ARC: Computer Architecture

tanguy.risset@insa-lyon.fr

Lab CITI, INSA de Lyon
Version du April 29, 2024

Tanguy Risset

April 29, 2024

Instruction Set Architecture (ISA, assembleur in French)
900000000

Table of Contents

€@ Instruction Set Architecture (ISA, assembleur in French)

Tanguy Risset ARC: Computer Architecture 2



Instruction Set Architecture (ISA, assembleur in French)
O@0000000

Set Architecture Statement (ISA)

@ The instruction set (Set Architecture statement: ISA) is of
paramount importance

o It determines the basic instructions executed by the CPU.

o It's a balance between the hardware complexity of the CPU and the
ability to express the required actions

o It is represented in a symbolic way: the assembly code/language (ex:
ADD R1,R2)

o The tool that translates symbolic assembly code in binary code (i.e.
machine code) is also called the assembler

e Two types of ISA:

o CISC: Complex Instruction Set Computer
e RISC: Reduce Instruction Set Computer
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CISC: Complex Instruction Set Computer

@ An instruction can code several elementary operations

o Ex: aload, an add and a store (in memory operations)
o Ex: computer a linear interpolation of several values in memory

@ Need a mode complex hardware (specifically hardware accelerators)
@ High variability in size and execution time for different instructions
@ Produce a more compact code but more complex to generate

e Vax, Motorola 68000, Intel x86/Pentium
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Example: instructions ISA of Pentium

JE EIP + displacement
4 4 8

Condition Displacement

e

Call
8 32

‘ CALL ‘ Offset

Mov $EBX, [EDI+displacement]

6 11 8 8
‘ MOV ‘ d‘ w| r—m postbyte Displacement
Push ESI

5 3

PUSH Reg

Add $SEAX, Immediate
4 3 1 32

Reg

‘ ADD w‘ Immediate

Test $EDX, Immediate
7 1 8 32

‘ TEST ‘ w‘ PostByte ‘ Immediate ‘
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RISC: Reduced Instruction Set Computer

@ Small simple instructions, all having the same size, and (almost) the
same execution time.

@ no complex instruction

@ Clock speed increase with pipelining (between 3 and 7 pipeline
stages)

@ Code simpler to generate but less compact

@ Every modern processor use this paradigm: SPARC, MIPS, ARM,
PowerPC, etc.
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Example: instructions of MSP430 ISA

1 operand instruction

5 | 14 | 3 | 11 10 9o [ 8 | 7 6 4 3 2 [ 1 o
0 0 0 1 0 0 opcode B/W Ad Dest reg.
relative Jumps
5 14 | 3 iz [ o 9o [ s [ 7 [ 6 | [ 4 I3 T2 11 To
0 0 1 condition PC offset (10 bits)
2 operands instruction
5 | 14 | 3 [ [ [ ] o s 7 6 | | 4 3 2 [ 1 o
opcode Dest reg. Ad B/W As Dest reg.
Examples:
@ PUSB.B R4
e JNE -56

e ADD.W R4,R4

Tanguy Risset ARC: Computer Architecture 7
Instruction Set Architecture (ISA, assembleur in French)
000000800

Exemple of Pentium ISA

@ Write a simple C program toto.c

@ Type gcc -S toto.c and get the
toto.s file

@ you can also use the compiler
explorer.
https://gcc.godbolt.org/

main() {

int i=17;

i=i+42;

printf ("%d\n", 1i);
+

=

(... instructions ...)
movl $17, -4(%rbp)

addl $42, -4(%rbp)

(... printf params... )
call printf

(... instrucitons ...)
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Disassemby

@ compile the assembly code: gcc toto.s -o toto

@ disassemble with objdump:
objdump -d toto

Adresses Instructions binaires Assembleur

...)

40052c: 55 push  Yrbp

40052d: 48 89 eb mov hrsp, hrbp
400530: 48 83 ec 10 sub $0x10, %rsp
400534: c7 45 fc 11 00 00 00 movl  $0x11,-0x4 (%rbp)
40053b: 83 45 fc 2a addl $0x2a,-0x4 (%rbp)
40053f: 8b 45 fc mov -0x4 (%rbp) , heax
400542: 89 c6 mov fheax,lhesi

h G

Instruction Set Architecture (ISA, assembleur in French)
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common properties of ISA

@ An ISA first defines the types of data on which the processors can
compute (32 bit memory addresses, integer of various sizes, etc.)

@ Then it contains various types of instructions:

o Computation instructions (add, sub, or, and, ...), with various number
of operands

Memory addessing instructions (load, store)

stack management instructions (push, pop)

Flow control instructions (jumps)

subroutine calls
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RISC-V history

@ The RISC paradigm was invented 1980 David Patterson (UC
Berkeley) and John Hennessy (Stanford U.).

@ They described the MIPS architecture in their books “Computer
Organization and Design” and “Computer Architecture: A
Quantitative Approach.”

@ The MIPS was built by a commercial compagny (MIPS was in
Nintendo 64, Sony PlayStation, PlayStation 2) and use in many
architecture courses (including 3TC-ARC!).

@ Hennessy and Patterson received the ACM A.M. Turing Award in
2017 (https://amturing.acm.org/byyear.cfm).

From 1980 to 2010, the development of the fifth generation of the RISC
research project started and,led to the RISC-V (pronounced “risk-five").
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RISC-V project

@ RISC-V is an open instruction set architecture (ISA), this is fairly
new!

