ARC: Computer Architecture

tanguy.risset@insa-lyon.fr
Lab CITI, INSA de Lyon

Version du March 27, 2025

Tanguy Risset

March 27, 2025

Tanguy Risset ARC: Computer Architecture 1
introduction
@000

Table of Contents

@ introduction

Tanguy Risset ARC: Computer Architecture 2

introduction
[e] leJe]

ARC course presentation

@ Schedule:

o Course 4h
o labs (TP) 20h
o Evaluation (In french): un seul devoir papier en fin de cours

@ skills and knowledge learned in ARC cours:

e Bolean logic, arithmetics
e combinatorial and sequential logic circuits, automata.
e Processor architecture, datapath, compilation process, RISC architecture
e Assembly code, link with high level programming languages
e Simple processor design, simple assembly program analysis.
e Link with compilation, operating systems and programming
e Moddle (open): frames, labs, various document

e Course based on the two IF architecture course: AC and AO (open
courses on Moodle).

Tanguy Risset ARC: Computer Architecture 3
introduction
(e]e] 6]

From electron to Von-Newman CPU

Problem

Human

Algorithm

Software

Program }

Run-Time system

Architecture/ISA W oad Rl,/@:Rz

ARC

A

Micro-Architecture

togic

Circuit

Electrons

Tanguy Risset ARC: Computer Architecture 4

introduction
ooo0e

Computer architecture usefulness

Problem
Algorithm
@ How to solve a problem with electrons: Program
o ARC is useful Run-Time system
e For general knowledge of a computer _
scientist Architecture/ISA

e To understand pro/cons of modern
complex architectures
e For embedded system programming

Micro-Architecture

ARC
N

togic

Circuit

Electrons

Tanguy Risset ARC: Computer Architecture 5
History
[Jele}

Table of Contents

© History

Tanguy Risset ARC: Computer Architecture 6

History
(o] o)

History of computing

from Yale Babylonian Collection, ~ 1600 BC

@ Ancient time: various arithmetics
systems

@ 17th century (Pascal and Leibniz):
notion of mechanical calculator

@ 1822 Charles Babbage Difference

eng| ne (ta bU|ate p0|yn0m |a| http://www.math.ubc.ca/ cass/Euclid/ybc/ybc.html
functions)

@ 1854 Georges Boole proposes the
so-called Boolean logic.

@ (More details on the poly or on
Internet)

By By Carsten Ullrich - Own work, CC BY-SA 2.5

Tanguy Risset ARC: Computer Architecture 7
History
ocoe

History of computers

@ 1936: Alan Turing’'s PhD on a
universal abstract machine

@ 1941: Konrad Suze builds the Z3
first programmable computer

(electro_mechanic) Z3 computer at Deutches Museum, Munich
@ 1946: ENIAC is the first electronic
calculator

@ 1949: Turing and Von Neumann
build the first universal electronic
computer: the Manchester Mark 1

By Venusianer, CC BY-SA 3.0

@ (More details on the poly or on
Internet)

Tanguy Risset ARC: Computer Architecture 8

Electrons and Logic
@®000000000000O000O0000

Table of Contents

© Electrons and Logic

Tanguy Risset ARC: Computer Architecture 9

Electrons and Logic
O@0000000000O0O00O0000

Transistor

@ Discovered in 1947 at Bell Labs: (transfer resistor)

e Could replace the thermionic triode (vacuum tube) that allow radio
and telephone technologies.

