ARC: Computer Architecture tanguy.risset@insa-lyon.fr Lab CITI, INSA de Lyon
 Version du January 24, 2023

Tanguy Risset

January 24, 2023

Table of Contents

(1) introduction

(2) History

(3) Electrons and Logic

4 Processor Architecture

ARC course presentation

- Schedule:
- Course 8h
- small labs (TD) 6 h
- labs (TP) 16h
- Evaluation (In french): un QCM et un devoir papier en fin de cours
- skills and knowledge learned in ARC cours:
- Bolean logic, arithmetics
- combinatorial and sequential logic circuits, automata.
- Processor architecture, datapath, compilation process, RISC architecture
- Assembly code, link with high level programming languages
- Simple processor design, simple assembly program analysis.
- Link with compilation, operating systems and programming
- Moddle (open): frames, labs, various document
- Course based on the two IF architecture course: AC and AO (open courses on Moodle).

From electron to Von-Newman CPU

Computer architecture usefulness

- How to solve a problem with electrons:
- ARC is useful
- For general knowledge of a computer scientist
- To understand pro/cons of modern complex architectures
- For embedded system programming

Problem Algorithm Program Run-Time system Architecture/ISA Micro-Architecture Logic Circuit Electrons

Table of Contents

(1) introduction

(2) History

(3) Electrons and Logic

4 Processor Architecture

History of computing

- Ancient time: various arithmetics systems
- 17th century (Pascal and Leibniz): notion of mechanical calculator
- 1822 Charles Babbage Difference
from Yale Babylonian Collection, $\simeq 1600 \mathrm{BC}$ engine (tabulate polynomial
http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html functions)
- 1854 Georges Boole proposes the so-called Boolean logic.
- (More details on the poly or on Internet)

Difference Machine close-up

By By Carsten Ullrich - Own work, CC BY-SA 2.5

History of computers

- 1936: Alan Turing's PhD on a universal abstract machine
- 1941: Konrad Suze builds the Z3 first programmable computer (electro-mechanic)
- 1946: ENIAC is the first electronic calculator
- 1949: Turing and Von Neumann build the first universal electronic computer: the Manchester Mark 1
- (More details on the poly or on Internet)

Z3 computer at Deutches Museum, Munich

By Venusianer, CC BY-SA 3.0

Table of Contents

(1) introduction

(2) History
(3) Electrons and Logic

4 Processor Architecture

Transistor

- Discovered in 1947 at Bell Labs: (transfer resistor)
- Could replace the thermionic triode (vacuum tube) that allow radio and telephone technologies.
- Principle: flow or Interrupt current between Source and Drain, depending on Gate status
- Can be seen as a switch
- Wildly used after Integrated Circuit invention (1958)

Popular Transistor technology: CMOS

- CMOS: Complementary Metal Oxide Semiconductor
- Two logical levels : $0=0 \mathrm{~V}$ and 1 $=3 \mathrm{~V}$
- Two types of transistors
- nMOS : current flows if gate is 1
- pMOS : current flows if gate is 0
- Mainly used to realize basic logical gates (NOT, NAND, NOR, etc.)

Moore's low

- Gordon Moore, co-founder of Fairchild Semiconductor and Intel, predicted in "a doubling every two year in the number of components per integrated circuit"
- Contributed to world economic growth
- Slow down in 2015 and should end soon.

-- Loi de Moore $\cdots \cdots$..... Double tous les 18 mois - Processeurs Intel

Boolean functions

Boole Algebra is equipped with three operations

- a unary operation, negation, noted NOT;
- two binary commutative, associative operations:
- conjunction - AND, with 1 as neutral element;
- disjunction - OR, with 0 as neutral element;
- AND is distributive over OR

If a and b are 2 boolean variables, we write:

$$
\operatorname{NOT}(a)=\bar{a}, \quad \operatorname{AND}(a, b)=a b=a . b, \quad \operatorname{OR}(a, b)=a+b
$$

Boolean Cheat Sheet

- neutral elements:

$$
\begin{aligned}
& a+0=a, \quad a \cdot 1=a \\
& a+1=1, \quad a \cdot 0=0 \\
& a+a=a, \quad a \cdot a=a \\
& a+\bar{a}=1, \quad a \cdot \bar{a}=0 \\
& a+b=b+a, \quad a b=b a \\
& a+(b c)=(a+b)(a+c), \quad a(b+c)= \\
& a+(b+c)=(a+b)+c=a+b+c, \\
& a(b c)=(a b) c=a b c \\
& \overline{a b}=\bar{a}+\bar{b}, \\
& \frac{a+b}{}=\bar{a} \cdot \bar{b}
\end{aligned}
$$

- absorbing elements:
- idempotence:
- tautology/antilogy:
- commutativity:
- distributivity:
- associativity:
- De Morgan's law: $\overline{a b}=\bar{a}+\bar{b}$,
- others:

$$
\begin{array}{ll}
a+(a b)=a, & a+(\bar{a} b)=a+b \\
a(a+b)=a, & (a+b)(a+\bar{b})=a
\end{array}
$$

