
introduction History Electrons and Logic Processor Architecture

ARC: Computer Architecture
tanguy.risset@insa-lyon.fr
Lab CITI, INSA de Lyon

Version du January 24, 2023

Tanguy Risset

January 24, 2023

Tanguy Risset ARC: Computer Architecture 1

introduction History Electrons and Logic Processor Architecture

Table of Contents

1 introduction

2 History

3 Electrons and Logic

4 Processor Architecture

Tanguy Risset ARC: Computer Architecture 2

introduction History Electrons and Logic Processor Architecture

ARC course presentation

Schedule:

Course 8h
small labs (TD) 6h
labs (TP) 16h
Evaluation (In french): un QCM et un devoir papier en fin de cours

skills and knowledge learned in ARC cours:

Bolean logic, arithmetics
combinatorial and sequential logic circuits, automata.
Processor architecture, datapath, compilation process, RISC architecture
Assembly code, link with high level programming languages
Simple processor design, simple assembly program analysis.
Link with compilation, operating systems and programming

Moddle (open): frames, labs, various document

Course based on the two IF architecture course: AC and AO (open
courses on Moodle).

Tanguy Risset ARC: Computer Architecture 3

introduction History Electrons and Logic Processor Architecture

From electron to Von-Newman CPU

Problem

Program

Architecture/ISA

Logic

Electrons B

C

E

A

B
S

C

C= A & B

S=A ^ B

load R1, @R2

Add R1, R3

 Software

Instruction
Fetcher

Memory
Interface

Instruction
Decoder

Registers

to
memory

ALU

 Software

 Human

Tanguy Risset ARC: Computer Architecture 4

introduction History Electrons and Logic Processor Architecture

Computer architecture usefulness

How to solve a problem with electrons:

ARC is useful

For general knowledge of a computer
scientist
To understand pro/cons of modern
complex architectures
For embedded system programming

Problem

Program

Architecture/ISA

Logic

Electrons

Tanguy Risset ARC: Computer Architecture 5

introduction History Electrons and Logic Processor Architecture

Table of Contents

1 introduction

2 History

3 Electrons and Logic

4 Processor Architecture

Tanguy Risset ARC: Computer Architecture 6

introduction History Electrons and Logic Processor Architecture

History of computing

Ancient time: various arithmetics
systems

17th century (Pascal and Leibniz):
notion of mechanical calculator

1822 Charles Babbage Difference
engine (tabulate polynomial
functions)

1854 Georges Boole proposes the
so-called Boolean logic.

(More details on the poly or on
Internet)

from Yale Babylonian Collection, ≃ 1600 BC

http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html

Difference Machine close-up

By By Carsten Ullrich - Own work, CC BY-SA 2.5

Tanguy Risset ARC: Computer Architecture 7

http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html

introduction History Electrons and Logic Processor Architecture

History of computers

1936: Alan Turing’s PhD on a
universal abstract machine

1941: Konrad Suze builds the Z3
first programmable computer
(electro-mechanic)

1946: ENIAC is the first electronic
calculator

1949: Turing and Von Neumann
build the first universal electronic
computer: the Manchester Mark 1

(More details on the poly or on
Internet)

Alan Turing

Z3 computer at Deutches Museum, Munich

By Venusianer, CC BY-SA 3.0

Manchester Mark 1 1948

Tanguy Risset ARC: Computer Architecture 8

introduction History Electrons and Logic Processor Architecture

Table of Contents

1 introduction

2 History

3 Electrons and Logic

4 Processor Architecture

Tanguy Risset ARC: Computer Architecture 9

introduction History Electrons and Logic Processor Architecture

Transistor

Discovered in 1947 at Bell Labs: (transfer resistor)

Could replace the thermionic triode (vacuum tube) that allow radio
and telephone technologies.

Principle: flow or Interrupt current between Source and Drain,
depending on Gate status

Can be seen as a switch

Wildly used after Integrated
Circuit invention (1958)

Drain

SourceMetal

Oxyd

Gate
semi−conductor

Mosfet technology

Tanguy Risset ARC: Computer Architecture 10

introduction History Electrons and Logic Processor Architecture

Popular Transistor technology: CMOS

CMOS: Complementary Metal
Oxide Semiconductor

Two logical levels : 0 = 0V and 1
= 3V

Two types of transistors

nMOS : current flows if gate is 1
pMOS : current flows if gate is 0

Mainly used to realize basic logical
gates (NOT, NAND, NOR, etc.)

mMOS

grille

source

g=1

drain

source

grille g=0

drain

pMOS

1

xx

0

Inverseur porte NAND

1

y
(xy)

x

x

y

0

porte NOR

1

x

y
(x+y)

yx

0

Tanguy Risset ARC: Computer Architecture 11

introduction History Electrons and Logic Processor Architecture

Moore’s low

Gordon Moore, co-founder
of Fairchild Semiconductor
and Intel, predicted in “a
doubling every two year in
the number of components
per integrated circuit”

Contributed to world
economic growth

Slow down in 2015 and
should end soon.

