3.36pt

Tanguy Risset

AGP: Algorithmique et programmation

rement

Pointeur de fonctions

Erreurs courante en C

Coder proprement

AGP: Algorithmique et programmation

tanguy.risset@insa-lyon.fr Lab CITI, INSA de Lyon Version du March 22, 2020

Tanguy Risset

March 22, 2020

Table of Contents

- 3.36pt
- Pointeur de fonctions
- Erreurs courante en C
- Coder proprement

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

AGP: Algorithmique et programmation

Coder proprement

Pointeur de fonctions 0000000000

Erreurs courante en C

Présentation de la partie Graphe

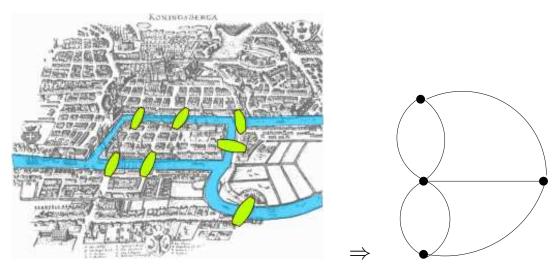
- Objectif:
 - Une bonne base des algorithmes sur les graphes
 - Notions réutilisées en réseaux (algorithmes de routage, optimisation de traffic, etc...)
- Déroulement du cours:
 - Graphes et Algorithmes sur les graphes (2 cours)
 - 2 TD d'algorithmique sur les graphes

Références utiles

- Calculateurs, Calcul et Calculabilité: O. Ridoux et G. Lesventes Introduction très bien faite à ce domaine (utilisé pour ce cours)
- Introduction à l'algorithmique, T. Cormen, C. Leiserson, R. Rivest, 1994, Dunod
 Approche complète et pédagogique de l'algorithmique
- Graphes et algorithmes (Gontran et Minoux) ou plutot Graphes (C. Berge) plus complet et sans bug.
- Introduction à la théorie des graphes Sigward (université de Nancy-Metz) disponible sur Moodle.

		→ < \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	200		
	Tanguy Risset AGP: Algorithmique et programmation		4		
Pointeur de fonctions 000●00000000	Erreurs courante en C		Coder proprement		
Historique					

• Euler résoud le problème des ponts de Konigsberg au XVIII^{eme} siècle.



Graphe

Definition

Graphe simple Un graphe simple G = (X, E) est un couple formé de deux ensembles : un ensemble $X = \{x_1, x_2, ... x_n\}$ dont les éléments sont appelés *sommets*, et un ensemble $E = \{a_1, a_2, ..., a_m\}$, partie de l'ensemble $P_2(X)$ des parties à deux éléments de X, dont les éléments sont appelés *arêtes*.

- Soit $a = \{x, y\} \in E$
 - a est l'arête de G d'extrémités x et y.
 - Parce que a existe, x et y sont des sommets adjacents.
 - On note G = (X, E) ou G(X, E)

Tanguy Risset

AGP: Algorithmique et programmation

Coder proprement

Pointeur de fonctions

Erreurs courante en C

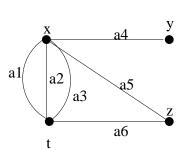
Multigraphe non orienté

- Un multigraphe G = (X, A, f): est déterminé par:
 - X ensemble de sommets
 - A ensembles des arêtes
 - f un fonction de A dans $P_2(X)$
- Exemple:

•
$$X = \{x, y, z, t\}$$

•
$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

•
$$f(a_1) = f(a_2) = f(a_3) = \{x, t\}$$



Multigraphe avec boucle

- La fonction f est de A dans $P_1(X) \times P_1(X)$
- $f(a) = \{x, x\}$ est possible

◆ロ → ◆昼 → ◆ き → ・ き ・ りへの

Tanguy Risset

AGP: Algorithmique et programmation

8

Pointeur de fonctions

Erreurs courante en C

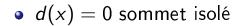
Coder proprement

degré d'un sommet

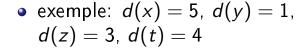
Definition

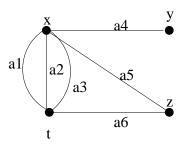
degré d'un nœud Soit G = (X, A) un graphe simple, et x un sommet de ce graphe. le *degré* de x est le nombre d'arètes incidentes à x (c'est à dire contenant x).

- On étend cette définition aux multigraphes.
- Pour une boucle {x, x} on compte deux!



•
$$d(x) = 1$$
 sommet pendant





Lemme de la poignée de main

Lemme

Lemme de la poignée de main Soit G = (X, A) un graphe simple, on a toujours:

$$\sum_{x \in X} d(x) = 2|A|$$

Tanguy Risset

AGP: Algorithmique et programmation

10

Pointeur de fonctions 00000000000000 Erreurs courante en C

Coder proprement

Graphe orienté

Definition

Graphe orienté un graphe orienté G = (X, A) est la donnée de deux ensembles: un ensemble $X = \{x_1, ..., x_n\}$ dont les éléments sont les sommets, un ensemble $A = \{a_1, ..., a_m\}$ partie du produit cartésien $X \times X$ dont les éléments sont des arcs.