@ RISC-V International is a global nonprofit organization that owns
and maintains the RISC-V ISA intellectual property.

@ Its members range from individuals to organizations like Google,
Intel, and Nvidia.

Industry innovation on RISC-V

'y
Hardware
- Rvied, muiti-heart
CPUs, vectors,
Hardware bit manipulation,
- RW32, privilege hypenvisors, debug mode -
- modes. lI]EEI'i'UpES -
Hardware Al Sac;
- RV32 - 10T SaCs Application
Microcontrollers processors
neept 5oCs
=y Software Software
% RTOS Linux
= A 1o
=t , Firmware Drivers
E Al Compilers
(]
2019 - 2020 03| —

2010 - 2016
v RISC

(from https://www.allaboutcircuits.com/)
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RISC-V Processor

o RISC-V is specified by its ISA (RV32I, for integer 32 bits for
instance).

@ Many extension of the ISA are specified (32 bits, 64 bits, 128 bits,
Atomic Instructions, Compressed Instructions, etc.)

@ The architecture can be pipelined or not, it can target small
embedded systems or large powerfull machines.

@ Each processor compagny can build it own RISC-V implementation
as long as it respect the ISA specification.

@ We will study the RV32l base integer ISA that implements the
necessary operations to achieve basic functionality with 32-bit
integers.
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a register-to-register (or load/store) architecture
RISC-V use 3-adress instructions (destination is the first operand)
32 32-bits registers (x0-x31) plus a A program counter (pc) of

register can be name x0, x1, etc. or with their more explicit ABI
names: x0 is “zero”, x1 is ra (return adress), etc
(https://en.wikichip.org/wiki/risc-v/registers)

x0 is hardwired to value 0
x1 is the return adress (ra)

x2 is the stack pointer (sp)
32-bit address space: Addressable memory of 232 bytes
o < 230 words of 4 bytes
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understanding RISC assembly

@ From C to assembly:

riscv64-linux-gnu-gcc -S NtimesN.c -o NtimesN.S

NtimesN.c NtimesN.s
[...]
call __isoc99_scanf@plt #call to scanf
1w ab,4(sp) #N is now in ab
[...] mulw a2,ab,ab #a2 <- Nx*N
scanf ("%d",&N) ; slliw a4,ab,1 #ad <- 2xN (shift
i = N*N + 3%N; addw ab,a4,ab #ad <- 2xN+N
printf ("i=}d\n",i)|; |addw a2,a2,ab #ab <- N*xN + 3x*N
[...] 1lla al,.LC1 #printf args (To b
1i a0,1 #.. explained late:
call __printf_chk@plt #call to printf
[...]
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RISC-V register

@ 32 registers in the register file
@ Named

e by their number: x0 x1 ...x31
e or by their name zero ra sp fp a0 al ...a7 sl s2 ...

x0 (zero) contains value 0
a0 ...a7 are used to pass arguments of a function call
a0 al are used to transmit functions result

t0 ...t6 and sO ...sll are working registers, used for CPU
computations

sp is the stack pointer

fp is the frame pointer (explained later)

ra contains the return address (after the end of current function)
gp is a pointer to global area

tp is the thread pointer
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Risc-V assembly addressing mode

The addressing mode defines how the operands of each instruction
are interpreted.

RISC-V has four addressing modes:

e Immediate addressing: the operand is a constant within the instruction

o Register addressing: where the operand represents a register.

e Base addressing: the operand is an address which is the sum of a
register and a constant (sometimes called indirect addressing)

o PC-relative addressing: the operand is an address which is the sum of
PC and a constant
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Example of RISC-V adressing mode

@ Register addressing

add x1, x2, x3
puts in x1 the value of x2 plus the value of x3.

o x1=x2+x3
@ Immediate addressing

addi x1, x2, 0x0f
addi x1, x2, 15
puts in x1 the value of x2 plus 15.

o x1=x2+15
@ Base addressing

lw x1, 10(x3)

puts in x1 the value situated in memory at the address obtained by
adding 10 to the content of x3.

x1=Memory [x3+10]

@ bne al, a2, label

branch to address of 1abel if values in a1l and a2 are different.
if (al '= a2) then $PC=label
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Format of Risc-V instructions

@ 3 types of format: R-Type, I-Types and B-Types

@ R-types:
0 67 1112 1415 1920 24 25 31
opcode rd func3 rsl rs2 func?7
o Used for 3-registers instructions
e opcode is the operation code that specifies the operation
e rsl and rs2 are the first and second source register
e rd is the destination register
e func3 and func?7 are used with op to select arithmetic operation

(additionnal opcode fields)

Tanguy Risset ARC: Computer Architecture



The RISCV ISA example
0000000000000 0000000

I-Types instruction

@ |-Types instruction are used for load, store, branch and immediate

instruction.

