
page 1/8

IFA-3-SYS : Systèmes d’exploitation 20 mars 2024

NOM Prénom :

Consignes

— Durée : 1h30. Lisez le sujet en entier (16 questions sur 8 pages) avant de commencer.
— Écrivez lisiblement et surtout sans ratures. Utilisez un brouillon (vraiment).
— Les réponses seront à inscrire sur le sujet. Commencez par écrire votre nom ci-dessus.
— Documents et appareils interdits, sauf une feuille A4 recto-verso manuscrite.
— Pour les calculs en binaire, vous pouvez vous aider des tableaux donnés en page 8.
— Dans les questions vrai/faux, les erreurs sont décomptées : ne répondez pas au hasard.

1 Noyau et processus

Question 1 Pour chacun des mécanismes proposés dans la liste ci-dessous, entourez V si ce
mécanisme est implémenté à l’intérieur du noyau, entourez F sinon.
V F Ordonnanceur
V F Fonction printf()

V F Cycle de Von Neumann
V F Interrupt Service Routine
V F Fonction exec()

V F Context Switch
V F Émulateur de terminal
V F Shell

Question 2 Qu’appelle-t-on une «trappe» ? Expliquez succintement de quoi il s’agit, et en quoi c’est
utile dans un système d’exploitation.

page 2/8

Question 3 On s’intéresse dans cette question au programme ci-dessous qui utilise comme en TP les
appels système fork(), exec(), sleep(), ainsi que la fonction int atoi(char *) pour interpréter
une chaîne de caractères en valeur entière. On compile ce programme en un exécutable truc puis on
l’invoque avec la commande ./truc .

Dans le cadre ci-dessous, donnez
un exemple d’affichage que peut
produire cette commande :

int main(int argc, char** argv)

{

if(argc==2)

{

int t = atoi(argv[1]);

sleep(t);

printf("%d\n", t);

}

else

{

char * param[] = {"3","6","1","5","4","2"};

for(int i=0; i<6; i++)

{

if(!fork())

{

execl(argv[0],param[i],param[i],NULL);

printf("%d\n", i);

wait(NULL);

}

}

}

}

2 Multitâche et ordonnancement

Question 4 Lorsque le noyau fait un changement de contexte entre deux processus, il doit sau-
vegarder/restaurer l’état interne de certains composants matériels. Pour chaque élément ci-dessous,
entourez V si le noyau doit en faire la sauvegarde/restauration, ou entourez F s’il peut en «effacer» (aka
«invalider») sereinement le contenu.
V F Cache CPU : L1, L2...
V F Registres CPU généraux : R0, R1...
V F Registres CPU spécialisés : PC, SP...
V F Translation Lookaside Buffer

Question 5 Que signifie l’expression «attente active»? En quoi est-ce généralement considéré
comme une «mauvaise» façon d’attendre ?

page 3/8

Question 6 On s’intéresse dans cette question à trois tâches avec les caractéristiques suivantes :

nom A B C
instant d’arrivée 0 4 7

durée d’exécution 12 9 4

On suppose que l’ordonnanceur applique la stratégie SRTF. La durée des changements de contexte est
supposée négligeable. Au brouillon, dessinez un chronogramme indiquant la succession des tâches sur
le processeur. Recopiez ensuite votre réponse dans le cadre ci-dessous.

temps
0 5 10 15 20 25

3 Mémoire virtuelle

Question 7 Pour chaque proposition ci-dessous, entourez V si elle est correcte, ou entourez F si elle
est fausse ou absurde.
V F En général, l’espace d’adressage virtuel est plus petit que la mémoire physique.
V F L’adresse physique d’une même page virtuelle peut changer au cours du temps.
V F Grâce à la mémoire virtuelle, les accès à la mémoire principale sont, en moyenne, plus rapides.
V F La taille des pages virtuelles est toujours la même que la taille des pages physiques.

Question 8 On suppose dans cette question un système avec des adresses virtuelles sur 16 bits,
dont 7 bits pour le numéro de page. Si l’utilisateur fait un appel mmap(5000), combien de pages lui
seront allouées par le noyau ? Vous pouvez vous aider du tableau page 8 pour les calculs en binaire.

