
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

ARC: Computer Architecture
tanguy.risset@insa-lyon.fr
Lab CITI, INSA de Lyon
Version du April 29, 2024

Tanguy Risset

April 29, 2024

Tanguy Risset ARC: Computer Architecture 1
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 2

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

ARC course presentation

Schedule:
Course 6h
labs (TP) 20h
Evaluation (In french): un QCM et un devoir papier en fin de cours

skills and knowledge learned in ARC cours:
Bolean logic, arithmetics
combinatorial and sequential logic circuits, automata.
Processor architecture, datapath, compilation process, RISC architecture
Assembly code, link with high level programming languages
Simple processor design, simple assembly program analysis.
Link with compilation, operating systems and programming

Moddle (open): frames, labs, various document
Course based on the two IF architecture course: AC and AO (open
courses on Moodle).

Tanguy Risset ARC: Computer Architecture 3
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

From electron to Von-Newman CPU

Problem

Program

Architecture/ISA

Logic

Electrons B

C

E

A

B
S

C

C= A & B

S=A ^ B

load R1, @R2

Add R1, R3

 Software

Instruction
Fetcher

Memory
Interface

Instruction
Decoder

Registers

to
memory

ALU

 Software

 Human

Tanguy Risset ARC: Computer Architecture 4

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Computer architecture usefulness

How to solve a problem with electrons:
ARC is useful

For general knowledge of a computer
scientist
To understand pro/cons of modern
complex architectures
For embedded system programming

Problem

Program

Architecture/ISA

Logic

Electrons

Tanguy Risset ARC: Computer Architecture 5
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 6

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

History of computing

Ancient time: various arithmetics
systems
17th century (Pascal and Leibniz):
notion of mechanical calculator
1822 Charles Babbage Difference
engine (tabulate polynomial
functions)
1854 Georges Boole proposes the
so-called Boolean logic.
(More details on the poly or on
Internet)

from Yale Babylonian Collection, ≃ 1600 BC

http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html

Difference Machine close-up

By By Carsten Ullrich - Own work, CC BY-SA 2.5

Tanguy Risset ARC: Computer Architecture 7
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

History of computers

1936: Alan Turing’s PhD on a
universal abstract machine
1941: Konrad Suze builds the Z3
first programmable computer
(electro-mechanic)
1946: ENIAC is the first electronic
calculator
1949: Turing and Von Neumann
build the first universal electronic
computer: the Manchester Mark 1
(More details on the poly or on
Internet)

Alan Turing

Z3 computer at Deutches Museum, Munich

By Venusianer, CC BY-SA 3.0

Manchester Mark 1 1948

Tanguy Risset ARC: Computer Architecture 8

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 9
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Transistor

Discovered in 1947 at Bell Labs: (transfer resistor)
Could replace the thermionic triode (vacuum tube) that allow radio
and telephone technologies.
Principle: flow or Interrupt current between Source and Drain,
depending on Gate status

Can be seen as a switch
Wildly used after Integrated
Circuit invention (1958)

Drain

SourceMetal

Oxyd

Gate
semi−conductor

Mosfet technology

Tanguy Risset ARC: Computer Architecture 10

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Popular Transistor technology: CMOS

CMOS: Complementary Metal
Oxide Semiconductor
Two logical levels : 0 = 0V and 1
= 3V
Two types of transistors

nMOS : current flows if gate is 1
pMOS : current flows if gate is 0

Mainly used to realize basic logical
gates (NOT, NAND, NOR, etc.)

mMOS

grille

source

g=1

drain

source

grille g=0

drain

pMOS

1

xx

0

Inverseur porte NAND

1

y
(xy)

x

x

y

0

porte NOR

1

x

y
(x+y)

yx

0

Tanguy Risset ARC: Computer Architecture 11
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Moore’s low

Gordon Moore, co-founder
of Fairchild Semiconductor
and Intel, predicted in “a
doubling every two year in
the number of components
per integrated circuit”
Contributed to world
economic growth
Slow down in 2015 and is
ended now.

Tanguy Risset ARC: Computer Architecture 12

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Boolean functions

Boole Algebra is equipped with three operations
a unary operation, negation, noted NOT;
two binary commutative, associative operations:

conjunction — AND, with 1 as neutral element;
disjunction — OR, with 0 as neutral element;

AND is distributive over OR

If a and b are 2 boolean variables, we write:

NOT(a) = a, AND(a, b) = ab = a.b, OR(a, b) = a + b

Tanguy Risset ARC: Computer Architecture 13
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Boolean Cheat Sheet

• neutral elements: a + 0 = a, a·1 = a

• absorbing elements: a + 1 = 1, a·0 = 0
• idempotence: a + a = a, a·a = a

• tautology/antilogy: a + a = 1, a·a = 0
• commutativity: a + b = b + a, ab = ba

• distributivity: a + (bc) = (a + b)(a + c), a(b + c) = ab + ac

• associativity: a + (b + c) = (a + b) + c = a + b + c ,
a(bc) = (ab)c = abc

• De Morgan’s law: ab = a + b,
a + b = a·b

• others: a + (ab) = a, a + (ab) = a + b,

a(a + b) = a, (a + b)(a + b) = a

Tanguy Risset ARC: Computer Architecture 14

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Elementary logical gates

x F

Amplifier:
F = x

x F

0 0
1 1

x F

NOT: F = x

x F

0 1
1 0

x

y

F

AND: F =
x y

x y F

0 0 0
0 1 0
1 0 0
1 1 1

x

y

F

NAND:
F = (x y)

x y F

0 0 1
0 1 1
1 0 1
1 1 0

Tanguy Risset ARC: Computer Architecture 15
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Elementary logical gates

x

y

F

OR:
F = x + y

x y F

0 0 0
0 1 1
1 0 1
1 1 1

x

y
F

NOR:
F = (x + y)

x y F

0 0 1
0 1 0
1 0 0
1 1 0

x

y

F

XOR:
F = x⊕y

x y F

0 0 0
0 1 1
1 0 1
1 1 0

x

y

F

XNOR:
F = x ⊙ y

x y F

0 0 1
0 1 0
1 0 0
1 1 1

Tanguy Risset ARC: Computer Architecture 16

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Combinatorical circuit Design

1 Boolean description of the
problem:

Compute y and z from a, b and c
y is 1 if a is 1 or b and c are 1.
z is 1 if b or c is 1 (but not both)
or if a, b et c are 1.

2 Truth table
3 Logic equation

y = abc + abc + abc + abc + abc
z = abc + abc + abc + abc + abc

4 Optimized logic equations
y = a+ bc
z = ab + bc + bc

5 logic gates

input output
a b c y z
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

a

b

c

z

y

Tanguy Risset ARC: Computer Architecture 17
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Disjunctive Normal Form (DNF)

In Boolean logic, a logical formula in Disjunctive Normal Form
(Forme normale disjonctive in French) if:

It is a disjunction of one or more clauses
where the clauses are conjunction of literals
a literal is a variable, a constant or ’not’ a variable

Otherwise put, it is an OR of ANDs.
Example of DNF:
x .ȳ .z̄ + t̄.u.v
(a ∧ b) ∨ ¬c

Example not in DNF:
(x + y)
a ∨ (b ∧ (c ∨ d))

Tanguy Risset ARC: Computer Architecture 18

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Conjunctive Normal Form (CNF)

In Boolean logic, a formula is in conjunctive normal form (forme
normale conjonctive in French) if:

it is a conjunction of one or more clauses,
where a clause is a disjunction of literals;
a literal is a variable, a constant or ’not’ a variable

Otherwise put, it is an AND of ORs.
Example of CNF:
(x + y + z̄)(x̄ + z)
(a + b̄ + c̄)(d̄ + ā)
x + y

Example not in CNF
(x + y)
x(y + (z .t))

Tanguy Risset ARC: Computer Architecture 19
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

From Truth table to DNF

Back to previous example (z is 1 if b or c is 1
(but not both) or if a, b et c are 1.)
Truth table on the right, z is 1 if and only if
one of the five condition identified occurs.
It is easy to find a conjunction that is valid in a
unique case: example: ā.b̄.c is 1 if and only if:
a = 0, b = 0 and c = 1 (double arrow on the
right)
by adding all the conjunction valid only on
each of the five cases identified on the right,
we get a DNF formulae that has exactly that
truth table.

input
a b c z
0 0 0 0
0 0 1 1 ⇐
0 1 0 1 ←
0 1 1 0
1 0 0 0
1 0 1 1 ←
1 1 0 1 ←
1 1 1 1 ←

Hence the possible formulae for z : z = abc + abc + abc + abc + abc
How can it be simplified?

