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ARC course presentation

@ Schedule:

o Course 4h
o labs (TP) 20h
o Evaluation (In french): un seul devoir papier en fin de cours

@ skills and knowledge learned in ARC cours:

e Bolean logic, arithmetics
e combinatorial and sequential logic circuits, automata.
e Processor architecture, datapath, compilation process, RISC architecture
e Assembly code, link with high level programming languages
e Simple processor design, simple assembly program analysis.
e Link with compilation, operating systems and programming
e Moddle (open): frames, labs, various document

e Course based on the two IF architecture course: AC and AO (open
courses on Moodle).
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Computer architecture usefulness

Problem
Algorithm
@ How to solve a problem with electrons: Program
o ARC is useful Run-Time system
e For general knowledge of a computer _
scientist Architecture/ISA

e To understand pro/cons of modern
complex architectures
e For embedded system programming

Micro-Architecture

ARC
N

togic

Circuit

Electrons
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History of computing

from Yale Babylonian Collection, ~ 1600 BC

@ Ancient time: various arithmetics
systems

@ 17th century (Pascal and Leibniz):
notion of mechanical calculator

@ 1822 Charles Babbage Difference

eng| ne (ta bU|ate p0|yn0m |a| http://www.math.ubc.ca/ cass/Euclid/ybc/ybc.html
functions)

@ 1854 Georges Boole proposes the
so-called Boolean logic.

@ (More details on the poly or on
Internet)

By By Carsten Ullrich - Own work, CC BY-SA 2.5
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History of computers

@ 1936: Alan Turing’'s PhD on a
universal abstract machine

@ 1941: Konrad Suze builds the Z3
first programmable computer

(electro_mechanic) Z3 computer at Deutches Museum, Munich
@ 1946: ENIAC is the first electronic
calculator

@ 1949: Turing and Von Neumann
build the first universal electronic
computer: the Manchester Mark 1

By Venusianer, CC BY-SA 3.0

@ (More details on the poly or on
Internet)
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Transistor

@ Discovered in 1947 at Bell Labs: (transfer resistor)

e Could replace the thermionic triode (vacuum tube) that allow radio
and telephone technologies.

@ Principle: flow or Interrupt current between Source and Drain,
depending on Gate status

Oxyd Drain
@ Can be seen as a switch Z
. Gate -
e Wildly used after Integrated z semi-conductor
Circuit invention (1958) )
Metal Source

Mosfet technology
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Popular Transistor technology: CMOS

e CMOS: Complementary Metal source source
Oxide Semiconductor grille # l o=l gfﬂle—q# i g=0
@ Two logical levels : 0 = 0V and 1 drain drain
=3V mMOS pMOS
@ Two types of transistors I
o nMOS : current flows if gate is 1 : ey
e pMOS : current flows if gate is 0 X j = X
. . . . y —]
e Mainly used to realize basic logical . Nl
gates (NOT, NAND, NOR, etc.) Inverseur porte NAND
Tanguy Risset ARC: Computer Architecture 11
El d Logi
1
Moore's low
@ Gordon Moore, co-founder Nombre d
of Fairchild Semiconductor o o e
and Intel, predicted in “a B _
. . 1000 000 000 P Fra—
doubling every two year in s 2 (5 Mo g2
108 Bon e (,»’llacnti%ntmrpn :h"m o
the number of components B e
. . - 19 e P Pentium Pro
per integrated circuit A }/m
IntA386
e Contributed to world 10000 —
3088
economic growth T
1000 T T T T T T T
) SlOW down in 2015 and |S 1970 1975 1980 1985 1990 1995 2000 2005 Anjfj[
ended nOW_ — — Loide Moore ------- Double tous les 18 mois Processeurs Intel
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Boolean functions

Boole Algebra is equipped with three operations

@ a unary operation, negation, noted NOT;

@ two binary commutative, associative operations:

e conjunction — AND, with 1 as neutral element;
e disjunction — OR, with 0 as neutral element;

@ AND is distributive over OR

If a and b are 2 boolean variables, we write:

NOT(a) =3, AND(a,b)=ab=a.b, OR(a,b)=a+b

Tanguy Risset ARC: Computer Architecture 13
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Boolean Cheat Sheet

e neutral elements: a+0=a, al=a
e absorbing elements: a+1=1, a0=0
e idempotence: at+a=a, aa=a

e tautology/antilogy: a+a=1 aa=0

e commutativity: at+b=b+a ab=ba
e distributivity: a+ (bc)=(a+b)(a+c), a(b+c)=ab+ ac
e associativity: at+(b+c)=(a+b)+c=a+b+c,
a(bc) = (ab)c = abc
e De Morgan's law: ab=3a+ b,
a+b
e others: a—+(
ala+ b
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Elementary logical gates

X I F x | F X Fl x| F
o 0] 0 :>© 0] 1
Amplitier. 11 NOT: F=x| 1] 0
F=x
x| x|y |F x|y |F
_::}f 000 Xj:pF 001
y 0/1]0 Y 011
AND: F = 11010 NAND: 1]0] 1
Xy 111 F=xy) 110
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Elementary logical gates

) x|y |F x|y | F
) [0l o]o D) ee[0fo]1
S IR R CIRRE
F=x+y F=(x+y)
1(1]1 11110
) x|y |F x|y |F
0l1]1 0]11]0
XOR: T Tol1 XNOR: 11010
F = x®y 11110 F=x0y 7111
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Combinatorical circuit Design

o

© 0

Boolean description of the _
problem: I e
0 0 0 0 0
o Compute y and z from a, b and ¢ e I
e yislifaislorbandcarel. ofrforors
o zis1lif borcisl (butnot both) TT oo 1o
orif a, bet c arel. i i’ é 1 i
Truth table e ——

«

Logic equation

o y = 3abc + abC + abc + abc + abc
e z = abc + abc + abc + abc + abc J
Optimized logic equations
e y=a-+ bE

e z=ab+ bc+ bc

it

|

logic gates
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Disjunctive Normal Form (DNF)

In Boolean logic, a logical formula in Disjunctive Normal Form
(Forme normale disjonctive in French) if:

o It is a disjunction of one or more clauses
o where the clauses are conjunction of literals
o a literal is a variable, a constant or 'not’ a variable

Otherwise put, it is an OR of ANDs,.
Example of DNF:

o X.y.Z+ t.u.v
o (aAb)V—c
Example not in DNF:

o (x+y)
e aV(bA(cVd))
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Conjunctive Normal Form (CNF)

@ In Boolean logic, a formula is in conjunctive normal form (forme
normale conjonctive in French) if:

e it is a conjunction of one or more clauses,
e where a clause is a disjunction of literals;
e a literal is a variable, a constant or 'not’ a variable
@ Otherwise put, it is an AND of OR:s.
@ Example of CNF:
o (x+y+Z)(Xx+2z)
o (a+b+7)(d+3)
e X+Yy
@ Example not in CNF
° (x+y)
o x(y +(z.t))
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From Truth table to DNF

@ Back to previous example (zis 1if bor cis 1
(but not both) or if a, b et c are 1.) input

@ Truth table on the right, z is 1 if and only if
one of the five condition identified occurs.

o

@ It is easy to find a conjunction that is valid in a
unique case: example: 3.b.c is 1 if and only if:
a=0, b=0and ¢ =1 (double arrow on the
right)

@ by adding all the conjunction valid only on
each of the five cases identified on the right,
we get a DNF formulae that has exactly that

truth table. _ B
Hence the possible formulae for z: z = abc + abc + abc + abc + abc

How can it be simplified?

