- Function, procÃCdure et Pile d'execution
- Coming back to MIPS
- Some additionnal useful information
 Example of MIPS code
- Dipelining RISC instructions: the "Von Neumann" cycle

Electrons and Logic


rocessor Architecture

History of computing

introduction

- Ancient time: various arithmetics systems
- 17th century (Pascal and Leibniz): notion of mechanical calculator
- 1822 Charles Babbage Difference engine (tabulate polynomial htt functions)
- 1854 Georges Boole proposes the so-called Boolean logic.
- (More details on the poly or on Internet)

from Yale Babylonian Collection, \simeq 1600 BC

http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html

Difference Ma	achine close-up
---------------	-----------------

ANGL 1				ALL INCOMENT
Constraint of	The second	and the second		and an entry of the
	ALL OF THE R. L. P. P.			
Contraction of the local division of the loc	I The same	1000	1000	1000
- Contraction of the local division of the l	Contraction of the local division of the loc	1.00		Constanting of the
INTERNAL CONTRACTOR	A DITRE TO BERRY	and the second		CIES CO.
CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNE OWNER OWNE OWNER OWNE OWNER OWNER OWNER OWNER OWNER OWNE OWNE OWNER OWNE OWNER OWNE OWNE OWNER OWNE OWNE OWNE OWNE OWNE OWNE OWNER OWNE OWNE	Contraction of the local division of the loc	and the second		COLUMN TO A
A DECK AND A				101100
and the second s	and the second second	COLUMN 1		ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE
A CONTRACTOR OF		The second		
111701	1100	(CEDA A		PRINT COMPANY
	and the second s			THE PERSON
A STATE FAIL STATE	1243	Contraction of the	and the second	OISSIE STREET
	And in case of the local division of the loc	No. of Lot of Lo		The second se
Statement of the local division of the			a market	a second second
A REAL AND A	THE OWNER	WILLIAM D		
Commercial I	a subscription of the			Ci la sección
	TITTE AND	STOCK OF THE OWNER		
BURE L COMPANY		-	-	ALC: NOTE OF THE OWNER.
Contraction of the	a la constitue	and a second	1	TO DO DO DO
01251	Taken I and I and I	THEFT	and a second	ALL DE LE CALLER OF CALLER
Trenden and a	L. Brocht			TURDOCCUT
State of the state	100000000000000000000000000000000000000	and a		

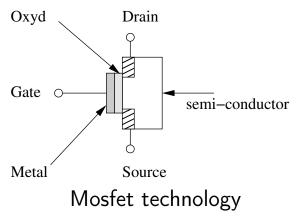
By By Carsten Ullrich - Own work, CC BY-SA 2.5

History of computers

- 1936: Alan Turing's PhD on a universal abstract machine
- 1941: Konrad Suze builds the Z3 first programmable computer (electro-mechanic)
- 1946: ENIAC is the first electronic calculator
- 1949: Turing and Von Neumann build the first universal electronic computer: the Manchester Mark 1
- (More details on the poly or on Internet)

Alan Turing

Z3 computer at Deutches Museum, Munich



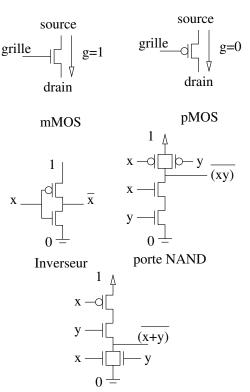
By Venusianer, CC BY-SA 3.0

- Discovered in 1947 at Bell Labs: (transfer resistor)
- Could replace the thermionic triode (vacuum tube) that allow radio and telephone technologies.
- Principle: flow or Interrupt current between Source and Drain, depending on Gate status
 - Can be seen as a switch
 - Wildly used after Integrated Circuit invention (1958)

< □ > < E > < E >

< □ ▶

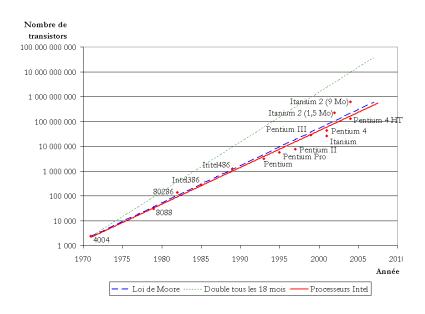
introduction History Electrons and Logic Architecture Automate rocessor 000


The Russian train example

Mea

000

Popular Transistor technology: CMOS


- CMOS: Complementary Metal Oxide Semiconductor
- Two logical levels : 0 = 0V and 1 = 3V
- Two types of transistors
 - nMOS : current flows if gate is 1
 - pMOS : current flows if gate is 0
- Mainly used to realize basic logical gates (NOT, NAND, NOR, etc.)

porte NOR

				< □ ▶ < ₫	₽ ► ▲ = ► ▲ =) Q (?
		Tanguy Risset	ARC: Computer Ar	chitecture			11
introduction	History 000	Electrons and Logic	Processor Architecture	Automate	The Russian tra	ain example	Meal: 0000
Moore	's lov	V					

- Gordon Moore, co-founder of Fairchild Semiconductor and Intel, predicted in "a doubling every two year in the number of components per integrated circuit"
- Contributed to world economic growth
- Slow down in 2015 and is ended now.

< 🗗 ▶

< ∃ >

Boolean functions

History

Electrons and

introduction

Boole Algebra is equipped with three operations

Logic

- a unary operation, negation, noted NOT;
- two binary commutative, associative operations:
 - **conjunction** AND, with 1 as neutral element;
 - **disjunction** OR, with 0 as neutral element;
- AND is distributive over OR

If a and b are 2 boolean variables, we write:

 $NOT(a) = \overline{a}$, AND(a, b) = ab = a.b, OR(a, b) = a + b

Processor Architecture

0000000

Automate

The

					₽ ► ▲ 돈 ► ▲ 돈 ►) Q (?
		Tanguy Risset	ARC: Computer Arc	chitecture		13
introduction		Electrons and Logic			The Russian train	Mea 0000
Rooloo	n Ch	hant Sheet				

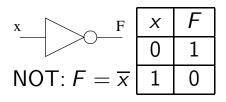
Boolean Cheat Sheet

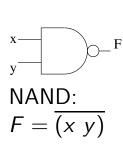
 neutral elements: 	$a+0=a, a\cdot 1=a$
 absorbing elements: 	$a+1=1, a\cdot 0=0$
 idempotence: 	$a + a = a$, $a \cdot a = a$
 tautology/antilogy: 	$a+\overline{a}=1, a\cdot\overline{a}=0$
 commutativity: 	a+b=b+a, $ab=ba$
 distributivity: 	a+(bc)=(a+b)(a+c), $a(b+c)=ab+ac$
 associativity: 	a+(b+c)=(a+b)+c=a+b+c,
	a(bc) = (ab)c = abc
 De Morgan's law: 	$\overline{ab} = \overline{a} + \overline{b}$,
	$\overline{a+b} = \overline{a} \cdot \overline{b}$
• others:	$a+(ab)=a, a+(\overline{a}b)=a+b,$
	$a(a+b)=a, (a+b)(a+\overline{b})=a$

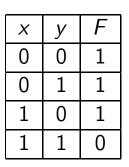
Russian train example

Mea

Electrons and Logic Processor Architecture Automate Elementary logical gates

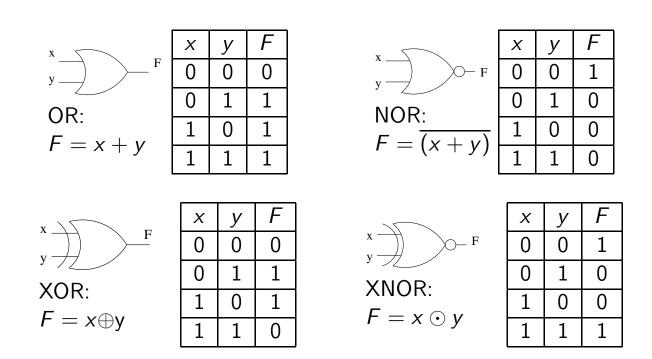

introduction History


Х


F F Х 0 0 Amplifier: 1 1 F = xХ F

$$\begin{array}{c} & & \\ y \\ \\ \text{AND:} & F \\ x \\ y \end{array}$$

X	y	F
0	0	0
0	1	0
1	0	0
1	1	1



. **H** ъ

500

The Russian train example Meal

		Tanguy Risset	ARC: Computer Ar	chitecture		15
introduction 0000	History 000				The Russian train example	Mea 000
Elemer	ntary	logical gates				

< 口 > < 四 > < 臣 > < 臣 > :

æ

Boolean description of the input output problem: b а с v z 0 0 0 0 0 • Compute y and z from a, b and c 0 0 1 0 1 • *y* is 1 if *a* is 1 or *b* and *c* are 1. 0 1 0 0 1 0 1 1 0 1 • z is 1 if b or c is 1 (but not both) 1 0 0 0 1 0 1 or if a, b et c are 1. 1 1 1 1 1 0 1 1 1 1 1 1 1 2 Truth table Output States Contraction Sta • $v = \overline{a}bc + a\overline{b}\overline{c} + a\overline{b}c + ab\overline{c} + abc$ • $z = \overline{a}\overline{b}c + \overline{a}b\overline{c} + \overline{a}\overline{b}c + \overline{a}\overline{b}c$ Optimized logic equations • y = a + bc• $z = ab + \overline{b}c + b\overline{c}$ 6 logic gates 一□→ < ∃→ 1 Saa

ocessor

The Russian train example

Mea

000

Automate

- In Boolean logic, a logical formula in Disjunctive Normal Form (*Forme normale disjonctive* in French) if:
 - It is a disjunction of one or more clauses
 - where the clauses are conjunction of literals
 - a literal is a variable, a constant or 'not' a variable
- Otherwise put, it is an OR of ANDs.
- Example of DNF:
 - $x.\overline{y}.\overline{z} + \overline{t}.u.v$
 - $(a \wedge b) \vee \neg c$
- Example not in DNF:
 - $\overline{(x+y)}$

introduction

History

Electrons and Logic

Combinatorical circuit Design

• $a \lor (b \land (c \lor d))$

<ロ > < 四 > < 回 > < 回 > <

- ₹ 3

Conjunctive Normal Form (CNF)

- In Boolean logic, a formula is in conjunctive normal form (*forme normale conjonctive* in French) if:
 - it is a conjunction of one or more clauses,
 - where a clause is a disjunction of literals;
 - a literal is a variable, a constant or 'not' a variable
- Otherwise put, it is an AND of ORs.
- Example of CNF:
 - $(x+\underline{y}+\overline{z})(\overline{x}+z)$
 - $(a+\bar{b}+\bar{c})(\bar{d}+\bar{a})$
 - x + y
- Example not in CNF
 - $\overline{(x+y)}$

•
$$x(y + (z.t))$$

	<□><□><□><□>) Q (?					
Tanguy Risset ARC: Computer Ar	rchitecture	19					
introduction History Electrons and Logic Processor Architecture	Automate The Russian train example	Meal 0000					
From Truth table to DNF							

- Back to previous example (z is 1 if b or c is 1 (but not both) or if a, b et c are 1.)
- Truth table on the right, z is 1 if and only if one of the five condition identified occurs.
- It is easy to find a conjunction that is valid in a unique case: example: *ā*.*b*.*c* is 1 if and only if: *a* = 0, *b* = 0 and *c* = 1 (double arrow on the right)
- by adding all the conjunction valid only on each of the five cases identified on the right, we get a DNF formulae that has exactly that truth table.

Hence the possible formulae for z: $z = \overline{a}\overline{b}c + \overline{a}b\overline{c} + \overline{a}\overline{b}c + ab\overline{c} + abc$ How can it be simplified?

input

b

0

0

1

1

0

0

1

1

С

0

1

0

1

0

1

0

1

Ζ

0

1

1

0

0

1

1

1

 \Leftarrow

 \leftarrow

 \leftarrow

 \leftarrow

 \leftarrow

а

0

0

0

0

1

1

1

1

Mea

Simple Boolean optimization: Karnaugh Table (1)

00000000

 Karnaugh map (tables de Karnaugh) use a "visual" reprentation of a simple property:

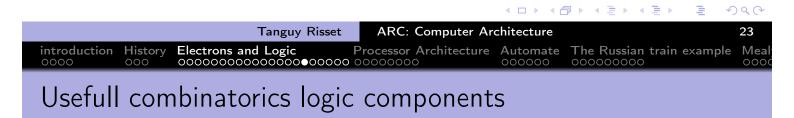
 $(a.\overline{b}) + (a.b) = a.(\overline{b} + b) = a$

introduction

- The first step in the method is to transform the truth table (3 or 4 input variables) of the function in a two-dimensional array (split into two parts of the set of variables)
- Rows and columns are indexed by the valuations of the corresponding variables in such a way that between two rows (or columns) only one boolean value changes.
- In our example (3 variables):

	-			
аb	00	01	$1 \ 1$	10
С				
0	0	1	1	0
1	1 1 0		1	1

- Simple Boolean optimization: Karnaugh Table (2)
 - Then, we try to cover all '1' of the table by forming groups.
 - each group contains only adjacent '1'
 - must form a rectangle
 - the number of elements of a group must be a power of two.
 - each group correspond to a possible optimization of the DNF


	ab c	00	01	11	10
• In our example:	0	0	1	1	0
	1	1	0	1	1

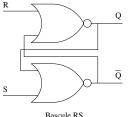
- example : Three groups:
 - $\bar{a}.b.\bar{c} + a.b.\bar{c}$ simplifies to $b.\bar{c}$
 - $a.b.\overline{c} + a.b.c$ simplifies to a.b
 - $a.\overline{b}.c + \overline{a}.\overline{b}.c$ simplifies to $\overline{b}.c$
- hence z = abc + abc + abc + abc + abc simplifies to
 z = a.b + b.c + b.c

Well formed cicruits

As far as combinatorial circuits are concerned, a "Well formed" circuit is:

- A logic gate
- A wire
- Two well formed circuits next to each other
- Two well formed circuits, the outputs of one being the inputs of the other
- Two well formed circuits sharing a common input
- It can be shown that it correspond to an acyclic graph of logic gates.
- No cycles, no ouptuts conected together

- *n* input multiplexer
- decoder $log(n) \rightarrow n$
- n bits adder
- *n* bits comparator
- *n* bits ALU
- etc.


< ⊡ >

-∢ ≣ ≯

Memorizing: latches and Flip-Flops

Electrons and Logic

Set-Reset Latch (SR latch, Bascule RS): When R and S are reset, Q and Q keep their previous value.

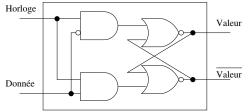
History

introduction

S	R	Q	\overline{Q}
0	1	0	1
1	1	forbidden	forbidden
1	0	1	0
0	0	Q_{n-1}	$\overline{Q_{n-1}}$

Architecture

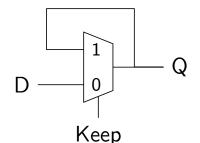
Automate

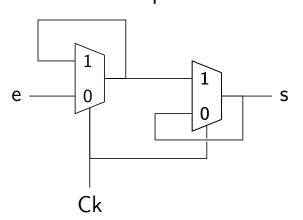

The Russian train example

00000

Mea

000


• Gated D latch (Flip-flop, register, *Bascule D*): sample input data on clock rising edge and keeps the value when clock is 0.



latches and Flip-Flops: other common representation

• Latch (verrou)

• Flip-Flop (register)

< □ →

< 🗗 ▶

< ∃ >

< ∃→

Sequential logic combines logic function and memorizing, it opens the way to synchronous circuits, automata, programs, algorithms....

- *n* bits register
- *n* bits counter
- state machine
- CPU
- Computer

			▶ ▲ 글 ▶ ▲ 글 ▶		Q
Tanguy Risset	ARC: Computer Arc	chitecture			27
introduction History Electrons and Logic Provide the second secon	rocessor Architecture		The Russian train	example	Meal: 0000
Sequential circuit design					

- Extremely complex in general.
- Many computation models:
 - Sequential
 - State machine
 - control + data-path
 - task parallelism (communicating tasks)
 - Data parallelism (data-flow)
 - Asynchronous circuits

• Important notion use every where: finite state machine (automate)

₫ ▶

Logic in ARC: Digital software

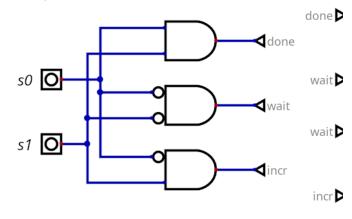
introduction

0000

History

000

In ARC: use of Digital software


(https://github.com/hneemann/Digital)

Electrons and Logic

rocessor

Architecture

- Design basic logic components (TD1)
- Design of a memory (sequential component, TD2)
- Design of dedicated circuit: integer division (TD3).