•

- On parle d'arêtes pour les graphes non orientés (a est la paire $\{x,y\}$) et d'arc pour les graphes orientés (a est le couple (x,y))
- si a = (x, y)
 - a est l'arc de G d'extrémité initiale x et d'extrémité finale y
 - On parle d'incidence d'un sommets à un arc

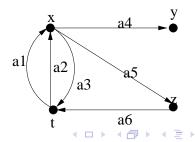
Degrés dans un graphe orienté

- d(x) est toujours le nombre d'arcs incidents au sommet x
- On définit également le degré entrant/sortant pour le nombre d'arc dont x est l'extrémité initiale/extrémité finale. Notation : $\Gamma^+(x)$ et $\Gamma^-(x)$
- On a donc $d(x) = \Gamma^+(x) + \Gamma^-(x)$.
- et

$$\sum_{x \in X} \Gamma^+(x) = \sum_{x \in X} \Gamma^-(x) = |A|$$

Exemple:

- $\Gamma^+(x) = 2$, $\Gamma^-(x) = 3$,
- $\Gamma^+(t) = 2$, $\Gamma^-(t) = 2$,



Tanguy Risset

AGP: Algorithmique et programmation

10

Pointeur de fonctions 000000000000 Erreurs courante en C

Coder proprement

Sous-Graphe et Graphe Partiel

Definition

Sous-graphe H = (Y, B) est un sous-graphe de G = (X, A) si $Y \subset X$ et $B \subset A$

•

Definition

Graphe partiel H = (Y, B) est un graphe partiel de G = (X, A) si Y = X et $B \subset A$

•

Chaînes dans les graphes non orientés

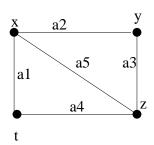
- Chaîne : suite finie de sommets reliés entre eux par une arête.
- Chaîne simple: chaîne qui n'utilise pas deux fois la même arête.
- Chaîne *eulérienne* : chaîne simple passant par toutes les arêtes d'un graphe.
- Chaîne hamiltonienne : chaîne simple passant par tous les sommets d'un graphe une et une seule fois.
- Notions définies pour un graphe non orienté, étendues facilement aux graphes orientés.

Définitions: Cycles/chemin

- Cycle: chaîne qui revient à son point de départ.
- Cycle *eulérien* : cycle simple passant par toutes les arêtes d'un graphe une et une seule fois.
- Cycle hamiltonien: cycle simple passant par tous les sommets d'un graphe une et une seule fois.
- Graphes orientés:
 - Chemin : suite de sommets reliés par des arcs dans un graphe orienté.
 - Circuit : Chemin qui revient à son point de départ (i.e. cycle pour les graphes orientés).

Exemple

- $\{a_1, a_2, a_3\}$: chaîne, chaîne simple, chaîne hamiltonienne.
- $\{a_1, a_2, a_3, a_4\}$: cycle.
- Existe-t'il un cycle eulerien?



Tanguy Risset

AGP: Algorithmique et programmation

16

Pointeur de fonctions

Erreurs courante en C

Coder proprement

Graphe connexe

Definition

Graphe connexe Un graphe G est dit connexe si pour toute paire de sommets $\{x,y\}$ de G, il existe une chaîne de premier terme x et de dernier terme y.

Arbres

Pointeur de fonctions

00000000000

Un arbre est un graphe G(V, E) peut être définit par une des propriétés suivantes:

- ullet C'est graphe G(V, E) connexe et sans cycle
- |V| = |E| + 1 et il est connexe
- |V| = |E| + 1 et il est sans cycle
- Il existe une chaîne unique entre toute paire de noeuds
- Il est connexe et minimal pour cette propriété
- Il est sans cycle et maximal pour cette propriété

		∢□ > ∢⑤ > ∢	
	Tanguy Risset	AGP: Algorithmique et programmatic	on 18
Pointeur de fonctions 000000000000	Erreurs courante en C		Coder proprement
Granhes snéciaux	,		

- Graphe eulérien : graphe qui possède un cycle eulérien.
- Graphe semi-eulérien : graphe qui possède une chaîne eulérienne.
- Graphe hamitonien: graphe qui possède un cycle hamiltonien.
- Graphe semi-hamiltonien : graphe qui possède une chaîne hamiltonienne.

Graphes valués

Definition

Graphe valué Un graphe valué est un graphe où des valeurs sont associés aux arêtes ou aux sommets (on dit également graphe pondéré) on note $G = (V, E, P_V, P_E)$, P_E étant la pondération des arêtes et P_V la pondération des sommets.

- Exemples de pondération possible:
 - La distance géographique
 - Le délai de transit
 - Le temps d'attente
 - Le coût de la communication
 - Le débit

		∢□▶ ∢∰ > ∢ ছ)	· ← ≣ → ■	999
	Tanguy Risset	AGP: Algorithmique et programmation		20
Pointeur de fonctions 000000000000	Erreurs courante en C		Coder prop	
Dictanco				

Distance

- Longueur d'une chaîne : nombre des arêtes qui composent la chaîne.
- Valeur d'une chaîne : somme des valeurs des arêtes (arcs) d'une chaîne d'un graphe valué.
- *Distance* entre deux sommets : longueur de la plus courte chaîne joignant ces deux sommets.
- Diamètre d'un graphe : maximum des distances entre les sommets d'un graphe.

Nombre/Indice chromatique

- Indice chromatique d'un graphe : nombre minimal de couleurs permettant de colorier les arêtes d'un graphe, de telle sorte que deux arêtes adjacentes n'aient pas la même couleur.
- Nombre chromatique d'un graphe: nombre minimal de couleurs permettant de colorier les sommets d'un graphe, de telle sorte que deux sommets adjacents n'aient pas la même couleur.

Tanguy Risset

AGP: Algorithmique et programmation

22

Pointeur de fonctions

Erreurs courante en C

Coder proprement

Théorème d'Euler

Theorem

Un graphe simple connexe G est eulérien si et seulement si pour tout sommet x de G, d(x) est pair.

- Démonstration....

