
Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

ARC: Computer Architecture
tanguy.risset@insa-lyon.fr
Lab CITI, INSA de Lyon

Version du March 16, 2023

Tanguy Risset

March 16, 2023

Tanguy Risset ARC: Computer Architecture 1

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Table of Contents

1 Introduction

2 The “Von Neumann” cycle (Instruction stages)

3 Instruction Set Architecture (ISA)

Tanguy Risset ARC: Computer Architecture 2

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Toward a Von Neumann computer

What you have seen:

How to build an ALU with transistors (combinatorial circuit)
How to build a controller with transistor (automate)
Basic Von Newmann behavior:

Registers
ALU (or datapath)
control unit (automaton)
Memory (and bus)

Lets recall the basic Von Neumann behavior

Tanguy Risset ARC: Computer Architecture 3

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

Mémoire

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

16 adresse de boot

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

load R0,[36]

16

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

16

load R0,[36]

7

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

20

load R1,[40]

7

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

load R1,[40]

20

7

10

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

10

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

+

10

7

10

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

10

17

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

28

store R3,[44]

7

10

17

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

store R3,[44]

28

17

7

10

17

Tanguy Risset ARC: Computer Architecture 4

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Let’s study in more details the instruction execution:

instruction execution cycle (Von Neumann cycle)
Instruction pipeline
ISA definition
RISC instruction set

Tanguy Risset ARC: Computer Architecture 5

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Table of Contents

1 Introduction

2 The “Von Neumann” cycle (Instruction stages)

3 Instruction Set Architecture (ISA)

Tanguy Risset ARC: Computer Architecture 6

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

The “Von Neumann cycle”

The so-called Von Neumann cycle is simply the decomposition of the
execution of an instruction in several independent stages.

The number of stages depend on the processor, usually 5 stages are
commonly used as example:

Instruction Fetch (IF)

Reads the instruction from memory (at address $PC) and write it in $IR.

Instruction Decode (ID)

computes what needs to be computed before execution: jump address
destination, access to register, etc.

Execute (EX)

executes the instruction: ALU computation if needed

Memory Access (MEM)

Loads (or stores) data from memory if needed

Write Back (WB)

Writes the result into the register file if needed

Tanguy Risset ARC: Computer Architecture 7

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

The MIPS example

The RISC paradigm was invented by Berkeley and popularized by
Henessy and Patterson in the book on MIPS

MIPS stands for Microprocessor without Interlocked Pipeline Stages

and propose and architecture to execute each stage independently

from MIPS website https://www.mips.com/

Tanguy Risset ARC: Computer Architecture 8

https://www.mips.com/

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Christian Wolf’s slides

Use Christian Wolf slides for explaining MIPS instruction pipeline

Here

Tanguy Risset ARC: Computer Architecture 9

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

example of MIPS pipeline CPU architecture

Taken from Henessy/patterson book

Tanguy Risset ARC: Computer Architecture 10

http://ac.aua.am/Arm/Public/2017-Spring-Computer- Organization/Textbooks/ComputerOrganizationAndD esign5thEdition2014.pdf

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Illustration of bubble on MIPS

When next instruction cannot be fetched directly (because it need
the result of previous instruction for instance) it creates a “bubble”

For instance: an addition using a register that was just loaded

The value of the register will be available after the MEM stage of
first instruction, hence we can delay on only on cycle, provided there
is a shortcut.

Tanguy Risset ARC: Computer Architecture 11

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Another illustration of instruction pipeline

Go back to our previous representation of the processor and memory:

Von Neumann computer= Memory + CPU
CPU= = control Unit + Datapath
Datapath= ALU + Register file

PC IR

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

Tanguy Risset ARC: Computer Architecture 12

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

A pipeline example from MIPS

Execute the sequence of assemby instruction:

load value at address 500 in register R0
Add 1 to R0 and put result in R1
store value of Register R1 at address 500

(Think of i=i+1)

Code:

la R0,500

add R1, R0, 1

sw R1,500

Tanguy Risset ARC: Computer Architecture 13

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

First possible execution: without pipeline

Before execution starts, $PC contains the address of the first
instruction: 100

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100

Tanguy Risset ARC: Computer Architecture 14

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 1

Instruction Fetch

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 15

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 2

Instruction Decode

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 16

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 3

Execute (nothing for load)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 17

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 4

Memory access

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 18

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 5

Write Back

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

10

Tanguy Risset ARC: Computer Architecture 19

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 6

increment $PC

Fetch next instruction

etc. etc.