Tanguy Risset ARC: Computer Architecture 12

introduction History Electrons and Logic Processor Architecture

Boolean functions

Boole Algebra is equipped with three operations

a unary operation, negation, noted NOT;

two binary commutative, associative operations:

conjunction — AND, with 1 as neutral element;
disjunction — OR, with 0 as neutral element;

AND is distributive over OR

If a and b are 2 boolean variables, we write:

NOT(a) = a, AND(a, b) = ab = a.b, OR(a, b) = a + b

Tanguy Risset ARC: Computer Architecture 13

introduction History Electrons and Logic Processor Architecture

Boolean Cheat Sheet

• neutral elements: a + 0 = a, a·1 = a

• absorbing elements: a + 1 = 1, a·0 = 0

• idempotence: a + a = a, a·a = a

• tautology/antilogy: a + a = 1, a·a = 0

• commutativity: a + b = b + a, ab = ba

• distributivity: a + (bc) = (a + b)(a + c), a(b + c) = ab + ac

• associativity: a + (b + c) = (a + b) + c = a + b + c ,

a(bc) = (ab)c = abc

• De Morgan’s law: ab = a + b,

a + b = a·b

• others: a + (ab) = a, a + (ab) = a + b,

a(a + b) = a, (a + b)(a + b) = a

Tanguy Risset ARC: Computer Architecture 14

introduction History Electrons and Logic Processor Architecture

Elementary logical gates

x F

Amplifier:
F = x

x F

0 0

1 1

x F

NOT: F = x

x F

0 1

1 0

x

y

F

AND: F =
x y

x y F

0 0 0

0 1 0

1 0 0

1 1 1

x

y

F

NAND:
F = (x y)

x y F

0 0 1

0 1 1

1 0 1

1 1 0

Tanguy Risset ARC: Computer Architecture 15

introduction History Electrons and Logic Processor Architecture

Elementary logical gates

x

y

F

OR:
F = x + y

x y F

0 0 0

0 1 1

1 0 1

1 1 1

x

y
F

NOR:
F = (x + y)

x y F

0 0 1

0 1 0

1 0 0

1 1 0

x

y

F

XOR:
F = x⊕y

x y F

0 0 0

0 1 1

1 0 1

1 1 0

x

y

F

XNOR:
F = x ⊙ y

x y F

0 0 1

0 1 0

1 0 0

1 1 1

Tanguy Risset ARC: Computer Architecture 16

introduction History Electrons and Logic Processor Architecture

Combinatorical circuit Design

1 Boolean description of the
problem:

Compute y and z from a, b and c

y is 1 if a is 1 or b and c are 1.
z is 1 if b or c is 1 (but not both)
or if a, b et c are 1.

2 Truth table
3 Logic equation

y = abc + abc + abc + abc + abc

z = abc + abc + abc + abc + abc

4 Optimized logic equations

y = a+ bc

z = ab + bc + bc

5 logic gates

input output

a b c y z

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 1 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1
a

b

c

z

y

Tanguy Risset ARC: Computer Architecture 17

introduction History Electrons and Logic Processor Architecture

Disjunctive Normal Form (DNF)

In Boolean logic, a logical formula in Disjunctive Normal Form
(Forme normale disjonctive in French) if:

It is a disjunction of one or more clauses
where the clauses are conjunction of literals
a literal is a variable, a constant or ’not’ a variable

Otherwise put, it is an OR of ANDs.

Example of DNF:

x .ȳ .z̄ + t̄.u.v

(a ∧ b) ∨ ¬c

Example not in DNF:

(x + y)
a ∨ (b ∧ (c ∨ d))

Tanguy Risset ARC: Computer Architecture 18

introduction History Electrons and Logic Processor Architecture

Conjunctive Normal Form (CNF)

In Boolean logic, a formula is in conjunctive normal form (forme
normale conjonctive in French) if:

it is a conjunction of one or more clauses,
where a clause is a disjunction of literals;
a literal is a variable, a constant or ’not’ a variable

Otherwise put, it is an AND of ORs.

Example of CNF:

(x + y + z̄)(x̄ + z)
(a + b̄ + c̄)(d̄ + ā)
x + y

Example not in CNF

(x + y)
x(y + (z .t))

Tanguy Risset ARC: Computer Architecture 19

introduction History Electrons and Logic Processor Architecture

From Truth table to DNF

Back to previous example (z is 1 if b or c is 1
(but not both) or if a, b et c are 1.)