Représentation machine

- Représentations statique:
 - Matrice d'incidence: une ligne par sommet, une colonne par arête
 - Matrice d'adjacence: une ligne par sommet, une colonne par sommet (matrice symétrique pour les graphes non orientés)
 - Attention, en général $|X|^2 \gg |V|$
- Représentations dynamique:
 - Structure auto-référencée (généralisation des structures d'arbres), assez difficile à manipuler.
 - Liste de sommets suivants

- 3.36pt
- Pointeur de fonctions
- Erreurs courante en C
- Coder proprement

Graphe: partie 2

Algorithmes sur les graphes

Tanguy Risset

AGP: Algorithmique et programmation

26

Pointeur de fonctions

Erreurs courante en C ○○●○○○○

Coder proprement

Les bases des protocoles de communications

- Fermeture transitive
- Transversal (parcours)
- Arbre de recouvrement
- Plus court chemin

Fermeture transitive

• Rappel: la fermeture transitive R^* d'une relation R est telle que

$$xR^*y \Leftrightarrow \exists z_1,...,z_n/xRz_1,z_1Rz_2,...,z_nRy$$

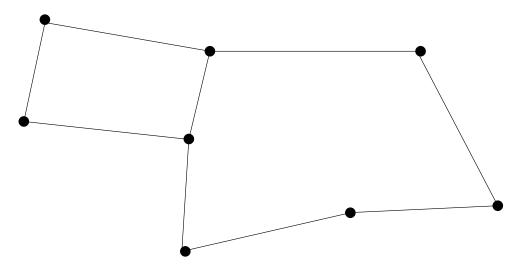
- La relation considérée est "l'adjacence" dans un graphe G
- Le calcul de la fermeture transitive permet de répondre aux questions concernant l'existence de chemins entre x et y dans un graphe G et ceci pour tout couple de sommets (x, y).
- La fermeture transitive de G(V, E), noté $G^*(V, E^*)$ est le plus petit graphe tel que $(x, y) \in E^*$ si et seulement s'il existe un chemin de x à y dans G

Algorithme fermeture transitive

- On part de la matrice d'adjacence de G(M) et on produit la matrice d'incidence de G^* : M'
- Répéter la procédure iterationFT jusqu'à stabilisation.
- iterationFT(MATRICE M, MATRICE M')DEBUT

```
POUR i VARIANT de 1 à N
POUR j VARIANT de 1 à N
SI M[i,j]=1 ALORS
POUR k VARIANT de 1 à N
SI M[j,k]=1 ALORS M'[i,k]=1
FINPOUR
FINSI
FINPOUR
FINPOUR
FINPOUR
FINPOUR
FINPOUR
```

Graphe initial



Tanguy Risset

AGP: Algorithmique et programmation

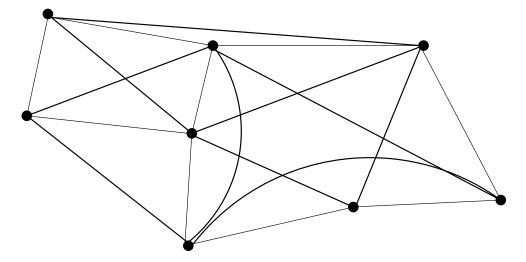
30

Pointeur de fonctions

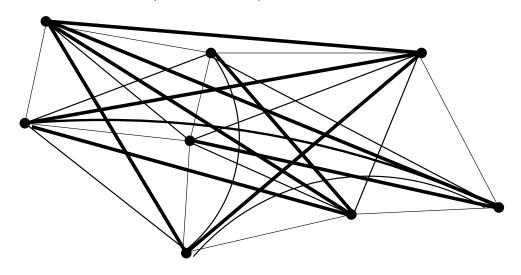
Erreurs courante en C ○○○○○○ Coder proprement

Exemple d'application

Itération 1



• Itération 2 (état stable)



Tanguy Risset

AGP: Algorithmique et programmation

32

Pointeur de fonctions

Erreurs courante en C

Coder proprement

Propriété de l'algorithme

- Au bout d'une itération, les sommets à distance 2 sont connectés.
- Au bout de deux itérations, les sommets à distance 4 sont connectés.
- \Rightarrow L'algorithme effectue au plus Log(N) itérations (N étant le nombre de sommets).

Algorithme de parcours

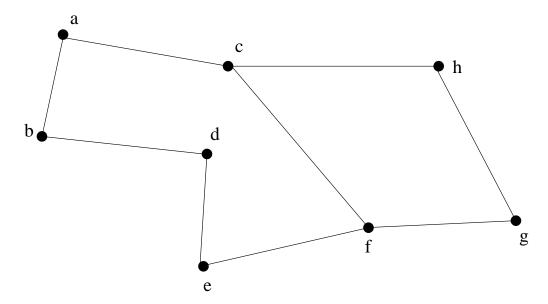
- On connaît déjà les parcours d'arbre (Profondeur uniquement)
- Comment parcourir un graphe ?
- Pareil... sauf qu'on peut s'autoriser à passer plusieurs fois par la même arrête ou le même noeud si on ne le traite qu'une seule fois!
- On va voir le parcours en profondeur d'abord et en largeur d'abord.
 On visitera les noeuds plusieurs fois, mais on les traitera une seule fois.
- un parcours permet de définir un arbre de recouvrement

				4 ≣ →	≣ \	990
	Tanguy Risset	AGP: Algorithmique	et programmation			34
Pointeur de fonctions 000000000000	Erreurs courante en C		Coder proprement			
Profondeur d'abo	rd (récurs	if)				

Profondeur(Graphe G, noeud x)

```
Marquer(x)
Afficher(x)
POUR TOUT y du voisinage de x FAIRE
SI y non marqué ALORS Profondeur(G,y)
FINPOUR
```