Elementary logical gates

Amplifier:
$F=x$

x	F
0	0
1	1

x	y	F
0	0	0
0	1	0
1	0	0
1	1	1

NAND:
$F=\overline{(x y)}$

x	y	F
0	0	1
0	1	1
1	0	1
1	1	0

Elementary logical gates

	x	y	F
	0	0	0
	0	1	1
OR:	1	0	1
y	1	1	1

NOR:	X	y	F
	0	0	1
	0	1	0
$F=\overline{(x+y)}$	1	0	0
	1	1	0

XOR:
$F=x \oplus y$

x	y	F
0	0	0
0	1	1
1	0	1
1	1	0

x	y	F
0	0	1
0	1	0
1	0	0
1	1	1

Combinatorical circuit Design

(1) Boolean description of the problem:

- Compute y and z from a, b and c
- y is 1 if a is 1 or b and c are 1 .
- z is 1 if b or c is 1 (but not both) or if a, b et c are 1 .
(2) Truth table
(3) Logic equation
- $y=\bar{a} b c+a \bar{b} \bar{c}+a \bar{b} c+a b \bar{c}+a b c$
- $z=\bar{a} \bar{b} c+\bar{a} b \bar{c}+a \bar{b} c+a b \bar{c}+a b c$
(1) Optimized logic equations
- $y=a+b c$
- $z=a b+\bar{b} c+b \bar{c}$
(5) logic gates

Disjunctive Normal Form (DNF)

- In Boolean logic, a logical formula in Disjunctive Normal Form (Forme normale disjonctive in French) if:
- It is a disjunction of one or more clauses
- where the clauses are conjunction of literals
- a literal is a variable, a constant or 'not' a variable
- Otherwise put, it is an OR of ANDs.
- Example of DNF:
- $x . \bar{y} . \bar{z}+\bar{t} . u . v$
- $(a \wedge b) \vee \neg c$
- Example not in DNF:
- $\overline{(x+y)}$
- $a \vee(b \wedge(c \vee d))$

Conjunctive Normal Form (CNF)

- In Boolean logic, a formula is in conjunctive normal form (forme normale conjonctive in French) if:
- it is a conjunction of one or more clauses,
- where a clause is a disjunction of literals;
- a literal is a variable, a constant or 'not' a variable
- Otherwise put, it is an AND of ORs.
- Example of CNF:
- $(x+y+\bar{z})(\bar{x}+z)$
- $(a+\bar{b}+\bar{c})(\bar{d}+\bar{a})$
- $x+y$
- Example not in CNF
- $\overline{(x+y)}$
- $x(y+(z . t))$

From Truth table to DNF

- Back to previous example (z is 1 if b or c is 1 (but not both) or if a, b et c are 1.)
- Truth table on the right, z is 1 if and only if one of the five condition identified occurs.
- It is easy to find a conjunction that is valid in a unique case: example: $\bar{a} . \bar{b} . c$ is 1 if and only if: $a=0, b=0$ and $c=1$ (double arrow on the right)
- by adding all the conjunction valid only on each of the five cases identified on the right, we get a DNF formulae that has exactly that

input			
a	b	c	z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Hence the possible formulae for $z: z=\bar{a} \bar{b} c+\bar{a} b \bar{c}+a \bar{b} c+a b \bar{c}+a b c$ How can it be simplified?

Simple Boolean optimization: Karnaugh Table (1)

- Karnaugh map (tables de Karnaugh) use a "visual" reprentation of a simple property:
$(a . \bar{b})+(a . b)=a .(\bar{b}+b)=a$
- The first step in the method is to transform the truth table (3 or 4 input variables) of the function in a two-dimensional array (split into two parts of the set of variables)
- Rows and columns are indexed by the valuations of the corresponding variables in such a way that between two rows (or columns) only one boolean value changes.
- In our example (3 variables):

$\mathrm{a} b$ c	0	0	0	1
1	1	1	10	
0	0	1	1	0
1	1	0	1	1

Simple Boolean optimization: Karnaugh Table (2)

- Then, we try to cover all '1' of the table by forming groups.
- each group contains only adjacent ' 1 '
- must form a rectangle
- the number of elements of a group must be a power of two.
- each group correspond to a possible optimization of the DNF
- In our example:

| $\mathrm{a} b$
 c | 00 | 0 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |$|$| 10 | |
| :--- | :--- |
| 0 | 0 |
| | 1 |

- example : Three groups:
- $\bar{a} . b . \bar{c}+a . b . \bar{c}$ simplifies to $b . \bar{c}$
- a.b. $\bar{c}+a . b . c$ simplifies to $a . b$
- a. $\bar{b} . c+\bar{a} . \bar{b} . c$ simplifies to $\bar{b} . c$
- hence $z=\bar{a} \bar{b} c+\bar{a} b \bar{c}+a \bar{b} c+a b \bar{c}+a b c$ simplifies to $z=a . b+\bar{b} . c+b . \bar{c}$

Well formed cicruits

As far as combinatorial circuits are concerned, a "Well formed" circuit is:

- A logic gate
- A wire
- Two well formed circuits next to each other
- Two well formed circuits, the outputs of one being the inputs of the other
- Two well formed circuits sharing a common input

It can be shown that it correspond to an acyclic graph of logic gates.

