IFA-3-SYS: Systèmes d'exploitation

20 février 2023

NOM Prénom :		

Consignes

- Durée : 30 minutes. Lisez le sujet en entier (10 questions sur 4 pages) avant de commencer.
- Écrivez lisiblement et surtout sans ratures. Utilisez un brouillon (vraiment).
- Les réponses seront à inscrire sur le sujet. Commencez par écrire votre nom ci-dessus.
- Documents et appareils interdits, sauf une feuille A4 recto-verso manuscrite.
- Pour les calculs en binaire, vous pouvez vous aider des tableaux donnés en page 4.
- Dans les questions vrai/faux, les erreurs sont décomptées : ne répondez pas au hasard.

Question 1 Pour chaque acronyme ci-dessous, donnez sa signification en toutes lettres :

INSA	Institut National des Sciences Appliquées
GUI	
ММІО	
SRTF	
PTE	

1 Noyau et processus

Question 2 Parmi les actions ci-dessous, la ou lesquelles sont autorisées lorsque le CPU est en *mode restreint* ? Entourez V pour «action autorisée» et F pour «action interdite».

- V F désactiver les interruptions
- V F exécuter une instruction «trappe»
- V F modifier le contenu de la table de pagination
- V F provoquer un défaut de page

Question 3 Sous Linux, comment s'appelle l'utilitaire qui permet d'afficher les appels système d'un processus au fur et à mesure de son exécution?

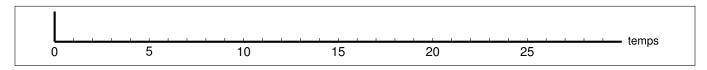
Question 4 Si on exécute le programme ci-dessous, qu'affiche-t-il sur sa sortie standard?

<pre>int plic(){ fork(); print("plic");</pre>
return fork();
J
main() {
<pre>if(plic())</pre>
<pre>print("ploc");</pre>
}

0	ana a efficile ava	
Ce progran	nme affichera	fois «plic
et	fois «ploc».	

2 Ordonnancement processeur

Question 5 On s'intéresse à la notion de *temps d'attente* d'un processus. Pour chaque proposition ci-dessous, entourez V si la durée correspondante est incluse dans ce temps d'attente, ou entourez F dans le cas inverse.


- V F la durée écoulée entre l'arrivée du processus et sa terminaison
- V | F | la durée passée par le processus dans l'état Ready
- V | F | la durée passée par le processus dans l'état Blocked
- V F la durée passée par le processus dans l'état Running

Question 6 On suppose dans cette question un ordonnanceur avec trois niveaux de priorité. La priorité des processus est fixée lors de leur création. Le niveau 1 est moins prioritaire que le niveau 2, lui-même moins prioritaire que le niveau 3. Entre des niveaux distincts, l'ordonnancement est strictement préemptif. Parmi les processus d'un même niveau, l'ordonnancement est circulaire (Round Robin) avec un quantum de 2 unités de temps.

On s'intéresse aux processus ci-dessous :

processus	T1	T2	T3	T4	T5	T6	T7
durée d'exécution	7	4	4	1	2	2	1
instant d'arrivée	0	0	1	1	1	2	2
priorité	2	3	1	2	3	1	2

Au brouillon, dessinez un chronogramme indiquant la succession des tâches sur le processeur. Recopiez ensuite votre réponse au propre dans le cadre ci-dessous.

Question 7 On s'intéresse maintenant à un ordonnanceur non préemptif. Pour chaque proposition ci-dessous, entourez V si elle décrit une transition d'état possible pour un processus, ou entourez F si cette transition est impossible.

- $oxed{\mathsf{V}}oxed{\mathsf{F}}$ Running \longrightarrow Ready
- \overline{V} \overline{F} Ready \longrightarrow Running
- V F Blocked \longrightarrow Running
- $oxed{\mathsf{V}}oxed{\mathsf{F}}$ Blocked \longrightarrow Ready

3 Mémoire virtuelle

Question 8 Dans un smartphone récent, quelle unité de temps est la plus appropriée pour exprimer la latence d'accès à la mémoire principale?

- V F en nanosecodes
- V F en microsecondes
- V F en millisecondes
- V F en secondes
- V F les informations données ne permettent pas de conclure.

Question 9 On suppose dans cette question un système avec mémoire virtuelle paginée. Les adresses (virtuelles et physiques) sont exprimées sur 8 bits, et la taille des pages (virtuelles et physiques) est de 32 octets.

La table de pagination actuelle est donnée ci-dessous (le signe \varnothing désigne un PTE invalide).