《曰》《卽》《言》《言》

The Russian train example

20000

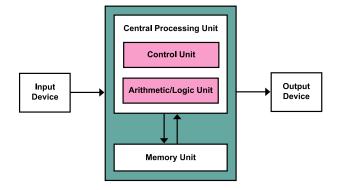
Automate

00000

incr D

 $\mathcal{O}\mathcal{Q}$

æ


Mea

Tanguy RissetARC: Computer Architecture29
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Meal
Table of Contents
1 introduction
2 History
3 Electrons and Logic
Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃCdure et Pile d'execution
10 Coming back to MIPS
 Some additionnal useful information Example of MIPS code
Pipelining RISC instructions: the "Von Neumann" cycle

What is a Von Neumann machine?

- Computer architecture Model (also called *Princeton* architecture) proposed after J. Von Neumann report: "First Draft of a Report on the EDVAC".
- Usually abstracted as a processor connected to a memory
- The memory is accessed (*randomly*) with an address (i.e. unlike a Turing machine)
- The memory contains both data and program (unlike a Harvard machine).

Compilation, Assembly code and binary code

High Level Language \Rightarrow	Assembly code \Rightarrow	$Binary \operatorname{code} \Rightarrow$
int a,b,c; a = b + c;	load RO, @b load R1, @c	0100101110101 0100101010001
	add R3,R0,R1 store R3, @a	 1001001100011

< 🗆 🕨

<⊡> <≣>

Fast compilation thanks to Donald Knuth (and others..)

rocessor Architecture

Automate

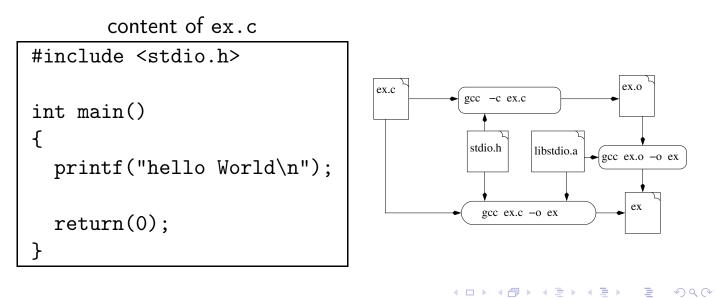
Russian train example

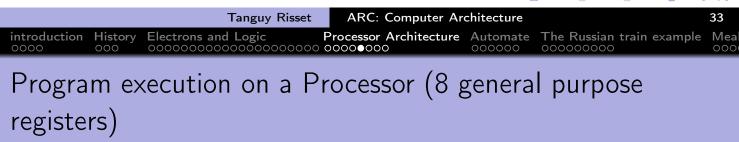
Mea

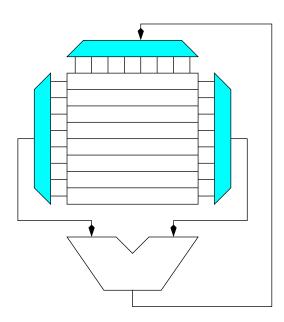
000

• The programmer:

History

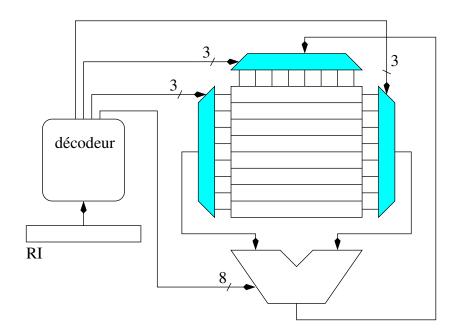

000

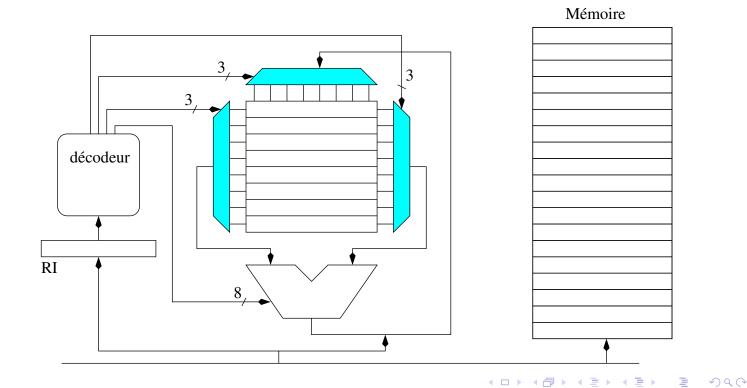

introduction


• Write a program (say a C program: ex.c)

- Compiles it to an object program ex.o
- links it to obtain an executable ex

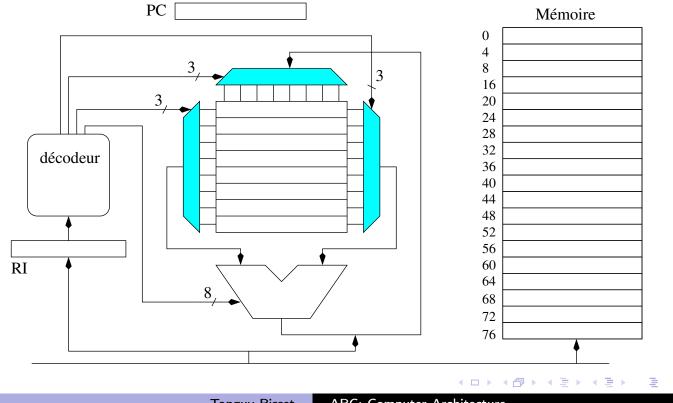
Electrons and Logic



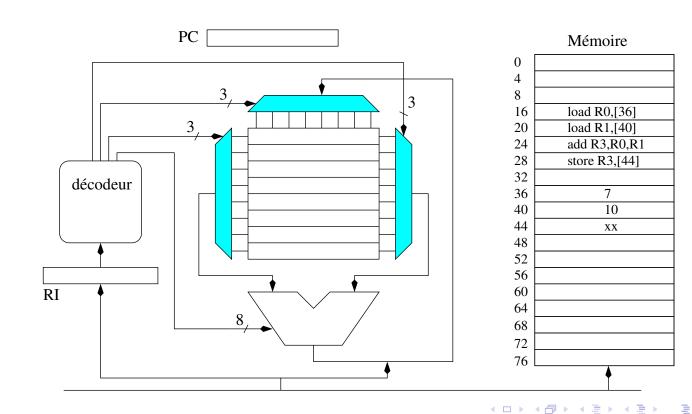


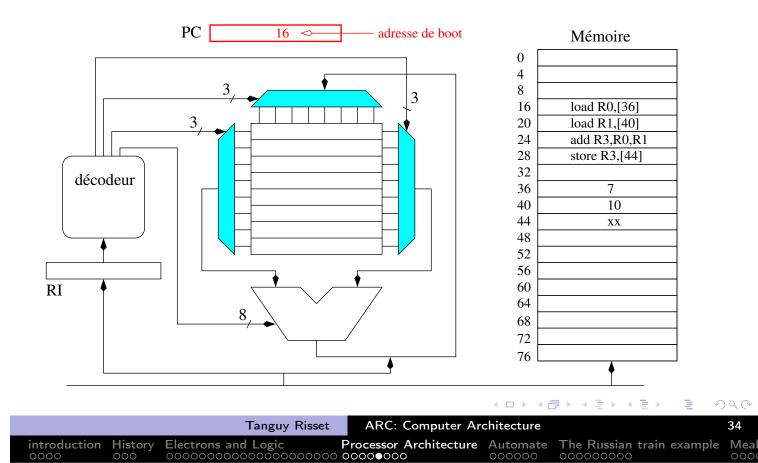
▲□ ▶ ▲ 目 ▶

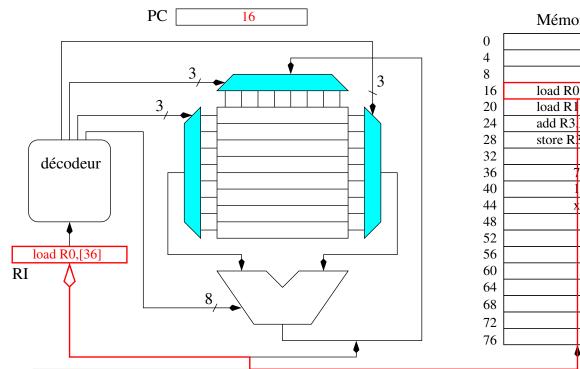
- ₹ 3


	▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽९९~
Tanguy Risset ARC: Computer A	rchitecture 34
introduction History Electrons and Logic Processor Architecture	AutomateThe Russian train exampleMeal00000000000000000000
Program execution on a Processor (8 g registers)	general purpose

The Russian train example


Meal

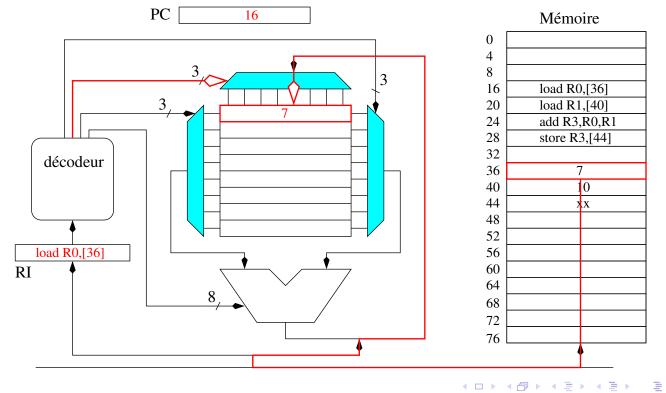

 $\mathcal{O} \mathcal{Q} \mathcal{O}$


	Tanguy Risset	ARC: Computer A	Architecture		34
	Electrons and Logic			The Russian train example	Meal 0000
D		(0		1	

Program execution on a Processor (8 general purpose registers)

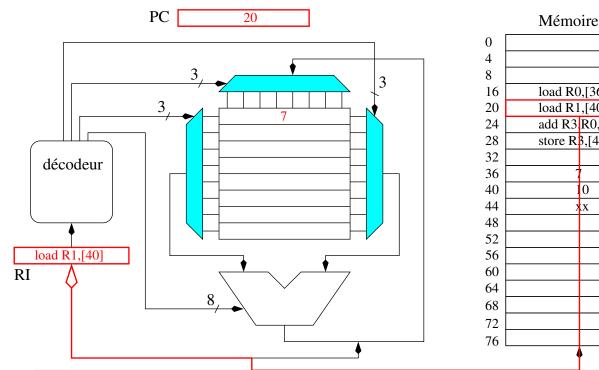
Program execution on a Processor (8 general purpose registers)

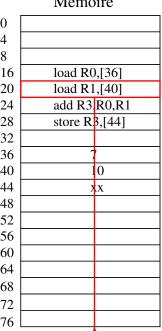
Mémoir	
	0
	4
	8
load R0,[16
load R1,[20
add R3 R	24
store R ³ ,	28
	32
1	36
10	40
XX	44
	48
	52
	56
	60
	64
	68
	72
	76
•	
	64 68 72


<ロト < 四ト < 回ト < 回ト

590

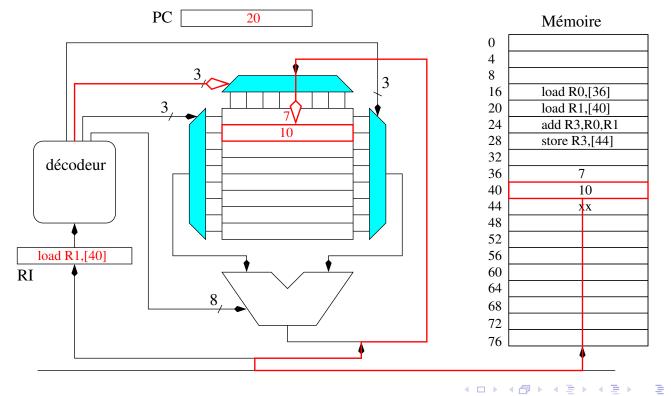
æ


Meal


The Russian train example

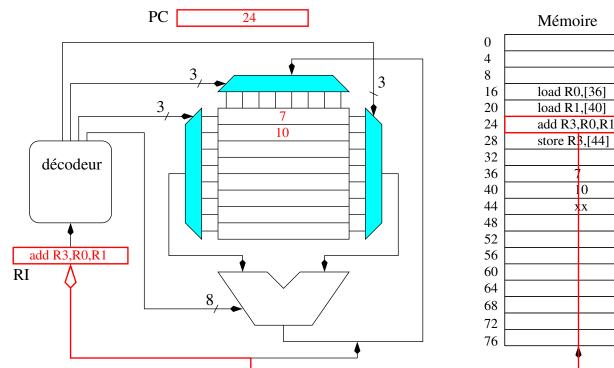
	Tanguy Risset	ARC: Computer Ar	chitecture	34
	Electrons and Logic			Mea
Duanua	 vacution on a D			

Program execution on a Processor (8 general purpose registers)


< 口 > < 团 > < 国 > < 国 >

The Russian train example

Meal


 $\mathcal{O} \mathcal{Q} \mathcal{O}$

æ

		Tanguy Risset	ARC: Computer Ar	chitecture		34
introduction 0000		Electrons and Logic				Mea 000
Dragram avagution on a Dragossor (Q ganaral nurnasa						

Program execution on a Processor (8 general purpose registers)

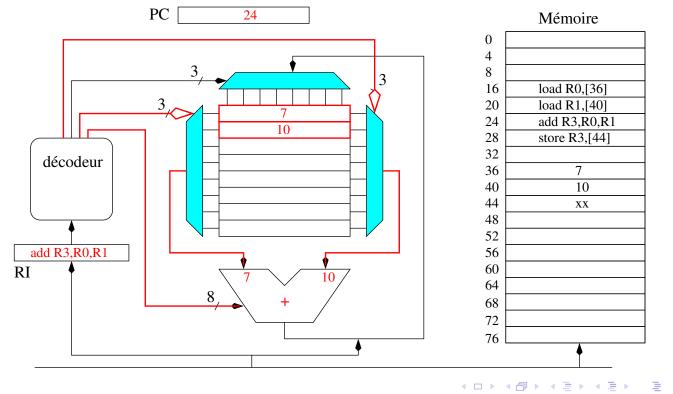
Mémoire

0

x

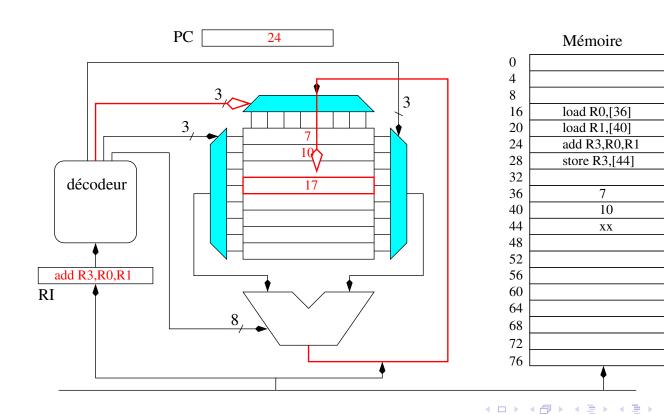
The Russian train example

Meal


590

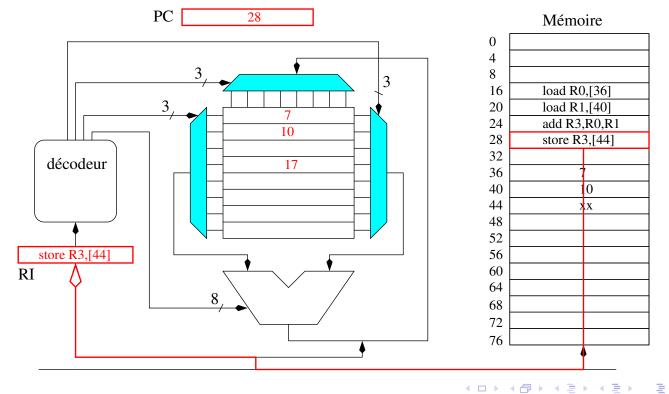
æ

The Russian train example

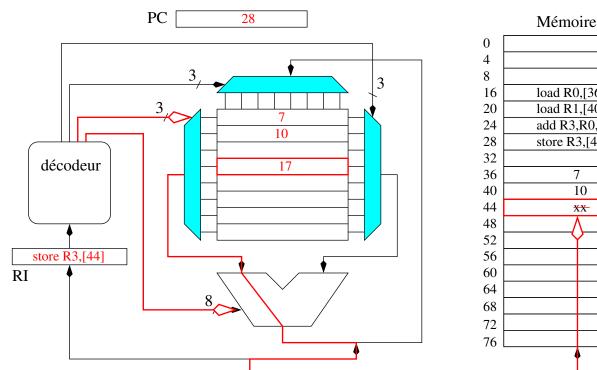

Meal

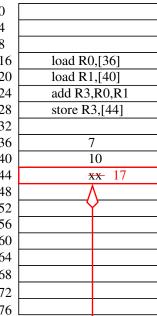
 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Tanguy Risset ARC: Computer Architecture				34	
		Electrons and Logic			Mea 000
Drogra		vacution on a D	KO COCCOK (O		