- Graphe initial
- Noeuds traités: Ø



◆□▶◆□▶◆■▶◆■▶ ■ か9<€

Tanguy Risset

AGP: Algorithmique et programmation

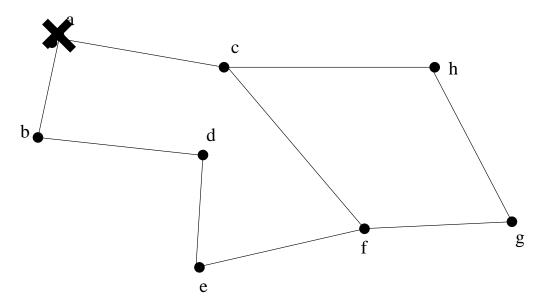
36

Pointeur de fonctions

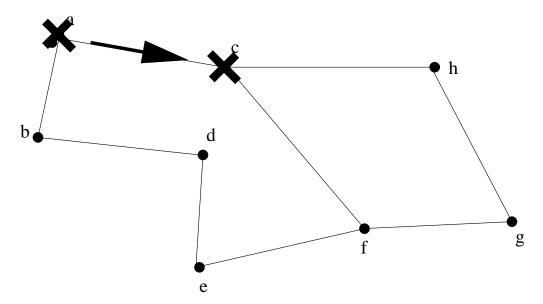
Erreurs courante en C

Coder proprement

- Appel Prof(G, a)
- Noeuds traités: a



- Lance appel Prof(G, c)
- Noeuds traités: a, c



Tanguy Risset

AGP: Algorithmique et programmation

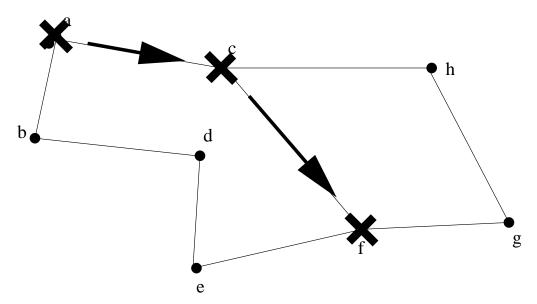
38

Pointeur de fonctions

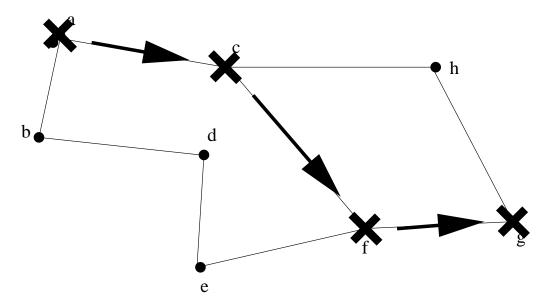
Erreurs courante en C

Coder proprement

- Lance Appel Prof(G, f)
- Noeuds traités: a, c, f



- Lance Appel Prof(G,g)
- Noeuds traités: a, c, f, g



Tanguy Risset

AGP: Algorithmique et programmation

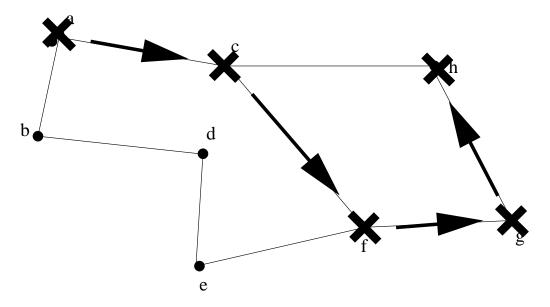
40

Pointeur de fonctions

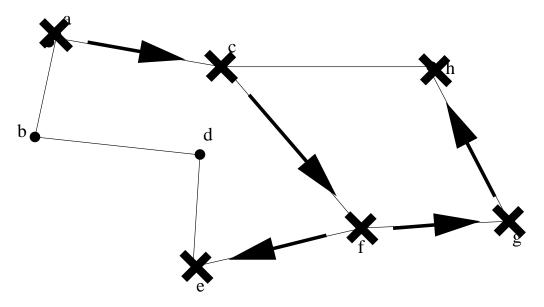
Erreurs courante en C

Coder proprement

- Lance Appel Prof (G, h)
- Noeuds traités: a, c, f, g, h



- Retour h, g, jusqu'à appel Prof(G, f)
- Lance appel Prof(G, e)
- Noeuds traités: a, c, f, g, h, e



◄□▶◀₫▶◀┋▶◀┋▶ ┋ ∽9<</p>

Tanguy Risset

AGP: Algorithmique et programmation

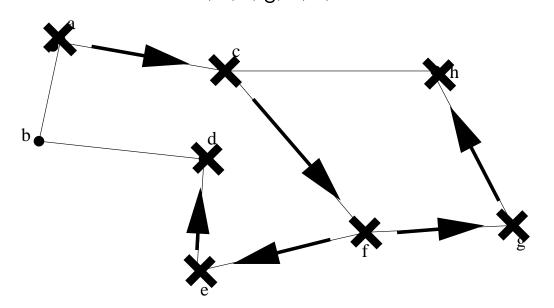
42

Pointeur de fonctions

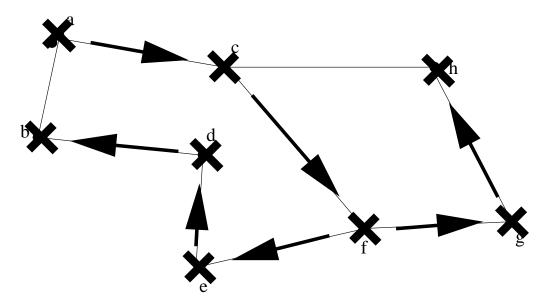
Erreurs courante en C

Coder proprement

- lance Appel Prof(G, d)
- Noeuds traités: a, c, f, g, h, e, d



- Appel Prof(G, d), fin de l'algorithme
- Noeuds traités: a, c, f, g, h, e, d, b



Tanguy Risset

AGP: Algorithmique et programmation

44

Pointeur de fonctions

Erreurs courante en C

Coder proprement

Parcours en Largeur d'abord

- Plus complexe
- Parcours des sommets "comme des cercles concentriques" autour du point de départ
- Nécessite une file d'attente