0 67 1112 1415 1920 31
opcode rd func3 rsl imm[0:11]

e rsl is a source register

e rd is a destination register

e func3 is additionnal opcode field

o The imm field is a 16 bit's integer in two's-complement code , ranging

from -32 768 to 32 767 (remind that this is a problem in many cases)
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B-Types instruction

@ B-Types instruction are used for Branch instructions
0 67 77 1112 1415 1920 24 25 293031

imm

opcode | [MME4 func3 rsl rs2 imm[5:10] o

o The imm split-field is a 13 bit's integer containing an address (always
even hence bit 0 is implicitely 0).

e can jump from address 0 to 213=1MB from $PC.
o For longer jump, on can use others instrction (PC absolute), barely used.
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Basic arithmetic and logic instruction

@ R-Types instructions: add, sub and, or, xor

e add rd, rsl, rs2 // rd = rsl + rs2
e xor rd, rsl, rs2 // rd = rsl rs2

@ |-types for immediate operand operation:

e addi rd, rsi, 4 // rd = rsl + 4
e 1i rd, 4 // rd = 4, pseudo (addi rd, zero, 4)
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Load and store

@ load and store operation use indexed addressing

o the address operand specifies a signed constant and a register
o These values are added to generate effective address

@ byte instruction: 1b and sb transfer one byte

e 1b rd, 20(rsil) // rd=Memory[rs1+20] [0:7]
o lw rd, 20(rs1) // rd=Memory [rs1+20] (i.e.[0:31]
e sb rd, 20(rs1) // Memory[rd+20] [0:7]=rs1

e sb stores only the lowest byte of operand register
e Word instruction: 1w and sw operates on word (i.e. 32 bits)

@ Remind that address have to be aligned to 32 bit world, hence must
be multiple of 4.
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Branches

@ Conditional branch
e bne rsl, rs2, Label
e if rs1 and rs2 have different values, the next instruction to execute is
at address Label (i.e. pc = Label
e beq rsl, rs2, Label // same thing if rsil=rs2
@ Unconditionnal branch
o j offset // next instruction executed is at address

PC+offset
e jr rsl // next instruction executed is at address

contained in rsi
@ These are the only way of implementing loops in assembly:

[...]

1i s2, 1
while: beq sl1, zero, done
sub sl1, s1, s2

t2=1
while (t1 !'= 0) {
t1 = t1 - t2

j while )

done:
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Function control flow in RISC-V

@ RISC-V uses the jump-and-link (jal) instruction to call functions

e Example:
jal ra, fact
o saves the return address (i.e. the address of the following instruction) in
the ra register and jumpt to the label label (code of fact function)

@ At the end of the execution of fact, the instruction ret jumps back
to the address stored in ra (pseudo: jalr x0, ra, 0)

@ Arguments transmited to Fact are stored in registers a0 ...a7

@ Return values of Fact are stored in registers a0, ail
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Who save the register during Function call?

@ When a function call occurs: jal ra, fact, who save the register?

o The Caller (who knows which register he will use after the call)?
o Or the callee (who knows which register he will use during its
execution)?

@ This convention is part of the calling convetion or ABI application
binary interface.

e For MIPS:
e ra, t0O ...t6, a0 ...a7, are caller saved
o fp, s1 ...s11 are callee saved
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Function call example with MIPS

@ Let says: function B calls function C

@ Function B wants to save t0, t1 and a0 because it will need them
after the return of C.

@ this is done using the stack via the stack pointer sp
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The Stack

@ The stack is use to store all local information (in the sense local to
the current function)

@ That includes (say for function C):

local variable

Callee saved register if needed

Return address (i.e. the instruction following the jal C instruction).
(sometimes) the parameters passed to C

(sometimes) the result of C

In many ISA, the parameters and the results are passed through
dedicated registers

@ All these data constitute the frame of the fonction instance.
@ the frame pointeur points to the frame of the current function

e For MIPS, the frame pointer is fp

Tanguy Risset ARC: Computer Architecture 29
The RISCV ISA example
0000000000000 000000e0

Function B calls C

B Ce beguinning of B
sw t0,0(sp) saving t0 in stack
sw t1,-4(sp) saving t1 in stack
sw a0,-8(sp) saving a0 in stack
sub sp,sp,12 correct stack pointer
jal ra, C call to C function
1w a0,4(sp) restoring return addresse of B from stack
1w t1,8(sp) restoring sl from stack
sw t0,12(sp) restoring sO
add sp,sp,12 adjusst stack pointeur value
ret end of B
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Sketching code of C function

C:
addi sp,sp,-40 # C need 40 Bytes for its frame
SW ra,32(sp) # store return address (inst. in B)
SW fp,28(sp) # store frame pointer
SW s0,24 (sp) # store sO (because C uses it)
move fp,sp # fp <- sp: frame pointer of C set
1w ra,32(sp) # ra <- return address (in B)
1w fp,28(sp) # fp <- frame pointeur of B
1w s0,24(sp) # restore sO
addi sp,sp,40 # sp <- spt+40, restore B stack pointe
ret # return to ra (B function)

Function, procédure et Pile d’'exéq
®0000000000

Table of Contents

© Function, procédure et Pile d’exécution
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Procedure abstraction

@ Let's pause a while to come back to high level langage
e What is a function (or a procedure)?
@ How its isolation mecanisme (local variable) is implemented?

@ This is implemented with a very fundamental mecanism: the Stack
and the Activation Record (or Frame) of each procedure.
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Notion of procedure

@ Procedures (or functions) are the basic units for compilers

@ Three important abstraction:
e Control abstraction: parameter passing and result transmission
o Memory abstraction: variable lifetime (local variables)
o Interface: procedure’s signature
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Procedure Control Transfer

@ Transfer mechanism of control between procedures:

e when calling a procedure, the control is given to the procedure called;

e when this called procedure ends, the control is returned to the calling
procedure.

e Two calls to the same procedure create two em independent instances
(or invocations).