@ Principle: flow or Interrupt current between Source and Drain,
depending on Gate status

Oxyd Drain
@ Can be seen as a switch Z
. Gate -
e Wildly used after Integrated z semi-conductor
Circuit invention (1958))
Metal Source

Mosfet technology

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
00000000000 00O00O00O00

Popular Transistor technology: CMOS

e CMOS: Complementary Metal source source
Oxide Semiconductor grille # l o=l gfﬂle—q# i g=0
@ Two logical levels : 0 = 0V and 1 drain drain
=3V mMOS pMOS
@ Two types of transistors I
o nMOS : current flows if gate is 1 : ey
e pMOS : current flows if gate is 0 X j = X
. . . . y —]
e Mainly used to realize basic logical . Nl
gates (NOT, NAND, NOR, etc.) Inverseur porte NAND
Tanguy Risset ARC: Computer Architecture 11
El d Logi
1
Moore's low
@ Gordon Moore, co-founder Nombre d
of Fairchild Semiconductor o o e
and Intel, predicted in “a B _
. . 1000 000 000 P Fra—
doubling every two year in s 2 (5 Mo g2
108 Bon e (,»’llacnti%ntmrpn :h"m o
the number of components B e
. . - 19 e P Pentium Pro
per integrated circuit A }/m
IntA386
e Contributed to world 10000 —
3088
economic growth T
1000 T T T T T T T
) SlOW down in 2015 and |S 1970 1975 1980 1985 1990 1995 2000 2005 Anjfj[
ended nOW_ — — Loide Moore ------- Double tous les 18 mois Processeurs Intel

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
O000@00000000O00O0000

Boolean functions

Boole Algebra is equipped with three operations

@ a unary operation, negation, noted NOT;

@ two binary commutative, associative operations:

e conjunction — AND, with 1 as neutral element;
e disjunction — OR, with 0 as neutral element;

@ AND is distributive over OR

If a and b are 2 boolean variables, we write:

NOT(a) =3, AND(a,b)=ab=a.b, OR(a,b)=a+b

Tanguy Risset ARC: Computer Architecture 13
Electrons and Logic
0000000000000 00O0000

Boolean Cheat Sheet

e neutral elements: a+0=a, al=a
e absorbing elements: a+1=1, a0=0
e idempotence: at+a=a, aa=a

e tautology/antilogy: a+a=1 aa=0

e commutativity: at+b=b+a ab=ba
e distributivity: a+ (bc)=(a+b)(a+c), a(b+c)=ab+ ac
e associativity: at+(b+c)=(a+b)+c=a+b+c,
a(bc) = (ab)c = abc
e De Morgan's law: ab=3a+ b,
a+b
e others: a—+(
ala+ b

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
O00000@000000000O0000

Elementary logical gates

X I F x | F X Fl x| F
o 0] 0 :>© 0] 1
Amplitier. 11 NOT: F=x| 1] 0
F=x
x| x|y |F x|y |F
_::}f 000 Xj:pF 001
y 0/1]0 Y 011
AND: F = 11010 NAND: 1]0] 1
Xy 111 F=xy) 110
Tanguy Risset ARC: Computer Architecture 15

Electrons and Logic
0000000 @0000000000000

Elementary logical gates

) x|y |F x|y | F
) [0l o]o D) ee[0fo]1
S IR R CIRRE
F=x+y F=(x+y)
1(1]1 11110
) x|y |F x|y |F
0l1]1 0]11]0
XOR: T Tol1 XNOR: 11010
F = x®y 11110 F=x0y 7111

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
O0000000eO000000000000

Combinatorical circuit Design

o

© 0

Boolean description of the _
problem: I e
0 0 0 0 0
o Compute y and z from a, b and ¢ e I
e yislifaislorbandcarel. ofrforors
o zis1lif borcisl (butnot both) TT oo 1o
orif a, bet c arel. i i’ é 1 i
Truth table e ——

«

Logic equation

o y = 3abc + abC + abc + abc + abc
e z = abc + abc + abc + abc + abc J
Optimized logic equations
e y=a-+ bE

e z=ab+ bc+ bc

it

|

logic gates

Tanguy Risset ARC: Computer Architecture 17

Electrons and Logic
0000000000000 0000000

Disjunctive Normal Form (DNF)