H R R RPROOO O w
R RO O Rk O O

R ORI OOl OoOln
R PP O O KON

T

TTT
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Simple Boolean optimization: Karnaugh Table (1)

Karnaugh map (tables de Karnaugh) use a “visual” reprentation of a
simple property:

(a.b) 4+ (a.b) = a.(b+ b) = a

The first step in the method is to transform the truth table (3 or 4

input variables) of the function in a two-dimensional array (split into
two parts of the set of variables)

Rows and columns are indexed by the valuations of the
corresponding variables in such a way that between two rows (or
columns) only one boolean value changes.

ab||00|101]11|10
C

0 0 1 1 0
1 1 0 1 1

In our example (3 variables):

Tanguy Risset ARC: Computer Architecture 21
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Simple Boolean optimization: Karnaugh Table (2)

Then, we try to cover all '1" of the table by forming groups.

e each group contains only adjacent '1’
e must form a rectangle
e the number of elements of a group must be a power of two.

each group correspond to a possible optimization of the DNF

ab|l00|01|11|10
C

0 0 1 1 0
1 1 0 1 1

example : Three groups:

In our example:

e 3.b.C+ a.b.c simplifies to b.c

® a.b.Cc + a.b.c simplifies to a.b

e a.b.c + 3.b.c simplifies to b.c

hence z = abc + abc + abc + abc + abc simplifies to
z=ab+ b.c+ b.C
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Well formed cicruits

As far as combinatorial circuits are concerned, a “Well formed” circuit is:
@ A logic gate

o A wire

@ Two well formed circuits next to each other

@ Two well formed circuits, the outputs of one being the inputs of the
other

@ Two well formed circuits sharing a common input
It can be shown that it correspond to an acyclic graph of logic gates.

@ No cycles, no ouptuts conected together

Tanguy Risset ARC: Computer Architecture 23
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Usefull combinatorics logic components

@ n input multiplexer
o decoder log(n) — n
@ n bits adder

@ n bits comparator

@ n bits ALU
o

etc.
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Memorizing: latches and Flip-Flops

o Set-Reset Latch (SR latch, Bascule RS): When R and S are reset, Q
and Q keep their previous value.

Q

S R Q Q
0 1 0 1
1 1 forbidden forbidden
Q 1 0 1 0
S 0 0 Qn—1 Qn—1

Bascule RS

e Gated D latch (Flip-flop, register, Bascule D): sample input data on
clock rising edge and keeps the value when clock is 0.

Horloge
* } Valeur
Valeur
Donnée }

Tanguy Risset ARC: Computer Architecture 25
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latches and Flip-Flops: other common representation

e Latch (verrou)

1
— Q
D——0
Keep
B
1
€ 0 — S
]

o Flip-Flop (register) Ck
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Sequential logic

Sequential logic combines logic function and memorizing, it opens the
way to synchronous circuits, automata, programs, algorithms....

@ n bits register
@ n bits counter
@ state machine
o CPU

e Computer

Tanguy Risset ARC: Computer Architecture 27
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Sequential circuit design

@ Extremely complex in general.

@ Many computation models:
e Sequential
e State machine
e control + data-path
o task parallelism (communicating tasks)
o Data parallelism (data-flow)
e Asynchronous circuits

@ Important notion use every where: finite state machine (automate)
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Logic in ARC: Digital software

In ARC: use of Digital software
(https://github.com/hneemann/Digital)

1 : : loneP
@ Design basic logic components ) -
(TD1) |
@ Design of a memory (sequential 0 [0 '-—03_4 e
component, TD2) O -
' vaitp
@ Design of dedicated circuit: s1 [O] 0
integer division (TD3). ) e i
@ Study of a Von Neumann 8-bit
processor (TD4) ;
Tanguy Risset ARC: Computer Architecture 29
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What is a Von Neumann machine?

Central Processing Unit

Control Unit

Output
Device

Input

y Arithmetic/Logic Unit
Device

v

v

v

Memory Unit

e Computer architecture Model (also called Princeton architecture)
proposed after J. Von Neumann report: “First Draft of a Report on
the EDVAC".

@ Usually abstracted as a processor connected to a memory

@ The memory is accessed (randomly) with an address (i.e. unlike a
Turing machine)

@ The memory contains both data and program (unlike a Harvard
machine).
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How does it work?

Compilation, Assembly code and binary code

High Level Language = Assembly code =  Binary code =

int a,b,c; load RO, @b 01001011...10101
a=>b+ c; load R1, Gc 01001010...10001
add R3,R0,R1
store R3, Qa 10010011...00011
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Fast compilation thanks to Donald Knuth (and others..)

@ The programmer:

o Write a program (say a C program: ex.c)
o Compiles it to an object program ex.o
e links it to obtain an executable ex

content of ex.c
#include <stdio.h>

AN N
ex.c €X.0
it o
int main() ;
{ A Y ‘

stdio.h libstdioa | (00 ex o —o ex
printf ("hello World\n"); CP

' ' \

return(o) ; S| gcc eX.c —0 €X | — ex

}
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Program execution on a Processor (8 general purpose
registers)

'
HEEEEEE
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Program execution on a Processor (8 general purpose
registers)

3 '
3 HEEEEEE

4

—

décodeur

RI
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Program execution on a Processor (8 general purpose
registers)

Mémoire

; ¢
; [TITITIT

—

décodeur

RI )

)
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Program execution on a Processor (8 general purpose
registers)

PC | | Mémoire

4
3, ' 8
K 16
HEEEEEN

4

24
28
3
36
40
44
48
52
56
60
64
8, o 68
7

—

décodeur

RI )
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Program execution on a Processor (8 general purpose
registers)

PC | | Mémoire

4
3 ' g
'| EEEEEE 16 load RO,[36]
3, (] 20 load R1,[40]
24 add R3,RO,R1
28 store R3,[44]
32
36 7
40 10
44 XX
48
52
56
60
64

—

décodeur

RI )

72
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Program execution on a Processor (8 general purpose
registers)

PC | 16 <———— adresse de boot Mémoire

| | | | | | | | 16 load RO,[36]
N 20 load R1,[40]

| L 24 add R3,R0,R1
28 store R3,[44]

32
36 7
40 10
44 XX
48
52
56
60
64
8, o 68
72

4

décodeur — —

RI )
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Program execution on a Processor (8 general purpose
registers)

PC | 16 | Mémoire

3 9 20 load R1,[40]
24 add R3|RO,R1

] ] 28 store RB,[44]
32

36
40 10
44 XX
48
52
56
60
64

décodeur — —

|

| load RO,[36] |
RI

72
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Program execution on a Processor (8 general purpose
registers)

PC | 16 | Mémoire

16 load RO,[36]

20 load R1,[40]

24 add R3,R0,R1
28 store R3,[44]

32
36 7

40 10
44 AX
48
52
56
60
64
8, o 68
72

—

décodeur

|

| 1oadRO,[36] |
RI [}
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Program execution on a Processor (8 general purpose
registers)

PC | 20 | Mémoire

\J 20 load R1,[40]
24 add R3|RO,R1

] ] 28 store RB,[44]
32

36
40 10
44 XX
48
52
56
60
64

décodeur — —

|

| load R1,[40] |
RI

72
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Program execution on a Processor (8 general purpose
registers)

PC | 20 | Mémoire

| | | |/ | | | 16 load RO,[36]

3 ] 7V N 20 load R1,[40]
| 0 | 24 add R3,R0,R1

28 store R3,[44]

32
36
40 10
44 AX
48
52
56
60
64
8, o 68
72

4

décodeur — —

|

| loadR1,[40] |
RI [}
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Program execution on a Processor (8 general purpose
registers)

PC | 24 | Mémoire

\J 20 load R1,[40]
24 add R3,R0,R1

] 10 ] 28 store RB,[44]
32

36
40 10
44 XX
48
52
56
60
64

décodeur — —

|

| add R3,RO,R1 |
RI

72
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Program execution on a Processor (8 general purpose
registers)

PC | 24 | Mémoire

EEEEEEE 16 load RO,[36]
Q 20 load R1,[40]

] T ] 24 add R3,RO,R1
28 store R3,[44]

32
36 7
40 10
44 XX
48
52
| addR3,ROR1 | 56
RI ) 60
7 10 €4

8, o+ 63

72

décodeur — —
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Program execution on a Processor (8 general purpose
registers)

PC | 24 Mémoire

3 8
&2 3 16 Toad RO.[36]

3 LTI PTLD ¢ 20 Joad R1,[40]
B 1 B 24 add R3 ROR1

1) 28 store R3,[44]
32
36 7
40 10
44 XX
48
52
56
60
64

décodeur — 17 —

|

| addR3,ROR1 |
RI L}

72
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Program execution on a Processor (8 general purpose
registers)

PC | 28 | Mémoire

| | | | | | | | 16 load RO,[36]

3 ] 7 N 20 load R1,[40]
| 0 L 24 add R3,R0,R1
28 store R3,[44]
32
36
40 10
44 AX
48
52