Algorithme du parcours en largeur (itératif)

```
LARGEUR(Graphe G, noeud x)

Marquer(x)

Traiter(x)

AjouterFile(x)

TANT QUE FileNonVide() FAIRE

y=RetirerFile()

POUR TOUT z voisin de y FAIRE

SI NonMarqué(z) ALORS

Marquer(z)

Traiter(z)

AjouterFile(z)

FINSI

FINPOUR

FIN TANTQUE
```

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 か900

Tanguy Risset

AGP: Algorithmique et programmation

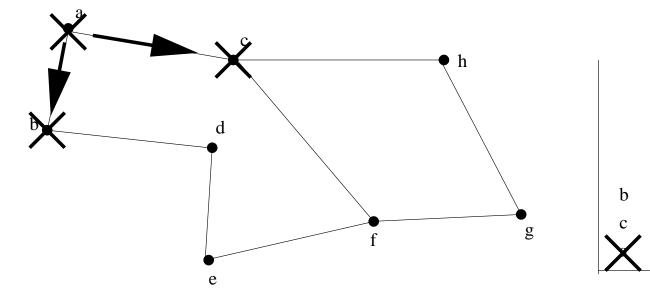
46

Pointeur de fonctions

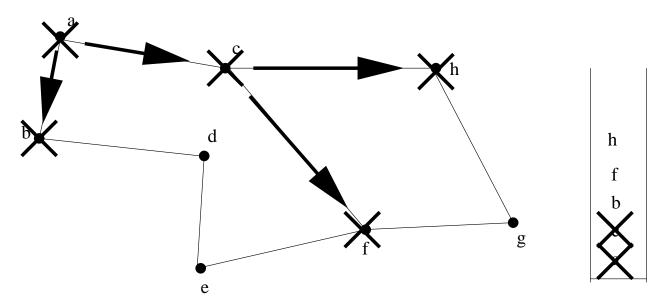
Erreurs courante en C

Coder proprement

- Itération 1, (y = a)
- Noeuds traités: a, c, b



- Itération 2, (y = c)
- Noeuds traités: a, c, b, f, h



Tanguy Risset

AGP: Algorithmique et programmation

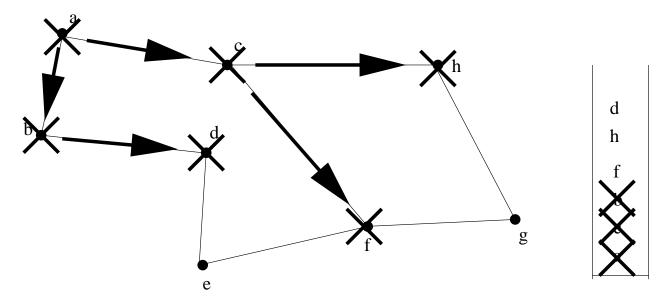
48

Pointeur de fonctions

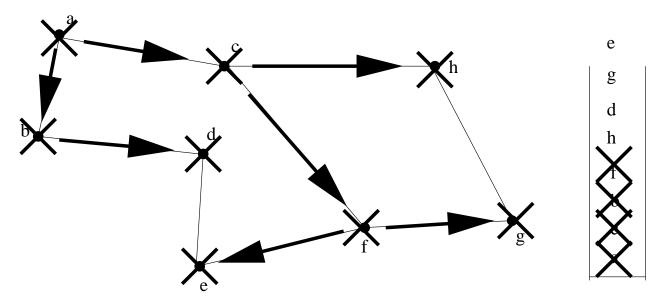
Erreurs courante en C

Coder proprement

- Itération 3, (y = b)
- Noeuds traités: a, c, b, f, h, d



- Itération 4, (y = f)
- Noeuds traités: a, c, b, f, h, d, e, g



Tanguy Risset

AGP: Algorithmique et programmation

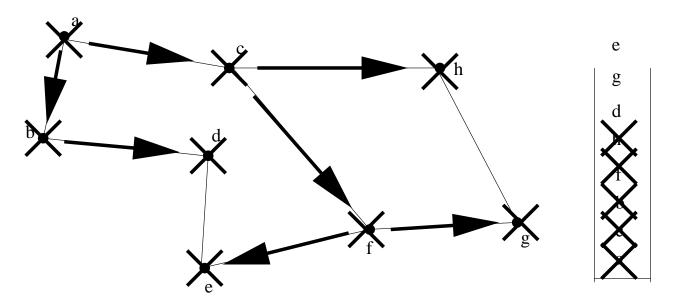
50

Pointeur de fonctions

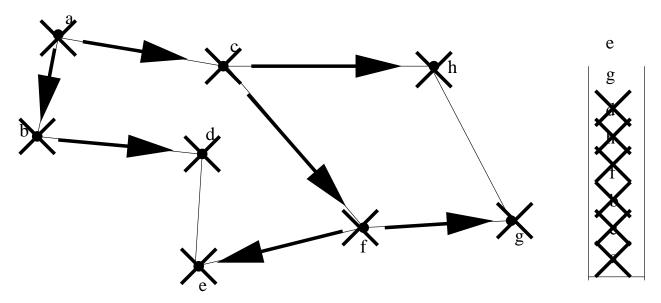
Erreurs courante en C

Coder proprement

- Itération 5, (y = h)
- Noeuds traités: a, c, b, f, h, d, e, g



- Itération 6, (y = d)
- Noeuds traités: a, c, b, f, h, d, e, g



Tanguy Risset

AGP: Algorithmique et programmation

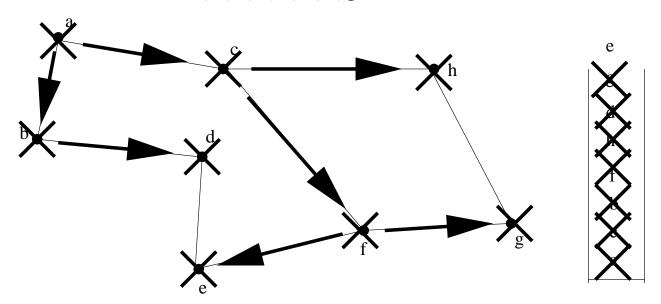
52

Pointeur de fonctions

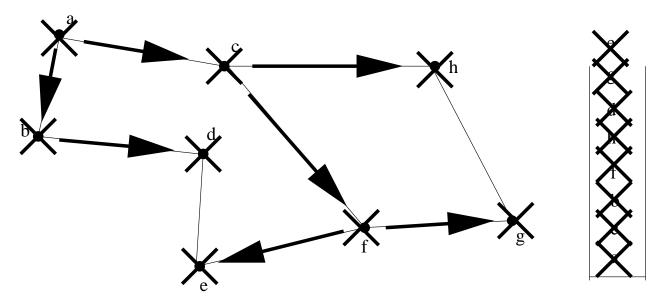
Erreurs courante en C

Coder proprement

- Itération 7, (y = g)
- Noeuds traités: a, c, b, f, h, d, e, g



- Itération 8, (y = e)
- Noeuds traités: a, c, b, f, h, d, e, g



Tanguy Risset

AGP: Algorithmique et programmation

54

Pointeur de fonctions

Erreurs courante en C

Coder proprement

Arbre de poid minimum

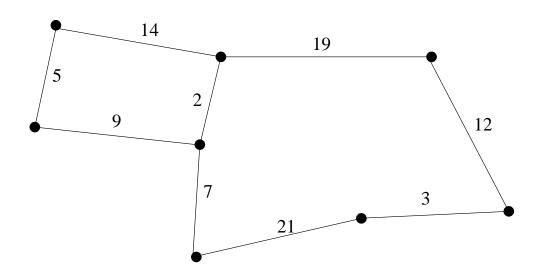
- Soit G = (V, E, P) un graphe pondéré sur les arêtes
- ullet On désire trouver un sous ensemble T d'arêtes formant un arbre, tel que P(T) soit minimum
- On va ordonner l'ensemble des arêtes E par poids croissant: $E = \{E_1, ..., E_n\}/P(E_i) \le P(E_{i+1})$

Algorithme

```
ARBRE_POID_MIN(Graphe G)
T = \emptyset
i = 1
TANT QUE |T| \neq |V| - 1 FAIRE
SI T \cup \{E_i\} ne forme pas un cycle ALORS
T \leftarrow T \cup \{E_i\}