Le noyau va allouer pages.

4 Allocation dynamique

Question 9 Le programme ci-dessous alloue plusieurs tableaux. Dans quelle section de son espace
d’adressage sera placé le tableau tabA?

V F .text

V F .data

V F .heap

V F .stack

#include <stdlib.h>

int tabA[]={1,2,3,4};

int main(void)

{

int * tabB = malloc(100 * sizeof(int));

for(int i=0; i<100; i++)

{

tabB[i] = tabA[i % 4];

}

return 0;

}

page 4/8

Question 10 Cette question porte sur un allocateur dynamique (similaire à celui implémenté en TP).
Pour chaque proposition, entourez V si elle est correcte, ou entourez F si elle est fausse ou absurde.
Lors d’une allocation :
V F découper un bloc (pour n’en allouer qu’une partie) sert à réduire la fragmentation externe.
V F découper un bloc (pour n’en allouer qu’une partie) sert à réduire la fragmentation interne.

Lors d’une désallocation :
V F fusionner plusieurs blocs voisins sert à réduire la fragmentation externe.
V F fusionner plusieurs blocs voisins sert à réduire la fragmentation interne.

Question 11 Cette question porte sur la stratégie d’allocation dynamique best-fit. Pour chaque
proposition ci-dessous, entourez V si elle est correcte, ou entourez F si elle est fausse ou absurde.
V F Cette stratégie n’est pas compatible avec les mécanismes de découpage/fusion de blocs.
V F Cette stratégie n’est jamais victime du problème de fragmentation du tas.
V F Cette stratégie nécessite d’initialiser le tas avec des blocs libres de tailles bien choisies.
V F Cette stratégie cherche à exploiter en priorité les blocs libres les plus petits.

5 Concurrence et synchronisation

Question 12 Pour chaque proposition ci-dessous, entourez V si elle est correcte, ou entourez F si
elle est fausse ou absurde.
V F Différents threads du même processus ont la même pile d’exécution.
V F Différents threads du même processus ont la même table de pages.
V F Différents threads du même processus ont le même CPU.
V F Différents threads du même processus ont les mêmes sections critiques.

Exercice : synchronisation par sémaphores

Dans cet exercice, on s’intéresse à un programme concurrent similaire à ceux vus en cours et en TD, où
plusieurs threads se partagent l’accès à une ressource critique. Il y a deux catégories de threads : les
lecteurs qui accèdent à cette ressource uniquement en lecture, et les threads rédacteurs qui peuvent
également en modifier le contenu. Plusieurs lecteurs peuvent lire simultanément sans que cela pose de
problème. Par contre, pendant qu’un rédacteur est en cours de modification, l’état de la ressource n’est
pas cohérent et on veut donc empêcher tous les autres threads (lecteurs et rédacteurs) d’y accéder.

Autrement dit, on s’intéresse à un programme dans lequel une quantité arbitraire de threads exécutent
chacun l’un ou l’autre des comportements ci-dessous, et on veut garantir les trois contraintes de
synchronisation suivantes :

— il est permis à plusieurs lecteurs de lire() simultanément
— il est interdit à plusieurs rédacteurs de modifier() simultanément
— il est interdit aux lecteurs de lire() pendant qu’un rédacteur est en train de modifier()

threads lecteurs

while(true)

{

// A?

lire();

// B?

}

threads rédacteurs

while(true)

{

// C?

modifier();

// D?

}

Dans les questions suivantes, votre travail va consister à implémenter les synchronisations (points
notés A, B, C et D) à l’aide de sémaphores et/ou de variables partagées.

page 5/8

Question 13 Une approche simpliste est de restreindre l’accès à la ressource à un seul thread au
maximum, sans tenir compte des deux catégories de threads. Implémentez ci-dessous les synchronisa-
tions nécessaires.
Remarques :

— n’oubliez pas de préciser la valeur initiale de vos sémaphores et/ou variables partagées.
— vous pouvez utiliser autant de code et/ou d’appels à P() et/ou à V() que vous jugerez utile.
— vous pouvez aussi laisser un cadre vide pour dire «aucune synchronisation n’est nécessaire ici».