Tanguy Risset ARC: Computer Architecture 20

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Simple Boolean optimization: Karnaugh Table (1)

Karnaugh map (tables de Karnaugh) use a “visual” reprentation of a
simple property:
(a.b̄) + (a.b) = a.(b̄ + b) = a

The first step in the method is to transform the truth table (3 or 4
input variables) of the function in a two-dimensional array (split into
two parts of the set of variables)
Rows and columns are indexed by the valuations of the
corresponding variables in such a way that between two rows (or
columns) only one boolean value changes.

In our example (3 variables):

a b 0 0 0 1 1 1 1 0
c
0 0 1 1 0
1 1 0 1 1

Tanguy Risset ARC: Computer Architecture 21
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Simple Boolean optimization: Karnaugh Table (2)

Then, we try to cover all ’1’ of the table by forming groups.
each group contains only adjacent ’1’
must form a rectangle
the number of elements of a group must be a power of two.

each group correspond to a possible optimization of the DNF

In our example:

a b 0 0 0 1 1 1 1 0
c
0 0 1 1 0
1 1 0 1 1

example : Three groups:
ā.b.c̄ + a.b.c̄ simplifies to b.c̄
a.b.c̄ + a.b.c simplifies to a.b
a.b̄.c + ā.b̄.c simplifies to b̄.c

hence z = abc + abc + abc + abc + abc simplifies to
z = a.b + b̄.c + b.c̄

Tanguy Risset ARC: Computer Architecture 22

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Well formed cicruits

As far as combinatorial circuits are concerned, a “Well formed” circuit is:
A logic gate
A wire
Two well formed circuits next to each other
Two well formed circuits, the outputs of one being the inputs of the
other
Two well formed circuits sharing a common input

It can be shown that it correspond to an acyclic graph of logic gates.
No cycles, no ouptuts conected together

Tanguy Risset ARC: Computer Architecture 23
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Usefull combinatorics logic components

n input multiplexer
decoder log(n)→ n

n bits adder
n bits comparator
n bits ALU
etc.

Tanguy Risset ARC: Computer Architecture 24

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Memorizing: latches and Flip-Flops

Set-Reset Latch (SR latch, Bascule RS): When R and S are reset, Q
and Q keep their previous value.

Q

Bascule RS

S

R

Q

S R Q Q
0 1 0 1
1 1 forbidden forbidden
1 0 1 0
0 0 Qn−1 Qn−1

Gated D latch (Flip-flop, register, Bascule D): sample input data on
clock rising edge and keeps the value when clock is 0.

Valeur

��
��
��
��

��

��

�
�
�
�

Horloge

Donnée

Valeur

Tanguy Risset ARC: Computer Architecture 25
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

latches and Flip-Flops: other common representation

Latch (verrou)

1

0
Q

D

Keep

Flip-Flop (register)

1

0e
1

0

Ck

1

0
s

Tanguy Risset ARC: Computer Architecture 26

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Sequential logic

Sequential logic combines logic function and memorizing, it opens the
way to synchronous circuits, automata, programs, algorithms....

n bits register
n bits counter
state machine
CPU
Computer

Tanguy Risset ARC: Computer Architecture 27
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Sequential circuit design

Extremely complex in general.
Many computation models:

Sequential
State machine
control + data-path

task parallelism (communicating tasks)
Data parallelism (data-flow)
Asynchronous circuits

Important notion use every where: finite state machine (automate)

Tanguy Risset ARC: Computer Architecture 28

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Logic in ARC: Digital software

In ARC: use of Digital software
(https://github.com/hneemann/Digital)

Design basic logic components
(TD1)
Design of a memory (sequential
component, TD2)
Design of dedicated circuit:
integer division (TD3).

Tanguy Risset ARC: Computer Architecture 29
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 30

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

What is a Von Neumann machine?

Computer architecture Model (also called Princeton architecture)
proposed after J. Von Neumann report: “First Draft of a Report on
the EDVAC”.
Usually abstracted as a processor connected to a memory
The memory is accessed (randomly) with an address (i.e. unlike a
Turing machine)
The memory contains both data and program (unlike a Harvard
machine).

Tanguy Risset ARC: Computer Architecture 31
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

How does it work?

Compilation, Assembly code and binary code

High Level Language ⇒

int a,b,c;
a = b + c;

Assembly code ⇒

load R0, @b
load R1, @c
add R3,R0,R1
store R3, @a

Binary code ⇒

01001011...10101
01001010...10001

...
10010011...00011

Tanguy Risset ARC: Computer Architecture 32

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Fast compilation thanks to Donald Knuth (and others..)

The programmer:
Write a program (say a C program: ex.c)
Compiles it to an object program ex.o
links it to obtain an executable ex

content of ex.c
#include <stdio.h>

int main()
{
printf("hello World\n");

return(0);
}

ex.o
gcc −c ex.c

ex
gcc ex.c −o ex

stdio.h

ex.c

libstdio.a
gcc ex.o −o ex

Tanguy Risset ARC: Computer Architecture 33
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

Tanguy Risset ARC: Computer Architecture 34
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

Mémoire

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

Tanguy Risset ARC: Computer Architecture 34
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

16 adresse de boot

Tanguy Risset ARC: Computer Architecture 34
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

load R0,[36]

16

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

16

load R0,[36]

7

Tanguy Risset ARC: Computer Architecture 34
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

20

load R1,[40]

7

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

load R1,[40]

20

7

10

Tanguy Risset ARC: Computer Architecture 34
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

10

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

+

10

7

10

Tanguy Risset ARC: Computer Architecture 34
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

10

17

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

28

store R3,[44]

7

10

17

Tanguy Risset ARC: Computer Architecture 34
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

store R3,[44]

28

17

7

10

17

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Computer Architecture in ARC

Design of a simple dedicated circuit in logisim
Study of a simple processor in logisim
Overview of assembly code principles
Compilation basics
embedded system case study

Tanguy Risset ARC: Computer Architecture 35
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Add on: two’s complement representation

Two’s complement (complément à deux) is the most common
representation for negative integers
For a number on N bits:

Positive integers from 0 to 2N−1 − 1 are represented with usual binary
encoding
Negative integer x from −2N−1 to −1 are represented by coding in
binary the positive number 2N − |x |
Hence Negative integers always have the last (i.e. most significant) bit
at 1, and positive always have the last bit at 0

Example with N = 3
Integers between −410 and 310 can be represented
−110 is represented as 1112 (23 − 1 = 7)
−210 is represented as 1102 (23 − 2 = 6)
−410 is represented as 1002 (23 − 4 = 4)