)
| store R3,[44] | 56
60

RI A "

8, o 68
7

4

décodeur — 17 —
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Program execution on a Processor (8 general purpose
registers)

PC | 28 | Mémoire
0
4
3 ' g
- 3
| | | | | | | | 16 load RO,[36]
3 ] 7 N 20 load R1,[40]
e N o H 24 add R3,RO,R1
|| L 28 store R3,[44]
. 32
décodeur 36 7
40 10
44 xx 17
48 A
) 50
| storeR3,[44] | 56
RI ) 60
64
68
72
76
[}
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Computer Architecture in ARC

@ Design of a simple dedicated circuit in logisim

@ Study of a simple processor in logisim

@ Overview of assembly code principles

@ Compilation basics

@ embedded system case study
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Add on: two's complement representation

@ Two's complement (complément a deux) is the most common
representation for negative integers

@ For a number on N bits:

2N=1 _ 1 are represented with usual binary

Positive integers from 0 to
encoding

Negative integer x from —2V—1 to —1 are represented by coding in
binary the positive number 2N — |x]|

Hence Negative integers always have the last (i.e. most significant) bit

at 1, and positive always have the last bit at 0

@ Example with N =3

Integers between —41¢ and 319 can be represented
—110 is represented as 1115 (23 —1 =7)
—210 is represented as 110, (23 — 2 = 6)
—41 is represented as 1005 (23 — 4 = 4)
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Add on: two's complement representation (2)

@ Two's complement have an important property: Addition “classical”
algorithm works (except that the overflow should be ignored).
@ Example:
o —119 4 (—210) = 1115 4 110, = 1101, =(ignoring the
carry/overflow)101, = —3
o —110+ 210 =111, 4+ 010, = 1001, =(ignoring the
carry/overflow)001, = 1
@ For x > 0, x < 2N=1 The representation of —x on N bit two's
complement can be obtained by:
o Complementing each bits of x
e adding 1 to the resulting integer
e Example:

o with N =3 and x = 319 = 0115, complement of x is 100, adding 1
gives 1012 = —310

e With N=8 and x = 9619 = 01100000, complement of x is 10011111,
adding one is —967,9 = 101000005, indeed 256 — 96 = 160 = 10100000,

Tanguy Risset ARC: Computer Architecture 37
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Automata

o Definition (Wikipedia): An automaton is a self-operating machine, or
a machine or control mechanism designed to automatically follow a
predetermined sequence of operations, or respond to predetermined
instructions.

@ In computer science:

e Used in language theory to build compilers

e Used in any technical domain: to describe predetermined behaviour.
o Used in computer architecture: to design dedicated circuit.

e A computer is a specific automaton.
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Notion d'automate

@ Un automate est une collection de K états numérotés de 0 a K-1,
ainsi qu'une collection de transitions

@ Un état particulier est |'état initial.

@ Tous les états sont soit des états d'acceptation et soit des états de
refus

@ Les transitions, sont étiquetées

@ soit par des actions (par exemple, je lis la lettre x)
@ soit par des condition (par exemple, la lettre x est présente)

o le triplets (état 1, lettre x, état 2) signifie: si je suis dans |'état 1 et
que je lis la lettre x, alors je vais dans I'état 2.

a

\
o
o ds
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Notion d'automate

@ Fonctionnement d'un automate

e Initialisation de I'automate dans |'état
o il lit les lettres du mot une par une

@ s'il trouve une transition possible, il I'exécute,
e sinon il répond «le mot n'appartient pas au langage»;

e si l'automate arrive a effectuer des transitions jusqu'a la derniére lettre
du mot, il regarde alors dans quel état il termine:

@ si |'état appartient a la classe d’'acceptation, |'automate répond «le mot
appartient au » (on dit que le mot est reconnu),
@ sinon, il répond «le mot n'appartiennent pas au langage».
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Notion de mot reconnu
%. f : : e : : e

@ fee — reconnu
@ feu — reconnu
e fei — non reconnu (impossible de lire 1)

e fe — non reconnu (arrét dans un état non final)
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Link with architecture: Computers are automata

@ Every computing machine is an automata
@ Computer are universal in the sense that the program gives much
flexibility in the action performed.

@ In fact the basic action of a computer is very repetitive:

Read the instruction at $PC in memory
decode the instruction
send the decoding to the ALU (or to memory if it is a load)

o
o
o
e increment $PC

@ Dedicated circuits (ASICs) are automata designed for specific tasks.
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Example from the poly

~ § s
__ <>
0e Kerpitchnik k Tchaplova
LS R
R : i

@ A piece of unique train track for both train directions between the
cities T. et K.

@ Sensors triggered by train weight on rallways will command red lights
when the track is used by a train.

@ Modeling:

o A booleen A (for ‘Ampoule’) indicating the state of the red light

o Two booleans (LS for Left Sensor and RS for Rigth sensor) indicating
the states of the sensors

e An automaton to command the red lights
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The Russian train automaton

start

L5=0 LS=1
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The Russian train automaton

LS=0

TrRij ght TrRight2

k/g %\/y\%
RS =1 RS =0

@ Circles are states of the automaton (e.g. NoTrain state models the
cases where no train stand on the track).

e States specifies output Values (here only one: A)

@ Arrows are transitions, labeled by event that triggered them.
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The Russian train example
[e]e]ele] Jelele]e]

Back to the Russian train example

v S x=(LS, RS) || s'=T(s,x)
//9\& NoTrain 00 NoTrain
—~ T NoTrain 01 TrRight
_ b/\_/v%/ NoTrain 10 TrlLeft
NoTrain 11 XXX
@ The Inputs are RS and LS sensors TrRight 0X TrRight
Boolean values TrRight 1X TrRight2
TrRight?2 1X TrRight?2
@ The Output is the value of Boolean TrRight2 0X NoTrain
A
s y=F(s)
@ The functions (Transition and NoTrain 0
Output) can be defined by tables = TrRight 1
@ X means ‘don't care’ TrRight2 1
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The Russian train example
O0000e000

Implementation of a synchronous automaton as a circuit

/
L 5
(9]
ko]
° s o s
T a > ¢ > F —t> Y

(2]
X —f> &
=

=)

a

0 ch)

@ s is current state, s’ is next state, x are input bits, y are output bits.
@ Ck and reset are not considered as inputs

@ State change will occur on each rising edge of the Clock.
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The Russian train example
O00000e00

Implementation in Logisim

@ We need to store 5 States, hence we need at least 3 bits:

State
(36)
value (binary) state

100 NoTrain

000 TrRightl Clear|xl

001 TrRight2

010 TrLeft

011 TrLeft2
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The Russian train example
000000080

Russian train output function

@ The output function is easy: A is on iff state is "'NoTrain’

S y=F(s)
NoTrain 0
TrRight 1

TrRight2 1

0] pAl
521 B
enableﬂJ
. clock

reset
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The Russian train example
OO0000000e

Russian train Transition function: more complicater

S x=(LS, RS) || s'=T(s,x)
100 (NoTrain) 00 NoTrain
100 (NoTrain) 01 TrRight
100 (NoTrain) 10 TrlLeft
100 (NoTrain) 11 XXX
000 (TrRight) 0X TrRight
000 (TrRight) 1X TrRight?2
001 (TrRight2) 1X TrRight?2
001 (TrRight2) 0X NoTrain
010 (TrLeft) X0 Trleft
010 (TrLeft) X1 TrLeft2
011 (TrLeft2) X1 Trleft2
011 (TrLeft2) X0 NoTrain
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Table of Contents

@ Mealy and Moore Automata
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Meal
000(

Comming back to automata

@ Automata are very widely used in computer science in different
domains.

@ In ARC we use them to control the execution of dedicated
synchronous circuits

@ As soon as a dedicated circuit is designed, there is an automaton
designed.
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Mealy and Moore automata

@ We have seen a Moore automaton: output only depend on the state
(not on the input), usually simpler to handle.