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

104 add R0, R1,1

Tanguy Risset ARC: Computer Architecture 20

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Counting CPI for non-pipelined architecture

CPI= Cycle per instruction

5 cycles for executing on instruction

⇒ 15 cycles for 3 instructions.

Tanguy Risset ARC: Computer Architecture 21

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Example of pipelined execution

Instruction Fetch (for ’load’ instruction)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

100 la R0,500

Tanguy Risset ARC: Computer Architecture 22

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 2

Instruction Decode (for load)

Instruction Fetch (for ’nothing’ because of a bubble: instruction
’add’ delayed)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

104

load

Tanguy Risset ARC: Computer Architecture 23

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 3

Execute (for load: nothing to do)

Instruction Decode (for ’nothing’)

Instruction fetch (for ’add’)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

104

10

add R1,R0,1

Tanguy Risset ARC: Computer Architecture 24

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 4

Memory access (for load)
Execute (for ’nothing’)
Instruction Decode (for add)
Instruction fetch (for store)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR

108

add

load

add

sw R1,500

Tanguy Risset ARC: Computer Architecture 25

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 5

Write Back (instruction load)
Memory access (for ’nothing’)
Execute (instruction add: bypass)
Instruction Decode store

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500 10

PC IR
10

116

sw

load

Tanguy Risset ARC: Computer Architecture 26

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 6

Write Back (for ’nothing’)

Memory access (instruction add, nothing to do)

Execute (instruction store: nothing to do)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500

PC IR
10

120

add

sw

10

Tanguy Risset ARC: Computer Architecture 27

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

cycle 7

Write Back (instruction add)

Memory access (instruction store: bypass)

Processor

Memory

Control unit

ALU

Datapath

Register File

control/Status

R0 R1

R2 R3

100

104

108

add R1,R0,1

la R0,500

sw R1,500

500

PC IR
10

124

add

sw

11

11

Tanguy Risset ARC: Computer Architecture 28

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Counting CPI for both architectures

Non-pipelined architecture:

5 cycles for one instruction
⇒ 15 cycles for 3 instructions.

Pipelined architecture:

5 cycles for one instruction
8 cycles for 3 instructions.
⇒ without bubbles, one instruction per cycle
A ’jump’ instruction interrupt the pipeline (need to wait for the address
decoding to fetch next instruction) ⇒ pipeline stall

Some ISA allow to use these delay slots: one or two instruction after the
jump are executed before the jump occurs.

Tanguy Risset ARC: Computer Architecture 29

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Table of Contents

1 Introduction

2 The “Von Neumann” cycle (Instruction stages)

3 Instruction Set Architecture (ISA)

Tanguy Risset ARC: Computer Architecture 30

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Set Architecture Statement (ISA)

The instruction set (Set Architecture statement: ISA) is of
paramount importance

It determines the basic instructions executed by the CPU.
It’s a balance between the hardware complexity of the CPU and the
ability to express the required actions
It is represented in a symbolic way: the assembly code/language (ex:
ADD R1,R2)
The tool that translates symbolic assembly code in binary code (i.e.
machine code) is also called the assembler

Two types of ISA:

CISC: Complex Instruction Set Computer
RISC: Reduce Instruction Set Computer

Tanguy Risset ARC: Computer Architecture 31

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

CISC: Complex Instruction Set Computer

An instruction can code several elementary operations

Ex: a load, an add and a store (in memory operations)
Ex: computer a linear interpolation of several values in memory

Need a mode complex hardware (specifically hardware accelerators)

High variability in size and execution time for different instructions

Produce a more compact code but more complex to generate

Vax, Motorola 68000, Intel x86/Pentium

Tanguy Risset ARC: Computer Architecture 32

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Example: instructions ISA of Pentium

JE EIP + displacement

JE Condition Displacement

4 8

Call

CALL Offset

8 32

Mov $EBX, [EDI+displacement]

MOV

6 1

wd r−m postbyte

8

Displacement

8

Push ESI

PUSH Reg

5

Add $EAX, Immediate

4

ADD

Test $EDX, Immediate

1

17 32

ImmediatePostBytewTEST

4

32

Immediate

13

Reg w

8

3

Tanguy Risset ARC: Computer Architecture 33

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

RISC: Reduced Instruction Set Computer

Small simple instructions, all having the same size, and (almost) the
same execution time.

no complex instruction

Clock speed increase with pipelining (between 3 and 7 pipeline
stages)

Code simpler to generate but less compact

Every modern processor use this paradigm: SPARC, MIPS, ARM,
PowerPC, etc.