FINSI
i = i + 1
FIN TANTQUE
```

◆□▶◆□▶◆壹▶ ★ 壹 ◆ 今○○

Exemple



Chemin minimum

- Propriété: Si le plus court chemin $C_{x,y}$ de x à y passe par z $(C_{x,y} = C_{x,z} \cup C_{z,y})$ alors le plus court chemin entre z et y est $C_{z,y}$.
- Preuve : Si $\exists C'_{z,y}/P(C'_{z,y}) < P(C_{z,y})$ alors $P(C'_{x,y} = C_{x,z} \cup C'_{y,z}) < P(C_{x,y})$
- ullet \Rightarrow L'ensemble des plus court chemins entre un noeud s et l'ensemble des autres noeuds du graphe est une arborescence de racine s

Tanguy Risset

AGP: Algorithmique et programmation

58

Pointeur de fonctions

Erreurs courante en C

Coder proprement

- Algorithme du plus court chemin
 - Dijkstra (1959)
 - Ford Fulkerson (1962) ou Bellman (1957)
- Ces algorithmes sont aujourd'hui utilisés pour le routage dans les réseaux

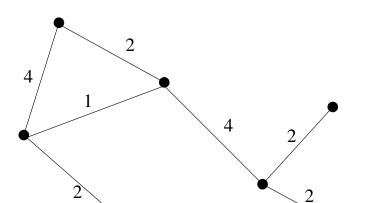
Algorithme de Bellman

- Pondération quelconque (positive ou négative)
- À partir d'un sommet source S
- Chaque noeud x est initialisé à une distance de $S \ \forall x \in V, x \neq s$ $dist_0(x) = \infty$, et $dist_0(s) = 0$.
- À chaque étape i on réévalue dist :

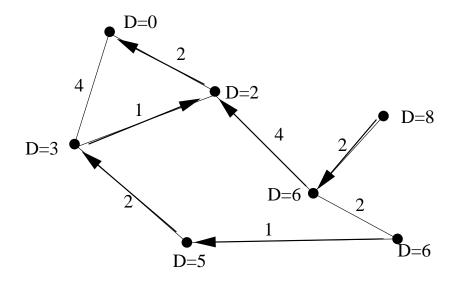
$$dist_i(x) = Min(dist_{i-1}(x), Min_{y \in \Gamma^-(x)}(dist_{i-1}(y) + P(xy)))$$

- À l'étape i on obtient le plus court chemin ayant au plus i arcs entre s et x
- ullet On s'arrête au bout de |V|-1 itérations : Pourquoi ?

		∢□▶ ∢ ♬ ▶ ∢불!		
	Tanguy Risset	AGP: Algorithmique et programmation	60	
Pointeur de fonctions 000000000000	Erreurs courante en C		Coder proprement	
Evennle				



Résultat: arbre des plus courts chemins



Tanguy Risset

AGP: Algorithmique et programmation

62

Pointeur de fonctions

Erreurs courante en C

Coder proprement

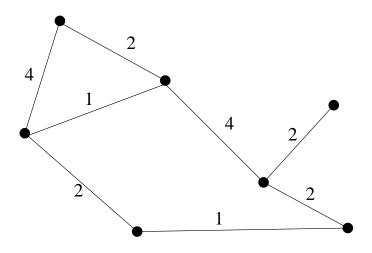
Algorithme de Dijkstra

- Pour une pondération positive des arcs
- Chaque sommet x est initialisé à une distance de $s \ \forall x \in V, x \neq s$ $dist_0(x) = \infty$, et $dist_0(s) = 0$ et s est marqué.
- À chaque étape, on réévalue dist pour les x non marqués :
 - $\forall x \in X$, x non marqué,

$$dist_i(x) = Min(dist_{i-1}(x), Min_{y \in \Gamma^-(x)}(dist_{i-1}(y) + P(xy)))$$

- Le sommet x de distance dist(x) minimum est marqué
- On s'arrête quand tous les sommets sont marqués
- Pourquoi ça marche ?