Tanguy Risset ARC: Computer Architecture 36

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Add on: two’s complement representation (2)

Two’s complement have an important property: Addition “classical”
algorithm works (except that the overflow should be ignored).
Example:
−110 + (−210) = 1112 + 1102 = 11012 =(ignoring the
carry/overflow)1012 = −3
−110 + 210 = 1112 + 0102 = 10012 =(ignoring the
carry/overflow)0012 = 1

For x > 0, x ≤ 2N−1, The representation of −x on N bit two’s
complement can be obtained by:

Complementing each bits of x
adding 1 to the resulting integer

Example:
with N = 3 and x = 310 = 0112, complement of x is 1002 adding 1
gives 1012 = −310
With N=8 and x = 9610 = 011000002 complement of x is 10011111,
adding one is −9610 = 101000002, indeed 256− 96 = 160 = 101000002

Tanguy Risset ARC: Computer Architecture 37
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 38

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Automata

Definition (Wikipedia): An automaton is a self-operating machine, or
a machine or control mechanism designed to automatically follow a
predetermined sequence of operations, or respond to predetermined
instructions.
In computer science:

Used in language theory to build compilers
Used in any technical domain: to describe predetermined behaviour.
Used in computer architecture: to design dedicated circuit.
A computer is a specific automaton.

Tanguy Risset ARC: Computer Architecture 39
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Notion d’automate

Un automate est une collection de K états numérotés de 0 à K-1,
ainsi qu’une collection de transitions
Un état particulier est l’état initial.
Tous les états sont soit des états d’acceptation et soit des états de
refus
Les transitions, sont étiquetées
1 soit par des actions (par exemple, je lis la lettre x)
2 soit par des condition (par exemple, la lettre x est présente)

le triplets (état 1, lettre x, état 2) signifie: si je suis dans l’état 1 et
que je lis la lettre x, alors je vais dans l’état 2.

Etat 0

Etat 2

Etat 1

Etat 3

a

a

b

a

b

Tanguy Risset ARC: Computer Architecture 40

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Notion d’automate

Fonctionnement d’un automate
Initialisation de l’automate dans l’état
il lit les lettres du mot une par une

s’il trouve une transition possible, il l’exécute,
sinon il répond «le mot n’appartient pas au langage»;

si l’automate arrive à effectuer des transitions jusqu’à la dernière lettre
du mot, il regarde alors dans quel état il termine:

si l’état appartient à la classe d’acceptation, l’automate répond «le mot
appartient au » (on dit que le mot est reconnu),
sinon, il répond «le mot n’appartiennent pas au langage».

Tanguy Risset ARC: Computer Architecture 41
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Notion de mot reconnu

e

S3s0

f e

S1 S2

S4

u

fee → reconnu
feu → reconnu
fei → non reconnu (impossible de lire ’i’)
fe → non reconnu (arrêt dans un état non final)

Tanguy Risset ARC: Computer Architecture 42

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Link with architecture: Computers are automata

Every computing machine is an automata
Computer are universal in the sense that the program gives much
flexibility in the action performed.
In fact the basic action of a computer is very repetitive:

Read the instruction at $PC in memory
decode the instruction
send the decoding to the ALU (or to memory if it is a load)
increment $PC

Dedicated circuits (ASICs) are automata designed for specific tasks.

Tanguy Risset ARC: Computer Architecture 43
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 44

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Example from the poly

Krasnoe Kerpitchnik aplova
RSLS

A piece of unique train track for both train directions between the
cities T. et K.
Sensors triggered by train weight on rallways will command red lights
when the track is used by a train.
Modeling:

A booleen A (for ‘Ampoule’) indicating the state of the red light
Two booleans (LS for Left Sensor and RS for Rigth sensor) indicating
the states of the sensors
An automaton to command the red lights

Tanguy Risset ARC: Computer Architecture 45
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

The Russian train automaton

NoTrain
A = 0

start

TrLeft
A = 1

TrRight

A = 1
TrLeft2
A = 1

TrRight2

A = 1

LS = 1 RS = 1

RS = LS = 0

LS = 0

LS = 1

LS = 1

LS = 0

RS = 0

RS = 1

RS = 1

RS = 0

Tanguy Risset ARC: Computer Architecture 46

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

The Russian train automaton

NoTrain
A = 0

start

TrLeft
A = 1

TrRight

A = 1
TrLeft2
A = 1

TrRight2

A = 1

LS = 1 RS = 1

RS = LS = 0

LS = 0

LS = 1

LS = 1

LS = 0

RS = 0

RS = 1

RS = 1

RS = 0

Circles are states of the automaton (e.g. NoTrain state models the
cases where no train stand on the track).
States specifies output Values (here only one: A)
Arrows are transitions, labeled by event that triggered them.

Tanguy Risset ARC: Computer Architecture 47
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Back to the Russian train example

NoTrain
A = 0

start

TrLeft
A = 1

TrRight

A = 1
TrLeft2
A = 1

TrRight2

A = 1

LS = 1 RS = 1

RS = LS = 0

LS = 0

LS = 1

LS = 1

LS = 0

RS = 0

RS = 1

RS = 1

RS = 0

The Inputs are RS and LS sensors
Boolean values

The Output is the value of Boolean
A

The functions (Transition and
Output) can be defined by tables ⇒
X means ’don’t care’

s x=(LS, RS) s’=T(s,x)
NoTrain 00 NoTrain
NoTrain 01 TrRight
NoTrain 10 TrLeft
NoTrain 11 XXX
TrRight 0X TrRight
TrRight 1X TrRight2
TrRight2 1X TrRight2
TrRight2 0X NoTrain

s y=F(s)
NoTrain 0
TrRight 1
TrRight2 1

Tanguy Risset ARC: Computer Architecture 48

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Implementation of a synchronous automaton as a circuit

T
R
eg

is
tr

e
d’

ét
at

C
kre
se

t

F/
s ′

/
s

/

s

/ y

/x

s is current state, s’ is next state, x are input bits, y are output bits.
Ck and reset are not considered as inputs
State change will occur on each rising edge of the Clock.

Tanguy Risset ARC: Computer Architecture 49
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Implementation in Logisim

We need to store 5 States, hence we need at least 3 bits:

value (binary) state
100 NoTrain
000 TrRight1
001 TrRight2
010 TrLeft
011 TrLeft2

Tanguy Risset ARC: Computer Architecture 50

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Russian train output function

The output function is easy: A is on iff state is ‘’NoTrain’
s y=F(s)

NoTrain 0
TrRight 1
TrRight2 1

Tanguy Risset ARC: Computer Architecture 51
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Russian train Transition function: more complicater

s x=(LS, RS) s’=T(s,x)
100 (NoTrain) 00 NoTrain
100 (NoTrain) 01 TrRight
100 (NoTrain) 10 TrLeft
100 (NoTrain) 11 XXX
000 (TrRight) 0X TrRight
000 (TrRight) 1X TrRight2
001 (TrRight2) 1X TrRight2
001 (TrRight2) 0X NoTrain
010 (TrLeft) X0 TrLeft
010 (TrLeft) X1 TrLeft2
011 (TrLeft2) X1 TrLeft2
011 (TrLeft2) X0 NoTrain

Tanguy Risset ARC: Computer Architecture 52

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 53
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Comming back to automata

Automata are very widely used in computer science in different
domains.
In ARC we use them to control the execution of dedicated
synchronous circuits
As soon as a dedicated circuit is designed, there is an automaton
designed.