Tanguy Risset ARC: Computer Architecture 34

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Example: instructions of MSP430 ISA

15 13 12 11 1014 9 8 7 6 5 4 3 2 1 0

0 0 1 condition PC offset (10 bits)

relative Jumps

15 13 12 11 1014 9 8 7 6 5 4 3 2 1 0

opcode Dest reg. Ad Dest reg.B/W As

2 operands instruction

15 13 12 11 1014 9 8 7 6 5 4 3 2 1 0

1 operand instruction

0 0 0 00 1 opcode B/W Ad Dest reg.

Examples:

PUSB.B R4

JNE -56

ADD.W R4,R4

Tanguy Risset ARC: Computer Architecture 35

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Exemple of Pentium ISA

Write a simple C program toto.c

Type gcc -S toto.c and get the
toto.s file

you can also use the compiler

explorer:
https://gcc.godbolt.org/

main() {

int i=17;

i=i+42;

printf("%d\n", i);

}

⇒

(... instructions ...)

movl $17, -4(%rbp)

addl $42, -4(%rbp)

(... printf params...)

call printf

(... instrucitons ...)

Tanguy Risset ARC: Computer Architecture 36

https://gcc.godbolt.org/

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Disassemby

compile the assembly code: gcc toto.s -o toto

disassemble with objdump:
objdump -d toto

Adresses Instructions binaires Assembleur

(...)

40052c: 55 push %rbp

40052d: 48 89 e5 mov %rsp,%rbp

400530: 48 83 ec 10 sub $0x10,%rsp

400534: c7 45 fc 11 00 00 00 movl $0x11,-0x4(%rbp)

40053b: 83 45 fc 2a addl $0x2a,-0x4(%rbp)

40053f: 8b 45 fc mov -0x4(%rbp),%eax

400542: 89 c6 mov %eax,%esi

% (...)

Tanguy Risset ARC: Computer Architecture 37

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

common properties of ISA

An ISA first defines the types of data on which the processors can
compute (32 bit memory addresses, integer of various sizes, etc.)

Then it contains various types of instructions:

Computation instructions (add, sub, or, and, . . .), with various number
of operands
Memory addessing instructions (load, store)
stack management instructions (push, pop)
Flow control instructions (jumps)
subroutine calls

Tanguy Risset ARC: Computer Architecture 38

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

ISA computation instruction

Instruction dedicated to computations: arithmetics, logical, shift etc.

Computation instruction operate on registers (if 16 registers are
available, 4 bits are sufficient to identify them).

let’s take the example of addition

Possible mnemonic for addition:
add R0 R1 → R3

in general op Rx, Ry → Rd, where op can be add, mul, sub, or,

and etc.
Operands can be values instead of registers. In general the instruction
name changes: addi R0, #4 → R3.
How to code the instruction in binary:

3 registers to name ⇒ 3 × 4 = 12 bits
A given number of bits to code the operation (8bits: 256 operations)
Some bits left for coding constants if needed

Tanguy Risset ARC: Computer Architecture 39

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Number of operand

We have defined a so-called three-operands (code trois addresses)
addition since the three operands used. There are other solutions :

2-operands instructions: op Rd, Rx → Rd (assembleur à deux

addresses). One of the operands is overwritten.

1-operand instructions: same idea, but Rd is fixed and implicit. It’s
usually called the accumulator.

Stack based instructions (0 operand): the processor has a stack (like
calculators HP), and an add statement takes its two operands to the
top of the stack and stores the result.

Tanguy Risset ARC: Computer Architecture 40

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Memory addressing operation

Basic read/write:

Read [R2] → R5

reads the content of address contained in R2, place the result in R5
conversely: Write R3 → [R6]

With a constant: Read [#46] → R5

indirect addressing:

Read [R2+R3] → R5

((R5← [R2+R3])

with auto-increment

Read [R2+] → R5

(R5← [R2]; R2=R2+1)

Tanguy Risset ARC: Computer Architecture 41

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Stack management instruction

High-level languages use a lot of Stacks (last in, first out, used for
managing the calls of procedures).