In Boolean logic, a logical formula in Disjunctive Normal Form
(Forme normale disjonctive in French) if:

o It is a disjunction of one or more clauses
o where the clauses are conjunction of literals
o a literal is a variable, a constant or 'not’ a variable

Otherwise put, it is an OR of ANDs,.
Example of DNF:

o X.y.Z+ t.u.v
o (aAb)V—c
Example not in DNF:

o (x+y)
e aV(bA(cVd))

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
0000000000000 0000000

Conjunctive Normal Form (CNF)

@ In Boolean logic, a formula is in conjunctive normal form (forme
normale conjonctive in French) if:

e it is a conjunction of one or more clauses,
e where a clause is a disjunction of literals;
e a literal is a variable, a constant or 'not’ a variable
@ Otherwise put, it is an AND of OR:s.
@ Example of CNF:
o (x+y+Z)(Xx+2z)
o (a+b+7)(d+3)
e X+Yy
@ Example not in CNF
° (x+y)
o x(y +(z.t))

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
0000000000000 0000000

From Truth table to DNF

@ Back to previous example (zis 1if bor cis 1
(but not both) or if a, b et c are 1.) input

@ Truth table on the right, z is 1 if and only if
one of the five condition identified occurs.

o

@ It is easy to find a conjunction that is valid in a
unique case: example: 3.b.c is 1 if and only if:
a=0, b=0and ¢ =1 (double arrow on the
right)

@ by adding all the conjunction valid only on
each of the five cases identified on the right,
we get a DNF formulae that has exactly that

truth table. _ B
Hence the possible formulae for z: z = abc + abc + abc + abc + abc

How can it be simplified?

H R R RPROOO O w
R RO O Rk O O

R ORI OOl OoOln
R PP O O KON

T

TTT

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
000000000000 eO0000000

Simple Boolean optimization: Karnaugh Table (1)

Karnaugh map (tables de Karnaugh) use a “visual” reprentation of a
simple property:

(a.b) 4+ (a.b) = a.(b+ b) = a

The first step in the method is to transform the truth table (3 or 4

input variables) of the function in a two-dimensional array (split into
two parts of the set of variables)

Rows and columns are indexed by the valuations of the
corresponding variables in such a way that between two rows (or
columns) only one boolean value changes.

ab||00|101]11|10
C

0 0 1 1 0
1 1 0 1 1

In our example (3 variables):

Tanguy Risset ARC: Computer Architecture 21

Electrons and Logic
0000000000000 e0000000

Simple Boolean optimization: Karnaugh Table (2)

Then, we try to cover all '1" of the table by forming groups.

e each group contains only adjacent '1’
e must form a rectangle
e the number of elements of a group must be a power of two.

each group correspond to a possible optimization of the DNF

ab|l00|01|11|10
C

0 0 1 1 0
1 1 0 1 1

example : Three groups:

In our example:

e 3.b.C+ a.b.c simplifies to b.c

® a.b.Cc + a.b.c simplifies to a.b

e a.b.c + 3.b.c simplifies to b.c

hence z = abc + abc + abc + abc + abc simplifies to
z=ab+ b.c+ b.C

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
0000000000000 0e000000

Well formed cicruits

As far as combinatorial circuits are concerned, a “Well formed” circuit is:
@ A logic gate

o A wire

@ Two well formed circuits next to each other

@ Two well formed circuits, the outputs of one being the inputs of the
other

@ Two well formed circuits sharing a common input
It can be shown that it correspond to an acyclic graph of logic gates.

@ No cycles, no ouptuts conected together

Tanguy Risset ARC: Computer Architecture 23
Electrons and Logic
0000000000000 00OeO0000

Usefull combinatorics logic components

@ n input multiplexer
o decoder log(n) — n
@ n bits adder

@ n bits comparator

@ n bits ALU
o

etc.

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
0000000000000 000e0000

Memorizing: latches and Flip-Flops

o Set-Reset Latch (SR latch, Bascule RS): When R and S are reset, Q
and Q keep their previous value.