@ two useful graphic representations:

o The call graph: represents the information written in the program.
o The call tree: represents a particular execution.
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Ca” q;r&gibre calc;

begin { calc} Call Graph:
end;
procedure call;
vary...
procedure call,
var z: ...

procedure callz; Calll
var y....

begin { callz}

Xi=...

calc; Call2
end:

begin { callk}
z:=1;

calc; Call3
calls;
end;
begin { call; }

ﬁ‘.allz ; Calc

end;
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Call Tree
procedure calc;
begin { calc}
4 Call tree for one
ena, .
procedure calh; particular  execu- | main calls cally
var y... tion:
orocedure cally cally calls call,
var z: ... call, calls calc
procedure call; / /I
vary calc returns to call
call, calls call
begml{_ca/l3} @ 2 3
Xi=... callz callscalc
cale; Ic returns to call
end; carr ) calc returns to calls
begin { call>} callz returns to call,
z=1; call> returns to call
calc; Cal@ 2 1
calls; cally returns to main
end:;
begin { call; } @
call>:
end;
Tanguy Risset ARC: Computer Architecture 37

Function, procédure et Pile d’'exéq
O00000e0000

Execution Stack

@ The transfer of control mechanism between procedures is
implemented thanks to the execution stack.

@ The programmer has this vision of virtual memory:

Code static Tas Memoire libre Pile

0 100000
(petites adresses) (grandes adresses)

@ The heap is used for dynamic allocation.

@ The stack is used for the management of contexts of procedures
(local variable, etc.)
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Function call: status of the stack

Before the call after the call
(AR=Activation Record)

[ sp |

AR procédure
appelée
AR procédure AR procédure
E appelante appelante
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Activation record

e Calling a procedure: Stacking the activation record (or frame).

@ Need of a dedicated pointer for that: the activation record pointer
(ARP) or frame pointeur (£p))

The frame allows to set up the context of the procedure.

@ This frame contains

e The space for local variables declared in the procedure
o Information for restoring the context of the calling procedure:
@ Pointer to the frame of the calling procedure (ARP or FP for em frame
pointer).
@ Address of the return instruction (statement following the call of the

appellant proceedings).
e Eventually save the state of the registers at the time of the call.
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Content of the Frame

E Variables locales

AR procédure Adresse de retour

appelée T ARP appelant

E Résultat

Sauvegarde des registres

AR procédure Parametres
appelante
Tanguy Risset ARC: Computer Architecture 41
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Return to calling function
avant le retour aprés le retour

[ sp |

AR procédure
appelée

AR procédure AR procédure

appelante @ appelante
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Coming back to previous call example with B and C

@ Let says: function B calls function C

@ Function B wants to save t0, t1 and a0 because it will need them
after the return of C.

@ this is done using the stack via the stack pointer sp
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The Stack

@ The stack is use to store all local information (in the sense local to

the current function)

@ That includes (say for function C):

local variable

C instruction).

Callee saved register if needed
(sometimes) Return address (i.e. the instruction following the jal ra,

(sometimes) the parameters passed to C

(sometimes) the result of C

In many ISA, the parameters and the results are passed through
dedicated registers

@ All these data constitute the frame of the fonction instance.

@ the frame pointeur points to the frame of the current function
@ For RISC-V, the frame pointer is fp
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Function B calls C

sw t0,0(sp)
sw t1,-4(sp)
sw a0,-8(sp)
sub sp,sp,12
jal ra, C
1w a0,4(sp)
1w t1,8(sp)
sw t0,12(sp)
add sp,sp,12

ret

beguinning of B

saving t0O in stack

saving tl1 in stack

saving a0 in stack

correct stack pointer

call to C function

restoring return addresse of B from stack
restoring sl from stack

restoring sO

adjusst stack pointeur value

end of B
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Sketching code of C function

C:
addi sp,sp,-40 # C need 40 Bytes for its frame
SW ra,32(sp) # store return address (inst. in B)
SW fp,28(sp) # store frame pointer
SW s0,24 (sp) # store sO (because C uses it)
move fp,sp # fp <- sp: frame pointer of C set
1w ra,32(sp) # ra <- return address (in B)
1w fp,28(sp) # fp <- frame pointeur of B
1w s0,24(sp) # restore sO
addi sp,sp,40 # sp <- spt+40, restore B stack pointe
ret # return to ra (B function)
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RISC-V Assembly for programme fib

Fibbonacci suite program:
int fib (int i)
{

if (i<=1) return(l);
else return(fib(i-1)+fib(i-2));
+

int main (int argc, char *argv[])

{
fib(2);

+
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Assembleur RISC-V pour programme fib

fib:
addi
sd
sd
sd
addi
mv
swW
1w
sext.w
1i
bgt
1i
h|
L2:
1w
addiw
sext.w
mv
call
mv
mv
1w
addiw
sext.w
mv
call
mv
addw
sext.w

.L3

sp,sp,-48
ra,40(sp)
s0,32(sp)
s1,24(sp)
s0,sp,48
ab,al
ab,-36(s0)
a5,-36(s0)
a4,ab
ab,1
a4,ab,.L2
ab,1