Truth table on the right, z is 1 if and only if
one of the five condition identified occurs.

It is easy to find a conjunction that is valid in a
unique case: example: ā.b̄.c is 1 if and only if:
a = 0, b = 0 and c = 1 (double arrow on the
right)

by adding all the conjunction valid only on
each of the five cases identified on the right,
we get a DNF formulae that has exactly that
truth table.

input
a b c z
0 0 0 0
0 0 1 1 ⇐
0 1 0 1 ←
0 1 1 0
1 0 0 0
1 0 1 1 ←
1 1 0 1 ←
1 1 1 1 ←

Hence the possible formulae for z : z = abc + abc + abc + abc + abc

How can it be simplified?

Tanguy Risset ARC: Computer Architecture 20

introduction History Electrons and Logic Processor Architecture

Simple Boolean optimization: Karnaugh Table (1)

Karnaugh map (tables de Karnaugh) use a “visual” reprentation of a
simple property:
(a.b̄) + (a.b) = a.(b̄ + b) = a

The first step in the method is to transform the truth table (3 or 4
input variables) of the function in a two-dimensional array (split into
two parts of the set of variables)

Rows and columns are indexed by the valuations of the
corresponding variables in such a way that between two rows (or
columns) only one boolean value changes.

In our example (3 variables):

a b 0 0 0 1 1 1 1 0
c

0 0 1 1 0
1 1 0 1 1

Tanguy Risset ARC: Computer Architecture 21

introduction History Electrons and Logic Processor Architecture

Simple Boolean optimization: Karnaugh Table (2)

Then, we try to cover all ’1’ of the table by forming groups.

each group contains only adjacent ’1’
must form a rectangle
the number of elements of a group must be a power of two.

each group correspond to a possible optimization of the DNF

In our example:

a b 0 0 0 1 1 1 1 0
c

0 0 1 1 0
1 1 0 1 1

example : Three groups:

ā.b.c̄ + a.b.c̄ simplifies to b.c̄

a.b.c̄ + a.b.c simplifies to a.b

a.b̄.c + ā.b̄.c simplifies to b̄.c

hence z = abc + abc + abc + abc + abc simplifies to
z = a.b + b̄.c + b.c̄

Tanguy Risset ARC: Computer Architecture 22

introduction History Electrons and Logic Processor Architecture

Well formed cicruits

As far as combinatorial circuits are concerned, a “Well formed” circuit is:

A logic gate

A wire

Two well formed circuits next to each other

Two well formed circuits, the outputs of one being the inputs of the
other

Two well formed circuits sharing a common input

It can be shown that it correspond to an acyclic graph of logic gates.

No cycles, no ouptuts conected together

Tanguy Risset ARC: Computer Architecture 23

introduction History Electrons and Logic Processor Architecture

Usefull combinatorics logic components

n input multiplexer

decoder log(n)→ n

n bits adder

n bits comparator

n bits ALU

etc.

Tanguy Risset ARC: Computer Architecture 24

introduction History Electrons and Logic Processor Architecture

Memorizing: latches and Flip-Flops

Set-Reset Latch (SR latch, Bascule RS): When R and S are reset, Q
and Q keep their previous value.

Q

Bascule RS

S

R

Q

S R Q Q

0 1 0 1

1 1 forbidden forbidden

1 0 1 0

0 0 Qn−1 Qn−1

Gated D latch (Flip-flop, register, Bascule D): sample input data on
clock rising edge and keeps the value when clock is 0.

Valeur

��
��
��
��

��

��

�
�
�
�

Horloge

Donnée

Valeur

Tanguy Risset ARC: Computer Architecture 25

introduction History Electrons and Logic Processor Architecture

latches and Flip-Flops: other common representation

Latch (verrou)

1

0
Q

D

Keep

Flip-Flop (register)

1

0e
1

0

Ck

1

0
s

Tanguy Risset ARC: Computer Architecture 26

introduction History Electrons and Logic Processor Architecture

Sequential logic

Sequential logic combines logic function and memorizing, it opens the
way to synchronous circuits, automata, programs, algorithms....

n bits register

n bits counter

state machine

CPU

Computer

Tanguy Risset ARC: Computer Architecture 27

introduction History Electrons and Logic Processor Architecture

Sequential circuit design

Extremely complex in general.

Many computation models:
Sequential

State machine

control + data-path

task parallelism (communicating tasks)
Data parallelism (data-flow)
Asynchronous circuits

Important notion use every where: finite state machine (automate)

Tanguy Risset ARC: Computer Architecture 28

introduction History Electrons and Logic Processor Architecture

Logic in ARC: Logisim

In ARC: use of logisim software (http://www.cburch.com/logisim/)

Design basic logic components
(TD1)

Design of a memory (sequential
component, TD2)

Design of dedicated circuit:
integer division (TD3).