Q

S R Q Q
0 1 0 1
1 1 forbidden forbidden
Q 1 0 1 0
S 0 0 Qn—1 Qn—1

Bascule RS

e Gated D latch (Flip-flop, register, Bascule D): sample input data on
clock rising edge and keeps the value when clock is 0.

Horloge
* } Valeur
Valeur
Donnée }

Tanguy Risset ARC: Computer Architecture 25

Electrons and Logic
0000000000000 O000OeO000

latches and Flip-Flops: other common representation

e Latch (verrou)

1
— Q
D——0
Keep
B
1
€ 0 — S
]

o Flip-Flop (register) Ck

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
0000000000000 O00000e00

Sequential logic

Sequential logic combines logic function and memorizing, it opens the
way to synchronous circuits, automata, programs, algorithms....

@ n bits register
@ n bits counter
@ state machine
o CPU

e Computer

Tanguy Risset ARC: Computer Architecture 27
Electrons and Logic
0000000000000 O00000e0

Sequential circuit design

@ Extremely complex in general.

@ Many computation models:
e Sequential
e State machine
e control + data-path
o task parallelism (communicating tasks)
o Data parallelism (data-flow)
e Asynchronous circuits

@ Important notion use every where: finite state machine (automate)

Tanguy Risset ARC: Computer Architecture

Electrons and Logic
0000000000000 O000O000e

Logic in ARC: Digital software

In ARC: use of Digital software
(https://github.com/hneemann/Digital)

1 : : loneP
@ Design basic logic components) -
(TD1) |
@ Design of a memory (sequential 0 [0 '-—03_4 e
component, TD2) O -
' vaitp
@ Design of dedicated circuit: s1 [O] 0
integer division (TD3).) e i
@ Study of a Von Neumann 8-bit
processor (TD4) ;
Tanguy Risset ARC: Computer Architecture 29

Processor Architecture
®0000000

Table of Contents

@ Processor Architecture

Tanguy Risset ARC: Computer Architecture

Processor Architecture
(o] lelelelelele]

What is a Von Neumann machine?

Central Processing Unit

Control Unit

Output
Device

Input

y Arithmetic/Logic Unit
Device

v

v

v

Memory Unit

e Computer architecture Model (also called Princeton architecture)
proposed after J. Von Neumann report: “First Draft of a Report on
the EDVAC".

@ Usually abstracted as a processor connected to a memory

@ The memory is accessed (randomly) with an address (i.e. unlike a
Turing machine)

@ The memory contains both data and program (unlike a Harvard
machine).

Tanguy Risset ARC: Computer Architecture 31
Processor Architecture
[e]e] lelelelele]

How does it work?

Compilation, Assembly code and binary code

High Level Language = Assembly code = Binary code =

int a,b,c; load RO, @b 01001011...10101
a=>b+ c; load R1, Gc 01001010...10001
add R3,R0,R1
store R3, Qa 10010011...00011

Tanguy Risset ARC: Computer Architecture

Processor Architecture
[e]e]e] lelelele)]

Fast compilation thanks to Donald Knuth (and others..)

@ The programmer:

o Write a program (say a C program: ex.c)
o Compiles it to an object program ex.o
e links it to obtain an executable ex

content of ex.c
#include <stdio.h>

AN N
ex.c €X.0
it o
int main() ;
{ A Y ‘

stdio.h libstdioa | (00 ex o —o ex
printf ("hello World\n"); CP

' ' \

return(o) ; S| gcc eX.c —0 €X | — ex

}

Tanguy Risset ARC: Computer Architecture 33
OO000e000
Program execution on a Processor (8 general purpose
registers)

'
HEEEEEE

Tanguy Risset ARC: Computer Architecture

O000e000
Program execution on a Processor (8 general purpose
registers)