@ The most

general form of an automaton has a moore output and a mealy output
inputs

transition

mealy

moore

outputs
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Meal

(e]e]e)

Summery: from Algorithm to Circuit

@ From algorithm to automata (states and input/output)
@ From automata to synchronous automata

@ From synchronous automata to digital design
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Meal
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Lab topic: circuit for integer division

:= entrée N
:= entrée P
o)
0

ant que x+p

GO T B
I

X = X+p

q := q+l
fin tant que
sortie @ := q

I\
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Meal
O00(

Lab topic: proposed circuit to realize it

go Qo ok ok
reset reset — l[ggg¥ :
Contrble — ResetX
— LoadP
PP — LoadQ
— ResetQ
P
ck |
registre N
N : 5 b al-¥
" A<B?
LoadN _{L —
PAN
CK I
registre X
8 o al-%
LoadX L
ResetX _| By
Lok |
registre P
p__ g o als
: LoadP _{L
N
CK |
| Q
registre Q
8 D af—> +1
LoadQ L
ResetQ _| R/\
I S
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@ Instruction Set Architecture (ISA, assembleur in French)
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Set Architecture Statement (ISA)

@ The instruction set (Set Architecture statement: ISA) is of

paramount importance

o It determines the basic instructions executed by the CPU.

e It's a balance between the hardware complexity of the CPU and the
ability to express the required actions

o It is represented in a symbolic way: the assembly code/language (ex:
ADD R1,R2)

o The tool that translates symbolic assembly code in binary code (i.e.
machine code) is also called the assembler

@ Two types of ISA:

o CISC: Complex Instruction Set Computer
e RISC: Reduce Instruction Set Computer
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CISC: Complex Instruction Set Computer

@ An instruction can code several elementary operations

o Ex: aload, an add and a store (in memory operations)
e Ex: computer a linear interpolation of several values in memory

@ Need a mode complex hardware (specifically hardware accelerators)
@ High variability in size and execution time for different instructions
@ Produce a more compact code but more complex to generate

e Vax, Motorola 68000, Intel x86/Pentium
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Example: instructions ISA of Pentium

JE EIP + displacement
4 4 8

‘ JE Condition Displacement

Call
8 32

‘ CALL ‘ Offset

Mov $EBX, [EDI+displacement]
6 11 8 8

r—m postbyte Displacement

‘ MOV ‘ d‘ w

Push ESI
5 3

PUSH Reg

Add $EAX, Immediate
4 3 1 32

Reg

‘ ADD w‘ Immediate

Test $EDX, Immediate
7 1 8 32

‘ TEST ‘ w‘ PostByte Immediate ‘
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RISC: Reduced Instruction Set Computer

@ Small simple instructions, all having the same size, and (almost) the
same execution time.

@ no complex instruction

@ Clock speed increase with pipelining (between 3 and 7 pipeline
stages)

@ Code simpler to generate but less compact

@ Every modern processor use this paradigm: SPARC, MIPS, ARM,
PowerP(C, etc.
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IR S s T 00
Example: instructions of MSP430 ISA

1 operand instruction

5 [ 14 | 13 |12 T 10 9 [ s [ 7 6 5 4 3 2 [ 1 To
0 0 0 1 0 0 opcode B/W Ad Dest reg.
relative Jumps
5 14 | 3 iz [ o 9o [ 8 [ 7 16 [ 5 [ 43 211 1o
0 0 1 condition PC offset (10 bits)
2 operands instruction
5 14 | 3 iz [ Jw] 9 ]38 7 6 | 5 | 4 3 2 [ 1 Jo
opcode Dest reg. Ad B/W As Dest reg.
Examples:
@ PUSB.B R4
e JNE -56

e ADD.W R4,R4
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Exemple of Pentium ISA

@ Write a simple C program toto.c

@ Type gcc -S toto.c and get the

toto.s file

@ you can also use the compiler

explorer:
https://gcc.godbolt.org/

Tanguy Risset

main() {

int i=17;

i=i+42;

printf ("%d\n", i);
+

=

(... instructions ...)
movl $17, -4(%rbp)

addl $42, -4(%rbp)

(... printf params... )
call printf

(... instrucitons ...)
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Disassemby

@ compile the assembly code: gcc toto.s -o toto

@ disassemble with objdump:
objdump -d toto

Adresses
(..
40052c:
40052d:
400530:
400534 :
40053b:
400531 :
400542:

)

hoCooL)

Instructions binaires

55
48
48
c’
83
8b
89

89
83
45
45
45
c6

ed
ec
fc
fc
fc
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10
11 00 00 00
2a

Assembleur
push  Yrbp
mov hrsp, hrbp

sub $0x10,%rsp

movl  $0x11,-0x4(%rbp)
addl  $0x2a,-0x4 (%rbp)
mov -0x4 (%rbp) , heax
mov %heax,fhesi

ARC: Computer Architecture



common properties of ISA

@ An ISA first defines the types of data on which the processors can
compute (32 bit memory addresses, integer of various sizes, etc.)

@ Then it contains various types of instructions:

o Computation instructions (add, sub, or, and, ...), with various number
of operands

Memory addessing instructions (load, store)

stack management instructions (push, pop)

Flow control instructions (jumps)

subroutine calls
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Table of Contents

© The RISCV ISA example
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RISC-V history

@ The RISC paradigm was invented 1980 David Patterson (UC
Berkeley) and John Hennessy (Stanford U.).

@ They described the MIPS architecture in their books “Computer
Organization and Design” and “Computer Architecture: A
Quantitative Approach.”

@ The MIPS was built by a commercial compagny (MIPS was in
Nintendo 64, Sony PlayStation, PlayStation 2) and use in many
architecture courses (including 3TC-ARC!).

@ Hennessy and Patterson received the ACM A.M. Turing Award in
2017 (https://amturing.acm.org/byyear.cfm).

From 1980 to 2010, the development of the fifth generation of the RISC
research project started and,led to the RISC-V (pronounced “risk-five").
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IR S s T 00
RISC-V project

@ RISC-V is an open instruction set architecture (ISA), this is fairly
new!

@ RISC-V International is a global nonprofit organization that owns
and maintains the RISC-V ISA intellectual property.

@ Its members range from individuals to organizations like Google,
Intel, and Nvidia.

Industry innovation on RISC-V

A
Hardware
- RVe4, muiti-heart
CPUs, vectors,
Hardware bit manipulation,
- RW32, privilege hypervisers, debug mode -
. modes, ll]EEI'i'UPES -
Hardware Al .SGC.S
- RV32 - 10T SaCs Application
Microcontrollers processors
I . Cancept SoCs
2 ki, N ; Software Software
] anagement, RTOS Llln_ux
: nications; ... . Firmware Drivers
- re 1‘ Al Compilers
o re !
U
2010 - 2016 20 3 2019 - 2020 2021 ——»

v RISC

(from https://www.allaboutcircuits.com/)
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RISC-V Processor

RISC-V is specified by its ISA (RV32l, for integer 32 bits for
instance).

Many extension of the ISA are specified (32 bits, 64 bits, 128 bits,
Atomic Instructions, Compressed Instructions, etc.)

The architecture can be pipelined or not, it can target small
embedded systems or large powerfull machines.

Each processor compagny can build it own RISC-V implementation
as long as it respect the ISA specification.

We will study the RV32l base integer ISA that implements the
necessary operations to achieve basic functionality with 32-bit
integers.
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S T e =l
RISC-V ISA basics (RV32)

a register-to-register (or load/store) architecture
RISC-V use 3-adress instructions (destination is the first operand)
32 32-bits registers (x0-x31) plus a A program counter (pc) of

register can be name x0, x1, etc. or with their more explicit ABI
names: x0 is “zero”, x1 is ra (return adress), etc
(https://en.wikichip.org/wiki/risc-v/registers)

x0 is hardwired to value 0
x1 is the return adress (ra)

x2 is the stack pointer (sp)
32-bit address space: Addressable memory of 232 bytes
o < 239 words of 4 bytes
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understanding RISC assembly

@ From C to assembly:
riscv64-linux-gnu-gcc -S NtimesN.c -o NtimesN.S
NtimesN.c NtimesN.s
[...]
call __isoc99_scanf@plt #call to scanf
1w ab,4(sp) #N is now in ab
[...] mulw a2,ab,ab #a2 <- Nx*N
scanf ("%d",&N) ; slliw a4,a5,1 #ad <- 2xN (shift
i = N*N + 3xN; addw ab,a4,ab #ad <- 2*N+N
printf ("i=Yd\n",i); |addw a2,a2,ab #ab <- Nx*xN + 3x%N
[...] 1lla al,.LC1 #printf args (To b
1i a0,1 #.. explained late:
call __printf_chk@plt #call to printf
[...]
Tanguy Risset ARC: Computer Architecture 73

RISC-V register

@ 32 registers in the register file
@ Named

e by their number: x0 x1 ...x31
e or by their name zero ra sp fp a0 a1l ...a7 sl s2 ...