Program execution on a Processor (8 general purpose registers)

Tanguy Risset	ARC: Computer Architecture


E


introduction History Electrons and Logic Processor Architecture Automate The Russian train example Meal Program execution on a Processor (8 general purpose registers)

					∎ ► ◀ ≣ ► ◀ ≣ ►) Q (?
		Tanguy Risset	ARC: Computer Ar	chitecture			34
introduction 0000		Electrons and Logic	Processor Architecture			example	Meal 0000
Drogra	mo	vacution on a P	rocossor (8	ropora			

Program execution on a Processor (8 general purpose registers)


< □ > < □ > < □ > < □ > < □ > < □ >

æ

Computer Architecture in ARC

- Design of a simple dedicated circuit in logisim
- Study of a simple processor in logisim
- Overview of assembly code principles
- Compilation basics
- embedded system case study

- Two's complement (*complément à deux*) is the most common representation for negative integers
- For a number on N bits:
 - Positive integers from 0 to $2^{N-1} 1$ are represented with usual binary encoding
 - Negative integer x from -2^{N-1} to -1 are represented by coding in binary the positive number 2^N - |x|
 - Hence Negative integers always have the last (i.e. most significant) bit at 1, and positive always have the last bit at 0
- Example with N = 3
 - Integers between -4_{10} and 3_{10} can be represented
 - -1_{10} is represented as $111_2 (2^3 1 = 7)$
 - -2_{10} is represented as $110_2 (2^3 2 = 6)$
 - -4_{10} is represented as 100_2 $(2^3 4 = 4)$

Add on: two's complement representation (2)

• Two's complement have an important property: Addition "classical" algorithm works (except that the overflow should be ignored).

Architecture

Russian train example

• Example:

introduction

- $-1_{10} + (-2_{10}) = 111_2 + 110_2 = 1101_2 =$ (ignoring the carry/overflow) $101_2 = -3$
- $-1_{10} + 2_{10} = 111_2 + 010_2 = 1001_2 =$ (ignoring the carry/overflow) $001_2 = 1$
- For x > 0, $x \le 2^{N-1}$, The representation of -x on N bit two's complement can be obtained by:
 - Complementing each bits of x
 - adding 1 to the resulting integer
- Example:
 - with N = 3 and $x = 3_{10} = 011_2$, complement of x is 100_2 adding 1 gives $101_2 = -3_{10}$
 - With N=8 and x = 96₁₀ = 01100000₂ complement of x is 10011111, adding one is -96₁₀ = 10100000₂, indeed 256 96 = 160 = 10100000₂

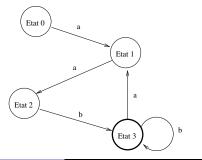
	Tanguy Risset	ARC: Computer Are	chitecture		37
	Electrons and Logic			The Russian train example	Meal 0000

Table of Contents

- introduction
- 2 History
- **3** Electrons and Logic
- Processor Architecture

5 Automate

- 6 The Russian train example
- 🕜 Mealy and Moore Automata
- 8 MIPS ISA
- 9 Function, procÃCdure et Pile d'execution
- 10 Coming back to MIPS
- Some additionnal useful information
 Example of MIPS code
- 12 Pipelining RISC instructions: the "Von Neumann" cycle


introduction 0000	History 000	Electrons and Logic		The Russian train example	Meal: 0000
Autom	ata				

- Definition (Wikipedia): An automaton is a self-operating machine, or a machine or control mechanism designed to automatically follow a predetermined sequence of operations, or respond to predetermined instructions.
- In computer science:
 - Used in language theory to build compilers
 - Used in any technical domain: to describe predetermined behaviour.
 - Used in computer architecture: to design dedicated circuit.
 - A computer is a specific automaton.

		Tanguy Risset	ARC: Computer Are	chitecture		39
introduction 0000		Electrons and Logic			example	Mea ೦೦೦
NL	17					

Notion d'automate

- Un automate est une collection de K états numérotés de 0 à K-1, ainsi qu'une collection de transitions
- Un état particulier est l'état initial.
- Tous les états sont soit des états d'acceptation et soit des états de refus
- Les transitions, sont étiquetées
 - soit par des actions (par exemple, je lis la lettre x)
 - 2 soit par des condition (par exemple, la lettre x est présente)
- le triplets (état 1, lettre x, état 2) signifie: si je suis dans l'état 1 et que je lis la lettre x, alors je vais dans l'état 2.

Notion d'automate

History

introduction

• Fonctionnement d'un automate

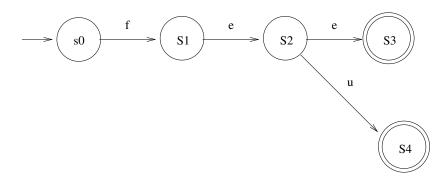
- Initialisation de l'automate dans l'état
- il lit les lettres du mot une par une
 - s'il trouve une transition possible, il l'exécute,
 - sinon il répond «le mot n'appartient pas au langage»;
- si l'automate arrive à effectuer des transitions jusqu'à la dernière lettre du mot, il regarde alors dans quel état il termine:

ocessor

Architecture

 si l'état appartient à la classe d'acceptation, l'automate répond «le mot appartient au » (on dit que le mot est reconnu),

utomate


000000

Russian train example

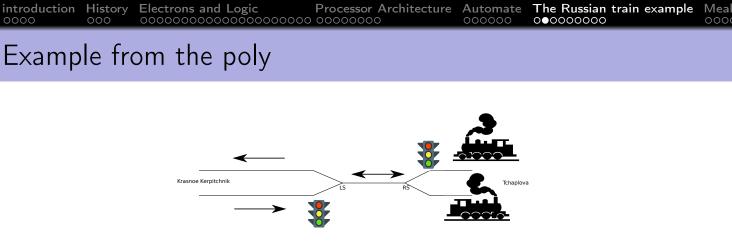
sinon, il répond «le mot n'appartiennent pas au langage».

	< □ ▶	 < □ > < □ > < □ > < □ >) Q (P)
Tanguy Risset	ARC: Computer Architectu	ire	41
introduction History Electrons and Logic			Mea 000

Notion de mot reconnu

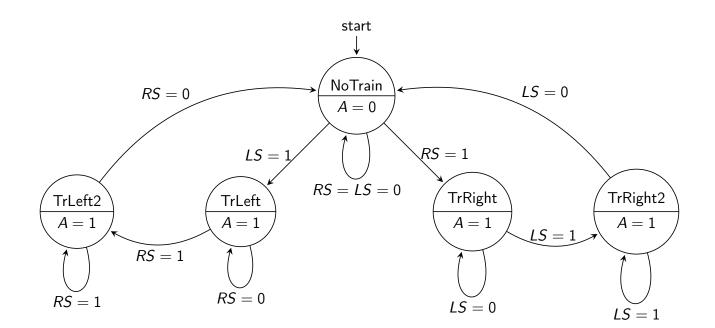
- fee ightarrow reconnu
- feu ightarrow reconnu
- fei ightarrow non reconnu (impossible de lire 'i')
- fe \rightarrow non reconnu (arrêt dans un état non final)

Link with architecture: Computers are automata


- Every computing machine is an automata
- Computer are *universal* in the sense that the program gives much flexibility in the action performed.
- In fact the basic action of a computer is very repetitive:
 - Read the instruction at \$PC in memory
 - decode the instruction
 - send the decoding to the ALU (or to memory if it is a load)
 - increment \$PC

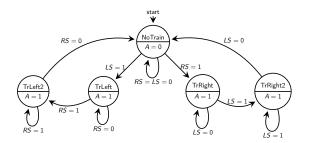
introduction

History


• Dedicated circuits (ASICs) are automata designed for specific tasks.

Tanguy RissetARC: Computer Architecture43introduction History Electrons and LogicProcessor Architecture Automate The Russian train exampleMeal
Table of Contents
1 introduction
2 History
3 Electrons and Logic
Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃC dure et Pile d'execution
10 Coming back to MIPS
 Some additionnal useful information Example of MIPS code
Pipelining RISC instructions: the "Von Neumann" cycle ・ロト・日本 マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マ

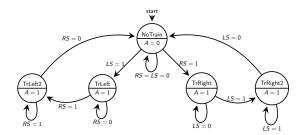
- A piece of unique train track for both train directions between the cities T. et K.
- Sensors triggered by train weight on rallways will command red lights when the track is used by a train.
- Modeling:
 - A booleen A (for 'Ampoule') indicating the state of the red light
 - Two booleans (LS for Left Sensor and RS for Rigth sensor) indicating the states of the sensors
 - An automaton to command the red lights



▲□▶ ▲□▶ ▲≧▶

< ∃ >

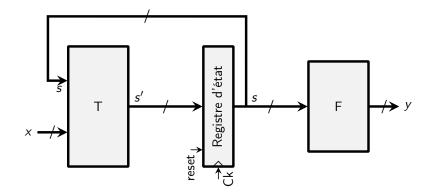
The Russian train automaton


introduction

- Circles are *states* of the automaton (e.g. NoTrain state models the cases where no train stand on the track).
- States specifies output Values (here only one: A)
- Arrows are *transitions*, labeled by event that triggered them.

		Tanguy F	Risset	ARC: Computer A	Architecture		47
introduction				Processor Architectur		The Russian train example	Meal
	 . .						

Back to the Russian train example



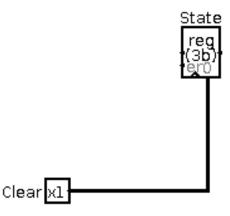
- The Inputs are RS and LS sensors Boolean values
- The Output is the value of Boolean
 A
- The functions (Transition and Output) can be defined by tables \Rightarrow
- X means 'don't care'

S	x=(LS, R	S) s'=	T(s,x)
NoTrain	ain 00		Train
NoTrain	01	TrF	Right
NoTrain	10	Tr	Left
NoTrain	11	X	XX
TrRight	0X	TrF	Right
TrRight	1X	TrR	light2
TrRight2	1X	TrR	light2
TrRight2	0X	No	Train
S	y=F(s)		
NoTrain	0		
TrRight	1		
TrRight2	1		

Russian train example

Implementation of a synchronous automaton as a circuit

introduction


History

- s is current state, s' is next state, x are input bits, y are output bits.
- Ck and reset are not considered as inputs
- State change will occur on each rising edge of the Clock.

				< □ ▶ < ₫	⊒ ► < Ξ ► < Ξ ►) Q (?
		Tanguy Risset	ARC: Computer Ar	chitecture			49
introduction 0000		Electrons and Logic			The Russian train 000000●00	example	Meal: 0000
Implementation in Logisim							

• We need to store 5 States, hence we need at least 3 bits:

value (binary)	state
100	NoTrain
000	TrRight1
001	TrRight2
010	TrLeft
011	TrLeft2

train example

Mea

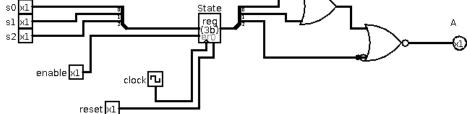
ıssian

0000

Russian train output function

Electrons

introduction


History

• The output function is easy: A is on iff state is ''NoTrain'

ssor

Architecture

	S	y=F(s)	
	NoTrain	0	
	TrRight	1	
	TrRight2	1	
- []			

	Tanguy Risset	ARC: Computer Are	chitecture	51
	Electrons and Logic			Meal 0000

Russian train Transition function: more complicater

S	x=(LS, RS)	s'=T(s,x)
100 (NoTrain)	00	NoTrain
100 (NoTrain)	01	TrRight
100 (NoTrain)	10	TrLeft
100 (NoTrain)	11	XXX
000 (TrRight)	0X	TrRight
000 (TrRight)	1X	TrRight2
001 (TrRight2)	1X	TrRight2
001 (TrRight2)	0X	NoTrain
010 (TrLeft)	X0	TrLeft
010 (TrLeft)	X1	TrLeft2
011 (TrLeft2)	X1	TrLeft2
011 (TrLeft2)	X0	NoTrain

50

Russian train example

Mea

000

Automate

The

< A >

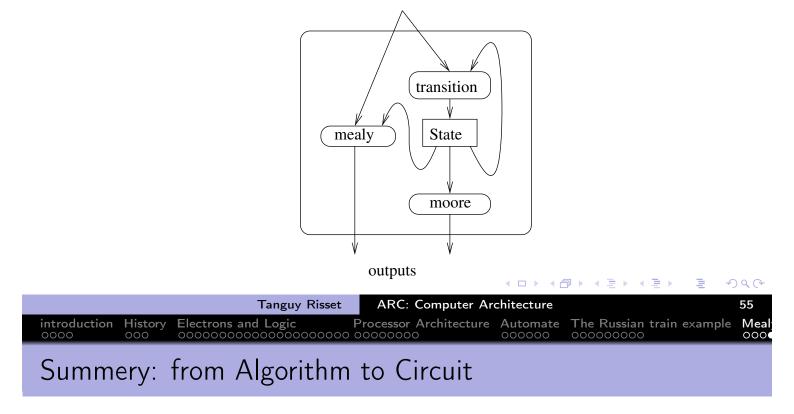
67 ▶

Image: Second second

-

500

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mea
Table of Contents
1 introduction
2 History
3 Electrons and Logic
Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃC dure et Pile d'execution
10 Coming back to MIPS
 Some additionnal useful information Example of MIPS code
12 Pipelining RISC instructions: the "Von Neumann" cycle
イロトイクトイミトイミト ミークへで Tanguy Risset ARC: Computer Architecture 53
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mea
Comming back to automata


- Automata are very widely used in computer science in different domains.
- In ARC we use them to *control the execution of dedicated synchronous circuits*
- As soon as a dedicated circuit is designed, there is an automaton designed.