Conditions initiales

lecteur : synchro A rédacteur : synchro C

lecteur : synchro B rédacteur : synchro D

N’hésitez pas à ajouter des commentaires pour expliquer votre démarche :

page 6/8

Question 14 Vous remarquez que cette solution simpliste est certes correcte en termes de synchro-
nisation, mais qu’elle aura probablement des performances assez mauvaises. Proposez une nouvelle
solution qui autorise des lecteurs multiples à accéder simultanément à la ressource.

Conditions initiales

lecteur : synchro A rédacteur : synchro C

lecteur : synchro B rédacteur : synchro D

N’hésitez pas à ajouter des commentaires pour expliquer votre démarche :

page 7/8

Question 15 Vous remarquez que cette nouvelle solution souffre d’un risque de famine. En réalité,
ce sont nos trois contraintes de synchronisation (cf page 4) qui, à elles seules, sont insuffisantes pour
garantir un comportement «raisonnable» du système.
Décrivez un scénario d’exécution dans lequel une situation de famine se produit.

Question 16 Proposez une nouvelle solution évitant ce risque de famine.

Conditions initiales

lecteur : synchro A rédacteur : synchro C

lecteur : synchro B rédacteur : synchro D

page 8/8

Annexe : aide pour les calculs en binaire

Les premiers nombres entiers, notés en décimal, hexadécimal, et binaire :

Dec Hex Bin
0 0 0
1 1 1
2 2 10
3 3 11
4 4 100

Dec Hex Bin
5 5 101
6 6 110
7 7 111
8 8 1000
9 9 1001

Dec Hex Bin
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110

Dec Hex Bin
15 F 1111
16 10 10000
17 11 10001
18 12 10010
19 13 10011

Les premières puissances de 2, notées en décimal :
20 = 1 216 = 65 536 232 = 4 294 967 296 248 = 281 474 976 710 656
21 = 2 217 = 131 072 233 = 8 589 934 592 249 = 562 949 953 421 312
22 = 4 218 = 262 144 234 = 17 179 869 184 250 = 1 125 899 906 842 624
23 = 8 219 = 524 288 235 = 34 359 738 368 251 = 2 251 799 813 685 248
24 = 16 220 = 1 048 576 236 = 68 719 476 736 252 = 4 503 599 627 370 496
25 = 32 221 = 2 097 152 237 = 137 438 953 472 253 = 9 007 199 254 740 992
26 = 64 222 = 4 194 304 238 = 274 877 906 944 254 = 18 014 398 509 481 984
27 = 128 223 = 8 388 608 239 = 549 755 813 888 255 = 36 028 797 018 963 968
28 = 256 224 = 16 777 216 240 = 1 099 511 627 776 256 = 72 057 594 037 927 936
29 = 512 225 = 33 554 432 241 = 2 199 023 255 552 257 = 144 115 188 075 855 488
210 = 1024 226 = 67 108 864 242 = 4 398 046 511 104 258 = 288 230 376 151 711 744
211 = 2048 227 = 134 217 728 243 = 8 796 093 022 208 259 = 576 460 752 303 423 488
212 = 4 096 228 = 268 435 456 244 = 17 592 186 044 416 260 = 1 152 921 504 606 846 976
213 = 8 192 229 = 536 870 912 245 = 35 184 372 088 832 261 = 2 305 843 009 213 693 952
214 = 16 384 230 = 1 073 741 824 246 = 70 368 744 177 664 262 = 4 611 686 018 427 387 904
215 = 32 768 231 = 2 147 483 648 247 = 140 737 488 355 328 263 = 9 223 372 036 854 775 808

264 = 18 446 744 073 709 551 616

On rappelle également que :
— 1 kio = 1024 octets,
— 1 Mio = 1024 Kio,
— 1 Gio = 1024 Mio,
— 1 Tio = 1024 Gio,
— etc. (avec dans l’ordre : Pio, Eio, Zio, Yio)

En cas de doute sur ces unités, n’hésitez pas à demander des précisions.