X0 (zero) contains value 0
a0 ...a7 are used to pass arguments of a function call
a0 al are used to transmit functions result

t0 ...t6 and sO ...sll are working registers, used for CPU
computations

sp is the stack pointer

fp is the frame pointer (explained later)

ra contains the return address (after the end of current function)
gp is a pointer to global area

tp is the thread pointer
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Risc-V assembly addressing mode

@ The addressing mode defines how the operands of each instruction
are interpreted.

@ RISC-V has four addressing modes:

e Immediate addressing: the operand is a constant within the instruction

o Register addressing: where the operand represents a register.

e Base addressing: the operand is an address which is the sum of a
register and a constant (sometimes called indirect addressing)

o PC-relative addressing: the operand is an address which is the sum of
PC and a constant
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Example of RISC-V adressing mode

@ Register addressing
e add x1, x2, x3
e puts in x1 the value of x2 plus the value of x3.
o x1=x2+x3
@ Immediate addressing
e addi x1, x2, 0xOf
e addi x1, x2, 15
e puts in x1 the value of x2 plus 15.
o x1=x2+15
@ Base addressing
o 1w x1, 10(x3)
e puts in x1 the value situated in memory at the address obtained by
adding 10 to the content of x3.
e x1=Memory[x3+10]
@ bne al, a2, label
e branch to address of 1abel if values in a1l and a2 are different.
e if (al !'= a2) then $PC=label
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Format of Risc-V instructions

@ 3 types of format: R-Type, |-Types and B-Types

@ R-types:

0

67

1112 1415 1920

24 25

31

opcode

rd

func3 rsl rs2

func?7

Used for 3-registers instructions

opcode is the operation code that specifies the operation
rs1 and rs2 are the first and second source register

rd is the destination register
func3 and func?7 are used with op to select arithmetic operation
(additionnal opcode fields)
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I-Types instruction

@ |-Types instruction are used for load, store, branch and immediate

instruction.
0 6 7

1112 1415 1920

31

opcode

rd

func3 rsl

imm[0:11]

rsl is a source register

rd is a destination register
func3 is additionnal opcode field
The imm field is a 16 bit's integer in two's-complement code , ranging
from -32 768 to 32 767 (remind that this is a problem in many cases)
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B-Types instruction

@ B-Types instruction are used for Branch instructions

0 67 77 1112 1415 1920 24 25 293031
opcode |1 [MMT4)func3 rsl rs2 imm[5:10] m

o The imm split-field is a 13 bit's integer containing an address (always
even hence bit 0 is implicitely 0).

e can jump from address 0 to 213=1MB from $PC.

o For longer jump, on can use others instrction (PC absolute), barely used.
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Basic arithmetic and logic instruction

@ R-Types instructions: add, sub and, or, xor

e add rd, rsl, rs2 // rd = rsl + rs2
e xor rd, rsl, rs2 // rd = rsl rs2
@ |-types for immediate operand operation:
e addi rd, rsil, 4 // rd = rsl1 + 4
e 1i rd, 4 // rd = 4, pseudo (addi rd, zero, 4)
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Load and store

@ load and store operation use indexed addressing

o the address operand specifies a signed constant and a register
e These values are added to generate effective address

@ byte instruction: 1b and sb transfer one byte

e 1b rd, 20(rsl) // rd=Memory [rs1+20] [0:7]

o lw rd, 20(rs1) // rd=Memory [rs1+20] (i.e.[0:31]
e sb rd, 20(rsl) // Memory[rd+20] [0:7]=rs1

e sb stores only the lowest byte of operand register

e Word instruction: 1w and sw operates on word (i.e. 32 bits)

@ Remind that address have to be aligned to 32 bit world, hence must
be multiple of 4.

Tanguy Risset ARC: Computer Architecture 81

Branches

@ Conditional branch
e bne rsl, rs2, Label
e if rs1 and rs2 have different values, the next instruction to execute is
at address Label (i.e. pc = Label
e beq rsl, rs2, Label // same thing if rsil=rs2
@ Unconditionnal branch
o j offset // next instruction executed is at address
PC+offset
e jr rsl1 // next instruction executed is at address
contained in rsli

@ These are the only way of implementing loops in assembly:

[...]

1i s2, 1
while: beq sl1, zero, done
sub sl1, s1, s2

t2=1
while (t1 '= 0) {
t1 = t1 - t2

j while )

done:
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Function control flow in RISC-V

e RISC-V uses the jump-and-link (jal) instruction to call functions

o Example:
jal ra, fact
o saves the return address (i.e. the address of the following instruction) in
the ra register and jumpt to the label label (code of fact function)

@ At the end of the execution of fact, the instruction ret jumps back
to the address stored in ra (pseudo: jalr x0, ra, 0)

@ Arguments transmited to Fact are stored in registers a0 ...a7

@ Return values of Fact are stored in registers a0, ail
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Who save the register during Function call?

@ When a function call occurs: jal ra, fact, who save the register?
o The Caller (who knows which register he will use after the call)?
o Or the callee (who knows which register he will use during its
execution)?
@ This convention is part of the calling convetion or ABI application
binary interface.

e For MIPS:
e ra, tO ...t6, a0 ...a7, are caller saved
o fp, s1 ...s11 are callee saved
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Function call example with MIPS

@ Let says: function B calls function C

@ Function B wants to save t0, t1 and a0 because it will need them
after the return of C.

@ this is done using the stack via the stack pointer sp
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The Stack

@ The stack is use to store all local information (in the sense local to
the current function)

@ That includes (say for function C):

local variable

Callee saved register if needed

Return address (i.e. the instruction following the jal C instruction).
(sometimes) the parameters passed to C

(sometimes) the result of C

In many ISA, the parameters and the results are passed through
dedicated registers

@ All these data constitute the frame of the fonction instance.
@ the frame pointeur points to the frame of the current function

@ For MIPS, the frame pointer is fp
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Function B calls C

B beguinning of B
sw t0,0(sp) saving t0 in stack
sw t1,-4(sp) saving t1 in stack
sw a0,-8(sp) saving a0 in stack
sub sp,sp,12 correct stack pointer
jal ra, C call to C function
1w a0,4(sp) restoring return addresse of B from stack
1w t1,8(sp) restoring sl from stack
sw t0,12(sp) restoring sO
add sp,sp,12 adjusst stack pointeur value
ret end of B
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Sketching code of C function

addi
SwW
SW
SwW
move

1w

1w
1w
addi
ret

sp,sp,-40 # C need 40 Bytes for its frame

ra,32(sp) # store return address (inst. in B)

fp,28(sp) # store frame pointer

s0,24(sp) # store sO (because C uses it)

fp,sp # fp <- sp: frame pointer of C set

ra,32(sp) # ra <- return address (in B)

fp,28(sp) # fp <- frame pointeur of B

s0,24(sp) # restore sO

sp,sp,40 # sp <- spt+40, restore B stack pointe
# return to ra (B function)
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@ Function, procédure et Pile d’exécution
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Procedure abstraction

@ Let's pause a while to come back to high level langage
e What is a function (or a procedure)?
@ How its isolation mecanisme (local variable) is implemented?

@ This is implemented with a very fundamental mecanism: the Stack
and the Activation Record (or Frame) of each procedure.
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Notion of procedure

@ Procedures (or functions) are the basic units for compilers

@ Three important abstraction:

e Control abstraction: parameter passing and result transmission
o Memory abstraction: variable lifetime (local variables)
o Interface: procedure’'s signature
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Procedure Control Transfer

@ Transfer mechanism of control between procedures:
e when calling a procedure, the control is given to the procedure called;
e when this called procedure ends, the control is returned to the calling
procedure.
e Two calls to the same procedure create two em independent instances
(or invocations).