Exemple



Tanguy Risset

AGP: Algorithmique et programmation

64

Pointeur de fonctions

Erreurs courante en C

Coder proprement

Analyse des algorithmes

- Bellman $O(|V|^3)$
 - Nombre d'étapes O(|V|) car le diametre peut avoir une longueur de O(|V|)
 - Coût d'une étape O(|E|) car il faut évaluer, à chaque étape, toutes les arêtes
- Dijkstra $O(|V|^3)$
 - ullet Nombre d'étapes O(|V|) car à chaque étape on marque un sommet
 - Coût d'une étape O(|E|) Car il faut évaluer toutes les arêtes
- Avec des structures de données adaptées
 - Bellman $O(|V|^3)$
 - Dijkstra $O(|V|^2 \hat{L}og|V|)$

Table of Contents

3.36pt

- Pointeur de fonctions
- Erreurs courante en C
- Coder proprement

66 Coder proprement

Tanguy Risset

AGP: Algorithmique et programmation

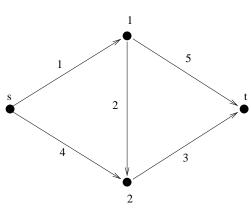
00000000000

Pointeur de fonctions

Erreurs courante en C

Problème du flot maximum

- Problème posé:
 - On dispose d'un graphe G(V, A) orienté
 - Deux sommets particuliers sont identifiés: s appelé source et t appelé puits
 - Les arcs de G sont étiquetés par une valeur entière positive appelée capacité $c: A \mapsto N^+$
- Trouver une fonction $f: A \mapsto N^+$ qui soit un flot admissible conservatif maximal
 - admissible: respecte la capacité des arcs.
 - Conservatif: pour tous les nœuds, sauf la source le puit, le flot entrant est égal au flot sortant.
 - Maximal: qui maximise la capacité sortant de s.



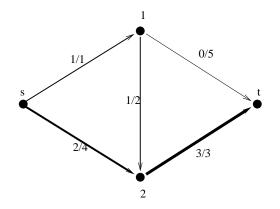
Application

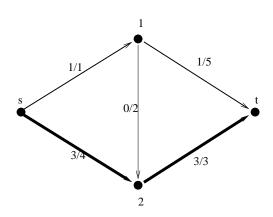
Ce problème trouve des applications dans de nombreux domaines:

- Réseau de tuyau d'évacuation (égout, pipeline)
- Trafic internet
- Circulation automobile

Un exemple simple

Deux flots





- Pourquoi sont-ils "admissibles", "conservatifs"?
- Quel est le meilleur?
- Comment passer de l'un à l'autre?

Définitions formelles

• Un flot f sur un graphe G(V, A, s, t, c) est admissible si

$$\forall a \in A, \ 0 \le f(a) \le c(a)$$

Le flot nul est toujours admissible.

• Le flot f est conservatif si pour tout les sommets (hormis la source et le puits), le flot entrant est égal au flot sortant:

$$\forall x \in V, x \neq s, x \neq t, \sum_{a^- \in \Gamma^-(x)} (f(x, a^-)) - \sum_{a^+ \in \Gamma^+(x)} (f(a^+, x)) = 0$$

- \Leftrightarrow il n'y a pas de fuite dans le réseau.
- La valeur du flot v(f) est définie par le flot sortant de la source ou entrant dans le puits:

$$v(f) = \sum_{a^- \in \Gamma^-(s)} (f(s, a^-)) = \sum_{a^+ \in \Gamma^+(t)} (f(a^+, t))$$

Tanguy Risset

AGP: Algorithmique et programmation

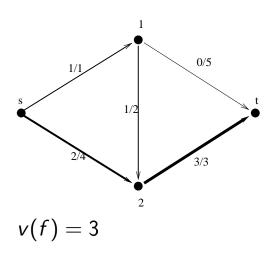
70

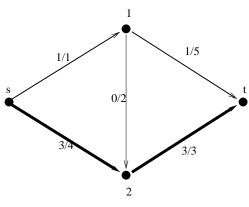
Pointeur de fonctions

Erreurs courante en C

Coder proprement

Vérification





- v(f) = 4
- Les deux flots sont admissibles.
- Les deux flots sont conservatifs.
- Existe-t'il un meilleur flot que celui de droite?

Algorithme de Ford-Fulkerson

- Trouver un flot admissible (par exemple le flot nul)
- Essayer d'améliorer ce flot tant que c'est possible
- Pour améliorer ce flot, on trouve une *chaîne améliorante*: une chaîne entre *s* à *t* sur laquelle la quantité de flot peut être augmentée.
 - On marque progressivement les sommets en commençant par s
 - On marque les successeurs y des sommets x marqués si f(x,y) < c(x,y) (i.e. on peut augmenter le flot de x vers y)
 - On marque les prédécesseurs y des sommets x marqués si f(y,x)>0 (i.e. on peut augmenter le flot de x vers y)
 - La marque identifie par quels successeur (ou quel prédécesseur) la chaîne améliorante passe.