⊸⊸

- We have seen a *Moore automaton*: output only depend on the state (not on the input), usually simpler to handle.
- The most

general form of an automaton has a moore output and a mealy output $_{\rm inputs}$

- From algorithm to automata (states and input/output)
- From automata to synchronous automata
- From synchronous automata to digital design

< 🗗 ▶

< ∃ >

1

Sac

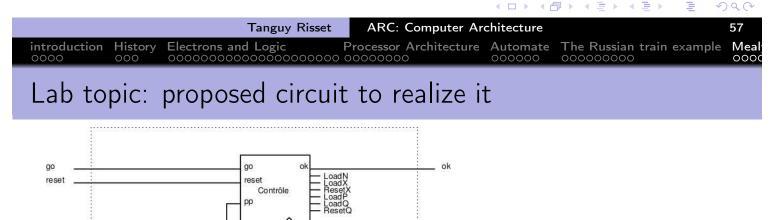
Lab topic: circuit for integer division

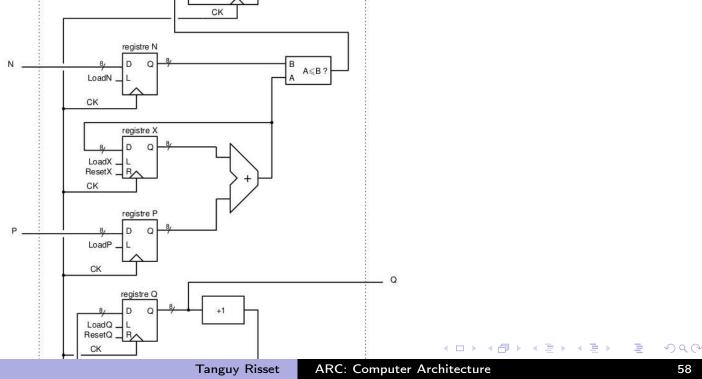
```
n := entrée N

p := entrée P

x := 0

q := 0


tant que x+p \leq n


x := x+p

q := q+1

fin tant que

sortie Q := q
```


- We study in more detail a particular assembly code
- Course inspired from
 - Architecture course of Peter Niebert and Séverine Fratani (U. Marseille) http://pageperso.lif.univ-mrs.fr/~peter.niebert/archi2014.php
 - MIPS web site https://www.mips.com/
 - And of Course F. de Dinechin IF Architecture course (with bits of Christian Wolf)

Sac

▲□▶ ▲目▶

< 🗆 🕨

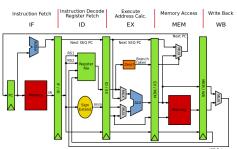
MIPS Processor

History

Electrons and Logic

introduction

• MIPS stands for *Microprocessor without Interlocked Pipeline Stages*


rocessor

Architecture

Automate

Russian train example

- MIPS designed by MIPS Computer Systems in 1985.
- Many version up to today (MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V and MIPS32, MIPS64 as well)
- Used in PC, and servers (DEC, NEC, Silicon Graphics) and for video games (Nintendo 64, Sony PlayStation, PlayStation 2)
- Gave birth to RISC-V, an open-source architecture.

		Tanguy Risset	ARC: Computer Ar	, , , , , , , , , , , , , , , , , , ,	≣ ♦) ⊄ (61
		Electrons and Logic		The Russian train	n example Mo
MIPS	Proc	essor organisati	ion		

- a register-to-register (or load/store) architecture
- MIPS use 3-adress instructions (destination is the first operand)
- 32 registers
- A program counter (\$PC) of 32 bits
- an Instruction register (\$IR) of 32 bits
- Addressable memory of 2³² bytes
 - $\Leftrightarrow 2^{30}$ words of 4 bytes

History Electrons and Logic Processor A

• From C to assembly:

introduction

mipsel-linux-gcc prog.c -S -o prog.s

Processor Architecture

Automate

prog.s

000000

The Russian train example

000000000

Mea

000

prog.c

P. 00.0		P 0	
	• • •		
	lw	\$t0, 4(\$gp)	# fetch N
	mult	\$t0, \$t0, \$t0	# N*N
•••	lw	\$t1, 4(\$gp)	# fetch N
i = N*N + 3*N;	ori	\$t2, \$zero, 3	# 3
•••	mult	\$t1, \$t1, \$t2	# 3*N
	add	\$t2, \$t0, \$t1	# N*N + 3*N
	sw	\$t2, 0(\$gp)	# i =

《曰》《卽》《臣》《臣》 Э SQ (A Tanguy Risset **ARC: Computer Architecture** 63 introduction Mea 000 MIPS assembly: compiler optimization (academic)

• From C to optimized assembly:

mipsel-linux-gcc prog.c -S -O3 -o prog.s

prog.c

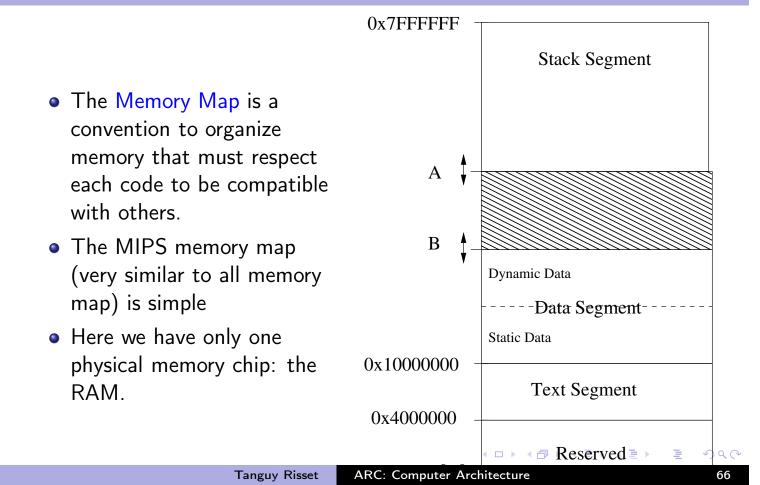
i = N*N + 3*N;

. . .

• • •			
lw	\$t0,	4(\$gp)	# fetch N
add	\$t1,	\$t0, \$zero	# cp N to \$t1
addi	\$t1,	\$t1, 3	# N+3
mult	\$t1,	\$t1, \$t0	# N*(N+3)
SW	\$t1,	0(\$gp)	# i =

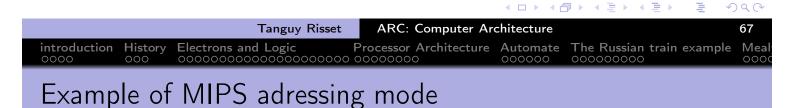
▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

prog.s


introduction History Electrons and Logic Processor Architecture Automate The Russian train example Meal

- 32 registers in the register file
- Named
 - by their number: \$0 \$1 ...\$31
 - or by their name \$zero \$at \$v0 \$v1 \$a0 ...\$a3 ...
- \$0 (\$zero) contains value 0
- \$a0 ... \$a3 are used to pass (first four) arguments of a function call
- \$v0 \$v1 are used to transmit functions result
- \$s0 ...\$s7 and \$t0 ... \$t9 are working registers, used for CPU computations
- \$sp is the stack pointer
- \$fp is the frame pointer (explained later)
- \$ra contains the return address (after the end of current function)
- \$gp is a pointer to global area
- \$k0, \$k1 and \$at are reserved register (for kernel and assembler)

500


MIPS Memory map

MIPS assembly addressing mode

• Addressing mode means: how the address is computed in an assembly instruction

format	address computation	
\$register	content of register	
imm	immediate value	
imm (\$register)	immediate + content of register	
label	addresse of label	
label \pm imm	addresse of label \pm immediate value	
label \pm imm (register)	addresse of label \pm	
	(immediate value + content of register)	


```
• add $s0, $s2, $s1
```

- puts in \$s0 the value of \$s1 plus the value of \$s2.
- \$s0=\$s1+\$s2
- addi \$s0, \$s1, 1
 - puts in \$s0 the value of \$s1 plus 1.
 - \$s0=\$s1+1
- lw \$s0, 10(\$s3)
 - puts in \$s0 the value situated in memory at the address obtained by adding 10 to the content of \$s3.
 - \$s0=Memory[\$s3+10]
- bne \$s0, \$s3, label
 - branch to address of label if values in \$s0 and \$S3 are different.
 - if (\$s0 != \$s3) then \$PC=label

E b

Mea

Format of MIPS instructions

- 3 types of format: R-Type, I-Types and J-Types
- R-types:

introduction

6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
ор	rs	rt	rd	shamt	func

utomate

Russian train example

- Used for 3-register instructions
- op is the operation code or *opcode* that specifies the operation
- rs and rt are the first and second source register
- rd is the destination register
- shamt is used for shift instruction
- func is used with op to select arithmetic operation

Tanguy Risset ARC: Computer Arch	la francesco de la constance de							
	chitecture	69						
	Automate The Russian train example	Mea 000						
I-Types instruction								

• I-Types instruction are used for load, store, branch and immediate instruction.

6 bits	5 bits	5 bits	16 bits
ор	rs	rt	Address

- rs is a source register (an address) for loads, store
- rs is an operand for conditionnal branch
- rt is a source register for branch
- rt is a destination register for other I-Types instruction
- The address field is a 16 bit's integer in two's-complement code , ranging from -32 768 to 32 767 (remind that this is a problem in many cases)

introduction History Electrons and Logic

• J-Types instruction are used for Jump to absolute address 6 bits 26 bits

ор	Address
	ress field is a 26 bit's integer containing the address of the nce the real address is obtain by multiplying by four (shifting
• can jump	from address 0 to 2 ²⁸ =256MB from \$PC. er jump, on can use the instruction jr:
5	32 bit address contained in register \$ra

Processor Architecture

00000000

Automate

The Russian train example

000000000

Mea

000

R-Types instructions: add, sub, mul, div, and, or, xor
add \$t0, \$t1, \$t2 // \$t0 = \$t1 + \$t2
mul \$s0, \$s1, \$a0 // \$s0 = \$s1 * \$a0, pseudo
I-types for immediate operand operation:

addi \$t0, \$t1, 4 // \$t0 = \$t1 + 4
addi \$t0, \$0, 4 // \$t0 = 4
li \$t0, 4 // \$t0 = 4, pseudo

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

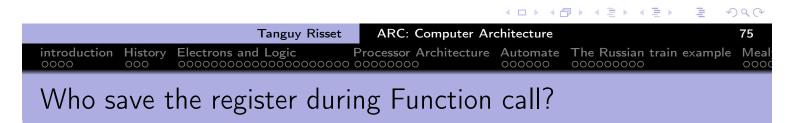
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Meal

- MIPS load and store operation use *indexed addressing*
 - the address operand specifies a signed constant and a register
 - These values are added to generate effective address
- byte instruction: 1b and sb transfer one byte
 - lb \$t0, 20(\$a0) // \$t0=Memory[\$a0+20]
 - sb \$t0, 20(\$a0) // Memory[\$a0+20]=\$t0
 - sb stores only the lowest byte of operand register
- Word instruction: 1w and sw operates on word (i.e. 32 bits)
- Remind that address have to be aligned to 32 bit world, hence must be multiple of 4.

					▶ ★ = ► ★ =) Q (?
		Tanguy Risset	ARC: Computer Are	chitecture			73
introduction		Electrons and Logic			The Russian tra	in example	Meal
Branch	nes						

- Conditional branch
 - bne \$t0, \$t1, Label
 - if \$t0 and \$t1 have different values, the next instruction to execute is at address Label
 - beq \$t0, \$t1, Label // same thing if \$t0=\$t1
- Unconditionnal branch
 - j toto // next instruction executed is at address toto
 - jr \$s2 // next instruction executed is at address contained in \$s2
- These are the only way of implementing loops in assembly:

```
li $t2, 0
                                      t2=0
li $t3, 1
                                      while (t1 != 0) {
while: beq $t1, $0, done
        add $t2, $t1, $t2
                                         t2 = t2 + t1
                                         t1=t1-1
        sub $t1, $t1, $t3
                                      }
        j while
done:
                                                      < ∃ > < ∃ >
                                                                 æ
                                                                    Sac
                   Tanguy Risset
                               ARC: Computer Architecture
                                                                     74
```


Function control flow in MIPS

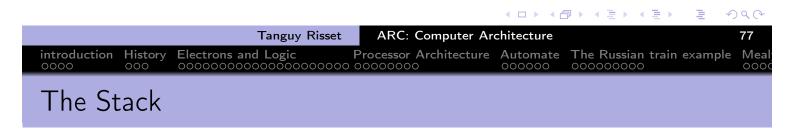
- MIPS uses the *jump-and-link* (jal) instruction to call functions
 - Example:

History

introduction

- jal Fact
- saves the return address (i.e. the address of the following instruction) in the \$ra register and jumpt to the address of Fact
- At the end of the execution of Fact, the instruction jr \$rajumps back to the address stored in \$ra
- Arguments transmited to Fact are stored in registers \$a0 ...\$a3
- Return values of Fact are stored in registers \$v0 \$v3

- When a function call occurs: jal Fact, who save the register?
 - The Caller (who knows which register he will use after the call)?
 - Or the callee (who knows which register he will use during its execution)?
- This convention is part of the *calling convetion* or ABI *application binary interface*.
- For MIPS:
 - \$t0 \$t9 \$a0 \$a3 \$v0 \$v1 are caller saved (if needed)
 - \$s0 \$s7 \$ra are callee saved (if needed)


50

▲□ ▶ ▲ 国 ▶

< ∃ >

- Let says: function B calls function C
- Function B wants to save \$t0, \$t1 and \$a0 because it will need them after the return of C.
- this is done using the stack via the stack pointer \$sp

- The stack is use to store all *local* information (in the sense local to the current function)
- That includes (say for function C):
 - local variable
 - Callee saved register if needed
 - Return address (i.e. the instruction following the jal C instruction).
 - (sometimes) the parameters passed to C
 - (sometimes) the result of C
 - In many ISA, the parameters and the results are passed through dedicated registers
- All these data constitute the frame of the fonction instance.
- the frame pointeur points to the frame of the current function
- For MIPS, the frame pointer is \$fp

500

< E >

⊣⊸

introduction History Electrons and Logic Processor Architecture The Russian train example Automate Mea 000 00000000 000000000 000 Function B calls C beguinning of В В . . . sw \$t0,0(\$sp) \$t0 in stack saving sw \$t1,-4(\$sp) saving \$t1 in stack sw \$a0,-8(\$sp) saving \$a0 in stack sub \$sp,\$sp,12 correct stack pointer jal C call to C function lw \$a0,4(\$sp) restoring return addresse of B from stac lw \$t1,8(\$sp) restoring \$s1 from stack sw \$t0,12(\$sp) restoring \$s0 add \$sp,\$sp,12 adjusst stack pointeur value

end of B

```
. . .
```

jr \$ra

《曰》《卽》《臣》《臣》

<ロ > < 四 > < 回 > < 回 > <

Sketching code of C function

C:

•				
	subu	\$sp,\$sp,40	#	C need 40 Bytes for its frame
	SW	\$ra,32(\$sp)	#	<pre>store return address (inst. in B)</pre>
	SW	\$fp,28(\$sp)	#	store frame pointer
	SW	\$s0,24(\$sp)	#	store \$s0 (because C uses it)
	move	\$fp,\$sp	#	<pre>\$fp <- \$sp: frame pointer of C se</pre>
	• • • •			
	• • • •			
	lw	\$ra,32(\$sp)	#	\$ra <- return address (in B)
	lw	\$fp,28(\$sp)	#	<pre>\$fp <- frame pointeur of B</pre>
	lw	\$s0,24(\$sp)	#	restore \$s0
	addu	\$sp,\$sp,40	#	<pre>\$sp <- \$sp+40, restore B stack pc</pre>
	j	\$ra	#	return to \$ra (B function)

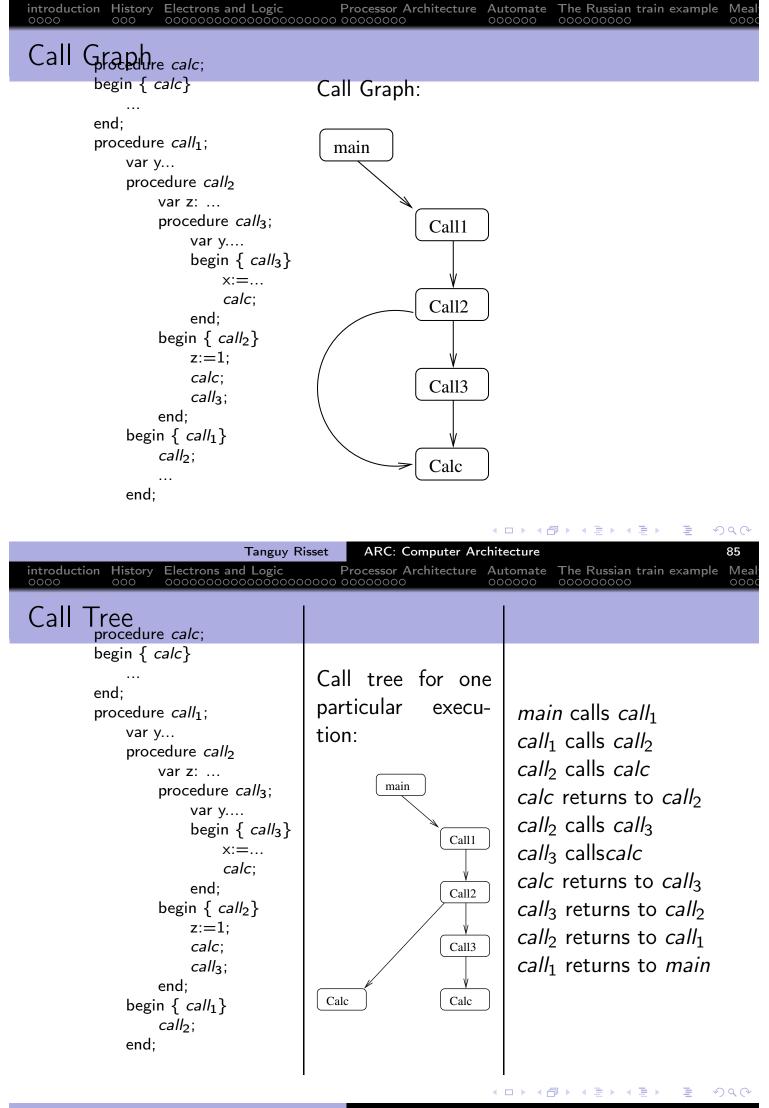
500

- Let's pause a while to come back to high level langage
- What is a function (or a procedure)?
- How its isolation mecanisme (local variable) is implemented?
- This is implemented with a very fundamental mecanism: the Stack and the Activation Record (or Frame) of each procedure.