@ two useful graphic representations:

o The call graph: represents the information written in the program.
e The call tree: represents a particular execution.
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Ca” q)régihre calc;

begin { calc}

end;
procedure cally;
vary...
procedure call,
var z: ...
procedure calls;
var y....
begin { callz}
Xi=...
calc:
end;
begin { callk}
z:=1;
calc;
callz;
end:;
begin { calh}
callo;

end;
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Call Tree

procedure calc;
begin { calc}

end;
procedure call;
var y...
procedure call>
var z: ...
procedure calls;
var y....
begin { callz}
Xi=...
calc;
end:
begin { call}
z:=1;
calc;
calls;
end;
begin { calh}
call>:
end;
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Call Graph:

Calll
Calc

Call tree for one
particular  execu-
tion:

Calll

ARC: Computer Architecture

main calls call

cally calls call,

call, calls calc

calc returns to call
cally calls call

call; callscalc

calc returns to call
calls returns to call
call, returns to cally
cally returns to main

ARC: Computer Architecture




Execution Stack

@ The transfer of control mechanism between procedures is
implemented thanks to the execution stack.

@ The programmer has this vision of virtual memory:

Code static Tas Memoire libre Pile

0 100000
(petites adresses) (grandes adresses)

@ The heap is used for dynamic allocation.

@ The stack is used for the management of contexts of procedures
(local variable, etc.)
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Function call: status of the stack

Before the call after the call
(AR=Activation Record)

AR procédure
appelée
=
AR procédure AR procédure
@ appe]ante appelante
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Activation record

e Calling a procedure: Stacking the activation record (or frame).

@ Need of a dedicated pointer for that: the activation record pointer
(ARP) or frame pointeur (£p))

@ The frame allows to set up the context of the procedure.

@ This frame contains
o The space for local variables declared in the procedure
o Information for restoring the context of the calling procedure:
e Pointer to the frame of the calling procedure (ARP or FP for em frame
pointer).
@ Address of the return instruction (statement following the call of the

appellant proceedings).
e Eventually save the state of the registers at the time of the call.
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Content of the Frame

E / Variables locales
_

AR procédure Adresse de retour

appelée B ARP appelant

E Résultat

Sauvegarde des registres

AR procédure Parametres

appelante
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Return to calling function

avant le retour aprés le retour

[ sp |

AR procédure
appelée
AR procédure AR procédure
appelante YT appelante
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Table of Contents

@ Coming back to RISC-V
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Coming back to previous call example with B and C

@ Let says: function B calls function C

@ Function B wants to save t0, t1 and a0 because it will need them
after the return of C.

@ this is done using the stack via the stack pointer sp
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The Stack

@ The stack is use to store all local information (in the sense local to
the current function)

@ That includes (say for function C):

local variable

Callee saved register if needed

(sometimes) Return address (i.e. the instruction following the jal ra,
C instruction).

(sometimes) the parameters passed to C

(sometimes) the result of C

In many ISA, the parameters and the results are passed through
dedicated registers

@ All these data constitute the frame of the fonction instance.
@ the frame pointeur points to the frame of the current function
@ For RISC-V, the frame pointer is fp
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Function B calls C

B beguinning of B
sw t0,0(sp) saving t0 in stack
sw t1,-4(sp) saving t1 in stack
sw a0,-8(sp) saving a0 in stack
sub sp,sp,12 correct stack pointer
jal ra, C call to C function
1w a0,4(sp) restoring return addresse of B from stack
1w t1,8(sp) restoring sl from stack
sw t0,12(sp) restoring sO
add sp,sp,12 adjusst stack pointeur value
ret end of B
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Sketching code of C function

addi
SwW
SW
SwW
move

1w

1w
1w
addi
ret

sp,sp,-40 # C need 40 Bytes for its frame

ra,32(sp) # store return address (inst. in B)

fp,28(sp) # store frame pointer

s0,24(sp) # store sO (because C uses it)

fp,sp # fp <- sp: frame pointer of C set

ra,32(sp) # ra <- return address (in B)

fp,28(sp) # fp <- frame pointeur of B

s0,24(sp) # restore sO

sp,sp,40 # sp <- spt+40, restore B stack pointe
# return to ra (B function)
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RISC-V Assembly for programme fib

Fibbonacci suite program:
int fib (int i)
{

if (i<=1) return(l);
else return(fib(i-1)+fib(i-2));
+

int main (int argc, char *argv[])

{
fib(2);

+
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Assembleur RISC-V pour programme fib

fib:
addi sSp,sp,-48 # SP <- SP-48 :AR de 48 octet (12 mots)
sd ra,40(sp) # stocke adresse retour (64 bits) a SP+40
sd s0,32(sp) # sauvegarde registre sO
sd s1,24(sp) # sauvegarde registre si
addi s0,sp,48 # s0=ARP/FP <- SP
mv ab,a0 # ab <- argl (N)
sW ab,-36(s0) # stock argl (N) dans la pile (SP-12)
1w ab,-36(s0) # instruction inutile (supprimée si optimisation)
sext.w a4,ab # a4 <- sign extension ab5(32)
1i ab,1 # ab <- 1
bgt ad,ab,.L2 # if (a4 > 1) sauter a .L2)
1i ab,1 # ici on a argl=N<=1 donc ab <- res=1
j .L3 # sauter a .L3
.L2:
1w a5,-36(s0) # ici N>1, a5 <- N
addiw ab,ab,-1 # ab <- ab - 1
sext.w ab,ab # sign extension
mv a0,ab # a0 <- ab (set arg in a0 for recursive call)
call fib # recursive call
mv a5,al # ab <- result from recursive call
mv sl,ab # s1 <- ab
1w ab,-36(s0) # ab <- N
addiw ab,ab,-2 # ab <- ab -2
sext.w ab,ab # sign extension
mv a0,ab # a0 <- ab (set arg in a0 for recursive call)
call fib # recursive call
mv ab5,a0 # ab <- result from recursive call
addw ab,s1,ab # a5 <- fib(N-1)+fib(N-1)
sext.w ab,ab # sign extension
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Assembleur RISC-V pour programme fib

.L3:
mv a0,ab #a0 <- ab (set result in a0)
14 ra,40(sp) # restaure ra
1d s0,32(sp) # restaure sO
1d s1,24(sp) # resaure sl
addi sp,sp,48 # restaure sp
jr ra # return
.size fib, .-fib
.section .rodata
.align 3
.LCO:
.string "le resultat est %d "
.text
.align 2
.globl main
.type main, @function
main:
addi sp,sp,-32 # set AR for main
sd ra,24(sp)
sd s0,16(sp)
addi s0,sp,32
mv a5,a0 #store arg og main
sd al,-32(s0)
sw ab,-20(s0)
1i a0,2 # we call fig(2)
call fib
mv ab,a0 # get fib result
mv al,ab #set args for printf
1lla a0, .LCO
call printf@plt
1i a5,0
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example 1, if-then

bne sO, sl1, Test
add s2, sO, si
Test:
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example 2, if-then-else

beq s4, sb5, Labl
add s6, s4, sb
j Lab2
Labl: sub s6, s4, sb
Lab2:
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example 3, looping

1i t2, O
1i t3, 1
while: beq tl1, zero, done
add t2, t1, t2
sub t1, t1, t3
j while
done:
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example 4, static variable

.globl main

varl:

main:

done:

.type main, Q@function
.data
.word 23
.text
lw t0, varl
1li t1, 5
la t2, varl
sw t1, (t2)
ir Tra

Tanguy Risset

# declare storage for varl; initial
# value is 23

# load contents of RAM location inf
# register $t0: t0 = [varl] ( = 2
# $t1 =5 ("load immediate")

# load address of varl

# store contents of register tl
#into RAM: [varl] = t1 =5
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example 5, array accesses

arrayl:

main:

.globl main

.type main, @function

.data
.space 12

.text
la t0O, arrayl

1i t1, 5

sw t1, (t0)
11 t1, 13
sw t1, 4(t0)
1i t1, -7
sw tl, 8(t0)
ir _ra

Tanguy Risset

# declare 12 bytes of storage to
# hold array of 3 integers

# load base address of array into
#register $t0

#t1 =5  ("load immediate")
#first array element set to 5;
#indirect addressing

#tl1 = 13

#second array element set to 13
#tl = -7

#third array element set to -7
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Documentation on RISV-V assembly