Tanguy Risset ARC: Computer Architecture 54

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Mealy and Moore automata

We have seen a Moore automaton: output only depend on the state
(not on the input), usually simpler to handle.
The most
general form of an automaton has a moore output and a mealy output

Statemealy

transition

moore

inputs

outputs

Tanguy Risset ARC: Computer Architecture 55
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Summery: from Algorithm to Circuit

From algorithm to automata (states and input/output)
From automata to synchronous automata
From synchronous automata to digital design

Tanguy Risset ARC: Computer Architecture 56

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Lab topic: circuit for integer division

n := entrée N
p := entrée P
x := 0
q := 0
tant que x+p 6 n

x := x+p
q := q+1

fin tant que
sortie Q := q

Tanguy Risset ARC: Computer Architecture 57
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Lab topic: proposed circuit to realize it

Tanguy Risset ARC: Computer Architecture 58

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 59
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Study a real ISA: MIPS

We study in more detail a particular assembly code
Course inspired from

Architecture course of Peter Niebert and Séverine Fratani (U. Marseille)
http://pageperso.lif.univ-mrs.fr/~peter.niebert/archi2014.php
MIPS web site https://www.mips.com/
And of Course F. de Dinechin IF Architecture course (with bits of
Christian Wolf)

Tanguy Risset ARC: Computer Architecture 60

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

MIPS Processor

MIPS stands for Microprocessor without Interlocked Pipeline Stages
MIPS designed by MIPS Computer Systems in 1985.
Many version up to today (MIPS I, MIPS II, MIPS III, MIPS IV,
MIPS V and MIPS32, MIPS64 as well)
Used in PC, and servers (DEC, NEC, Silicon Graphics) and for video
games (Nintendo 64, Sony PlayStation, PlayStation 2)
Gave birth to RISC-V, an open-source architecture.

Tanguy Risset ARC: Computer Architecture 61
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

MIPS Processor organisation

a register-to-register (or load/store) architecture
MIPS use 3-adress instructions (destination is the first operand)
32 registers
A program counter ($PC) of 32 bits
an Instruction register ($IR) of 32 bits
Addressable memory of 232 bytes
⇔ 230 words of 4 bytes

Tanguy Risset ARC: Computer Architecture 62

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

understanding MIPS assembly

From C to assembly:
mipsel-linux-gcc prog.c -S -o prog.s

prog.c prog.s

...
i = N*N + 3*N;
...

...
lw $t0, 4($gp) # fetch N
mult $t0, $t0, $t0 # N*N
lw $t1, 4($gp) # fetch N
ori $t2, $zero, 3 # 3
mult $t1, $t1, $t2 # 3*N
add $t2, $t0, $t1 # N*N + 3*N
sw $t2, 0($gp) # i = ...

...

Tanguy Risset ARC: Computer Architecture 63
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

MIPS assembly: compiler optimization (academic)

From C to optimized assembly:
mipsel-linux-gcc prog.c -S -O3 -o prog.s

prog.c prog.s

...
i = N*N + 3*N;
...

...
lw $t0, 4($gp) # fetch N
add $t1, $t0, $zero # cp N to $t1
addi $t1, $t1, 3 # N+3
mult $t1, $t1, $t0 # N*(N+3)
sw $t1, 0($gp) # i = ...
...

Tanguy Risset ARC: Computer Architecture 64

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

MIPS register

32 registers in the register file
Named

by their number: $0 $1 ...$31
or by their name $zero $at $v0 $v1 $a0 ...$a3 ...

$0 ($zero) contains value 0
$a0 ...$a3 are used to pass (first four) arguments of a function call
$v0 $v1 are used to transmit functions result
$s0 ...$s7 and $t0 . . . $t9 are working registers, used for CPU
computations
$sp is the stack pointer
$fp is the frame pointer (explained later)
$ra contains the return address (after the end of current function)
$gp is a pointer to global area
$k0, $k1 and $at are reserved register (for kernel and assembler)

Tanguy Risset ARC: Computer Architecture 65
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

MIPS Memory map

The Memory Map is a
convention to organize
memory that must respect
each code to be compatible
with others.
The MIPS memory map
(very similar to all memory
map) is simple
Here we have only one
physical memory chip: the
RAM.

A

B

Stack Segment

Reserved

Data Segment

Text Segment

Static Data

Dynamic Data

0x7FFFFFF

0x10000000

0x4000000

0x0Tanguy Risset ARC: Computer Architecture 66

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

MIPS assembly addressing mode

Addressing mode means: how the address is computed in an
assembly instruction

format address computation
$register content of register

imm immediate value
imm ($register) immediate + content of register

label addresse of label
label ± imm addresse of label ± immediate value

label ± imm (register) addresse of label ±
(immediate value + content of register)

Tanguy Risset ARC: Computer Architecture 67
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Example of MIPS adressing mode

add $s0, $s2, $s1
puts in $s0 the value of $s1 plus the value of $s2.
$s0=$s1+$s2

addi $s0, $s1, 1
puts in $s0 the value of $s1 plus 1.
$s0=$s1+1

lw $s0, 10($s3)
puts in $s0 the value situated in memory at the address obtained by
adding 10 to the content of $s3.
$s0=Memory[$s3+10]

bne $s0, $s3, label
branch to address of label if values in $s0 and $S3 are different.
if ($s0 != $s3) then $PC=label

Tanguy Risset ARC: Computer Architecture 68

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Format of MIPS instructions

3 types of format: R-Type, I-Types and J-Types
R-types:

rs rd func

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Used for 3-register instructions
op is the operation code or opcode that specifies the operation
rs and rt are the first and second source register
rd is the destination register
shamt is used for shift instruction
func is used with op to select arithmetic operation

Tanguy Risset ARC: Computer Architecture 69
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

I-Types instruction

I-Types instruction are used for load, store, branch and immediate
instruction.

rs

6 bits 5 bits 5 bits
1� ����

Add�e��

rs is a source register (an address) for loads, store
rs is an operand for conditionnal branch
rt is a source register for branch
rt is a destination register for other I-Types instruction
The address field is a 16 bit’s integer in two’s-complement code ,
ranging from -32 768 to 32 767 (remind that this is a problem in many
cases)

Tanguy Risset ARC: Computer Architecture 70

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

J-Types instruction

J-Types instruction are used for Jump to absolute address

op

6 bits 2� ��	

The address field is a 26 bit’s integer containing the address of the
word, hence the real address is obtain by multiplying by four (shifting
two bits).
can jump from address 0 to 228=256MB from $PC.
For longer jump, on can use the instruction jr:
jr $ra
jump to 32 bit address contained in register $ra

Tanguy Risset ARC: Computer Architecture 71
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Basic arithmetic and logic instruction

R-Types instructions: add, sub, mul, div, and, or, xor
add $t0, $t1, $t2 // $t0 = $t1 + $t2
mul $s0, $s1, $a0 // $s0 = $s1 * $a0, pseudo

I-types for immediate operand operation:
addi $t0, $t1, 4 // $t0 = $t1 + 4
addi $t0, $0, 4 // $t0 = 4
li $t0, 4 // $t0 = 4, pseudo

Tanguy Risset ARC: Computer Architecture 72

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Load and store

MIPS load and store operation use indexed addressing
the address operand specifies a signed constant and a register
These values are added to generate effective address

byte instruction: lb and sb transfer one byte
lb $t0, 20($a0) // $t0=Memory[$a0+20]
sb $t0, 20($a0) // Memory[$a0+20]=$t0
sb stores only the lowest byte of operand register

Word instruction: lw and sw operates on word (i.e. 32 bits)
Remind that address have to be aligned to 32 bit world, hence must
be multiple of 4.