H HHFHEFHHEHHEHH B H

a5,-36(s0)
ab5,ab5,-1
ab,ab
a0,ab

fib

ab,al
sl,ab
a5,-36(s0)
ab5,ab5,-2
ab,ab
a0,ab

fib

ab,al
ab,s1,ab
ab5,ab

SP <- SP-48 :AR de 48 octet (12 mots)
stocke adresse retour (64 bits) a SP+40
sauvegarde registre s0

sauvegarde registre sl

sO=ARP/FP <- SP

ab <- argl (N)

stock argl (N) dans la pile (SP-12)
instruction inutile (supprimée si optimisation)
a4 <- sign extension ab5(32)

ab <- 1

if (a4 > 1) sauter a .L2)

ici on a argl=N<=1 donc ab <- res=1
sauter a .L3

# ici N>1, ab <- N

# ab <- ab - 1

# sign extension

# a0 <- ab (set arg in a0 for recursive call)
# recursive call

# ab <- result from recursive call

# sl <- ab

# ab <- N

# ab <- ab -2

# sign extension

# a0 <- ab (set arg in a0 for recursive call)
# recursive call

# ab <- result from recursive call

# ab <- fib(N-1)+fib(N-1)

# sign extension
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Assembleur RISC-V pour programme fib

.L3:
mv a0,ab
1d ra,40(sp)
1d s0,32(sp)
1d s1,24(sp)
addi sp,sp,48
jr ra
.size fib, .-fib
.section .rodata
.align 3
.LCO:
.string
.text
.align 2
.globl main
.type main, @function
main:
addi sp,sp,-32
sd ra,24(sp)
sd s0,16(sp)
addi s0,sp,32
mv ab,a0l
sd al,-32(s0)
sW ab,-20(s0)
1i a0,2
call fib
mv a5,al
mv al,ab
1la a0, .LCO
call printf@plt
1i ab,0

"le resultat est %d "

#a0 <- a5 (set result in a0)
# restaure ra
# restaure sO
# resaure sl
# restaure sp
# return

# set AR for main

#store arg og main

# we call fig(2)

# get fib result
#set args for printf
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example 1, if-then

bne sO, sl1, Test
add s2, sO, si
Test:
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example 2, if-then-else

beq s4, sb5, Labl
add s6, s4, sb
j Lab2
Labl: sub s6, s4, sb
Lab2:
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example 3, looping

1i €2, O
1i t3, 1
while: beq tl1, zero, done
add t2, t1, t2
sub t1, ti1, t3
j while
done:
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example 4, static variable

.globl main
.type main, Q@function
.data
varl: .word 23 # declare storage for varl; initial
# value is 23
.text
main:
lw t0, varl # load contents of RAM location int
# register $t0: t0 = [varl] ( = 2
1i t1, 5 # $t1 =5 ("load immediate")
la t2, varl # load address of varl
sw tl1, (t2) # store contents of register ti
#into RAM: [varl] = t1 =5
done:
ir ra
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example 5, array accesses

.globl main

.type main, Q@function
.data
arrayl: .space 12

.text
main: la tO,

11
SwW

1i
SW
1i
SW
ir

t1,
t1,

t1,
t1,
t1,
t1,

Ta

arrayl

5
(t0)

13
4(t0)
-7
8(t0)

Tanguy Risset

# declare 12 bytes of storage to
# hold array of 3 integers

# load base address of array into
#register $tO

#t1 =5  ("load immediate")
#first array element set to 5;
#indirect addressing

#tl1 = 13

#second array element set to 13
#tl = -7

#third array element set to -7
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Documentation on RISV-V assembly

@ The RISC-V Instruction Set Manual Volume I: User-Level ISA

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified- IMAFDQC/riscv-spec-20191213.pdf

@ Risc-V assembly manual on github

https://github.com/riscv-non-isa/riscv-asm-manual/blob/master/riscv-asm.md

@ CheatSheet on ARC Moodle site.

Tanguy Risset
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Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
registers)
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Program execution on a Processor (8 general purpose
registers)

PC | 16 | Mémoire

'| EEEEEE 16 load RO,[36]
3 _ (] 20 load R1,[40]
24 add R3|RO,R1
28 store RB,[44]
32
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40 10
44 Xx
48
52
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64
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Program execution on a Processor (8 general purpose
registers)

PC | 16 | Mémoire
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20 load R1,[40]

24 add R3,R0,R1
28 store R3,[44]
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Program execution on a Processor (8 general purpose
registers)

PC | 20 | Mémoire

3 9 20 load R1,[40]
24 add R3|RO,R1
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Program execution on a Processor (8 general purpose
registers)

PC | 20 | Mémoire

N/ 7V N 20 load R1,[40]
|| 0 | 24 add R3,R0,R1

28 store R3,[44]
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Program execution on a Processor (8 general purpose
registers)

PC | 24 | Mémoire

\J 20 load R1,[40]
24 add R3,R0,R1

] 10 ] 28 store RB,[44]
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&
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Program execution on a Processor (8 general purpose
registers)

PC | 24 | Mémoire

Q 20 load R1,[40]

|| 0 | 24 add R3,R0,R1
28 store R3,[44]

32
36 7
40 10
44 XX
48
52
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Program execution on a Processor (8 general purpose
registers)

PC | 24 Mémoire

3 8
&2 3 16 Toad RO.[36]

3 LTI EE g 20 Joad R1,[40]
B 1 B 24 add R3,RO.R1
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64
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Program execution on a Processor (8 general purpose
registers)
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4
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Program execution on a Processor (8 general purpose
registers)

PC | 28 | Mémoire
0
4
3 ' 8
- 3
3 L - N 20 load R1,[40]
e N o H 24 add R3,RO,R1
|| L 28 store R3,[44]
£ 32
décodeur B 17 B 36 7
N H 40 10
] N 44 xx 17
) . . 48 A
52
| storeR3,[44] | 56

RI ) 60
64

%\ 68

72

|
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The “Von Neumann cycle”

@ The so-called Von Neumann cycle is simply the decomposition of the
execution of an instruction in several independent stages.
@ The number of stages depend on the processor, usually 5 stages are
commonly used as example:
o Instruction Fetch (IF)
o Reads the instruction from memory (at address $PC) and write it in $IR.
Instruction Decode (ID)

@ computes what needs to be computed before execution: jump address
destination, access to register, etc.