3 '
3 HEEEEEE

4

—

décodeur

RI

Tanguy Risset ARC: Computer Architecture 34
OO000e000
Program execution on a Processor (8 general purpose
registers)

Mémoire

; ¢
; [TITITIT

—

décodeur

RI)

)

Tanguy Risset ARC: Computer Architecture

O000e000
Program execution on a Processor (8 general purpose
registers)

PC | | Mémoire

4
3, ' 8
K 16
HEEEEEN

4

24
28
3
36
40
44
48
52
56
60
64
8, o 68
7

—

décodeur

RI)

Tanguy Risset ARC: Computer Architecture 34
OO000e000
Program execution on a Processor (8 general purpose
registers)

PC | | Mémoire

4
3 ' g
'| EEEEEE 16 load RO,[36]
3, (] 20 load R1,[40]
24 add R3,RO,R1
28 store R3,[44]
32
36 7
40 10
44 XX
48
52
56
60
64

—

décodeur

RI)

72

Tanguy Risset ARC: Computer Architecture

O000e000
Program execution on a Processor (8 general purpose
registers)

PC | 16 <———— adresse de boot Mémoire

| | | | | | | | 16 load RO,[36]
N 20 load R1,[40]

| L 24 add R3,R0,R1
28 store R3,[44]

32
36 7
40 10
44 XX
48
52
56
60
64
8, o 68
72

4

décodeur — —

RI)

Tanguy Risset ARC: Computer Architecture 34
OO000e000
Program execution on a Processor (8 general purpose
registers)

PC | 16 | Mémoire

3 9 20 load R1,[40]
24 add R3|RO,R1

]] 28 store RB,[44]
32

36
40 10
44 XX
48
52
56
60
64

décodeur — —

|

| load RO,[36] |
RI

72

Tanguy Risset ARC: Computer Architecture

O000e000
Program execution on a Processor (8 general purpose
registers)

PC | 16 | Mémoire

16 load RO,[36]

20 load R1,[40]

24 add R3,R0,R1
28 store R3,[44]

32
36 7

40 10
44 AX
48
52
56
60
64
8, o 68
72

—

décodeur

|

| 1oadRO,[36] |
RI [}

Tanguy Risset ARC: Computer Architecture 34
OO000e000
Program execution on a Processor (8 general purpose
registers)

PC | 20 | Mémoire

\J 20 load R1,[40]
24 add R3|RO,R1

]] 28 store RB,[44]
32

36
40 10
44 XX
48
52
56
60
64

décodeur — —

|

| load R1,[40] |
RI

72

Tanguy Risset ARC: Computer Architecture

O000e000
Program execution on a Processor (8 general purpose
registers)

PC | 20 | Mémoire

| | | |/ | | | 16 load RO,[36]

3] 7V N 20 load R1,[40]
| 0 | 24 add R3,R0,R1

28 store R3,[44]

32
36
40 10
44 AX
48
52
56
60
64
8, o 68
72

4

décodeur — —

|

| loadR1,[40] |
RI [}

Tanguy Risset ARC: Computer Architecture 34
OO000e000
Program execution on a Processor (8 general purpose
registers)

PC | 24 | Mémoire

\J 20 load R1,[40]
24 add R3,R0,R1

] 10] 28 store RB,[44]
32

36
40 10
44 XX
48
52
56
60
64

décodeur — —

|

| add R3,RO,R1 |
RI

72

Tanguy Risset ARC: Computer Architecture

O000e000
Program execution on a Processor (8 general purpose
registers)

PC | 24 | Mémoire

EEEEEEE 16 load RO,[36]
Q 20 load R1,[40]

] T] 24 add R3,RO,R1
28 store R3,[44]

32
36 7
40 10
44 XX
48
52
| addR3,ROR1 | 56
RI) 60
7 10 €4

8, o+ 63

72

décodeur — —

Tanguy Risset ARC: Computer Architecture 34
OO000e000
Program execution on a Processor (8 general purpose
registers)