@ The RISC-V Instruction Set Manual Volume I: User-Level ISA

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified- IMAFDQC/riscv-spec-20191213.pdf

@ Risc-V assembly manual on github

https://github.com/riscv-non-isa/riscv-asm-manual/blob/master/riscv-asm.md

@ CheatSheet on ARC Moodle site.
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@ Pipelining RISC instructions: the “Von Neumann” cycle
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registers)

PC | | Mémoire

4
3 ' g
4 16
HEEEEEE

24
28
32
36
40
44
48
52
56
60
64

—

décodeur

RI )

00
)
&

72

Tanguy Risset ARC: Computer Architecture



Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
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Program execution on a Processor (8 general purpose
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Program execution on a Processor (8 general purpose
registers)

PC | 16 | Mémoire

16 load RO,[36]
20 load R1,[40]
24 add R3,R0,R1
28 store R3,[44]
32
36 7
40 10
44 AX
48
52
56
60
64

—

décodeur

|

[ loadRO,[36] |
RI [ )

00
)
&

72

Tanguy Risset ARC: Computer Architecture




Program execution on a Processor (8 general purpose
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Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
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Program execution on a Processor (8 general purpose
registers)
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The “Von Neumann cycle”

@ The so-called Von Neumann cycle is simply the decomposition of the
execution of an instruction in several independent stages.
@ The number of stages depend on the processor, usually 5 stages are
commonly used as example:
o Instruction Fetch (IF)
@ Reads the instruction from memory (at address $PC) and write it in $IR.
Instruction Decode (ID)

@ computes what needs to be computed before execution: jump address
destination, access to register, etc.

Execute (EX)

@ executes the instruction: ALU computation if needed
Memory Access (MEM)

@ Loads (or stores) data from memory if needed

Write Back (WB)

e Writes the result into the register file if needed
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I M A R
The MIPS example

@ The RISC paradigm was invented by Berkeley and popularized by
Henessy and Patterson in the book on MIPS

@ MIPS stands for Microprocessor without Interlocked Pipeline Stages
and propose and architecture to execute each stage independently

Instruction Instruction Execute . Memory
fetch (IF) decode (ID) (EX) | access (MEM)

from MIPS website https://www.mips.com/
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Christian Wolf's slides

@ Use Christian Wolf slides for explaining MIPS instruction pipeline
@ Here
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example of MIPS pipeline CPU architecture

@ Taken from Henessy/patterson book

Hxez

IF/ID ID/EX EX/MEM MEM/WB

Read
register 1 Read
data 1

Read

l Instruction

Instruction gjsmﬁggisters Read
memory ‘Write data 2
register

Address Readl__, |

data
Write
data
16 32
N Sign
N "|extend

Data
memory

Write
data
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[llustration of bubble on MIPS

@ When next instruction cannot be fetched directly (because it need
the result of previous instruction for instance) it creates a “bubble”

@ For instance: an addition using a register that was just loaded

@ The value of the register will be available after the MEM stage of
first instruction, hence we can delay on only on cycle, provided there
is a shortcut.

) 2 4 6 8 10 12 14
Program Time T T T T T T T >
execution
order
(in instructions)
Iw 20($t1) IF C 1D >E MEM-+— WB
v sub $t2, $t3 IF _EID MEM WB
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Another illustration of instruction pipeline

@ Go back to our previous representation of the processor and memory:

e Von Neumann computer= Memory 4+ CPU
e CPU= = control Unit + Datapath
o Datapath= ALU + Register file

Processor Datapath

Control unit
control/Statys 4\ \b

Register File

Memory
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A pipeline example from MIPS

@ Execute the sequence of assemby instruction:

o load value at address 500 in register RO
e Add 1 to RO and put result in R1
o store value of Register R1 at address 500

o (Think of i=i+1)

e Code:
la R0O,500
add R1, RO, 1
sw R1,500
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First possible execution: without pipeline

@ Before execution starts, $PC contains the address of the first
instruction: 100

Processor Datapath
ALU
Control unit
control/Status 4\ \L

RO  Register File R1
PC IR ‘ ‘

100 ‘ R2 ‘ ‘ R3 ‘

Memory
100 | la R0,500 500 10
104 | add R1,R0,1
108 | sw R1,500
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I Sl 11
cycle 1

@ Instruction Fetch

Processor Datapath
ALU
Control unit
control/Status 4\ V

RO  Register File R1

PC IR

o] | |
100 \ la R0,500 ’_Rﬁ "Eﬁ—‘

A
\ /A
\_/
\/ Memory

100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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cycle 2

@ Instruction Decode

Processor Datapath

ALU
Control unit /
ntrol/Statys 4\ V
/ RO  Register File R1
PC IR ‘ ‘

100 la R0,500 ﬁ "Ej—‘

Memory
100 |1a R0,500 >00 10
104 | add R1,RO0,1
108 | sw R1,500
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cycle 3

@ Execute (nothing for load)

Processor Datapath
ALU
Control unit
control/Status 4\ \L

RO  Register File R1
PC IR ‘ ‘

100 la R0,500 R2 R3

Memory
100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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cycle 4

@ Memory access

Processor Datapath
ALU
Control unit A
control/Status 4\ \L
RO  RegisterfFile R1
R ] —
100 la R0,500 (RJ—‘

/
/

[

/

Memory /
100 | la R0,500 500 10
104 | add R1,RO0,1
108 | sw R1,500
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cycle 5

@ Write Back

Processor Datapath
ALU
Control unit /
control/Status / 4\ V

RO //y Register File R1
IR
PC 0 ‘ ‘
100 la R0,500 ’_R;‘ "Eﬁ—‘

Memory
100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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Il e Mo e
cycle 6

@ increment $PC

@ Fetch next instruction

@ etc. etc.
Processor Datapath
ALU
Control unit
control/Status 4\ \L

RO  Register File R1
PC R ‘ ‘

104 add RO, R1,1 ‘ R2 ‘ ‘ R3 ‘

\ i
\_/
\/ Memory

100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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I Sl 11
Counting CPI for non-pipelined architecture

@ CPI= Cycle per instruction
@ 5 cycles for executing on instruction

@ = 15 cycles for 3 instructions.
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Example of pipelined execution

@ Instruction Fetch (for 'load’ instruction)

Processor Datapath
ALU
Control unit
control/Status 4\ V
RO Register File R1
PC IR ‘ ‘
100 la R0O,500 ﬁ "K!—‘

\ /A
\_/
\/ Memory

100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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I Sl 11
cycle 2

@ Instruction Decode (for load)

@ Instruction Fetch (for 'nothing’ because of a bubble: instruction
'add’ delayed)

Processor Datapath

ALU

Control unit load-?

STTolS e I

/ RO  RegisterFile Rl
Pc IR | | |
104 R2 R3

Memory
100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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Il e Mo e
cycle 3

@ Execute (for load: nothing to do)
@ Instruction Decode (for 'nothing’)
@ Instruction fetch (for 'add’)

Processor Datapath

ALU

Control unit

control/Status $ V
RO  Register File R1

IR
PC ‘ 0 ‘

104 add R1,R0,1 ‘ R2 ‘ ‘ R3 ‘

/
/
/

/ Memory
100/| 1a R0,500 500 10
104 | add R1,RO0,1
108 | sw R1,500
Tanguy Risset ARC: Computer Architecture 133

I Sl 11
cycle 4

@ Memory access (for load)

o Execute (for 'nothing’)

@ Instruction Decode (for add)
@ Instruction fetch (for store)

Processor Datapath

add

= ALU ,ﬁ

Control unit
control/Status add 4\ V
RO  Register File R1
" | N/

|
\

A

I
[ |

/ lfad
/ Memory I
100 | 19 RO,500 500 10

04 Add RI1,R0,1

108 | sw R1,500
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cycle 5

e Write Back (instruction load)
@ Memory access (for 'nothing’)
@ Execute (instruction add: bypass)
@ Instruction Decode store

Processor Datapath
swW
/ ALU
Control unit /
lcontrol/Status loagf” |
R Register File R1
PC IR 10 ‘ ‘
116 ‘ R2 ‘ ‘ R3 ‘
Memory
100 | la R0,500 500 10
104 | add R1,R0,1
108 | sw R1,500
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I Sl 11
cycle 6

e Write Back (for 'nothing’)

@ Memory access (instruction add, nothing to do)

@ Execute (instruction store: nothing to do)

Processor Datapath
ALU
Control unit add
control/Statys $ V
RO  Register File R1
IR
us — 0| |
120 R2 R3 —‘

Memory
100 | 1a R0,500 500

104 | add R1,RO0,1

108 | sw R1,500

Tanguy Risset
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cycle 7

e Write Back (instruction add)

@ Memory access (instruction store: bypass)

Processor Datapath
ALU

Control unit A add

control/Statys ¢ V I \.
RO  Register Hile R1
IR
PC 10 11
124 R2 /‘ R3

SW

.\\§

Memory V
100 | la R0,500 >00 11
104 | add R1,RO,1
108 | sw R1,500
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Counting CPI for both architectures

@ Non-pipelined architecture:

e 5 cycles for one instruction
e = 15 cycles for 3 instructions.