Tanguy Risset ARC: Computer Architecture 29

http://www.cburch.com/logisim/

introduction History Electrons and Logic Processor Architecture

Table of Contents

1 introduction

2 History

3 Electrons and Logic

4 Processor Architecture

Tanguy Risset ARC: Computer Architecture 30

introduction History Electrons and Logic Processor Architecture

What is a Von Neumann machine?

Computer architecture Model (also called Princeton architecture)
proposed after J. Von Neumann report: “First Draft of a Report on
the EDVAC”.

Usually abstracted as a processor connected to a memory

The memory is accessed (randomly) with an address (i.e. unlike a
Turing machine)

The memory contains both data and program (unlike a Harvard
machine).

Tanguy Risset ARC: Computer Architecture 31

introduction History Electrons and Logic Processor Architecture

How does it work?

Compilation, Assembly code and binary code

High Level Language ⇒

int a,b,c;

a = b + c;

Assembly code ⇒

load R0, @b

load R1, @c

add R3,R0,R1

store R3, @a

Binary code ⇒

01001011...10101

01001010...10001

...

10010011...00011

Tanguy Risset ARC: Computer Architecture 32

introduction History Electrons and Logic Processor Architecture

Fast compilation thanks to Donald Knuth (and others..)

The programmer:

Write a program (say a C program: ex.c)
Compiles it to an object program ex.o

links it to obtain an executable ex

content of ex.c

#include <stdio.h>

int main()

{

printf("hello World\n");

return(0);

}

ex.o
gcc −c ex.c

ex
gcc ex.c −o ex

stdio.h

ex.c

libstdio.a
gcc ex.o −o ex

Tanguy Risset ARC: Computer Architecture 33

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

Mémoire

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

16 adresse de boot

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

load R0,[36]

16

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

16

load R0,[36]

7

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

20

load R1,[40]

7

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

load R1,[40]

20

7

10

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

10

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

+

10

7

10

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

add R3,R0,R1

24

7

10

17

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

28

store R3,[44]

7

10

17

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Program execution on a Processor (8 general purpose

registers)

8

3

3
3

RI

décodeur

MémoirePC

16

20

8

4

0

24

28

32

36

40

44

48

52

56

60

64

68

72

76

load R0,[36]

load R1,[40]

add R3,R0,R1

store R3,[44]

xx

7

10

store R3,[44]

28

17

7

10

17

Tanguy Risset ARC: Computer Architecture 34

introduction History Electrons and Logic Processor Architecture

Computer Architecture in ARC

Design of a simple dedicated circuit in logisim

Study of a simple processor in logisim

Overview of assembly code principles

Compilation basics

embedded system case study

Tanguy Risset ARC: Computer Architecture 35

introduction History Electrons and Logic Processor Architecture

Add on: two’s complement representation

Two’s complement (complément à deux) is the most common
representation for negative integers

For a number on N bits:

Positive integers from 0 to 2N−1 − 1 are represented with usual binary
encoding
Negative integer x from −2N−1 to −1 are represented by coding in
binary the positive number 2N − |x |
Hence Negative integers always have the last (i.e. most significant) bit
at 1, and positive always have the last bit at 0

Example with N = 3

Integers between −410 and 310 can be represented
−110 is represented as 1112 (23 − 1 = 7)
−210 is represented as 1102 (23 − 2 = 6)
−410 is represented as 1002 (23 − 4 = 4)

Tanguy Risset ARC: Computer Architecture 36

introduction History Electrons and Logic Processor Architecture

Add on: two’s complement representation (2)

Two’s complement have an important property: Addition “classical”
algorithm works (except that the overflow should be ignored).

Example:

−110 + (−210) = 1112 + 1102 = 11012 =(ignoring the
carry/overflow)1012 = −3
−110 + 210 = 1112 + 0102 = 10012 =(ignoring the
carry/overflow)0012 = 1

For x > 0, x ≤ 2N−1, The representation of −x on N bit two’s
complement can be obtained by:

Complementing each bits of x
adding 1 to the resulting integer

Example:

with N = 3 and x = 310 = 0112, complement of x is 1002 adding 1
gives 1012 = −310

With N=8 and x = 9610 = 011000002 complement of x is 10011111,
adding one is −9610 = 101000002, indeed 256− 96 = 160 = 101000002

Tanguy Risset ARC: Computer Architecture 37

	introduction
	History
	Electrons and Logic
	Processor Architecture