Sac

∢∄⊁ ∢≣⊁

< 🗆 🕨

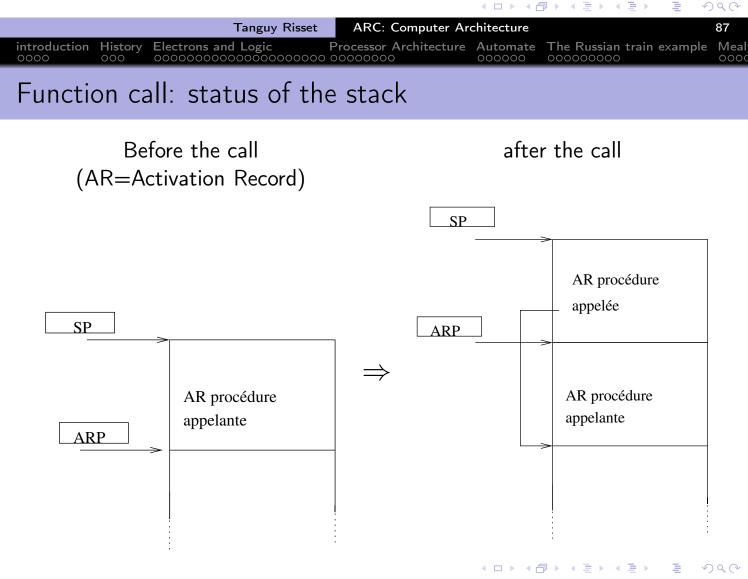

< ∃ >

- Procedures (or functions) are the basic units for compilers
- Three important abstraction:
 - Control abstraction: parameter passing and result transmission
 - Memory abstraction: variable lifetime (local variables)
 - Interface: procedure's signature

	Tanguy Risset	ARC: Computer Ar	M > < 문 > < 문 >	≣ ♥) ૡ (83	-
introduction History		essor Architecture 00000	The Russian train		leal 000
Procedure	Control Transfer				

- Transfer mechanism of control between procedures:
 - when calling a procedure, the control is given to the procedure called;
 - when this called procedure ends, the control is returned to the calling procedure.
 - Two calls to the same procedure create two em independent instances (or invocations).
- two useful graphic representations:
 - The call graph: represents the information written in the program.
 - The call tree: represents a particular execution.

introduction History Processor Architecture Automate The Russian train example Electrons and Logic Mea 000 00000 **Execution Stack**


- The transfer of control mechanism between procedures is implemented thanks to the *execution stack*.
- The programmer has this vision of virtual memory:

Code	static	Tas	Memoire libre	Pile	
			\rightarrow \checkmark	<u></u>	
0				10	00000

(petites adresses)

(grandes adresses)

- The *heap* is used for dynamic allocation.
- The *stack* is used for the management of contexts of procedures (local variable, etc.)

Activation record

History

000

Electrons and Logic

introduction

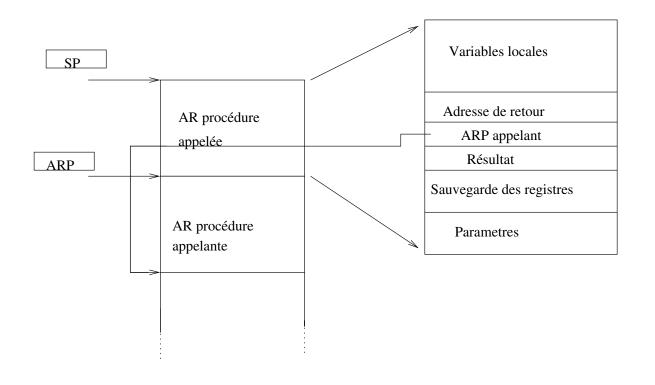
- Calling a procedure: Stacking the *activation record* (or *frame*).
- Need of a dedicated pointer for that: the activation record pointer (ARP) or frame pointeur (\$fp))
- The frame allows to set up the *context* of the procedure.
- This frame contains
 - The space for local variables declared in the procedure
 - Information for restoring the context of the calling procedure:
 - Pointer to the frame of the calling procedure (ARP or FP for em frame pointer).

Processor Architecture

Automate

The Russian train example

00000

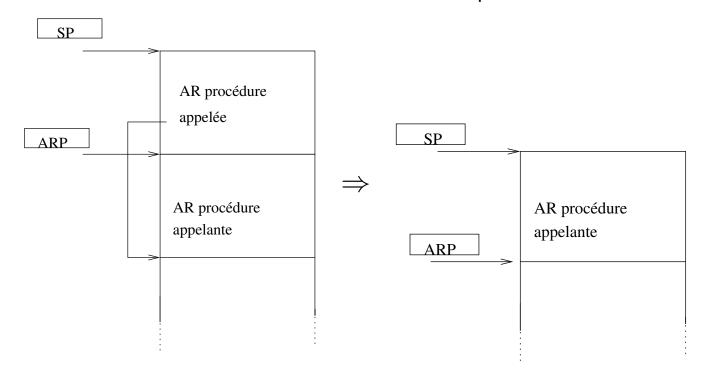

Mea

000

- Address of the return instruction (statement following the call of the appellant proceedings).
- Eventually save the state of the registers at the time of the call.

				▶ ▲ 글 ▶ ▲ 글 ▶) Q (?
	Tanguy Risset	ARC: Computer Ar	chitecture		89
introduction	Electrons and Logic				Meal 0000

Content of the Frame


< 🗗 ▶

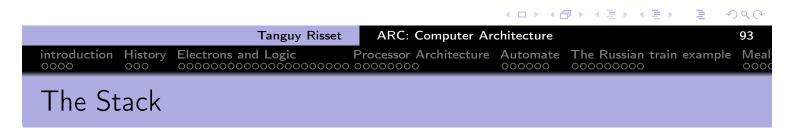
< □ →

avant le retour

aprÃ["]s le retour

		< □ ▶ < 6	₽▶ < ≣ ▶ < ≣ ▶		Q(C)
Tanguy Risset	ARC: Computer Arc	chitecture			91
ectrons and Logic			The Russian train	example	Meal 0000

Table of Contents


introduction

History

- **Electrons and Logic**
- **Processor Architecture**
- Automate
- The Russian train example
- Mealy and Moore Automata
- **MIPS ISA**
- Function, $proc \tilde{A}(c)$ dure et Pile d'execution
- 10 Coming back to MIPS
- Some additionnal useful information • Example of MIPS code
- Pipelining RISC instructions: the "Von Neumann" cycle 12

- Let says: function B calls function C
- Function B wants to save \$t0, \$t1 and \$a0 because it will need them after the return of C.
- this is done using the stack via the stack pointer \$sp

- The stack is use to store all *local* information (in the sense local to the current function)
- That includes (say for function C):
 - local variable
 - Callee saved register if needed
 - Return address (i.e. the instruction following the jal C instruction).
 - (sometimes) the parameters passed to C
 - (sometimes) the result of C
 - In many ISA, the parameters and the results are passed through dedicated registers
- All these data constitute the frame of the fonction instance.
- the frame pointeur points to the frame of the current function
- For MIPS, the frame pointer is \$fp

E b

introduction History Electrons and Logic Processor Architecture The Russian train example Automate Mea 000 00000000 000000000 000 Function B calls C beguinning of В В . . . sw \$t0,0(\$sp) \$t0 in stack saving sw \$t1,-4(\$sp) saving \$t1 in stack sw \$a0,-8(\$sp) saving \$a0 in stack sub \$sp,\$sp,12 correct stack pointer jal C call to C function lw \$a0,4(\$sp) restoring return addresse of B from stac lw \$t1,8(\$sp) restoring \$s1 from stack sw \$t0,12(\$sp) restoring \$s0 add \$sp,\$sp,12 adjusst stack pointeur value

end of B

```
. . .
```

jr \$ra

《曰》《卽》《臣》《臣》

<ロ > < 四 > < 回 > < 回 > <

Э

500

Sketching code of C function

C:

•				
	subu	\$sp,\$sp,40	#	C need 40 Bytes for its frame
	SW	\$ra,32(\$sp)	#	<pre>store return address (inst. in B)</pre>
	SW	\$fp,28(\$sp)	#	store frame pointer
	SW	\$s0,24(\$sp)	#	store \$s0 (because C uses it)
	move	\$fp,\$sp	#	<pre>\$fp <- \$sp: frame pointer of C se</pre>
	• • • •			
	• • • •			
	lw	\$ra,32(\$sp)	#	\$ra <- return address (in B)
	lw	\$fp,28(\$sp)	#	<pre>\$fp <- frame pointeur of B</pre>
	lw	\$s0,24(\$sp)	#	restore \$s0
	addu	\$sp,\$sp,40	#	<pre>\$sp <- \$sp+40, restore B stack pc</pre>
	j	\$ra	#	return to \$ra (B function)

MIPS Assembly for programme fib

200000

000000000

Fibbonacci suite program:

introduction History Electrons and Logic

000

```
int fib (int i)
{
    if (i<=1) return(1);
    else return(fib(i-1)+fib(i-2));
}
int main (int argc, char *argv[])
{
    fib(2);
}</pre>
```

			= *) 4	C.
Tanguy Risset	ARC: Computer Arc	hitecture	97	7
Electrons and Logic F				1eal

Automate

Architecture

The Russian train example

Mea

000

Assembleur MIPS pour programme fib

fib:	.frame	\$fp,40,\$ra	# vars= 8, regs= 3/0, args= 16, extra= 0
	.mask	0xc0010000,-8	
	.fmask	0x0000000,0	
	subu	\$sp,\$sp,40	# SP <- SP-40 :AR de 40 octet (10 mots)
	sw	\$ra,32(\$sp)	# stocke adresse retour SP+32
	sw	\$fp,28(\$sp)	# stocke ARP appelant SP+28
	sw		# sauvegarde registre \$s0
	move	\$fp,\$sp	
	sw		# stocke Arg1 dans la pile (ARP+40)
	lw	\$v0,40(\$fp)	# charge Arg1 dans \$v0
	slt	\$v0,\$v0,2	# \$v0 <- 1 si \$v0<2 0 sinon
			# branch L2 si \$v0==0
	li	\$v0,1	# \$v0 <- 0x1 (\$v0 sera le registre contenant le res)
	SW	\$v0,16(\$fp)	# stocke le resultat dans la pile
	j	\$L1	# saute à L1
\$L2:	-		
	lw	\$v0,40(\$fp)	# charge Arg1 dans \$v0
	addu	\$v0,\$v0,-1	# retranche 1
	move		# \$a0 <- \$v0 (\$a0 contient Arg1 pour l'appel recursif)
	jal	fib	<pre># jump and link fib (\$ra<-next instr)</pre>
	move	\$s0,\$v0	
	lw	\$v0,40(\$fp)	# charge Arg1 dans \$v0
	addu	\$v0,\$v0,-2	# retranche 2
	move	\$a0,\$v0	<pre># \$a0 <- \$v0 (\$a0: contient Arg1 pour l'appel recursif)</pre>
	jal	fib	<pre># jump and link fib (\$ra<-next instr)</pre>
	addu	\$s0,\$s0,\$v0	
	SW	\$s0,16(\$fp)	

₫ ▶

< □ >

< ∃ >

Sa

introduction History Electrons and Logic Processor Architecture Automate The Russian train example 000000000 Assembleur MIPS pour programme fib \$L1: lw \$v0,16(\$fp) # \$v0 <- resultat</pre> move \$sp,\$fp # SP <- ARP \$ra,32(\$sp) # \$ra <- adresse retour</pre> ٦w \$fp,28(\$sp) ٦₩ # ARP <- ARP appelant</pre> lw \$s0,24(\$sp) # restaure \$s0 addu \$sp,\$sp,40 # SP->SP+40 \$ra # jump adresse retour j .end fib .align 2 .globl main main .ent main: # vars= 0, regs= 2/0, args= 16, extra= 0 .frame \$fp,24,\$ra .mask 0xc0000000,-4 0x00000000,0 .fmask # partie ajoutÃCe pour afficher le resultat .data str: .asciiz "Le resultat est " .text subu \$sp,\$sp,24 # SP <- SP-24 :AR de 24 octet (6 mots) sw \$ra,20(\$sp) # stocke adresse retour SP+20 sw \$fp,16(\$sp) # stocke ARP appelant SP+16 # ARP <- SP \$fp,\$sp move \$a0,24(\$fp) # stocke Arg1 dans la pile (ARP+24) SW \$5,28(\$fp) # stocke Arg2 dans la pile (ARP+48) sw # \$a0 <- 2 (\$a0: Arg1) li \$a0,2 fib # jump and link fib (\$ra<-next instr)</pre> jal # partie ajoutAce pour afficher le resultat move \$16,\$2 # \$16 <- resultat de l'appel a fib</pre> # \$v0 <- code pour afficher une chaine (4) \square \land \triangleleft \land ₹ DQA ∃ ▶ Ŧ li \$v0, 4 ARC: Computer Architecture 99 Tanguy Risset introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mea

Table of Contents

000

- introduction
- 2 History
- Electrons and Logic
- Processor Architecture
- 5 Automate
- The Russian train example
- 7 Mealy and Moore Automata
- 8 MIPS ISA
- 9 Function, procÃ(C)dure et Pile d'execution

- 10 Coming back to MIPS
- 1 Some additionnal useful information
 - Example of MIPS code
 - Pipelining RISC instructions: the "Von Neumann" cycle

00000

000000000

< ∃→

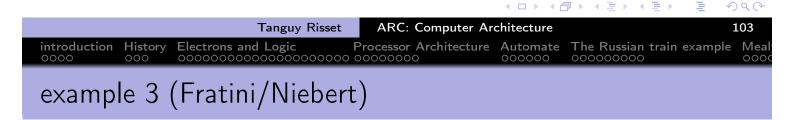
Mea

Assember directives

.align n	Align the next datum on specified byte boundary (0=byte, 2=word, etc.).
.ascii str	store the string in memory, but do not null-terminate it.
.asciiz str	Store the string in memory and null-terminate it.
.byte b1,, bn	Store the n values in successive bytes of memory.
.data <addr></addr>	The following data items should be stored in the data seg-
	ment
.double d1,, dn	Store the n floating point double precision numbers in suc-
	cessive memory locations.
.extern sym size	Declare that the datum stored at sym is size bytes large and is a global symbol.
.globl sym	Declare that symbol sym is global and can be referenced from other files.
.space n	Allocate n bytes of space in the current segment.
.text <addr></addr>	The next items are put in the user text segment.
.word w1,, wn	Store the n 32-bit quantities in successive memory words.