- No cycles, no ouptuts conected together

Usefull combinatorics logic components

- n input multiplexer
- decoder $\log (n) \rightarrow n$
- n bits adder
- n bits comparator
- n bits ALU
- etc.

Memorizing: latches and Flip-Flops

- Set-Reset Latch (SR latch, Bascule $R S$): When R and S are reset, Q and \bar{Q} keep their previous value.

S	R	Q	\bar{Q}
0	1	0	1
1	1	forbidden	forbidden
1	0	1	0
0	0	Q_{n-1}	$\overline{Q_{n-1}}$

Bascule RS

- Gated D latch (Flip-flop, register, Bascule D): sample input data on clock rising edge and keeps the value when clock is 0 .

latches and Flip-Flops: other common representation
- Latch (verrou)

Keep

- Flip-Flop (register)

Ck

Sequential logic

Sequential logic combines logic function and memorizing, it opens the way to synchronous circuits, automata, programs, algorithms....

- n bits register
- n bits counter
- state machine
- CPU
- Computer

Sequential circuit design

- Extremely complex in general.
- Many computation models:
- Sequential
- State machine
- control + data-path
- task parallelism (communicating tasks)
- Data parallelism (data-flow)
- Asynchronous circuits
- Important notion use every where: finite state machine (automate)

Logic in ARC: Logisim

In ARC: use of logisim software (http://www.cburch.com/logisim/)

- Design basic logic components (TD1)
- Design of a memory (sequential component, TD2)
- Design of dedicated circuit: integer division (TD3).

Table of Contents

(1) introduction

(2) History
(3) Electrons and Logic

4 Processor Architecture

What is a Von Neumann machine?

- Computer architecture Model (also called Princeton architecture) proposed after J. Von Neumann report: "First Draft of a Report on the EDVAC".
- Usually abstracted as a processor connected to a memory
- The memory is accessed (randomly) with an address (i.e. unlike a Turing machine)
- The memory contains both data and program (unlike a Harvard machine).

How does it work?

Compilation, Assembly code and binary code

High Level Language \Rightarrow	Assembly code \Rightarrow	Binary code \Rightarrow
int $\mathrm{a}, \mathrm{b}, \mathrm{c} ;$	load R0, @b	$01001011 \ldots 10101$
$\mathrm{a}=\mathrm{b}+\mathrm{c} ;$	load R1, @c store R3, Q0, Q1	$01001010 \ldots 10001$
		$10010011 \ldots .00011$

Fast compilation thanks to Donald Knuth (and others..)

- The programmer:
- Write a program (say a C program: ex.c)
- Compiles it to an object program ex.o
- links it to obtain an executable ex
content of ex.c

```
#include <stdio.h>
int main()
{
    printf("hello World\n");
    return(0);
}
```


Program execution on a Processor (8 general purpose registers)

Program execution on a Processor (8 general purpose registers)

Program execution on a Processor (8 general purpose registers)

Mémoire

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Program execution on a Processor (8 general purpose

 registers)

Computer Architecture in ARC

- Design of a simple dedicated circuit in logisim
- Study of a simple processor in logisim
- Overview of assembly code principles
- Compilation basics
- embedded system case study

Add on: two's complement representation

- Two's complement (complément à deux) is the most common representation for negative integers
- For a number on N bits:
- Positive integers from 0 to $2^{N-1}-1$ are represented with usual binary encoding
- Negative integer x from -2^{N-1} to -1 are represented by coding in binary the positive number $2^{N}-|x|$
- Hence Negative integers always have the last (i.e. most significant) bit at 1 , and positive always have the last bit at 0
- Example with $N=3$
- Integers between -4_{10} and 3_{10} can be represented
- -1_{10} is represented as $111_{2}\left(2^{3}-1=7\right)$
- -2_{10} is represented as $110_{2}\left(2^{3}-2=6\right)$
- -4_{10} is represented as $100_{2}\left(2^{3}-4=4\right)$

Add on: two's complement representation (2)

- Two's complement have an important property: Addition "classical" algorithm works (except that the overflow should be ignored).
- Example:
- $-1_{10}+\left(-2_{10}\right)=111_{2}+110_{2}=1101_{2}=$ (ignoring the carry/overflow) $101_{2}=-3$
- $-1_{10}+2_{10}=111_{2}+010_{2}=1001_{2}=$ (ignoring the carry/overflow) $001_{2}=1$
- For $x>0, x \leq 2^{N-1}$, The representation of $-x$ on N bit two's complement can be obtained by:
- Complementing each bits of x
- adding 1 to the resulting integer
- Example:
- with $N=3$ and $x=3_{10}=011_{2}$, complement of x is 100_{2} adding 1 gives $101_{2}=-3_{10}$
- With $\mathrm{N}=8$ and $x=96_{10}=01100000_{2}$ complement of x is 10011111 , adding one is $-96_{10}=10100000_{2}$, indeed $256-96=160=10100000_{2}$