PC | 24 Mémoire

3 8
&2 3 16 Toad RO.[36]

3 LTI PTLD ¢ 20 Joad R1,[40]
B 1 B 24 add R3 ROR1

1) 28 store R3,[44]
32
36 7
40 10
44 XX
48
52
56
60
64

décodeur — 17 —

|

| addR3,ROR1 |
RI L}

72

Tanguy Risset ARC: Computer Architecture

O000e000
Program execution on a Processor (8 general purpose
registers)

PC | 28 | Mémoire

| | | | | | | | 16 load RO,[36]

3] 7 N 20 load R1,[40]
| 0 L 24 add R3,R0,R1
28 store R3,[44]
32
36
40 10
44 AX
48
52

)
| store R3,[44] | 56
60

RI A "

8, o 68
7

4

décodeur — 17 —

Tanguy Risset ARC: Computer Architecture 34
OO000e000
Program execution on a Processor (8 general purpose
registers)

PC | 28 | Mémoire
0
4
3 ' g
- 3
| | | | | | | | 16 load RO,[36]
3] 7 N 20 load R1,[40]
e N o H 24 add R3,RO,R1
|| L 28 store R3,[44]
. 32
décodeur 36 7
40 10
44 xx 17
48 A
) 50
| storeR3,[44] | 56
RI) 60
64
68
72
76
[}

Tanguy Risset ARC: Computer Architecture

Processor Architecture
O0000e00

Computer Architecture in ARC

@ Design of a simple dedicated circuit in logisim

@ Study of a simple processor in logisim

@ Overview of assembly code principles

@ Compilation basics

@ embedded system case study

Tanguy Risset ARC: Computer Architecture 35

Processor Architecture
O00000e0

Add on: two's complement representation

@ Two's complement (complément a deux) is the most common
representation for negative integers

@ For a number on N bits:

2N=1 _ 1 are represented with usual binary

Positive integers from 0 to
encoding

Negative integer x from —2V—1 to —1 are represented by coding in
binary the positive number 2N — |x]|

Hence Negative integers always have the last (i.e. most significant) bit

at 1, and positive always have the last bit at 0

@ Example with N =3

Integers between —41¢ and 319 can be represented
—110 is represented as 1115 (23 —1 =7)
—210 is represented as 110, (23 — 2 = 6)
—41 is represented as 1005 (23 — 4 = 4)

Tanguy Risset ARC: Computer Architecture

Processor Architecture
O000000e

Add on: two's complement representation (2)

@ Two's complement have an important property: Addition “classical”
algorithm works (except that the overflow should be ignored).
@ Example:
o —119 4 (—210) = 1115 4 110, = 1101, =(ignoring the
carry/overflow)101, = —3
o —110+ 210 =111, 4+ 010, = 1001, =(ignoring the
carry/overflow)001, = 1
@ For x > 0, x < 2N=1 The representation of —x on N bit two's
complement can be obtained by:
o Complementing each bits of x
e adding 1 to the resulting integer
e Example:

o with N =3 and x = 319 = 0115, complement of x is 100, adding 1
gives 1012 = —310

e With N=8 and x = 9619 = 01100000, complement of x is 10011111,
adding one is —967,9 = 101000005, indeed 256 — 96 = 160 = 10100000,

Tanguy Risset ARC: Computer Architecture 37
Automate
@®00000

Table of Contents

O Automate

Tanguy Risset ARC: Computer Architecture

Automate
O@0000

Automata

o Definition (Wikipedia): An automaton is a self-operating machine, or
a machine or control mechanism designed to automatically follow a
predetermined sequence of operations, or respond to predetermined
instructions.

@ In computer science:

e Used in language theory to build compilers

e Used in any technical domain: to describe predetermined behaviour.
o Used in computer architecture: to design dedicated circuit.

e A computer is a specific automaton.