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 5900 **ARC: Computer Architecture** 101 Tanguy Risset introduction History Electrons and Logic Processor Architecture Automate The Russian train example Meal

example 1 (Fratini/Niebert)


bne \$s0, \$s1, Test add \$s2, \$s0, \$s1 Test:

臣

▲□▶ ▲□▶ ▲□▶ ▲□▶

introduction History Electrons and Logic Processor A example 2 (Fratini/Niebert)

```
beq $s4, $s5, Lab1
    add $s6, $s4, $s5
    j Lab2
Lab1:sub $s6, $s4, $s5
Lab2:
```


Processor Architecture

Automate

The Russian train example

Mea

```
li $t2, 0
    li $t3, 1
while:beq $t1, $0, done
    add $t2, $t1, $t2
    sub $t1, $t1, $t3
    j while
done:
```

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

introduction History Electrons and Logic	Processor Architecture Automate The Russian train example Meal
example 4 (U. Illinois)	
.data	
var1: .word 23	<pre># declare storage for var1; initial</pre>
	# value is 23
.text	
start:	
lw \$t0, var1	# load contents of RAM location ir
	# register \$t0: \$t0 = var1
li \$t1, 5	<pre># \$t1 = 5 ("load immediate")</pre>
sw \$t1, var1	<pre># store contents of register \$t1</pre>
	<pre>#into RAM: var1 = \$t1</pre>
dono	

```
done
```

					과 🕨 🔹 분 🕨 🦛 분 🕨	₹ *)) Q (¥
		Tanguy Risset	ARC: Computer Ar	chitecture		1	105
introduction 0000		Electrons and Logic			The Russian train	example	Meal: 0000
examp	le 5	(U. Illinois)					

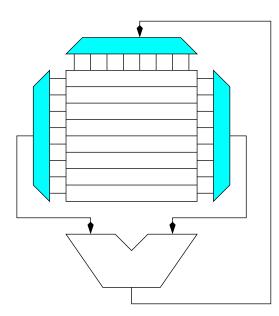
```
.data
                            declare 12 bytes of storage to
array1: .space 12
                         #
                         # hold array of 3 integers
        .text
__start: la $t0, array1
                                    load base address of array
                                 #
                                 #register $t0
        li $t1, 5
                                 #$t1 = 5 ("load immediate")
        sw $t1, ($t0)
                                 #first array element set to 5;
                                 #indirect addressing
        li $t1, 13
                                 #$t1 = 13
        sw $t1, 4($t0)
                                 #second array element set to 1
                                 #$t1 = -7
        li $t1, -7
        sw $t1, 8($t0)
                                 #third array element set to -7
done
```

< E >

Documentation on MIPS assembly

Electrons and Log

More precise documentation on MIPS assembly code can be obtained at:

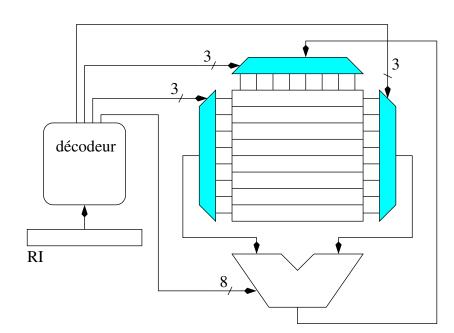

- http://igm.univ-mlv.fr/ens/IR/IR1/2007-2008/Archi/ManuelSPIM.php (brief documentation from U. Marne la vall $\tilde{A}(\tilde{C})e$)
- http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm (brief documentation from U. of illinois at Chicago).
- https://en.wikibooks.org/wiki/MIPS_Assembly, wikibook
- https://www.cs.unibo.it/~solmi/teaching/arch_2002-2003/AssemblyLanguageProgDoc.pdf, MIPS 0 Assembly langage programmer's Guide.

] > 《 문 > 《 문 >	()) Q (*
Tanguy Risset	ARC: Computer Ar	chitecture		1	L07
Electrons and Logic					Meal 0000

Table of Contents

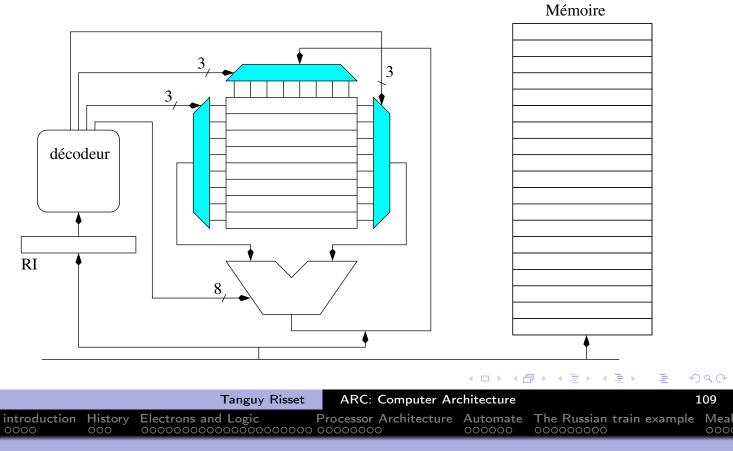
- 1) introduction
- 2) History
- 3 Electrons and Logic
- Processor Architecture
- 5 Automate
- 6) The Russian train example
- 7 Mealy and Moore Automata
- 8 MIPS ISA
- 9 Function, procÃ(C)dure et Pile d'execution
- 10 Coming back to MIPS
- 11 Some additionnal useful information • Example of MIPS code
- 12 Pipelining RISC instructions: the "Von Neumann" cycle

	Tanguy Risset	ARC: Computer Are	chitecture	109
introduction	Electrons and Logic			e Mea
Dua	 vacution on a D			

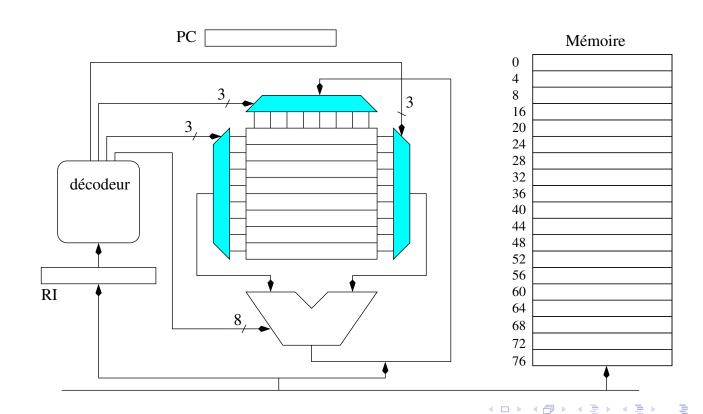

・ロト ・日 ・ ・ ほ ・ ・ ほ ・

ъ.

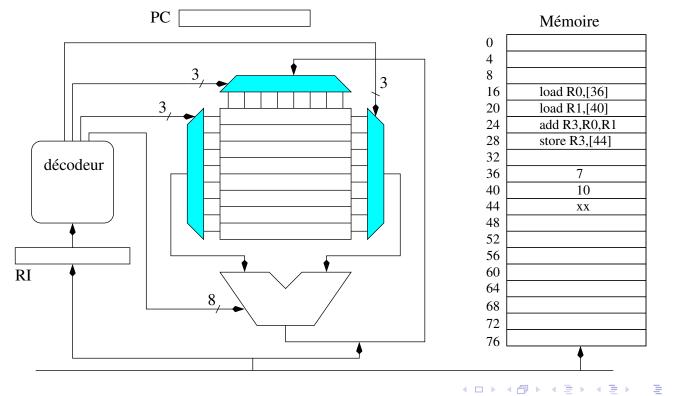
Ξ.


500

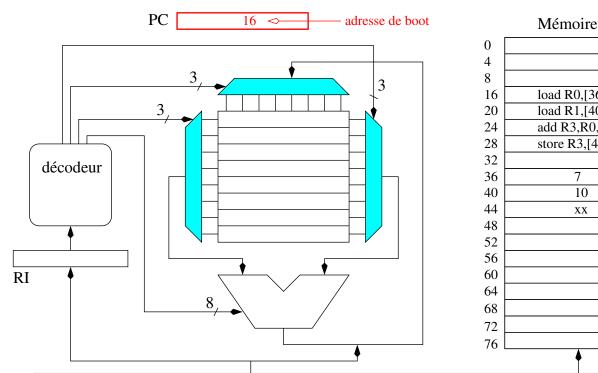
Program execution on a Processor (8 general purpose registers)



Э



Program execution on a Processor (8 general purpose registers)


Program execution on a Processor (8 general purpose registers)

introduction History Electrons and Logic Processor Architecture Automate

	Tanguy Risset	ARC: Computer Are	chitecture	1	109
	Electrons and Logic			The Russian train example	Meal 0000

Program execution on a Processor (8 general purpose registers)

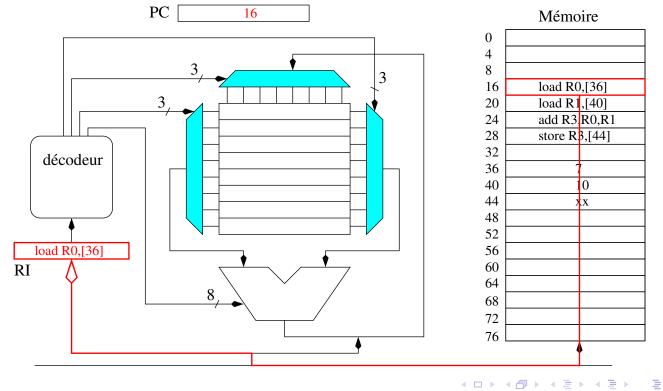
load R0,[36] load R1,[40] add R3,R0,R1 store R3,[44] 7 10 XX

э

1

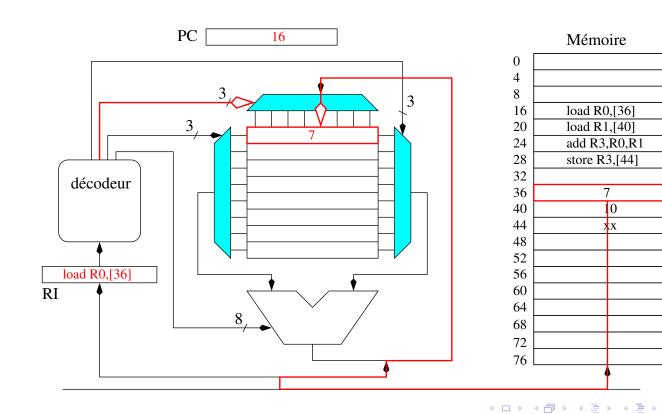
₹

< □ →


< ⊡ >

Meal

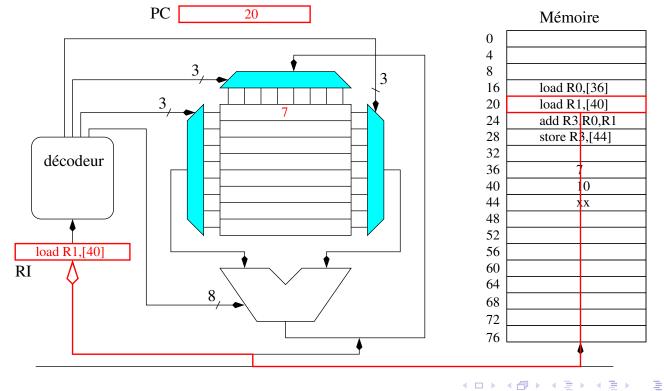
590


The Russian train example

000

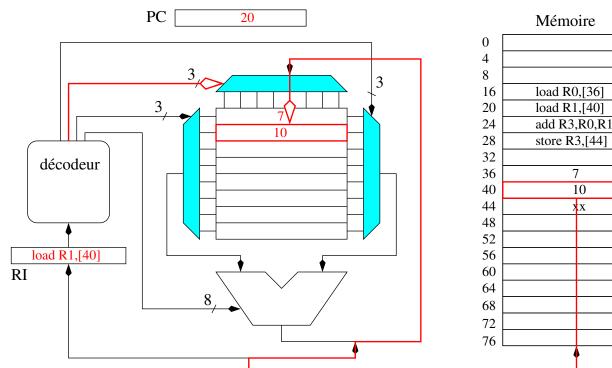
	Tanguy Risset	ARC: Computer Ar	chitecture	i	109
introduction 0000	Electrons and Logic			The Russian train example	Meal

Program execution on a Processor (8 general purpose registers)



E

Meal

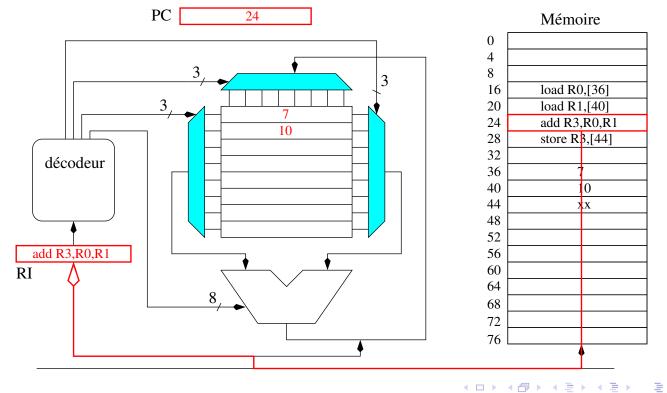

590

The Russian train example

	Tanguy Risset	ARC: Computer Architecture		109	
	Electrons and Logic				Meal 0000

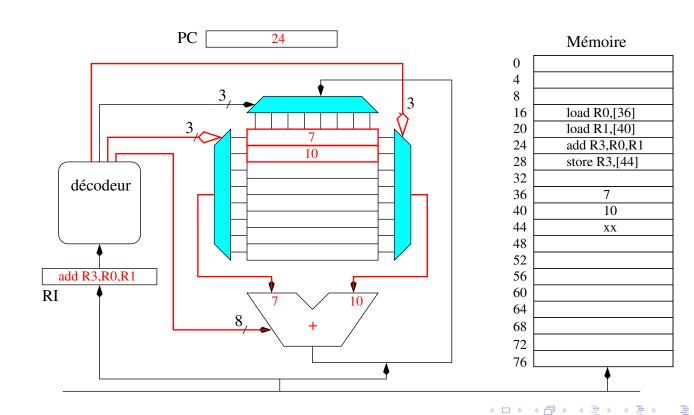
Program execution on a Processor (8 general purpose registers)

▲□▶ ▲□▶ ▲ ≧▶

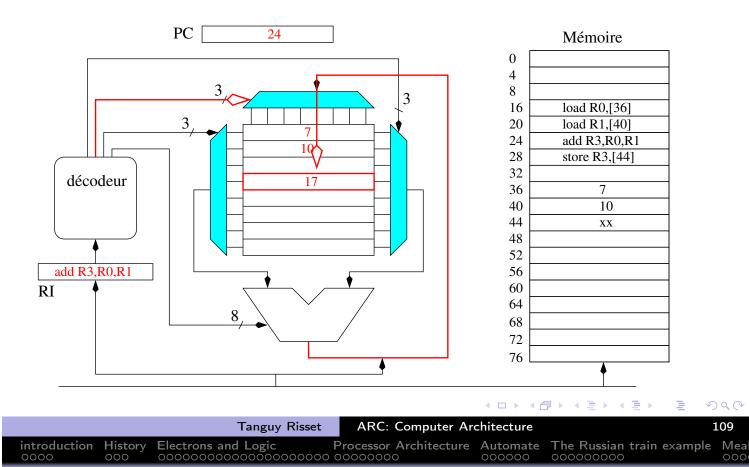

< E

E

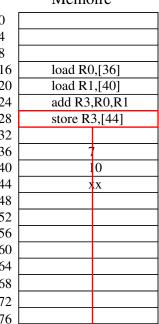
Meal


5900

The Russian train example


	▲□▶▲@▶▲≧▶▲≧▶ ≧ めへぐ
Tanguy Risset ARC: C	Computer Architecture 109
introduction History Electrons and Logic Processor A	

Program execution on a Processor (8 general purpose registers)


Meal

The Russian train example

Program execution on a Processor (8 general purpose registers)

