
ARC: Computer Architecture
tanguy.risset@insa-lyon.fr
Lab CITI, INSA de Lyon

Version du March 16, 2023

Tanguy Risset

March 16, 2023

Tanguy Risset ARC: Computer Architecture 1

Du langage à l’exécution

Tanguy Risset ARC: Computer Architecture 2

Rappels d’architecture

Main

memory

I/O

controller

I/O

controller

I/O

controller

Disk Graphics

output

Network

Memory–I/O bus

Processor

Cache

Interrupts

Disk

Dynamic data

Static data

Reserved

Stack segment

Data segment

Text segment

7fffffffhex

10000000hex

400000hex

Tanguy Risset ARC: Computer Architecture 3

Architecture view from the programmer

Modern systems allow

To run multiple independent programs in parallel (process)
To access memory space larger than physical memory available (virtual
memory)

For the programmer: all this is transparent

Only one program runs with very large memory available

The processor view memory contains:

The code to execute
Static data (size known at compile time)
Dynamic data (size known at runtime: the heap, and the space needed
for the execution itself: the battery)

The programmer sees only the data (static and dynamic)

Tanguy Risset ARC: Computer Architecture 4

compilation process

the complete process will translate a C program into code executable
(loading and execution will take place later).

code asm

exe

obj

.o

Simulation

.c .s

.a
lib

compiler assembler

Link

Load
Execution

We often call compilation the set compiler + assembler

The gcc compiler also includes an assembler and linking process
(accessible by options)

Tanguy Risset ARC: Computer Architecture 5

Your compilation process

The programmer:

Write a program (say a C program: ex.c)
Compiles it to an object program ex.o

links it to obtain an executable ex

content of ex.c

#include <stdio.h>

int main()

{

printf("hello World\n");

return(0);

}

ex.o
gcc −c ex.c

exgcc ex.c −o ex

stdio.h

ex.c

libstdio.a gcc ex.o −o ex

Tanguy Risset ARC: Computer Architecture 6

Zooming on “compilation”

The compilation process is divided in 3 phases:
S

ca
nn

in
g

P
ar

si
ng

C
.S

.A

Front−End

A
llo

c.
 R

eg
.

O
pt

2

O
pt

3

Middle−End

O
pt

1

S
el

ec
tio

n

O
rd

on
na

nc
em

en
t

Back−End

Compilateur

Infrastructure

Table des symbols, Arbres de syntaxe abstraite, Graphes, ensembles, IR, ...

Tanguy Risset ARC: Computer Architecture 7

Compilation: the front-end

The front end of an embedded code compiler uses the same
techniques as traditional compilers (we can want to include
assembler parts directly)

Parsing LR(1): the parser is usually generated with dedicated
metacompilation tools such as Flex et bison for GNU

Tanguy Risset ARC: Computer Architecture 8

Compilation: The middle-end

Some phases of optimizations are added, they can be very calculative

Some example of optimisation independent of the target machine
architecturre

Elimination of redundant expressions
dead code elimination
constant propagation

Warning: optimization can hinder the understanding of the assembler
(use the -O0 options with tt gcc)

Tanguy Risset ARC: Computer Architecture 9

Interprocedural constant propagation
Procedure specialization and cloning
Sparse conditional constant propagation

Local and global copy propagation
Sparse conditional constant propagation
Dead code elimination

Local and global common subexpression elimination
Loop invariant code motion

Partial redundancy elimination

Dead code elimination
Code hoisting
Induction−variable strength reduction
Linear function test replacement
Induction−variable removal
Unnecessary bound checking elimination
Control−flow optimisations

In−line expansion
Leaf routine optimization
Shrink wrapping
Machine idioms
Tail merging
Branch optimization and conditionnal moves
Dead code elimination
Software−pipelining, loop unrolling, variable expansion
register renaming and hierachical reduction

Register allocation by graph coloring
Basic block and branch scheduling 1

Basic block and branch scheduling 2

Instruction prefretching
Data prefretching
Branch prediction

Interprocedural register allocation
Aggregation of global references
Interprocedural I−cache optimisation

Constant foldingGlobal value numbering
Algebraic simplifications

Intraprocedural I−cache optimization

C

D

E

Tanguy Risset ARC: Computer Architecture 10

Compilation: The back-end

The code generation phase is dedicated to architecture target.
Retargetable compilation techniques are used for architectural
families.