Tanguy Risset ARC: Computer Architecture 73
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Branches

Conditional branch
bne $t0, $t1, Label
if $t0 and $t1 have different values, the next instruction to execute is
at address Label
beq $t0, $t1, Label // same thing if $t0=$t1

Unconditionnal branch
j toto // next instruction executed is at address toto
jr $s2 // next instruction executed is at address
contained in $s2

These are the only way of implementing loops in assembly:
li $t2, 0
li $t3, 1
while: beq $t1, $0, done

add $t2, $t1, $t2
sub $t1, $t1, $t3
j while

done:

t2=0
while (t1 != 0) {

t2 = t2 + t1
t1=t1-1

}

Tanguy Risset ARC: Computer Architecture 74

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Function control flow in MIPS

MIPS uses the jump-and-link (jal) instruction to call functions
Example:

jal Fact
saves the return address (i.e. the address of the following instruction) in
the $ra register and jumpt to the address of Fact

At the end of the execution of Fact, the instruction jr $ra jumps
back to the address stored in $ra

Arguments transmited to Fact are stored in registers $a0 ...$a3

Return values of Fact are stored in registers $v0 $v3

Tanguy Risset ARC: Computer Architecture 75
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Who save the register during Function call?

When a function call occurs: jal Fact, who save the register?
The Caller (who knows which register he will use after the call)?
Or the callee (who knows which register he will use during its
execution)?

This convention is part of the calling convetion or ABI application
binary interface.
For MIPS:
$t0 - $t9 $a0 - $a3 $v0 $v1 are caller saved (if needed)
$s0 - $s7 $ra are callee saved (if needed)

Tanguy Risset ARC: Computer Architecture 76

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Function call example with MIPS

Let says: function B calls function C
Function B wants to save $t0, $t1 and $a0 because it will need
them after the return of C.
this is done using the stack via the stack pointer $sp

Tanguy Risset ARC: Computer Architecture 77
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

The Stack

The stack is use to store all local information (in the sense local to
the current function)
That includes (say for function C):

local variable
Callee saved register if needed
Return address (i.e. the instruction following the jal C instruction).
(sometimes) the parameters passed to C
(sometimes) the result of C
In many ISA, the parameters and the results are passed through
dedicated registers

All these data constitute the frame of the fonction instance.
the frame pointeur points to the frame of the current function
For MIPS, the frame pointer is $fp

Tanguy Risset ARC: Computer Architecture 78

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Function B calls C

B ... beguinning of B
...
sw $t0,0($sp) saving $t0 in stack
sw $t1,-4($sp) saving $t1 in stack
sw $a0,-8($sp) saving $a0 in stack
sub $sp,$sp,12 correct stack pointer
jal C call to C function
lw $a0,4($sp) restoring return addresse of B from stack
lw $t1,8($sp) restoring $s1 from stack
sw $t0,12($sp) restoring $s0
add $sp,$sp,12 adjusst stack pointeur value
...
jr $ra end of B
...

Tanguy Risset ARC: Computer Architecture 79
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Sketching code of C function

C:
subu $sp,$sp,40 # C need 40 Bytes for its frame
sw $ra,32($sp) # store return address (inst. in B)
sw $fp,28($sp) # store frame pointer
sw $s0,24($sp) # store $s0 (because C uses it)
move $fp,$sp # $fp <- $sp: frame pointer of C set

....
....

lw $ra,32($sp) # $ra <- return address (in B)
lw $fp,28($sp) # $fp <- frame pointeur of B
lw $s0,24($sp) # restore $s0
addu $sp,$sp,40 # $sp <- $sp+40, restore B stack pointer
j $ra # return to $ra (B function)

Tanguy Risset ARC: Computer Architecture 80

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 81
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Procedure abstraction

Let’s pause a while to come back to high level langage
What is a function (or a procedure)?
How its isolation mecanisme (local variable) is implemented?
This is implemented with a very fundamental mecanism: the Stack
and the Activation Record (or Frame) of each procedure.

Tanguy Risset ARC: Computer Architecture 82

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Notion of procedure

Procedures (or functions) are the basic units for compilers
Three important abstraction:

Control abstraction: parameter passing and result transmission
Memory abstraction: variable lifetime (local variables)
Interface: procedure’s signature

Tanguy Risset ARC: Computer Architecture 83
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Procedure Control Transfer

Transfer mechanism of control between procedures:
when calling a procedure, the control is given to the procedure called;
when this called procedure ends, the control is returned to the calling
procedure.
Two calls to the same procedure create two em independent instances
(or invocations).

two useful graphic representations:
The call graph: represents the information written in the program.
The call tree: represents a particular execution.

Tanguy Risset ARC: Computer Architecture 84

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Call Graphprocedure calc;
begin { calc}

...
end;
procedure call1;

var y...
procedure call2

var z: ...
procedure call3;

var y....
begin { call3}

x:=...
calc;

end;
begin { call2}

z:=1;
calc;
call3;

end;
begin { call1}

call2;
...

end;

Call Graph:

Call1

main

Call2

Call3

Calc

Tanguy Risset ARC: Computer Architecture 85
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Call Tree
procedure calc;
begin { calc}

...
end;
procedure call1;

var y...
procedure call2

var z: ...
procedure call3;

var y....
begin { call3}

x:=...
calc;

end;
begin { call2}

z:=1;
calc;
call3;

end;
begin { call1}

call2;
end;

Call tree for one
particular execu-
tion:

main

Call3

CalcCalc

Call1

Call2

main calls call1
call1 calls call2
call2 calls calc
calc returns to call2
call2 calls call3
call3 callscalc
calc returns to call3
call3 returns to call2
call2 returns to call1
call1 returns to main

Tanguy Risset ARC: Computer Architecture 86

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Execution Stack

The transfer of control mechanism between procedures is
implemented thanks to the execution stack.
The programmer has this vision of virtual memory:

Code static Tas PileMemoire libre

0

(petites adresses)

100000

(grandes adresses)

The heap is used for dynamic allocation.
The stack is used for the management of contexts of procedures
(local variable, etc.)

Tanguy Risset ARC: Computer Architecture 87
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Function call: status of the stack

Before the call after the call
(AR=Activation Record)

ARP

SP

AR procédure

appelante

⇒

SP

ARP

AR procédure

appelante

AR procédure

appelée

Tanguy Risset ARC: Computer Architecture 88

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Activation record

Calling a procedure: Stacking the activation record (or frame).
Need of a dedicated pointer for that: the activation record pointer
(ARP) or frame pointeur ($fp))
The frame allows to set up the context of the procedure.
This frame contains

The space for local variables declared in the procedure
Information for restoring the context of the calling procedure:

Pointer to the frame of the calling procedure (ARP or FP for em frame
pointer).
Address of the return instruction (statement following the call of the
appellant proceedings).
Eventually save the state of the registers at the time of the call.