Execute (EX)

@ executes the instruction: ALU computation if needed
Memory Access (MEM)

e Loads (or stores) data from memory if needed

Write Back (WB)

e Writes the result into the register file if needed
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| gEgusia e denneeure (A sssemblewr n Feneh) SR8 3SS S SR o SR TR e Mo 4o
The MIPS example

@ The RISC paradigm was invented by Berkeley and popularized by
Henessy and Patterson in the book on MIPS

@ MIPS stands for Microprocessor without Interlocked Pipeline Stages
and propose and architecture to execute each stage independently

Instruction Instruction Execute . Memory
fetch (IF) decode (ID) (EX) | access (MEM)

from MIPS website https://www.mips.com/
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Christian Wolf's slides

@ Use Christian Wolf slides for explaining MIPS instruction pipeline

@ Here
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example of MIPS pipeline CPU architecture

@ Taken from Henessy/patterson book

Hxcg2 @

IF/ID ID/EX EX'MEM MEM/WB

left 2
_§ Read
register 1
g et Read
£ Read data 1
g regi >
Instruction N = el

ster 2
_ Registers Read
ity data 2

data
16 |82
N Sign
N | extend

memory Address Readl |

rite
register
Write
data

=
=)
g
3o
38
o o
<
2.
o
g
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| g3sagRnset Arehitectire (1S, assembleur in French) 30s S0y SR 000 bsasssdoss ' ¢
lllustration of bubble on MIPS

@ When next instruction cannot be fetched directly (because it need
the result of previous instruction for instance) it creates a “bubble”

@ For instance: an addition using a register that was just loaded

@ The value of the register will be available after the MEM stage of
first instruction, hence we can delay on only on cycle, provided there
is a shortcut.

) 2 4 6 8 10 12 14
Program Time T T T T T T T >
execution
order
(in instructions)
Iw 20($t1) IF C ID %*MEM— — WB
v sub $t2, $t3

IF WB

—L 1D %—Mm

Tanguy Risset ARC: Computer Architecture

Another illustration of instruction pipeline

@ Go back to our previous representation of the processor and memory:

e Von Neumann computer= Memory + CPU
e CPU= = control Unit + Datapath
o Datapath= ALU + Register file

Processor

Control unit

control/Statys

Datapath

ALU

I

Register File

Memory

Tanguy Risset
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A pipeline example from MIPS

@ Execute the sequence of assemby instruction:

o load value at address 500 in register RO
e Add 1 to RO and put result in R1
e store value of Register R1 at address 500

o (Think of i=i+1)

e Code:
la R0O,500
add R1, RO, 1
sw R1,500
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First possible execution: without pipeline

@ Before execution starts, $PC contains the address of the first
instruction: 100

Processor Datapath

ALU

Control unit

control/Status 4\ \L
RO  Register File R1

PC R ‘ ‘

100 ‘ R2 ‘ ‘ R3 ‘

Memory

100 | la R0,500 500 10

104 | add R1,R0,1

108 | sw R1,500
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cycle 1

@ Instruction Fetch

Processor Datapath
ALU
Control unit
control/Status $ V

RO  Register File R1

PC IR

P | |
100 \ la R0,500 ﬁ ’JB—‘

A
\ /A
\_/
\/ Memory

100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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| G3gESER S Aretecure (A asembleur n French) U 880800 im0 BERSED BLE e & Ple 4o
cycle 2

@ Instruction Decode

Processor Datapath

ALU
Control unit /__?
ntrol/Status 4\ V

/ RO  RegisterFile Rl
PC . | | |

100 la R0,500 ’_R;‘ "Eﬁ—‘

Memory
100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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cycle 3

@ Execute (nothing for load)

Processor Datapath
ALU
Control unit
control/Status 4\ V

RO Register File R1

PC IR

100 la R0,500 ﬁ "K!—‘

Memory
100 |1a R0,500 >00 10
104 | add R1,RO0,1
108 | sw R1,500
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cycle 4

@ Memory access

Processor

Datapath
ALU
Control unit A
control/Status 4\ \L
RO  RegisterfFile R1
i S‘R | | |
100 la R0,500 R3

[
/I
Memory /

100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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cycle 5

@ Write Back
Processor Datapath
ALU
Control unit /
control/Status / $ V

RO //y Register File R1

PC IR

o | |
100 la R0,500 ﬁ "Ej—‘

Memory
100 |1a R0,500 >00 10
104 | add R1,RO0,1
108 | sw R1,500
Tanguy Risset ARC: Computer Architecture
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cycle 6

@ increment $PC

@ Fetch next instruction

@ etc. etc.
Processor Datapath
ALU
Control unit
control/Status $ V

RO  Register File R1
PC IR ‘ ‘

104 add RO, R1,1 ‘ R2 ‘ ‘ R3 ‘

\ /i
\_/
\/ Memory

100 | 1a R0,500 500
104 | add R1,R0,1

10

108 | sw R1,500
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Counting CPI for non-pipelined architecture

@ CPl= Cycle per in

struction

@ 5 cycles for executing on instruction

@ = 15 cycles for 3 instructions.