VPN	0	1	2	3	4	5	6	7
PPN	Ø	7	3	Ø	2	Ø	Ø	Ø

Quelle adresse physique correspond à l'adresse virtuelle 0x55? Répondez en hexadécimal.

Question 10 On s'intéresse à un processus qui vient de causer un défaut de page en accédant à une certaine page *P*. Pour chaque affirmation ci-dessous, entourez V si elle vous parait compatible avec des hypothèses, ou entourez F si elle est fausse ou absurde.

- V F La page P existe en mémoire virtuelle et en mémoire physique.
- V F La page P existe en mémoire virtuelle mais pas en mémoire physique.
- $\lceil V \rceil \lceil F \rceil$ La page P n'existe pas en mémoire virtuelle mais elle existe en mémoire physique.
- |V||F| La page P n'existe ni en mémoire virtuelle ni en mémoire physique.

Annexe : aide pour les calculs en binaire

Les premiers nombres entiers, notés en décimal, hexadécimal, et binaire :

Dec	Hex	Bin
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100

-, -		
Dec	Hex	Bin
5	5	101
6	6	110
7	7	111
8	8	1000
9	9	1001
•	-	

	,	
Dec	Hex	Bin
10	Α	1010
11	В	1011
12	С	1100
13	D	1101
14	Ε	1110

Dec	Hex	Bin
15	F	1111
16	10	10000
17	11	10001
18	12	10010
19	13	10011

Les premières puissances de 2, notées en décimal :

$2^{0} = 1 \mid 2^{16} = 65\ 536 \mid 2^{32} = 4\ 294\ 967\ 296 \mid 2^{48} =$	281 474 976 710 656
$2^{1} = 2 2^{17} = 131072 2^{33} = 8589934592 2^{49} =$	562 949 953 421 312
$2^2 = 4 \ 2^{18} = 262\ 144 \ 2^{34} = 17\ 179\ 869\ 184 \ 2^{50} =$	1 125 899 906 842 624
$2^3 = 8 \ 2^{19} = 524\ 288 \ 2^{35} = 34\ 359\ 738\ 368 \ 2^{51} =$	2 251 799 813 685 248
$2^4 = 16 2^{20} = 1048576 2^{36} = 68719476736 2^{52} =$	4 503 599 627 370 496
$2^5 = 32 2^{21} = 2097152 2^{37} = 137438953472 2^{53} =$	9 007 199 254 740 992
$2^6 = 64 \mid 2^{22} = 4194304 \mid 2^{38} = 274877906944 \mid 2^{54} =$	18 014 398 509 481 984
$2^7 = 128 \ 2^{23} = 8388608 \ 2^{39} = 549755813888 \ 2^{55} =$	36 028 797 018 963 968
$2^8 = 256 2^{24} = 16777216 2^{40} = 1099511627776 2^{56} =$	72 057 594 037 927 936
$2^9 = 512 \mid 2^{25} = 33554432 \mid 2^{41} = 2199023255552 \mid 2^{57} =$	144 115 188 075 855 488
$2^{10} = 1024$ $2^{26} = 67\ 108\ 864$ $2^{42} = 4\ 398\ 046\ 511\ 104$ $2^{58} =$	288 230 376 151 711 744
$2^{11} = 2048$ $2^{27} = 134217728$ $2^{43} = 8796093022208$ $2^{59} =$	576 460 752 303 423 488
$2^{12} = 4096$ $2^{28} = 268435456$ $2^{44} = 17592186044416$ $2^{60} = 186044416$	1 152 921 504 606 846 976
$2^{13} = 8192$ $2^{29} = 536870912$ $2^{45} = 35184372088832$ $2^{61} = 2818181818$	2 305 843 009 213 693 952
$2^{14} = 16\ 384$ $2^{30} = 1\ 073\ 741\ 824$ $2^{46} = 70\ 368\ 744\ 177\ 664$ $2^{62} = 40$	4 611 686 018 427 387 904
$2^{15} = 32768$ $2^{31} = 2147483648$ $2^{47} = 140737488355328$ $2^{63} = 9388$	9 223 372 036 854 775 808
$2^{64} = 18$	8 446 744 073 709 551 616

On rappelle également que :

- 1 kio = 1024 octets,
- 1 Mio = 1024 Kio,
- 1 Gio = 1024 Mio,
- -1 Tio = 1024 Gio,
- etc. (avec dans l'ordre : Pio, Eio, Zio, Yio)

En cas de doute sur ces unités, n'hésitez pas à demander des précisions.