@ Pipelined architecture:

5 cycles for one instruction

8 cycles for 3 instructions.

= without bubbles, one instruction per cycle

A 'jump’ instruction interrupt the pipeline (need to wait for the address
decoding to fetch next instruction) = pipeline stall

Some ISA allow to use these delay slots: one or two instruction after the
jump are executed before the jump occurs.
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Du langage a 'exécution
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Rappels d'architecture

TEEEEEFE,
Stack segme:
Interrupts 1
Processor
T
Dynamic data D
Memory-IObus |\ N = == Pt ata seogmern
| [ [ [ Static data &
/0 1/0 1/0 10000000hex
Main controller controller controller T
memory | ext segmen
S J
. ) raphi Network
ot (e 400000, Reserved
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Architecture view from the programmer

@ Modern systems allow

o To run multiple independent programs in parallel (process)
o To access memory space larger than physical memory available (virtual
memory)

@ For the programmer: all this is transparent
e Only one program runs with very large memory available
@ The processor view memory contains:

o The code to execute

o Static data (size known at compile time)

o Dynamic data (size known at runtime: the heap, and the space needed
for the execution itself: the battery)

@ The programmer sees only the data (static and dynamic)
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compilation process

@ the complete process will translate a C program into code executable
(loading and execution will take place later).

\\ N RN
code asm obj
c | compiler s —e assembler o

N

lib
:
AN

Execution
exe
St

@ We often call compilation the set compiler + assembler

@ The gcc compiler also includes an assembler and linking process
(accessible by options)
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Your compilation process

@ The programmer:

o Write a program (say a C program: ex.c)
o Compiles it to an object program ex.o
e links it to obtain an executable ex

content of ex.c
#include <stdio.h>

ex.c €X.0
it ma
int main() ;

{ N N ’
stdio.h

libstdio.a —o ex
printf ("hello World\n"); Qp

' ' \

return(o) ; S| gcc eX.c —0 €X | — ex

}
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Zooming on “‘compilation”

@ The compilation process is divided in 3 phases:

Front-End Middle-End Back—End
.2
o0 = ) =)

g en S ~ g
— g S = 9 2 [ R £ =
< 14 [75) = = =
S 5 =% s 2. ] = g
%} A O o o o %) < S

5

Infrastructure

Table des symbols, Arbres de syntaxe abstraite, Graphes, ensembles, IR, ...

Compilateur
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Compilation: the front-end

@ The front end of an embedded code compiler uses the same
techniques as traditional compilers (we can want to include
assembler parts directly)

@ Parsing LR(1): the parser is usually generated with dedicated
metacompilation tools such as Flex et bison for GNU
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Compilation: The middle-end

@ Some phases of optimizations are added, they can be very calculative

@ Some example of optimisation independent of the target machine
architecturre
e Elimination of redundant expressions
e dead code elimination
@ constant propagation

@ Warning: optimization can hinder the understanding of the assembler
(use the -O0 options with tt gcc)
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v

Global value numbering

Local and global copy propagation
Sparse conditional constant propagation
Dead code elimination

Constant folding

——————————— =|

Algebraic simplifications

|
I
. . . . ! .
Local and global common subexpression elimination }, i [ Partial redun
Loop invariant code motion

Dead code elimination

Code hoisting

Induction—variable strength reduction
Linear function test replacement
Induction—variable removal

Unnecessary bound checking elimination
Control-flow optimisations

i

In—line expansion

Leaf routine optimization

Shrink wrapping

Machine idioms

Tail merging

Branch optimization and conditionnal moves

Dead code elimination

Software—pipelining, loop unrolling, variable expansion
register renaming and hierachical reduction

Basic block and branch scheduling 1
Register allocation by graph coloring
Basic block and branch scheduling 2
Intraprocedural I-cache optimization
Instruction prefretching

Data prefretching

Branch prediction

i

Interprocedural register allocation
Aggregation of global references
Interprocedural I-cache optimisation

Tanguy Risset
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Compilation: The back-end

@ The code generation phase is dedicated to architecture target.
Retargetable compilation techniques are used for architectural

families.

@ The most important steps important are:

o Code selection
o Register allocation
e instruction scheduling

Tanguy Risset
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GCC

@ The gcc command runs several program depending on the options

The pre-processer cpp
The compiler cc1

The assembleur gas
The Linker 1d

@ gcc -v allow to visualize the different programs called by gcc
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The pre-processer cpp or gcc -E

@ the task of the pre-processor are :

elimination of comments,
inclusion of source files
macro substitution (#define)
conditionnal compilation.

m © © e e

e Example:

#define MAX(a, b) ((a) > (b) ? (a) : (b))
exl.c
f=MAX(3,b);

#define MAX(a, b) ((a) > (b) ? (a) : (b))
exl.i

f=((3) > (b) 7 (3) : (b));
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@ generate assembly code
@ gcc -S main.c -o main.S

@ Exemple :

The compiler ccl or gcc -S

void main()
{ int 1i;
1=0;

while (1)

{
i++;

nop() ;
+

Tanguy Risset
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S T e =l
Assembly code generated (for MSP430)

L]

mov
mov
mov
inc
nop
jmp

br

incd

#2558, SP
rl, r4
#0, 0(r4d)
0(r4)

$-6
SP
#0x1158

; stack initialization de la|pile
; ¥4 <- SP

; 1 initialization
; it++

; nop();

; unnconditionnal jump (PC-6):

Tanguy Risset

ARC: Computer Architecture




O S5e™ 50500t 30005 ooo0000 bbonsne. " SESEIE® 805355380 " M Lok
Assemblyé@ﬁggggr?guce by mspgcc -S

.global main

.type main,@function
main:
/* prologue: frame size = 2 */
.L__FrameSize_main=0x2
.L__FrameOffset_main=0x6

mov #(__stack-2), ri
mov rl,rd
/* prologue end (size=3) */
mov #110(0), ©r4
L2:
add #11lo(1), ©@r4
nop
jmp .L2
/* epilogue: frame size=2 */
add #2, ri
br #__stop_progExec__

/* epilogue end (size=3) */

/* function main size 14 (8) x
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Assembler as ou gas

@ transform an assembly code into object code (binaire representation
of symbolic assembly code)

@ Option -c of gcc allow to conbine compilation et assembly
gcc -Cc main.c -0 main.o
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Linking: 1d

@ Produce the executable (a.out by default) from object code of
programs and library used
@ There are two ways to use libraries in a program

o Dynamic or shared libraries (default option): the code of the library is
not included in the executable, the system dynamically loads the code of
the library in memory when calling the program. We need than only one
version of the library in memory even if several programs use the same
library. The library must be em installed on the machine, before running
the code.

e Static libraries: the code of the library is included in the executable. The
executable file is bigger but you can run it on a machine on which the
library is not installed.
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Binary file manipulation

Some usefull command:

@ nm
Allow to know symboles (i.e. label: function names) used in an
object file or executable

trisset@hom\$ nm fib.elf | grep main
000040c8 T main

@ objdump allow to anlayze a binary file. For instance it can get
correspondance between binary representation and assembly code
trisset@hom$ objdump -f fib

fib: file format elf32-msp430
architecture: msp:43, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED

start address 0x00001100
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