Tanguy Risset

ARC: Computer Architecture 73

| G3gESER S Aretecure (A asembleur n French) U 880800 im0 BERSED BLE e & Ple 4o
Example of pipelined execution

@ Instruction Fetch (for 'load’ instruction)

100 |1la R0,500
104 | add R1,R0,1

108 | sw R1,500

Processor Datapath
ALU
Control unit
control/Staty 4\ \L
RO  Register File R1
PC R ‘ ‘
100 la R0,500 ’_Rﬁ "&—‘
\ /A
\/ Memory

500

10

Tanguy Risset
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cycle 2

@ Instruction Decode (for load)

@ Instruction Fetch (for 'nothing’ because of a bubble: instruction

'add’ delayed)

Processor

Datapath

ALU

Control unit a)‘_j_?
ntrol/Status 4\ V

/ RO  RegisterFile Rl
pC IR ‘
104

| |
L]

Memory
100 |la R0,500 500 10
104 | add R1,RO0,1
108 | sw R1,500
Tanguy Risset ARC: Computer Architecture

cycle 3

@ Execute (for load: nothing to do)
@ Instruction Decode (for 'nothing’)
@ Instruction fetch (for 'add’)

Processor Datapath
ALU
Control unit
control/Statys $ V

PC IR

104 add R1,R0,1

/
/
/ Memory

100/ 1a R0,500 500
104 | add R1,R0,1

RO  Register File R1
Mo

| |
L L]

108 | sw R1,500
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cycle 4

@ Memory access (for load)

e Execute (for 'nothing’)

@ Instruction Decode (for add)
@ Instruction fetch (for store)

Processor Datapath

add

= ALU ,ﬂ

Control unit
control/Statys add $ V
RO  Register File R1
= | N/

|
\

A

I
[ |

/ lfad
/ Memory I
100 19/ R0,500 500 10
04 Add RI,R0,1
108 | sw R1,500
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cycle 5

e Write Back (instruction load)

@ Memory access (for 'nothing’)

@ Execute (instruction add: bypass)
@ Instruction Decode store

Processor Datapath

SW

ALU
Control unit

/
lcontrol/Status loagf’ |
R Register File R1
IR

PC 0 |

116 R2 ‘ R3 ‘

Memory
100 | 1a R0,500 500 10
104 | add R1,R0,1

108 | sw R1,500
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cycle 6

e Write Back (for 'nothing’)

@ Memory access (instruction add, nothing to do)

@ Execute (instruction store: nothing to do)

Processor Datapath
ALU
Control unit add
control/Status $ V

RO  Register File R1

PC IR

0| |
120 R2 R3

Memory
100 | la RO,500 500 10
104 | add R1,RO0,1
108 | sw R1,500
Tanguy Risset ARC: Computer Architecture
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cycle 7

e Write Back (instruction add)

@ Memory access (instruction store: bypass)

Processor Datapath
ALU
Control unit A add
control/Status 4\ V I\.
RO  Register Hile R1
IR
PC 10 11
124 R2 / R3

SW

\\5

Memory
100 | 1a R0,500 500

104 | add R1,RO0,1

- TS

108 | sw R1,500
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Counting CPI for both architectures

@ Non-pipelined architecture:

e 5 cycles for one instruction
e = 15 cycles for 3 instructions.

@ Pipelined architecture:

5 cycles for one instruction

8 cycles for 3 instructions.

= without bubbles, one instruction per cycle

A 'jump’ instruction interrupt the pipeline (need to wait for the address
decoding to fetch next instruction) = pipeline stall

Some ISA allow to use these delay slots: one or two instruction after the
jump are executed before the jump occurs.
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Du langage a |'exécution
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Rappels d'architecture

TEFEEFEE,
Stack segme:
Processor Interrupts
|
Dynamic data D
Memory-UObus | |===== TS T T ata segmern
| [] [] ] Static data &
/0 1/0 1/0 10000000hex
Main controller controller controller
memory | | Text segmen
T3 3 J
. - Graphi Network 4__00000
output. (e hex Reserved
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Architecture view from the programmer

@ Modern systems allow

o To run multiple independent programs in parallel (process)
o To access memory space larger than physical memory available (virtual
memory)

@ For the programmer: all this is transparent
e Only one program runs with very large memory available
@ The processor view memory contains:

e The code to execute

o Static data (size known at compile time)

o Dynamic data (size known at runtime: the heap, and the space needed
for the execution itself: the battery)

@ The programmer sees only the data (static and dynamic)
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compilation process

@ the complete process will translate a C program into code executable
(loading and execution will take place later).

kN i .
code asm obj
| o
.c s .0
AN

€Xxe

Execution

Simulation

@ We often call compilation the set compiler + assembler

@ The gcc compiler also includes an assembler and linking process
(accessible by options)
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Your compilation process

@ The programmer:

o Write a program (say a C program: ex.c)
e Compiles it to an object program ex.o
e links it to obtain an executable ex

content of ex.c
#include <stdio.h>

ex.c \\ €X.0 \\
-
int main() ;
{ T T ‘

stdio.h libstdioa | (o0 ex o —o ex
printf("hello World\n"); CP

L] L] kN

ey ey ox
return(0) ; wooc o )

by
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Zooming on “compilation”