The most important steps important are:

Code selection
Register allocation
instruction scheduling

Tanguy Risset ARC: Computer Architecture 11

GCC

The gcc command runs several program depending on the options

The pre-processer cpp
The compiler cc1
The assembleur gas
The Linker ld

gcc -v allow to visualize the different programs called by gcc

Tanguy Risset ARC: Computer Architecture 12

The pre-processer cpp or gcc -E

the task of the pre-processor are :

elimination of comments,
inclusion of source files
macro substitution (#define)
conditionnal compilation.

Example:

ex1.c
#define MAX(a, b) ((a) > (b) ? (a) : (b))

...

f=MAX(3,b);

ex1.i
#define MAX(a, b) ((a) > (b) ? (a) : (b))

...

f=((3) > (b) ? (3) : (b));

Tanguy Risset ARC: Computer Architecture 13

The compiler cc1 or gcc -S

generate assembly code

gcc -S main.c -o main.S

Exemple :
void main()

{ int i;

i=0;

while (1)

{

i++;

nop();

}

}

Tanguy Risset ARC: Computer Architecture 14

Assembly code generated (for MSP430)

mov #2558, SP ; stack initialization de la pile

mov r1, r4 ; r4 <- SP

mov #0, 0(r4) ; i initialization

inc 0(r4) ; i++

nop ; nop();

jmp $-6 ; unnconditionnal jump (PC-6):

incd SP ;

br #0x1158 ;

Tanguy Risset ARC: Computer Architecture 15

Assembly code produce by mspgcc -S
.text

.p2align 1,0

.global main

.type main,@function

main:

/* prologue: frame size = 2 */

.L__FrameSize_main=0x2

.L__FrameOffset_main=0x6

mov #(__stack-2), r1

mov r1,r4

/* prologue end (size=3) */

mov #llo(0), @r4

.L2:

add #llo(1), @r4

nop

jmp .L2

/* epilogue: frame size=2 */

add #2, r1

br #__stop_progExec__

/* epilogue end (size=3) */

/* function main size 14 (8) */

.Lfe1:
Tanguy Risset ARC: Computer Architecture 16

Assembler as ou gas

transform an assembly code into object code (binaire representation
of symbolic assembly code)

Option -c of gcc allow to conbine compilation et assembly
gcc -c main.c -o main.o

Tanguy Risset ARC: Computer Architecture 17

Linking: ld

Produce the executable (a.out by default) from object code of
programs and library used

There are two ways to use libraries in a program

Dynamic or shared libraries (default option): the code of the library is
not included in the executable, the system dynamically loads the code of
the library in memory when calling the program. We need than only one

version of the library in memory even if several programs use the same
library. The library must be em installed on the machine, before running
the code.
Static libraries: the code of the library is included in the executable. The
executable file is bigger but you can run it on a machine on which the
library is not installed.

Tanguy Risset ARC: Computer Architecture 18

Binary file manipulation

Some usefull command:

nm

Allow to know symboles (i.e. label: function names) used in an
object file or executable

trisset@hom\$ nm fib.elf | grep main

000040c8 T main

objdump allow to anlayze a binary file. For instance it can get
correspondance between binary representation and assembly code
trisset@hom$ objdump -f fib

fib: file format elf32-msp430

architecture: msp:43, flags 0x00000112:

EXEC_P, HAS_SYMS, D_PAGED

start address 0x00001100

Tanguy Risset ARC: Computer Architecture 19

