IFA-3-SYS : Examen du 20/03/2024
Q1. Scheduler, ISR, exec, context switch

Q2. c’est une instruction machine qui provoque une /IRQ.
on s’en sert pour implémenter les appels systémes, i.e. un saut volontaire dans le noyau avec change-
ment de mode d’exécution au passage.

Qs.

o O WwN

Q4. Faux, Vrai Vrai, Faux

Q5. On attend qu’une condition devienne vraie en tournant dans une boucle de scrutation. (par
opposition avec l'attente passive, pendant laquelle I'exécution est suspendue)

C’est mauvais si ¢a dure trop, parce que ¢a consomme des cycles CPU pour rien. En particulier, c’est
aberrant sur un systéme monoprocesseur : sij’ai la main c’est que les autres processus ne l'ont pas, et
donc ils ne peuvent donc rien faire pour moi!

Q6. time 0 7 11 16 25
CPU|l Al CI| A B

Q7. Faux, Vrai, Faux, Vrai

Q8. VA 16 bits et VPN 7 bits = PO 9 bits = taille de page 512 octets = besoin de 10 pages
Q9. variable globale = dans .data

Q10. Faux; Vrai; Vrai; Faux

Q11. Faux; Faux; Faux; Vrai

Q12. Faux; Vrai; Faux; Faux

Q13. init: S=1 (simple mutex). A,C : P(S) et B,D : V(S)

Q14. (cflittle book of semaphores readers-writers). Rien de fracassant : on garde une mutex cété les
rédacteurs, et cété lecteurs on se débrouille pour que ladite mutex soit verrouillée tant qu’il y a un ou
plusieurs lecteurs dans leur section critique.

init : Semaphore mutexNBReaders=1, variable nbReaders=0, Semaphore libre=1

A : P(mutexNBReaders)
if(nbReaders == 0) // c’est que je suis le premier lecteur a rentrer
then P(libre) // marquer la ressource comme non-libre pour bloquer les rédacteurs
end if
nbReaders += 1
V(mutexNBReaders)

B: P(mutexNBReaders)
nbReaders -= 1
if(noReaders == 0) // c’est que je suis le dernier lecteur a repartir

then V(libre) // marquer la ressource comme libre pour débloquer les rédacteurs
end if
V(mutexNBReaders)

Pour les rédacteurs c’est beaucoup plus simple puisqu’on parle toujours d’'une pure mutex :
C : P(libre) // prendre le mutex

modifier()
D : V(libre) //rendre le mutex

Q15. il est possible pour les lecteurs de monopoliser la ressource, empéchant les rédacteurs de
travailler.

Q16. Une possibilité est de rajouter un troisieme sémaphore que le rédacteur peut prendre pour
empécher des lecteurs supplémentaires de rentrer :

init : Sem mutexNBReaders=1, variable nbReaders=0, Sem libre=1, Sem toto=1

A : P(toto) // vérifier qu’on a l'autorisation de rentrer
V(toto)
P(mutexNBReaders)
... // la suite est identique a la question précédente

Et coté rédacteurs, ca donne :

C : P(toto) /empécher de nouveaux lecteurs de rentrer
P(libre) // prendre le mutex
modifier ()

D : V(libre) //rendre le mutex
V(toto)

Downey donne une solution similaire et parle de “turnstile” (trad. «portillon»).