@ The compilation process is divided in 3 phases:

Front-End Middle-End Back—End

0 |5

g w g o :

] £ z S | = o o [ 1 3 g s

5 5 @ 5 2 a o) = g

%] A O o o o %] < 3

S

Infrastructure
Table des symbols, Arbres de syntaxe abstraite, Graphes, ensembles, IR, ...
Compilateur
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Compilation: the front-end

@ The front end of an embedded code compiler uses the same
techniques as traditional compilers (we can want to include
assembler parts directly)

e Parsing LR(1): the parser is usually generated with dedicated
metacompilation tools such as Flex et bison for GNU
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Compilation: The middle-end

@ Some phases of optimizations are added, they can be very calculative

@ Some example of optimisation independent of the target machine
architecturre
e Elimination of redundant expressions
e dead code elimination
@ constant propagation

@ Warning: optimization can hinder the understanding of the assembler
(use the -O0 options with tt gcc)

Tanguy Risset ARC: Computer Architecture

v

Constant folding

Global value numbering

Local and global copy propagation | ___________ —| Algebraic simplifications
Sparse conditional constant propagation
Dead code elimination A A
| |
! |
,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
! |
C . S I . R ;
Local and global common subexpression elimination i Partial redundancy elimination [ ------- !
Loop invariant code motion

Dead code elimination
Code hoisting
Induction—variable strength reduction | _______________________|
Linear function test replacement
Induction—variable removal
Unnecessary bound checking elimination
Control-flow optimisations

— i

In—line expansion

Leaf routine optimization

Shrink wrapping

Machine idioms

Tail merging

Branch optimization and conditionnal moves | !

Dead code elimination

D Software—pipelining, loop unrolling, variable expansion

register renaming and hierachical reduction

Basic block and branch scheduling 1
Register allocation by graph coloring
Basic block and branch scheduling 2
Intraprocedural I-cache optimization
Instruction prefretching

Data prefretching

Branch prediction

i

Interprocedural register allocation

E Aggregation of global references
Interprocedural I-cache optimisation

ARC: Computer Architecture
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Compilation: The back-end

@ The code generation phase is dedicated to architecture target.
Retargetable compilation techniques are used for architectural
families.

@ The most important steps important are:

o Code selection
o Register allocation
e instruction scheduling
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SIS e (A e ) S oo S op S e
GCC

@ The gcc command runs several program depending on the options

The pre-processer cpp
The compiler cc1
The assembleur gas

The Linker 1d

@ gcc -v allow to visualize the different programs called by gcc
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The pre-processer cpp or gcc -E

@ the task of the pre-processor are :

elimination of comments,
inclusion of source files
macro substitution (#define)
conditionnal compilation.

m © © e e

@ Example:

#define MAX(a, b) ((a) > (b) ? (a) : (b))
exl.c

f=MAX(3,b);

#define MAX(a, b) ((a) > (b) 7 (a) : (b))
exl.i

f=((3) > (b) 7 (3) : (b));
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The compiler ccl or gcc -S

@ generate assembly code
@ gcc -S main.c -o main.S

@ Exemple :

void main()
{ int 1i;
1i=0;

while (1)
{

i++;

nop(Q) ;
}
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Assembly code generated (for MSP430)

[

mov #2558, SP ; stack initialization de la|pile
mov rl, r4 ; ¥4 <- SP
mov #0, 0(rd) ; 1 initialization
inc 0(r4) ;oi++
nop ; nop(Q);
jmp $-6 ; unnconditionnal jump (PC-6):
incd SP ;
br #0x1158 5
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Assembly:§§§§ggr9’cj)uce by mspgcc -S

.global main

.type main,@function
main:
/* prologue: frame size = 2 */
.L__FrameSize_main=0x2
.L__FrameOffset_main=0x6

mov #(__stack-2), ri
mov rl,rd
/* prologue end (size=3) */
mov #110(0), ©r4
L2:
add #11lo(1), @r4
nop
jmp .L2
/* epilogue: frame size=2 */
add #2, ri
br #__stop_progExec__

/* epilogue end (size=3) */

/* function main size 14 (8) x*
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Assembler as ou gas

e transform an assembly code into object code (binaire representation
of symbolic assembly code)

@ Option -c of gcc allow to conbine compilation et assembly
gcc -c main.c -0 main.o
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Linking: 1d

@ Produce the executable (a.out by default) from object code of
programs and library used

@ There are two ways to use libraries in a program

o Dynamic or shared libraries (default option): the code of the library is
not included in the executable, the system dynamically loads the code of
the library in memory when calling the program. We need than only one
version of the library in memory even if several programs use the same
library. The library must be em installed on the machine, before running
the code.

e Static libraries: the code of the library is included in the executable. The
executable file is bigger but you can run it on a machine on which the
library is not installed.
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Binary file manipulation

Some usefull command:

@ nm
Allow to know symboles (i.e. label: function names) used in an
object file or executable

trisset@hom\$ nm fib.elf | grep main
000040c8 T main

@ objdump allow to anlayze a binary file. For instance it can get
correspondance between binary representation and assembly code
trisset@hom$ objdump -f fib

fib: file format elf32-msp430
architecture: msp:43, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED

start address 0x00001100
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