Tanguy Risset ARC: Computer Architecture 89
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Content of the Frame

SP

ARP

AR procédure

appelante

AR procédure

appelée

Parametres

Sauvegarde des registres

Résultat

ARP appelant

Adresse de retour

Variables locales

Tanguy Risset ARC: Computer Architecture 90

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Return to calling function

avant le retour aprÃ¨s le retour

SP

ARP

AR procédure

appelante

AR procédure

appelée

⇒

ARP

SP

AR procédure

appelante

Tanguy Risset ARC: Computer Architecture 91
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 92

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Coming back to previous call example with B and C

Let says: function B calls function C
Function B wants to save $t0, $t1 and $a0 because it will need
them after the return of C.
this is done using the stack via the stack pointer $sp

Tanguy Risset ARC: Computer Architecture 93
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

The Stack

The stack is use to store all local information (in the sense local to
the current function)
That includes (say for function C):

local variable
Callee saved register if needed
Return address (i.e. the instruction following the jal C instruction).
(sometimes) the parameters passed to C
(sometimes) the result of C
In many ISA, the parameters and the results are passed through
dedicated registers

All these data constitute the frame of the fonction instance.
the frame pointeur points to the frame of the current function
For MIPS, the frame pointer is $fp

Tanguy Risset ARC: Computer Architecture 94

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Function B calls C

B ... beguinning of B
...
sw $t0,0($sp) saving $t0 in stack
sw $t1,-4($sp) saving $t1 in stack
sw $a0,-8($sp) saving $a0 in stack
sub $sp,$sp,12 correct stack pointer
jal C call to C function
lw $a0,4($sp) restoring return addresse of B from stack
lw $t1,8($sp) restoring $s1 from stack
sw $t0,12($sp) restoring $s0
add $sp,$sp,12 adjusst stack pointeur value
...
jr $ra end of B
...

Tanguy Risset ARC: Computer Architecture 95
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Sketching code of C function

C:
subu $sp,$sp,40 # C need 40 Bytes for its frame
sw $ra,32($sp) # store return address (inst. in B)
sw $fp,28($sp) # store frame pointer
sw $s0,24($sp) # store $s0 (because C uses it)
move $fp,$sp # $fp <- $sp: frame pointer of C set

....
....

lw $ra,32($sp) # $ra <- return address (in B)
lw $fp,28($sp) # $fp <- frame pointeur of B
lw $s0,24($sp) # restore $s0
addu $sp,$sp,40 # $sp <- $sp+40, restore B stack pointer
j $ra # return to $ra (B function)

Tanguy Risset ARC: Computer Architecture 96

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

MIPS Assembly for programme fib

Fibbonacci suite program:
int fib (int i)
{

if (i<=1) return(1);
else return(fib(i-1)+fib(i-2));

}

int main (int argc, char *argv[])
{

fib(2);
}

Tanguy Risset ARC: Computer Architecture 97
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Assembleur MIPS pour programme fib

fib:
.frame $fp,40,$ra # vars= 8, regs= 3/0, args= 16, extra= 0
.mask 0xc0010000,-8
.fmask 0x00000000,0
subu $sp,$sp,40 # SP <- SP-40 :AR de 40 octet (10 mots)
sw $ra,32($sp) # stocke adresse retour SP+32
sw $fp,28($sp) # stocke ARP appelant SP+28
sw $s0,24($sp) # sauvegarde registre $s0
move $fp,$sp # ARP <- SP
sw $a0,40($fp) # stocke Arg1 dans la pile (ARP+40)
lw $v0,40($fp) # charge Arg1 dans $v0
slt $v0,$v0,2 # $v0 <- 1 si $v0<2 0 sinon
beq $v0,$0,$L2 # branch L2 si $v0==0
li $v0,1 # $v0 <- 0x1 ($v0 sera le registre contenant le res)
sw $v0,16($fp) # stocke le resultat dans la pile
j $L1 # saute Ã L1

$L2:
lw $v0,40($fp) # charge Arg1 dans $v0
addu $v0,$v0,-1 # retranche 1
move $a0,$v0 # $a0 <- $v0 ($a0 contient Arg1 pour l’appel recursif)
jal fib # jump and link fib ($ra<-next instr)
move $s0,$v0 # $s0 <- $v0 ($v0: res appel fib)
lw $v0,40($fp) # charge Arg1 dans $v0
addu $v0,$v0,-2 # retranche 2
move $a0,$v0 # $a0 <- $v0 ($a0: contient Arg1 pour l’appel recursif)
jal fib # jump and link fib ($ra<-next instr)
addu $s0,$s0,$v0 # $s0 <- $s0+$v0 ($v0: res appel fib)
sw $s0,16($fp) # stocke le resultat dans la pile

Tanguy Risset ARC: Computer Architecture 98

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Assembleur MIPS pour programme fib
$L1:

lw $v0,16($fp) # $v0 <- resultat
move $sp,$fp # SP <- ARP
lw $ra,32($sp) # $ra <- adresse retour
lw $fp,28($sp) # ARP <- ARP appelant
lw $s0,24($sp) # restaure $s0
addu $sp,$sp,40 # SP->SP+40
j $ra # jump adresse retour
.end fib
.align 2
.globl main
.ent main

main:
.frame $fp,24,$ra # vars= 0, regs= 2/0, args= 16, extra= 0
.mask 0xc0000000,-4
.fmask 0x00000000,0

partie ajoutÃ©e pour afficher le resultat
.data
str: .asciiz "Le resultat est "
.text

subu $sp,$sp,24 # SP <- SP-24 :AR de 24 octet (6 mots)
sw $ra,20($sp) # stocke adresse retour SP+20
sw $fp,16($sp) # stocke ARP appelant SP+16
move $fp,$sp # ARP <- SP
sw $a0,24($fp) # stocke Arg1 dans la pile (ARP+24)
sw $5,28($fp) # stocke Arg2 dans la pile (ARP+48)
li $a0,2 # $a0 <- 2 ($a0: Arg1)
jal fib # jump and link fib ($ra<-next instr)

partie ajoutÃ©e pour afficher le resultat
move $16,$2 # $16 <- resultat de l’appel a fib
li $v0, 4 # $v0 <- code pour afficher une chaine (4)
la $a0, str # $a0 <- adresse de la chaine a afficher
syscall # affichage de la chaine

Tanguy Risset ARC: Computer Architecture 99
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 100

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Assember directives

.align n Align the next datum on specified byte boundary (0=byte,
2=word, etc.).

.ascii str store the string in memory, but do not null-terminate it.
.asciiz str Store the string in memory and null-terminate it.

.byte b1,..., bn Store the n values in successive bytes of memory.
.data <addr> The following data items should be stored in the data seg-

ment
.double d1,..., dn Store the n floating point double precision numbers in suc-

cessive memory locations.
.extern sym size Declare that the datum stored at sym is size bytes large

and is a global symbol.
.globl sym Declare that symbol sym is global and can be referenced

from other files.
.space n Allocate n bytes of space in the current segment.

.text <addr> The next items are put in the user text segment.
.word w1,..., wn Store the n 32-bit quantities in successive memory words.

Tanguy Risset ARC: Computer Architecture 101
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

example 1 (Fratini/Niebert)

bne $s0, $s1, Test
add $s2, $s0, $s1

Test:

Tanguy Risset ARC: Computer Architecture 102

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

example 2 (Fratini/Niebert)

beq $s4, $s5, Lab1
add $s6, $s4, $s5
j Lab2

Lab1:sub $s6, $s4, $s5
Lab2:

Tanguy Risset ARC: Computer Architecture 103
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

example 3 (Fratini/Niebert)

li $t2, 0
li $t3, 1

while:beq $t1, $0, done
add $t2, $t1, $t2
sub $t1, $t1, $t3
j while

done:

Tanguy Risset ARC: Computer Architecture 104

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

example 4 (U. Illinois)

.data
var1: .word 23 # declare storage for var1; initial

value is 23

.text
__start:

lw $t0, var1 # load contents of RAM location into
register $t0: $t0 = var1

li $t1, 5 # $t1 = 5 ("load immediate")
sw $t1, var1 # store contents of register $t1

#into RAM: var1 = $t1
done

Tanguy Risset ARC: Computer Architecture 105
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

example 5 (U. Illinois)

.data
array1: .space 12 # declare 12 bytes of storage to

hold array of 3 integers
.text

__start: la $t0, array1 # load base address of array
#register $t0

li $t1, 5 #$t1 = 5 ("load immediate")
sw $t1, ($t0) #first array element set to 5;

#indirect addressing
li $t1, 13 #$t1 = 13
sw $t1, 4($t0) #second array element set to 13
li $t1, -7 #$t1 = -7
sw $t1, 8($t0) #third array element set to -7

done

Tanguy Risset ARC: Computer Architecture 106

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Documentation on MIPS assembly

More precise documentation on MIPS assembly code can be obtained
at:

http://igm.univ-mlv.fr/ens/IR/IR1/2007-2008/Archi/ManuelSPIM.php (brief documentation
from U. Marne la vallÃ©e)
http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm (brief documentation
from U. of illinois at Chicago).
https://en.wikibooks.org/wiki/MIPS_Assembly, wikibook
https://www.cs.unibo.it/~solmi/teaching/arch_2002-2003/AssemblyLanguageProgDoc.pdf, MIPS
Assembly langage programmer’s Guide.