The stack is stored in memory

A specific register is used to access the top of stack: $SP for Stack
Pointer

instruction Push R1 pushes R1 on stack i.e.:
Write R1 → [SP]

Add SP, 1 → SP

SP+1 means “add to SP the size of the word” (32 or 64 bits)

Instruction Pop R1 will do the opposite: Read [SP] → R1

Sub SP, 1 → SP

Tanguy Risset ARC: Computer Architecture 42

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Flow control instructions

The main flow control instruction (to implement loops and ifs) are
the jumps:

Relative Jumps

GoForward #123 (jump to current address+123)
GoBackward #123

Warning: less than 32 bits for the constant!

Absolute jumps

Jump #1234 (jump to address 1234)

Conditional jumps

GoForward #123 IfPositive (i.e. if last operation’s result was
positive)
necessitates the presence of flags
Usually at four flags: C (carry), N (negative), Z (Zero), V (overflow)
In some ISA, flags are replaced by predicates (any condition can be used
as flag).

Tanguy Risset ARC: Computer Architecture 43

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Subroutine Calls

The call (i.e. jump at the first instruction) of a procedure is done
with the instruction call

call Label

The label is a symbolic way to indicate where is stored the code of
the procedure

The call instruction performs a jump and keep tracks of the current
address in order to be able to come back here after the execution of
the instruction Return (usually use the stack for that)

The Return instruction does not returns values (such as the result of
functions),

Results and parameters of functions are transmitted either on the
stack or in specific register. This is defined by the ABI (Application
Binary Interface).

The ABI allow functions produced from different compiler to call
themselves (i.e. library)

Tanguy Risset ARC: Computer Architecture 44

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Interrupts (ISR for interrupt service routine)

The instruction flow can be interrupted at any time by an interrupt:

Packet arrived on network card
Sound card required more samples to play
a character has been stroked on the keyboard
etc.

Interrupt are almost equivalent of function calls:

They interrupt the current instruction flow to execute the interrupt
handler
Then they continue the execution where is has been stopped
Ideally they have no impact on the function being executed, hence all
registers are saved on the stack before jumping to interrupt handler

Interrupts and Interrupts handler will be studied in more details in
CRO course

Tanguy Risset ARC: Computer Architecture 45

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Other ISA instructions

Change mode instructions

modes interrupt, user, supervisor etc.

Synchronization instructions

for multi-core systems

Tanguy Risset ARC: Computer Architecture 46

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

ISA Example: MSP430

MSP430 ISA is an instruction set for micro-controller very low
consumption (smart cards, RFID tags).

16-bit RISC instruction set with 16-bit registers .

There are instructions of one and two operands.

If these operands are registers, the instruction holds in one word of
16 bits.

The operands can also be a memory box whose address (on 16 bits)
is coded in one of the words following the instruction. In this case
the instructions are 32 or 48 bits.

Some registers are special: the $PC is R0,

the flags are in the register R1, and the register R2 can take different
values useful constants (0, 1, -1 ...).

the number of cycles that each instruction takes is exactly equal to
the number of memory accesses that it makes.

Tanguy Risset ARC: Computer Architecture 47

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

Example: instructions of MSP430 ISA

15 13 12 11 1014 9 8 7 6 5 4 3 2 1 0

0 0 1 condition PC offset (10 bits)

relative Jumps

15 13 12 11 1014 9 8 7 6 5 4 3 2 1 0

opcode Dest reg. Ad Dest reg.B/W As

2 operands instruction

15 13 12 11 1014 9 8 7 6 5 4 3 2 1 0

1 operand instruction

0 0 0 00 1 opcode B/W Ad Dest reg.

Exemples:

PUSB.B R4

JNE -56

ADD.W R4,R4

Tanguy Risset ARC: Computer Architecture 48

Introduction The “Von Neumann” cycle (Instruction stages) Instruction Set Architecture (ISA)

ISA example: ARM

ARM ISA is a 32-bit RISC instruction set with 16 registers found
among other things in all mobile phones.

All the instructions are coded in exactly one memory word (32 bits).

The instructions are 4 operands: the fourth is an offset that can be
applied to the second operand.

The second operand, and the offset can be constants. For example,
add R1, R0, R0, LSL #4 calculates in R1 the multiplication of R0
by 17, without using the multiplier (slow, and sometimes otherwise
absent).

For embedded systems, ARM produced the THUMB ISA
(instructions with 2 operands on 16 bits)

In recent ARM system, instruction of 16 and 32 bits can be mixed

Tanguy Risset ARC: Computer Architecture 49

	Introduction
	The ``Von Neumann'' cycle (Instruction stages)
	Instruction Set Architecture (ISA)