e et programmation

Tanguy Risset

AGP: Algorithmique et programmation

Coder proprement

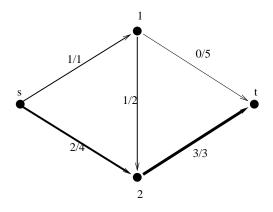
000000000000

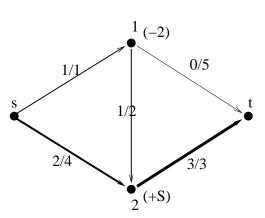
Pointeur de fonctions

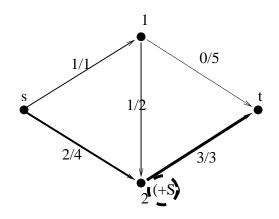
Erreurs courante en C

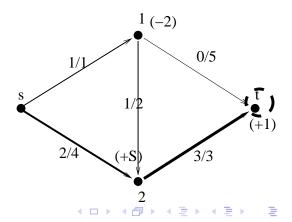
Algorithme de marquage

```
On marque l'entrée du réseau par \ast TANT QUE non stable POUR CHAQUE x marqué POUR CHAQUE y successeur de x non marqué SI f(x,y) < c(x,y) ALORS marquer(y) par (+x) FINPOUR POUR CHAQUE y prédécesseur de x non marqué SI f(y,x) > 0 ALORS marquer(y) par (-x) FINPOUR FINPOUR SI t est marqué ALORS on a trouvé une chaîne améliorante FIN TANTQUE
```









Tanguy Risset

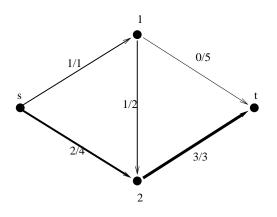
AGP: Algorithmique et programmation

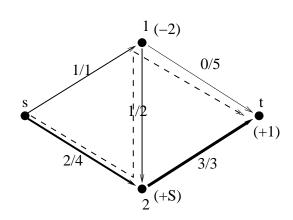
√ Q (~

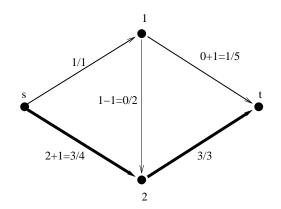
Pointeur de fonctions

Erreurs courante en C

Coder proprement







Algorithme Ford-Fulkerson (G, s, t, c)

```
marquer + le sommet source s
TANT QUE le flot n'est pas maximal FAIRE

TANT QUE l'on marque des sommets FAIRE

POUR CHAQUE sommet marqué x FAIRE

POUR CHAQUE arc (x,y) FAIRE

SI y n'est pas marqué et (x,y) non saturé ALORS

marquer y par (+x)

FINPOUR

POUR CHAQUE arc (y,x) FAIRE

SI y n'est pas marqué et (y,x) à un flot non nul

marquer y par (-x)

FINPOUR

FINPOUR

FINPOUR

FINTANTQUE

SI le puits t n'est pas marqué ALORS
```

le flot est maximal (arrât)

AGP: Algorithmique et programmation

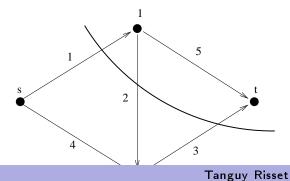
76

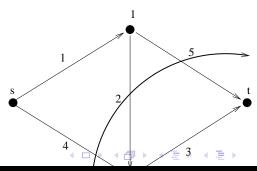
Pointeur de fonctions 000000000000 Erreurs courante en C

Coder proprement

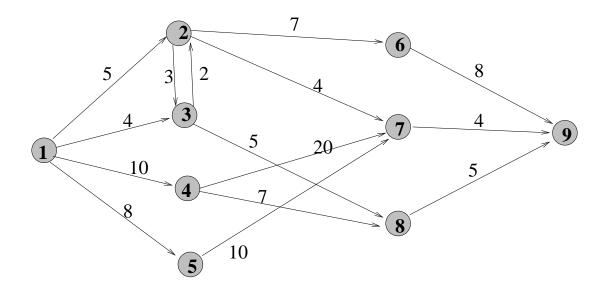
Max-flow, Min-cut

- On peut montrer que l'algorithme de Ford-Fulkerson est en $O(M*n^2)$ ou M est la capacité maximale d'une arête.
- L'algorithme utilise un résultat important: le théorème *max-flox, min-cut*: la valeur d'un flot maximum dans un graphe est égale à la valeur de la coupe minimale: on a ce qu'on appelle deux problèmes duaux.
- Une coupe est une partition des sommets en deux ensembles, l'un contenant la source, l'autre le puits.
- La valeur d'une coupe est le flot traversant la coupe en ne comptant que les arcs allant de s vers t.

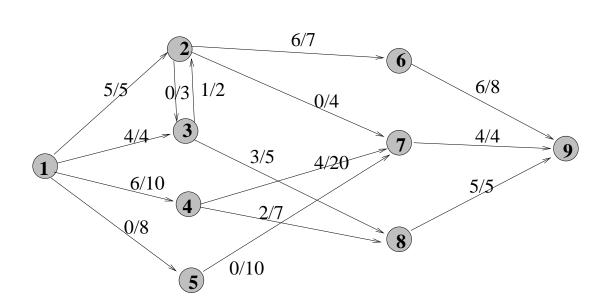




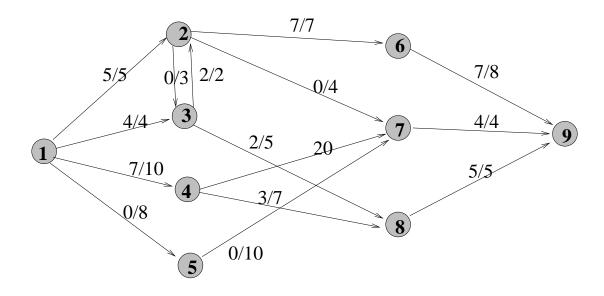
Exemple



Un flot admissible



Amélioration



flot maximum