Tanguy Risset ARC: Computer Architecture 107
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Table of Contents

1 introduction
2 History
3 Electrons and Logic
4 Processor Architecture
5 Automate
6 The Russian train example
7 Mealy and Moore Automata
8 MIPS ISA
9 Function, procÃ©dure et Pile d’execution
10 Coming back to MIPS
11 Some additionnal useful information

Example of MIPS code
12 Pipelining RISC instructions: the “Von Neumann” cycle

Tanguy Risset ARC: Computer Architecture 108

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

Tanguy Risset ARC: Computer Architecture 109
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

Tanguy Risset ARC: Computer Architecture 109

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

Mémoire

Tanguy Risset ARC: Computer Architecture 109
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

Tanguy Risset ARC: Computer Architecture 109

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

Tanguy Risset ARC: Computer Architecture 109
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

16 adresse de boot

Tanguy Risset ARC: Computer Architecture 109

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

load R0,[36]

16

Tanguy Risset ARC: Computer Architecture 109
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

16

load R0,[36]

7

Tanguy Risset ARC: Computer Architecture 109

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

20

load R1,[40]

7

Tanguy Risset ARC: Computer Architecture 109
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

load R1,[40]

20

7

10

Tanguy Risset ARC: Computer Architecture 109

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

10

Tanguy Risset ARC: Computer Architecture 109
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

+

10

7

10

Tanguy Risset ARC: Computer Architecture 109

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

10

17

Tanguy Risset ARC: Computer Architecture 109
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

28

store R3,[44]

7

10

17

Tanguy Risset ARC: Computer Architecture 109

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Program execution on a Processor (8 general purpose
registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

store R3,[44]

28

17

7

10

17

Tanguy Risset ARC: Computer Architecture 109
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

The “Von Neumann cycle”

The so-called Von Neumann cycle is simply the decomposition of the
execution of an instruction in several independent stages.
The number of stages depend on the processor, usually 5 stages are
commonly used as example:

Instruction Fetch (IF)
Reads the instruction from memory (at address $PC) and write it in $IR.

Instruction Decode (ID)
computes what needs to be computed before execution: jump address
destination, access to register, etc.

Execute (EX)
executes the instruction: ALU computation if needed

Memory Access (MEM)
Loads (or stores) data from memory if needed

Write Back (WB)
Writes the result into the register file if needed

Tanguy Risset ARC: Computer Architecture 110

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

The MIPS example

The RISC paradigm was invented by Berkeley and popularized by
Henessy and Patterson in the book on MIPS
MIPS stands for Microprocessor without Interlocked Pipeline Stages
and propose and architecture to execute each stage independently

from MIPS website https://www.mips.com/

Tanguy Risset ARC: Computer Architecture 111
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Christian Wolf’s slides

Use Christian Wolf slides for explaining MIPS instruction pipeline
Here

Tanguy Risset ARC: Computer Architecture 112

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

example of MIPS pipeline CPU architecture

Taken from Henessy/patterson book

Tanguy Risset ARC: Computer Architecture 113
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Illustration of bubble on MIPS

When next instruction cannot be fetched directly (because it need
the result of previous instruction for instance) it creates a “bubble”
For instance: an addition using a register that was just loaded
The value of the register will be available after the MEM stage of
first instruction, hence we can delay on only on cycle, provided there
is a shortcut.

Tanguy Risset ARC: Computer Architecture 114

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Another illustration of instruction pipeline

Go back to our previous representation of the processor and memory:

Von Neumann computer= Memory + CPU
CPU= = control Unit + Datapath
Datapath= ALU + Register file

PC IR

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

Tanguy Risset ARC: Computer Architecture 115
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

A pipeline example from MIPS

Execute the sequence of assemby instruction:
load value at address 500 in register R0
Add 1 to R0 and put result in R1
store value of Register R1 at address 500

(Think of i=i+1)
Code:

la R0,500
add R1, R0, 1
sw R1,500

Tanguy Risset ARC: Computer Architecture 116

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

First possible execution: without pipeline

Before execution starts, $PC contains the address of the first
instruction: 100

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100

Tanguy Risset ARC: Computer Architecture 117
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 1

Instruction Fetch

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 118

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 2

Instruction Decode

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 119
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 3

Execute (nothing for load)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 120

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 4

Memory access

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 121
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 5

Write Back

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

10

Tanguy Risset ARC: Computer Architecture 122

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 6

increment $PC
Fetch next instruction
etc. etc.

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

104 add R0, R1,1

Tanguy Risset ARC: Computer Architecture 123
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Counting CPI for non-pipelined architecture

CPI= Cycle per instruction
5 cycles for executing on instruction
⇒ 15 cycles for 3 instructions.

Tanguy Risset ARC: Computer Architecture 124

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Example of pipelined execution

Instruction Fetch (for ’load’ instruction)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 125
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 2

Instruction Decode (for load)
Instruction Fetch (for ’nothing’ because of a bubble: instruction
’add’ delayed)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

104

load

Tanguy Risset ARC: Computer Architecture 126

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 3

Execute (for load: nothing to do)
Instruction Decode (for ’nothing’)
Instruction fetch (for ’add’)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

104

10

add R1,R0,1

Tanguy Risset ARC: Computer Architecture 127
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 4

Memory access (for load)
Execute (for ’nothing’)
Instruction Decode (for add)
Instruction fetch (for store)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

108

add

load

add

sw R1,500

Tanguy Risset ARC: Computer Architecture 128

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 5

Write Back (instruction load)
Memory access (for ’nothing’)
Execute (instruction add: bypass)
Instruction Decode store

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR
10

116

sw

load

Tanguy Risset ARC: Computer Architecture 129
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 6

Write Back (for ’nothing’)
Memory access (instruction add, nothing to do)
Execute (instruction store: nothing to do)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500

PC IR
10

120

add

sw

10

Tanguy Risset ARC: Computer Architecture 130

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

cycle 7

Write Back (instruction add)
Memory access (instruction store: bypass)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500

PC IR
10

124

add

sw

11

11

Tanguy Risset ARC: Computer Architecture 131
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Counting CPI for both architectures

Non-pipelined architecture:
5 cycles for one instruction
⇒ 15 cycles for 3 instructions.

Pipelined architecture:
5 cycles for one instruction
8 cycles for 3 instructions.
⇒ without bubbles, one instruction per cycle
A ’jump’ instruction interrupt the pipeline (need to wait for the address
decoding to fetch next instruction) ⇒ pipeline stall
Some ISA allow to use these delay slots: one or two instruction after the
jump are executed before the jump occurs.