< E

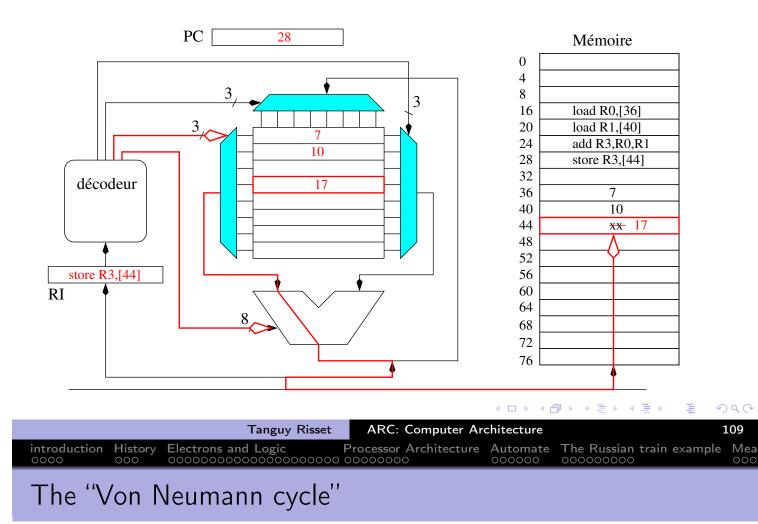
The Russian train example

Meal

< □ > < □ > < □ > < □ >

E

Program execution on a Processor (8 general purpose registers)


Processor Architecture

Automate

The Russian train example

Mea

000

- The so-called Von Neumann cycle is simply the decomposition of the execution of an instruction in several independent stages.
- The number of stages depend on the processor, usually 5 stages are commonly used as example:
 - Instruction Fetch (IF)
 - Reads the instruction from memory (at address \$PC) and write it in \$IR.
 - Instruction Decode (ID)
 - computes what needs to be computed before execution: jump address destination, access to register, etc.
 - Execute (EX)

introduction

History Electrons and Logic

- executes the instruction: ALU computation if needed
- Memory Access (MEM)
 - Loads (or stores) data from memory if needed
- Write Back (WB)
 - Writes the result into the register file if needed

<⊡>

< □ ▶

< ∃ >

< ∃→

The MIPS example

Electrons and Logic

History

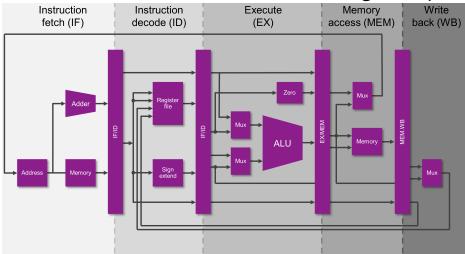
000

introduction

0000

- The RISC paradigm was invented by Berkeley and popularized by Henessy and Patterson in the book on MIPS
- MIPS stands for *Microprocessor without Interlocked Pipeline Stages* and propose and architecture to execute each stage independently

Processor Architecture


Automate

The Russian train example

000000000

Mea

000

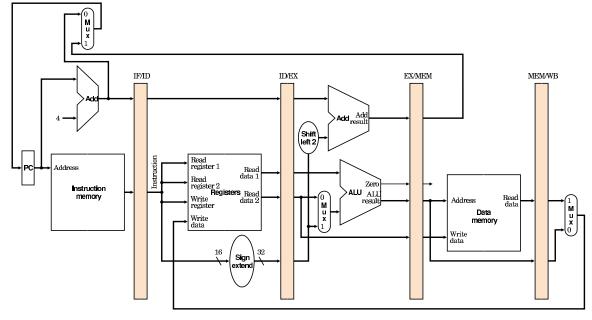
from MIPS website https://www.mips.com/

				< □ ► < ₫		■ ▶ ■	うくで
		Tanguy Risset	ARC: Computer Ar	chitecture			111
introduction	History 000	Electrons and Logic			The Russian	train examp	ole Meal
Christi	an V	Volf's slides					

- Use Christian Wolf slides for explaining MIPS instruction pipeline
- Here

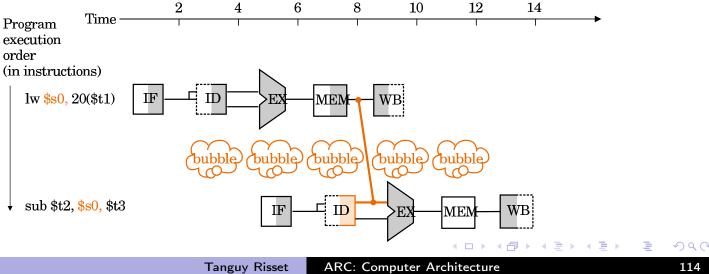
< <p>Image: Image: Imag

< 🗗 ▶


∃ →

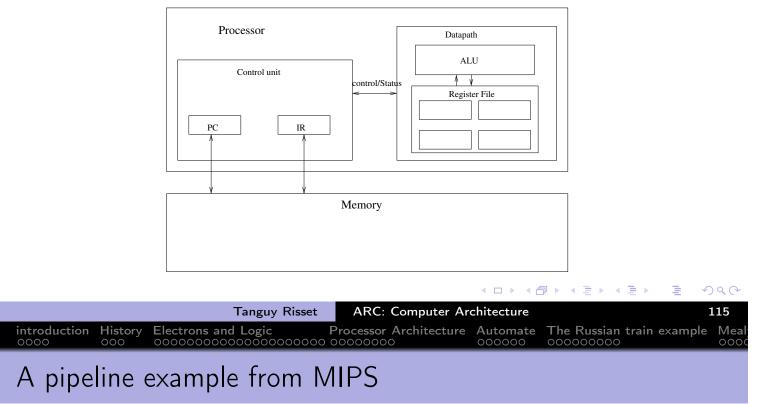
•

introduction History Electrons and Logic Processor Architecture Automate The Russian train example 0000 000 000000 000000000


example of MIPS pipeline CPU architecture

• Taken from Henessy/patterson book

- When next instruction cannot be fetched directly (because it need the result of previous instruction for instance) it creates a "bubble"
- For instance: an addition using a register that was just loaded
- The value of the register will be available after the MEM stage of ٢ first instruction, hence we can delay on only on cycle, provided there is a *shortcut*.



Mea

000

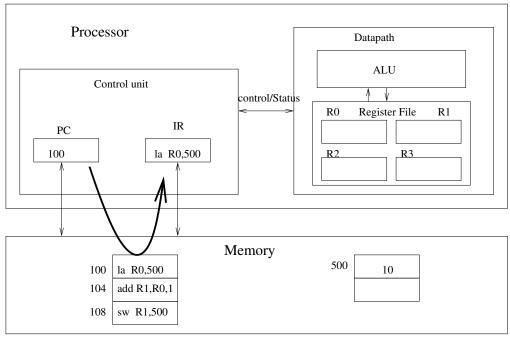
Another illustration of instruction pipeline

- Go back to our previous representation of the processor and memory:
 - Von Neumann computer= Memory + CPU
 - CPU= = control Unit + Datapath
 - Datapath= ALU + Register file

- Execute the sequence of assemby instruction:
 - load value at address 500 in register R0
 - Add 1 to R0 and put result in R1
 - store value of Register R1 at address 500
- (Think of i=i+1)
- Code:

la R0,500 add R1, R0, 1 sw R1,500

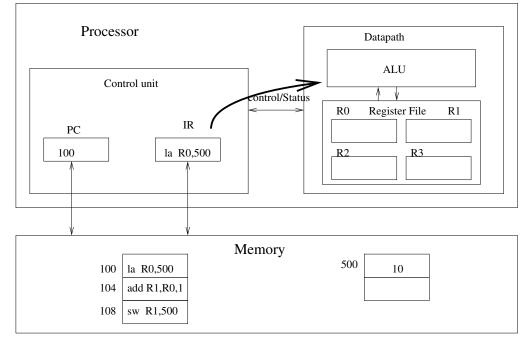
▲□▶ ▲圖▶ ▲厘▶ ▲厘▶


First possible execution: without pipeline

• Before execution starts, \$PC contains the address of the first instruction: 100

	Tanguy Risset	ARC: Computer Ar	M · · · · · · · · · · · · · · · · · · ·		117
introduction	Electrons and Logic		The Russian train	example	Meal 0000
cycle 1					

Instruction Fetch



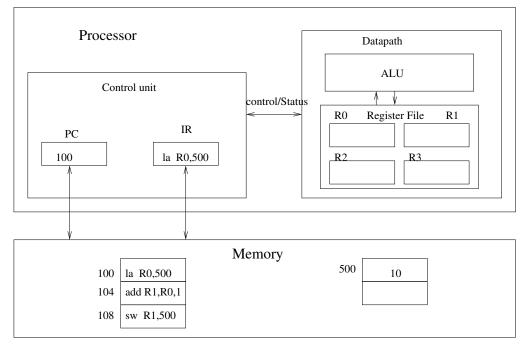
< □ > < □ > < □ > < □ >

< ∃→

æ

Instruction Decode

	Tanguy Risset	ARC: Computer Ar		119
introduction	Electrons and Logic		The Russian train example	e Meal
cycle 3				


< A ▶

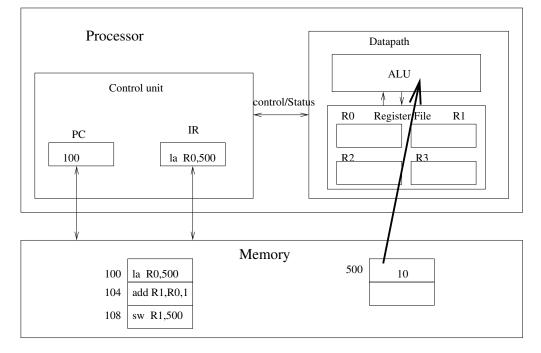
< 🗆 🕨

- N

.

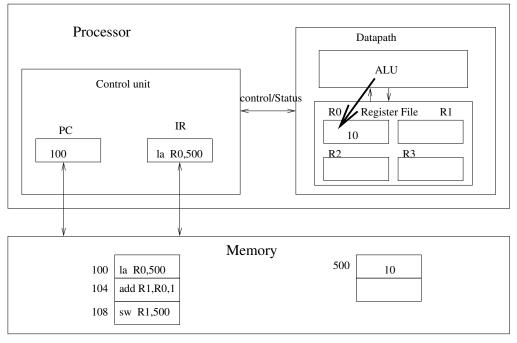
• Execute (nothing for load)

 $\Xi \rightarrow$


•

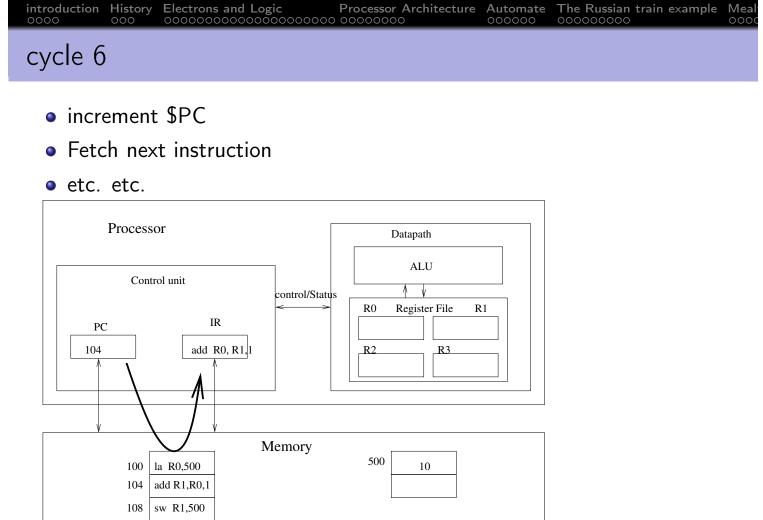
< ∃ >

臣


500

Memory access

				< □ > < ₫	₽ ► ▲ Ξ ► ▲ Ξ ►) Q (?
		Tanguy Risset	ARC: Computer Ar	chitecture			121
introduction 0000	History 000	Electrons and Logic	Processor Architecture	Automate	The Russian train	example	Mea
cycle 5)						

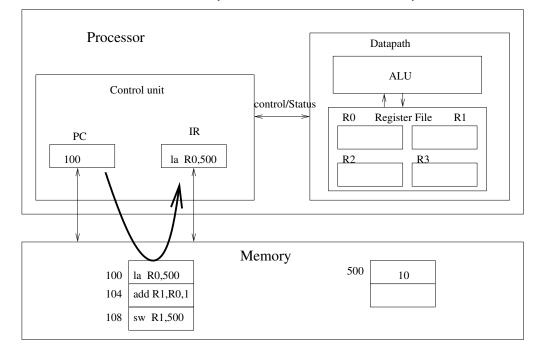

• Write Back

æ

∢ ≣ ≯

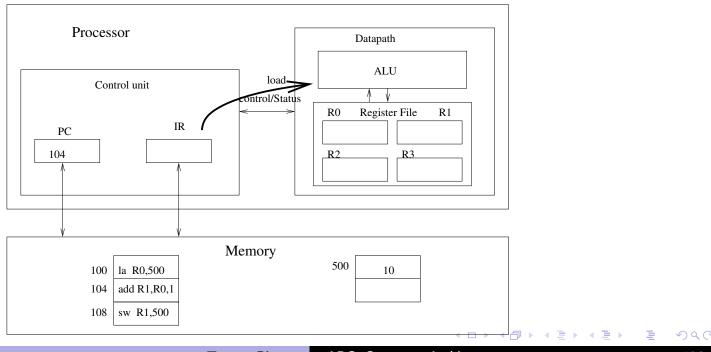
・ロ・ ・ 日・ ・ 回・

					<u> → </u>	₽ ► ▲ ≣ ► ▲	≣⊁ ≣	~ ~ ~
			Tanguy Risset	ARC: Computer Are	chitecture			123
			Electrons and Logic				train exam	ple Meal
(Counti	ng C	PI for non-pipe	lined archite	cture			

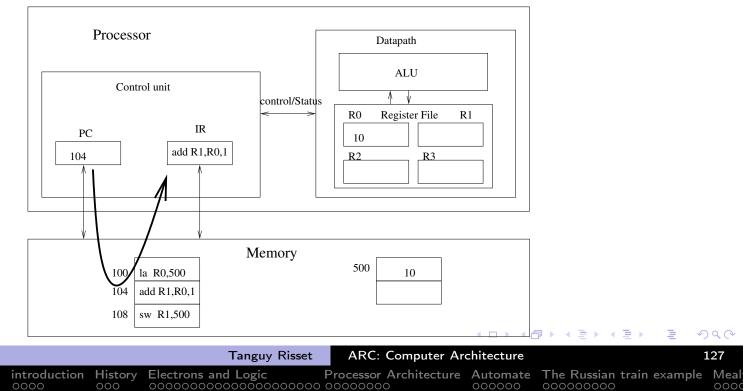

- CPI= Cycle per instruction
- 5 cycles for executing on instruction
- \Rightarrow 15 cycles for 3 instructions.