Tanguy Risset ARC: Computer Architecture 39
Automate
(o] lele]e]

Notion d'automate

@ Un automate est une collection de K états numérotés de 0 a K-1,
ainsi qu'une collection de transitions

@ Un état particulier est |'état initial.

@ Tous les états sont soit des états d'acceptation et soit des états de
refus

@ Les transitions, sont étiquetées

@ soit par des actions (par exemple, je lis la lettre x)
@ soit par des condition (par exemple, la lettre x est présente)

o le triplets (état 1, lettre x, état 2) signifie: si je suis dans |'état 1 et
que je lis la lettre x, alors je vais dans I'état 2.

a

\
o
o ds

Tanguy Risset ARC: Computer Architecture

Automate
000e00

Notion d'automate

@ Fonctionnement d'un automate

e Initialisation de I'automate dans |'état
o il lit les lettres du mot une par une

@ s'il trouve une transition possible, il I'exécute,
e sinon il répond «le mot n'appartient pas au langage»;

e si l'automate arrive a effectuer des transitions jusqu'a la derniére lettre
du mot, il regarde alors dans quel état il termine:

@ si |'état appartient a la classe d’'acceptation, |'automate répond «le mot
appartient au » (on dit que le mot est reconnu),
@ sinon, il répond «le mot n'appartiennent pas au langage».

Tanguy Risset ARC: Computer Architecture 41

Automate
000080

Notion de mot reconnu
%. f : : e : : e

@ fee — reconnu
@ feu — reconnu
e fei — non reconnu (impossible de lire 1)

e fe — non reconnu (arrét dans un état non final)

Tanguy Risset ARC: Computer Architecture

Automate
O0000e

Link with architecture: Computers are automata

@ Every computing machine is an automata
@ Computer are universal in the sense that the program gives much
flexibility in the action performed.

@ In fact the basic action of a computer is very repetitive:

Read the instruction at $PC in memory
decode the instruction
send the decoding to the ALU (or to memory if it is a load)

o
o
o
e increment $PC

@ Dedicated circuits (ASICs) are automata designed for specific tasks.

Tanguy Risset ARC: Computer Architecture 43
The Russian train example
®00000000

Table of Contents

@ The Russian train example

Tanguy Risset ARC: Computer Architecture

The Russian train example
O@0000000

Example from the poly

~ § s
__ <>
0e Kerpitchnik k Tchaplova
LS R
R : i

@ A piece of unique train track for both train directions between the
cities T. et K.

@ Sensors triggered by train weight on rallways will command red lights
when the track is used by a train.

@ Modeling:

o A booleen A (for ‘Ampoule’) indicating the state of the red light

o Two booleans (LS for Left Sensor and RS for Rigth sensor) indicating
the states of the sensors

e An automaton to command the red lights

Tanguy Risset ARC: Computer Architecture 45

The Russian train example
[e]e] leleJelele]e]

The Russian train automaton

start

L5=0 LS=1

Tanguy Risset ARC: Computer Architecture

The Russian train example
O00e00000

The Russian train automaton

LS=0

TrRij ght TrRight2

k/g %\/y\%
RS =1 RS =0

@ Circles are states of the automaton (e.g. NoTrain state models the
cases where no train stand on the track).

e States specifies output Values (here only one: A)

@ Arrows are transitions, labeled by event that triggered them.