Tanguy Risset ARC: Computer Architecture 132

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Du langage à l’exécution

Tanguy Risset ARC: Computer Architecture 133
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Rappels d’architecture

Main

memory

I/O

controller

I/O

controller

I/O

controller

Disk Graphics

output

Network

Memory–I/O bus

Processor

Cache

Interrupts

Disk

Dynamic data

Static data

Reserved

Stack segment

Data segment

Text segment

7fffffffhex

10000000hex

400000hex

Tanguy Risset ARC: Computer Architecture 134

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Architecture view from the programmer

Modern systems allow
To run multiple independent programs in parallel (process)
To access memory space larger than physical memory available (virtual
memory)

For the programmer: all this is transparent
Only one program runs with very large memory available

The processor view memory contains:
The code to execute
Static data (size known at compile time)
Dynamic data (size known at runtime: the heap, and the space needed
for the execution itself: the battery)

The programmer sees only the data (static and dynamic)

Tanguy Risset ARC: Computer Architecture 135
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

compilation process

the complete process will translate a C program into code executable
(loading and execution will take place later).

code asm

exe

obj

.o

Simulation

.c .s

.a

lib

compiler assembler

Link

Load

Execution

We often call compilation the set compiler + assembler
The gcc compiler also includes an assembler and linking process
(accessible by options)

Tanguy Risset ARC: Computer Architecture 136

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Your compilation process

The programmer:
Write a program (say a C program: ex.c)
Compiles it to an object program ex.o
links it to obtain an executable ex

content of ex.c
#include <stdio.h>

int main()
{
printf("hello World\n");

return(0);
}

ex.o
gcc −c ex.c

ex
gcc ex.c −o ex

stdio.h

ex.c

libstdio.a
gcc ex.o −o ex

Tanguy Risset ARC: Computer Architecture 137
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Zooming on “compilation”

The compilation process is divided in 3 phases:

S
ca

n
n
in

g

P
ar

si
n
g

C
.S

.A

Front−End

A
ll

o
c.

 R
eg

.

O
p
t2

O
p
t3

Middle−End

O
p
t1

S
el

ec
ti

o
n

O
rd

o
n
n
an

ce
m

en
t

Back−End

Compilateur

Infrastructure

Table des symbols, Arbres de syntaxe abstraite, Graphes, ensembles, IR, ...

Tanguy Risset ARC: Computer Architecture 138

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Compilation: the front-end

The front end of an embedded code compiler uses the same
techniques as traditional compilers (we can want to include
assembler parts directly)
Parsing LR(1): the parser is usually generated with dedicated
metacompilation tools such as Flex et bison for GNU

Tanguy Risset ARC: Computer Architecture 139
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Compilation: The middle-end

Some phases of optimizations are added, they can be very calculative
Some example of optimisation independent of the target machine
architecturre

Elimination of redundant expressions
dead code elimination
constant propagation

Warning: optimization can hinder the understanding of the assembler
(use the -O0 options with tt gcc)

Tanguy Risset ARC: Computer Architecture 140

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy
Interprocedural constant propagation

Procedure specialization and cloning

Sparse conditional constant propagation

Local and global copy propagation

Sparse conditional constant propagation

Dead code elimination

Local and global common subexpression elimination

Loop invariant code motion

Partial redundancy elimination

Dead code elimination

Code hoisting

Induction−variable strength reduction

Linear function test replacement

Induction−variable removal

Unnecessary bound checking elimination

Control−flow optimisations

In−line expansion

Leaf routine optimization

Shrink wrapping

Machine idioms

Tail merging

Branch optimization and conditionnal moves

Dead code elimination

Software−pipelining, loop unrolling, variable expansion

register renaming and hierachical reduction

Register allocation by graph coloring

Basic block and branch scheduling 1

Basic block and branch scheduling 2

Instruction prefretching

Data prefretching

Branch prediction

Interprocedural register allocation

Aggregation of global references

Interprocedural I−cache optimisation

Constant foldingGlobal value numbering

Algebraic simplifications

Intraprocedural I−cache optimization

C

D

E

Tanguy Risset ARC: Computer Architecture 141
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Compilation: The back-end

The code generation phase is dedicated to architecture target.
Retargetable compilation techniques are used for architectural
families.
The most important steps important are:

Code selection
Register allocation
instruction scheduling

Tanguy Risset ARC: Computer Architecture 142

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

GCC

The gcc command runs several program depending on the options
The pre-processer cpp
The compiler cc1
The assembleur gas
The Linker ld

gcc -v allow to visualize the different programs called by gcc

Tanguy Risset ARC: Computer Architecture 143
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

The pre-processer cpp or gcc -E

the task of the pre-processor are :
elimination of comments,
inclusion of source files
macro substitution (#define)
conditionnal compilation.

Example:

ex1.c
#define MAX(a, b) ((a) > (b) ? (a) : (b))
...
f=MAX(3,b);

ex1.i
#define MAX(a, b) ((a) > (b) ? (a) : (b))
...
f=((3) > (b) ? (3) : (b));

Tanguy Risset ARC: Computer Architecture 144

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

The compiler cc1 or gcc -S

generate assembly code
gcc -S main.c -o main.S

Exemple :
void main()
{ int i;
i=0;

while (1)
{
i++;
nop();

}
}

Tanguy Risset ARC: Computer Architecture 145
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Assembly code generated (for MSP430)

mov #2558, SP ; stack initialization de la pile
mov r1, r4 ; r4 <- SP
mov #0, 0(r4) ; i initialization
inc 0(r4) ; i++
nop ; nop();
jmp $-6 ; unnconditionnal jump (PC-6):
incd SP ;
br #0x1158 ;

Tanguy Risset ARC: Computer Architecture 146

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Assembly code produce by mspgcc -S.text
.p2align 1,0

.global main
.type main,@function

main:
/* prologue: frame size = 2 */
.L__FrameSize_main=0x2
.L__FrameOffset_main=0x6

mov #(__stack-2), r1
mov r1,r4

/* prologue end (size=3) */
mov #llo(0), @r4

.L2:
add #llo(1), @r4
nop
jmp .L2

/* epilogue: frame size=2 */
add #2, r1
br #__stop_progExec__

/* epilogue end (size=3) */
/* function main size 14 (8) */
.Lfe1: Tanguy Risset ARC: Computer Architecture 147

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Assembler as ou gas

transform an assembly code into object code (binaire representation
of symbolic assembly code)
Option -c of gcc allow to conbine compilation et assembly
gcc -c main.c -o main.o

Tanguy Risset ARC: Computer Architecture 148

introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Linking: ld

Produce the executable (a.out by default) from object code of
programs and library used
There are two ways to use libraries in a program

Dynamic or shared libraries (default option): the code of the library is
not included in the executable, the system dynamically loads the code of
the library in memory when calling the program. We need than only one
version of the library in memory even if several programs use the same
library. The library must be em installed on the machine, before running
the code.
Static libraries: the code of the library is included in the executable. The
executable file is bigger but you can run it on a machine on which the
library is not installed.

Tanguy Risset ARC: Computer Architecture 149
introduction History Electrons and Logic Processor Architecture Automate The Russian train example Mealy

Binary file manipulation

Some usefull command:
nm
Allow to know symboles (i.e. label: function names) used in an
object file or executable
trisset@hom\$ nm fib.elf | grep main
000040c8 T main

objdump allow to anlayze a binary file. For instance it can get
correspondance between binary representation and assembly code
trisset@hom$ objdump -f fib

fib: file format elf32-msp430
architecture: msp:43, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x00001100

Tanguy Risset ARC: Computer Architecture 150