▲□▶ ▲□▶ ▲ ≧▶

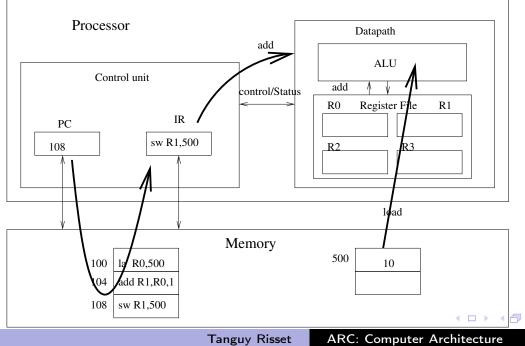
< ∃→


Э

• Instruction Fetch (for 'load' instruction)


		Tanguy Risset	ARC: Computer Are			125
introduction	History 000	Electrons and Logic		The Russian train	example	Meal 0000
cycle 2						

- Instruction Decode (for load)
- Instruction Fetch (for 'nothing' because of a bubble: instruction 'add' delayed)


introduction History Electrons and Logic Processor Architecture Meal Automate The Russian train example 000 cycle 3

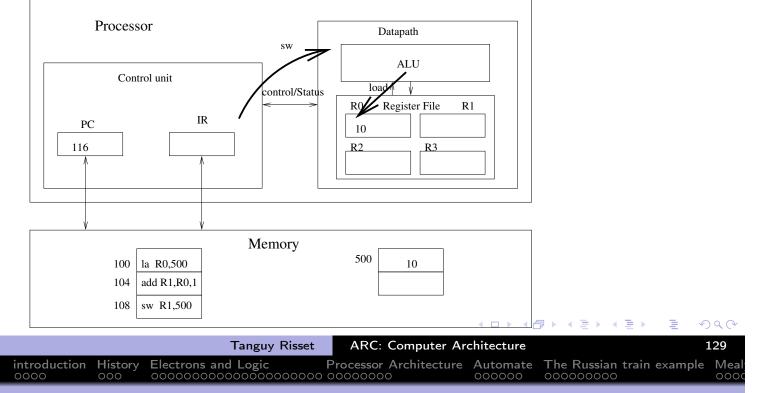
- Execute (for load: nothing to do)
- Instruction Decode (for 'nothing') ٩
- Instruction fetch (for 'add') 0

cycle 4

- Memory access (for load)
- Execute (for 'nothing') 0
- Instruction Decode (for add) ۲
- Instruction fetch (for store)

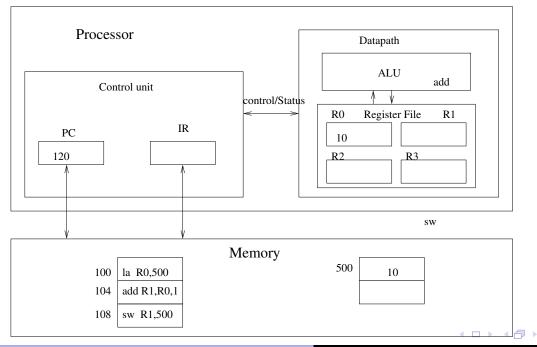
Tanguy Risset

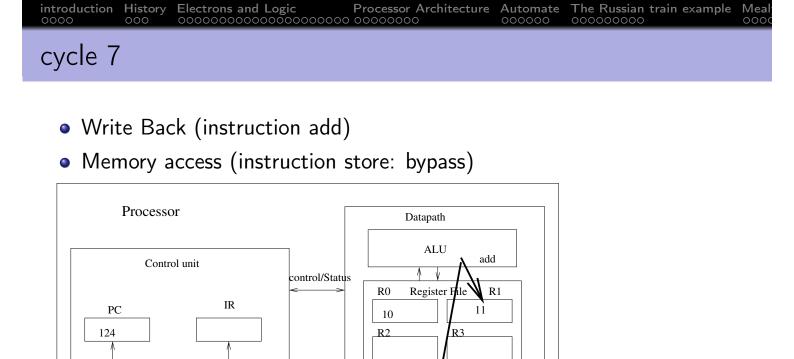
500


128

Э

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Meal


cycle 5


- Write Back (instruction load)
- Memory access (for 'nothing')
- Execute (instruction add: bypass)
- Instruction Decode store

cycle 6

- Write Back (for 'nothing')
- Memory access (instruction add, nothing to do)
- Execute (instruction store: nothing to do)

	104	add R1,R0,1						
	108	sw R1,500						
					< □ > < ₫	₽ ► < ≞ ► < ≣ ►	■ り	Q (?~
		Tanguy	Risset ARC:	Computer A	Architecture		1	.31
int 00		Electrons and Logic			e Automate	The Russian train	example	Meal: 0000
С	ounting (CPI for both	n architect	tures				

500

sw

11

• Non-pipelined architecture:

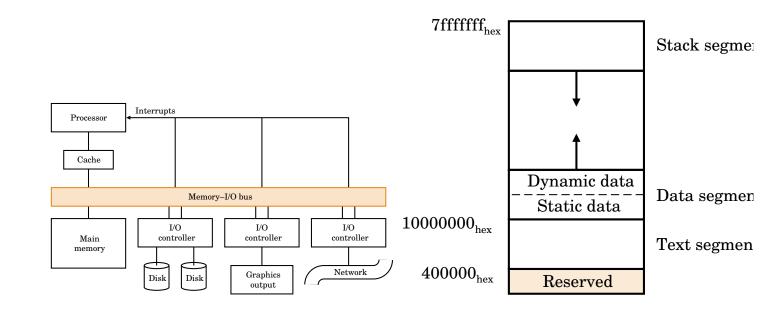
la R0,500

100

- 5 cycles for one instruction
- \Rightarrow 15 cycles for 3 instructions.
- Pipelined architecture:
 - 5 cycles for one instruction
 - 8 cycles for 3 instructions.
 - $\bullet \; \Rightarrow$ without bubbles, one instruction per cycle

Memory

- A 'jump' instruction interrupt the pipeline (need to wait for the address decoding to fetch next instruction) ⇒ pipeline stall
- Some ISA allow to use these *delay slots*: one or two instruction *after* the jump are executed before the jump occurs.


▲□▶ ▲□▶ ▲ ≧▶

▲ ∃ >

		Electrons and Logic		Meal 0000
Du lan	gage	à l'exécution		

٢

				₽ ▶ ∢ ≣ ▶ ∢ ≣ ▶		Q(C)
	Tanguy Risset	ARC: Computer Ar	chitecture		-	133
introduction History	Electrons and Logic	Processor Architecture	Automate	The Russian train	n example	Meal 0000
Rappels d'a	architecture					

∢ ≣ ≯

< ∃ >

æ

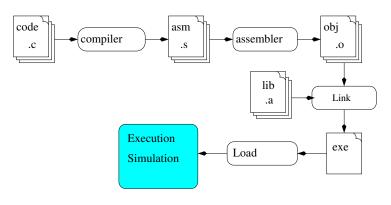
Automate

Architecture

Architecture view from the programmer

Electrons and Logic

• Modern systems allow


History

introduction

- To run multiple independent programs in parallel (process)
- To access memory space larger than physical memory available (virtual memory)
- For the programmer: all this is transparent
 - Only one program runs with very large memory available
- The processor view memory contains:
 - The code to execute
 - Static data (size known at compile time)
 - Dynamic data (size known at runtime: the heap, and the space needed for the execution itself: the battery)
- The programmer sees only the data (static and dynamic)

• the complete process will translate a C program into code executable (loading and execution will take place later).

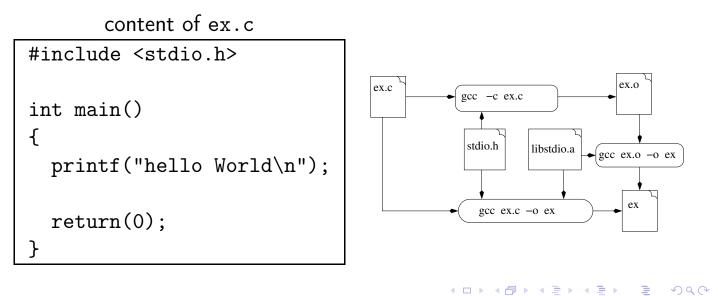
- We often call *compilation* the set compiler + assembler
- The gcc compiler also includes an assembler and linking process (accessible by options)

1

Your compilation process

History Electrons and Logic

• The programmer:


000

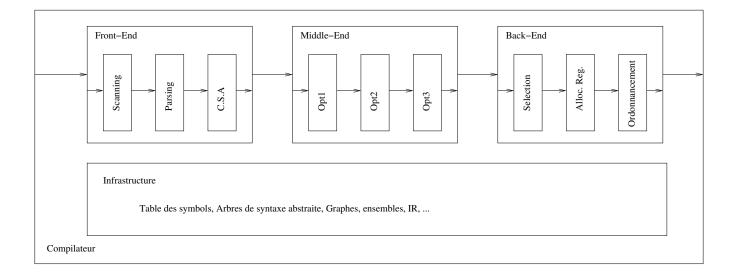
introduction

0000

• Write a program (say a C program: ex.c)

- Compiles it to an object program ex.o
- links it to obtain an executable ex

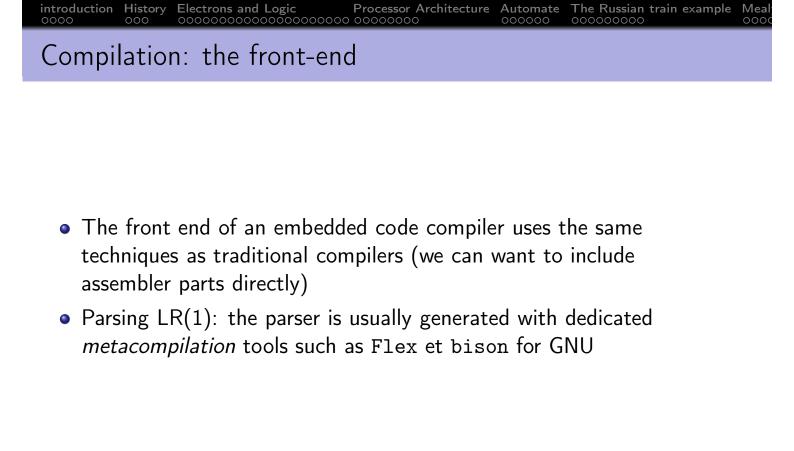
Processor Architecture


Automate

The Russian train example

Mea

		Tanguy Risset	ARC: Computer Ar	chitecture		i	137
introduction 0000		Electrons and Logic	Processor Architecture		The Russian tra	ain example	Meal 0000
Zoomi	ng o	n "compilation"					

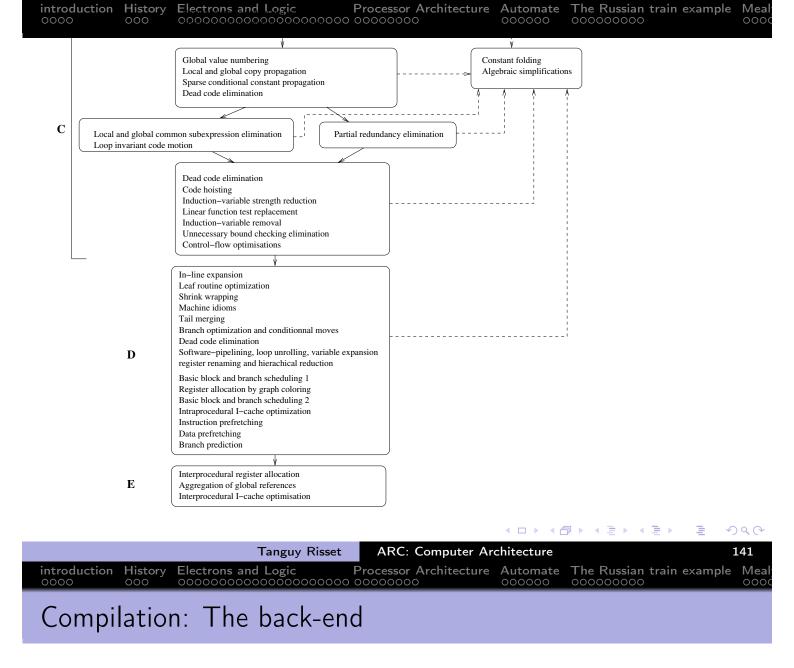

• The compilation process is divided in 3 phases:



<ロ > < 回 > < 回 > < 回 > <

< ∃ >

æ



- Some phases of optimizations are added, they can be very calculative
- Some example of optimisation independent of the target machine architecturre
 - Elimination of redundant expressions
 - dead code elimination
 - constant propagation
- Warning: optimization can hinder the understanding of the assembler (use the -O0 options with tt gcc)

<⊡ > < ⊡ >

< □ ▶

< ∃ >

- The code generation phase is dedicated to architecture target. Retargetable compilation techniques are used for architectural families.
- The most important steps important are:
 - Code selection
 - Register allocation
 - instruction scheduling

< 🗆 🕨

< 47 ►

< ⊒ >

< ⊒ →

0000	History 000	OCCORDENSION OCCORDENSION	OOOOOOO	00000000000000000000000000000000000000	0000
GCC					

- The gcc command runs several program depending on the options
 - The pre-processer cpp
 - The compiler cc1
 - The assembleur gas
 - The Linker 1d
- gcc -v allow to visualize the different programs called by gcc

		Tanguy Risset	ARC: Computer Ar	▶ < ∃ > < ∃ >	i = ↓) 0 14	
introduction		Electrons and Logic				Meal
0000	000		0 0000000			

- the task of the pre-processor are :
 - elimination of comments,
 - inclusion of source files
 - macro substitution (#define)
 - conditionnal compilation.
- Example:

ex1.c

f=MAX(3,b);

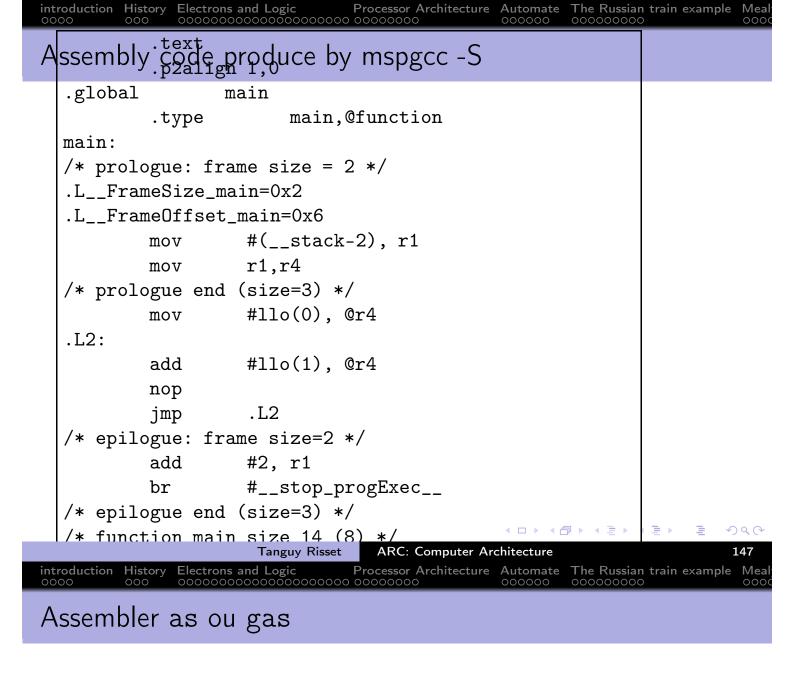
#define MAX(a, b) ((a) > (b) ? (a) : (b)) ex1.i ...

$$f=((3) > (b) ? (3) : (b));$$

< <p>I >

The compiler cc1 or gcc -S

- generate assembly code
- gcc -S main.c -o main.S
- Exemple :


```
void main()
{ int i;
    i=0;
    while (1)
    {
        i++;
        nop();
    }
}
```

introduction History Electrons and Logic Processor Architecture Automate The Russian train example

mov	#2558, SP	; stack initialization de la pil
mov	r1, r4	; r4 <- SP
mov	#0, 0(r4)	; i initialization
inc	0(r4)	; i++
nop		; nop();
jmp	\$-6	; unnconditionnal jump (PC-6):
incd	SP	;
br	#0x1158	;

▲□▶ ▲□▶ ▲ ≧▶

< ∃ >

- transform an assembly code into object code (binaire representation of symbolic assembly code)
- Option -c of gcc allow to conbine compilation et assembly gcc -c main.c -o main.o

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

```
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Meal
```

- Produce the executable (a.out by default) from object code of programs and library used
- There are two ways to use libraries in a program
 - Dynamic or shared libraries (default option): the code of the library is not included in the executable, the system dynamically loads the code of the library in memory when calling the program. We need than only *one* version of the library in memory even if several programs use the same library. The library must be em installed on the machine, before running the code.
 - Static libraries: the code of the library is included in the executable. The executable file is bigger but you can run it on a machine on which the library is not installed.

					₽ ► ★ 큰 ► ★ 큰 ►) Q (?
		Tanguy Risset	ARC: Computer Ar	chitecture			149
introduction 0000		Electrons and Logic				example	Meal: 0000
Binary	file	manipulation					

Some usefull command:

```
nm
Allow to know symboles (i.e. label: function names) used in an
object file or executable
trisset@hom\$ nm fib.elf | grep main
000040c8 T main
objdump allow to anlayze a binary file. For instance it can get
correspondance between binary representation and assembly code
trisset@hom$ objdump -f fib
fib: file format elf32-msp430
architecture: msp:43, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x00001100
```

< <p>>

A