Tanguy Risset ARC: Computer Architecture 47
The Russian train example
[e]e]ele] Jelele]e]

Back to the Russian train example

v S x=(LS, RS) || s'=T(s,x)
//9\& NoTrain 00 NoTrain
—~ T NoTrain 01 TrRight
_ b/_/v%/ NoTrain 10 TrlLeft
NoTrain 11 XXX
@ The Inputs are RS and LS sensors TrRight 0X TrRight
Boolean values TrRight 1X TrRight2
TrRight?2 1X TrRight?2
@ The Output is the value of Boolean TrRight2 0X NoTrain
A
s y=F(s)
@ The functions (Transition and NoTrain 0
Output) can be defined by tables = TrRight 1
@ X means ‘don't care’ TrRight2 1

Tanguy Risset ARC: Computer Architecture

The Russian train example
O0000e000

Implementation of a synchronous automaton as a circuit

/
L 5
(9]
ko]
° s o s
T a > ¢ > F —t> Y

(2]
X —f> &
=

=)

a

0 ch)

@ s is current state, s’ is next state, x are input bits, y are output bits.
@ Ck and reset are not considered as inputs

@ State change will occur on each rising edge of the Clock.

Tanguy Risset ARC: Computer Architecture 49
The Russian train example
O00000e00

Implementation in Logisim

@ We need to store 5 States, hence we need at least 3 bits:

State
(36)
value (binary) state

100 NoTrain

000 TrRightl Clear|xl

001 TrRight2

010 TrLeft

011 TrLeft2

Tanguy Risset ARC: Computer Architecture

The Russian train example
000000080

Russian train output function

@ The output function is easy: A is on iff state is "'NoTrain’

S y=F(s)
NoTrain 0
TrRight 1

TrRight2 1

0] pAl
521 B
enableﬂJ
. clock

reset

Tanguy Risset ARC: Computer Architecture 51
The Russian train example
OO0000000e

Russian train Transition function: more complicater

S x=(LS, RS) || s'=T(s,x)
100 (NoTrain) 00 NoTrain
100 (NoTrain) 01 TrRight
100 (NoTrain) 10 TrlLeft
100 (NoTrain) 11 XXX
000 (TrRight) 0X TrRight
000 (TrRight) 1X TrRight?2
001 (TrRight2) 1X TrRight?2
001 (TrRight2) 0X NoTrain
010 (TrLeft) X0 Trleft
010 (TrLeft) X1 TrLeft2
011 (TrLeft2) X1 Trleft2
011 (TrLeft2) X0 NoTrain

Tanguy Risset ARC: Computer Architecture

Meal
[_Jelel¢

Table of Contents

@ Mealy and Moore Automata

Tanguy Risset ARC: Computer Architecture 53
Meal
000(

Comming back to automata

@ Automata are very widely used in computer science in different
domains.

@ In ARC we use them to control the execution of dedicated
synchronous circuits

@ As soon as a dedicated circuit is designed, there is an automaton
designed.

Tanguy Risset ARC: Computer Architecture

Meal
00e(

Mealy and Moore automata

@ We have seen a Moore automaton: output only depend on the state
(not on the input), usually simpler to handle.

@ The most

general form of an automaton has a moore output and a mealy output
inputs

transition

mealy

moore

outputs

Tanguy Risset ARC: Computer Architecture 55
Meal

(e]e]e)

Summery: from Algorithm to Circuit

@ From algorithm to automata (states and input/output)
@ From automata to synchronous automata

@ From synchronous automata to digital design

Tanguy Risset ARC: Computer Architecture

Meal
O00(

Lab topic: circuit for integer division

:= entrée N
:= entrée P
o)
0

ant que x+p

GO T B
I

X = X+p

q := q+l
fin tant que
sortie @ := q

I\

Tanguy Risset ARC: Computer Architecture 57

Meal
O00(

Lab topic: proposed circuit to realize it

go Qo ok ok
reset reset — l[ggg¥ :
Contrble — ResetX
— LoadP
PP — LoadQ
— ResetQ
P
ck |
registre N
N : 5 b al-¥
" A<B?
LoadN _{L —
PAN
CK I
registre X
8 o al-%
LoadX L
ResetX _| By
Lok |
registre P
p__ g o als
: LoadP _{L
N
CK |
| Q
registre Q
8 D af—> +1
LoadQ L
ResetQ _| R/\
I S

Tanguy Risset ARC: Computer Architecture

