page 1/8

IFA-3-SYS : Systemes d’exploitation 20 mars 2024

NOM Prénom :

Consignes
— Durée : 1h30. Lisez le sujet en entier (16 questions sur 8 pages) avant de commencer.
— Ecrivez lisiblement et surtout sans ratures. Utilisez un brouillon (vraiment).
— Les réponses seront a inscrire sur le sujet. Commencez par écrire votre nom ci-dessus.
— Documents et appareils interdits, sauf une feuille A4 recto-verso manuscrite.
— Pour les calculs en binaire, vous pouvez vous aider des tableaux donnés en page 8.
— Dans les questions vrai/faux, les erreurs sont décomptées : ne répondez pas au hasard.

1 Noyau et processus

Question 1 Pour chacun des mécanismes proposés dans la liste ci-dessous, entourez V si ce
mécanisme est implémenté a l'intérieur du noyau, entourez F sinon.

Ordonnanceur

Fonction printf ()

Cycle de Von Neumann
Interrupt Service Routine
Fonction exec ()

Context Switch
Emulateur de terminal
Shell

Question 2 Qu’appelle-t-on une «trappe» ? Expliquez succintement de quoi il s’agit, et en quoi c’est
utile dans un systéme d’exploitation.

page 2/8

Question3 On s’intéresse dans cette question au programme ci-dessous qui utilise comme en TP les
appels systeme fork(), exec(), sleep(), ainsi que la fonction int atoi(char *) pour interpréter
une chaine de caractéres en valeur entiere. On compile ce programme en un exécutable truc puis on
l'invoque avec la commande .

int main(int argc, char** argv)
Dans le cadre ci-dessous, donnez {
un exemple d’affichage que peut if (argc==2)
produire cette commande : {
int t = atoi(argv[1]);
sleep(t);
printf ("%d\n", t);
}
else
{
char * param[] = {"3","6","1","5","4" "2"};
for(int i=0; i<6; i++)
{

if (1fork())

{
execl(argv[0] ,param[i] ,param[i] ,NULL) ;
printf ("%d\n", 1i);
wait (NULL) ;

}

}
}
}

2 Multitache et ordonnancement

Question 4 Lorsque le noyau fait un changement de contexte entre deux processus, il doit sau-
vegarder/restaurer I'état interne de certains composants matériels. Pour chaque élément ci-dessous,
entourez V si le noyau doit en faire la sauvegarde/restauration, ou entourez F s'’il peut en «effacer» (aka
«invalider») sereinement le contenu.

Cache CPU : L1, L2...
Registres CPU généraux : RO, R1...
Registres CPU spécialisés : PC, SP...

Translation Lookaside Buffer

Question 5 Que signifie 'expression «attente active» ? En quoi est-ce généralement considéré
comme une «mauvaise» fagon d’attendre ?

page 3/8

Question 6 On s’intéresse dans cette question a trois taches avec les caractéristiques suivantes :

nom \ A \ B \ C
instant d’arrivée | 0| 4| 7
durée d’exécution | 12| 9 | 4

On suppose que I'ordonnanceur applique la stratégie SRTF. La durée des changements de contexte est
supposee négligeable. Au brouillon, dessinez un chronogramme indiquant la succession des taches sur
le processeur. Recopiez ensuite votre réponse dans le cadre ci-dessous.

temps

3 Mémoire virtuelle

Question 7 Pour chaque proposition ci-dessous, entourez V si elle est correcte, ou entourez F si elle
est fausse ou absurde.

En général, I'espace d’adressage virtuel est plus petit que la mémoire physique.

Ladresse physique d’'une méme page virtuelle peut changer au cours du temps.

Grace a la mémoire virtuelle, les accés a la mémoire principale sont, en moyenne, plus rapides.
La taille des pages virtuelles est toujours la méme que la taille des pages physiques.

Question 8 On suppose dans cette question un systeme avec des adresses virtuelles sur 16 bits,
dont 7 bits pour le numéro de page. Si l'utilisateur fait un appel mmap (5000), combien de pages lui
seront allouées par le noyau ? Vous pouvez vous aider du tableau page 8 pour les calculs en binaire.

Le noyau va allouer pages.

4 Allocation dynamique

Question 9 Le programme ci-dessous alloue plusieurs tableaux. Dans quelle section de son espace
d’adressage sera placé le tableau tabA?

#include <stdlib.h>

int tabA[]={1,2,3,4};

text Jiint main(void)
-data int * tabB = malloc(100 * sizeof(int));
-heap for(int i=0; i<100; i++)
V|| F| .stack {
tabB[i] = tabA[i % 4]1;
}
return 0;

page 4/8

Question 10 Cette question porte sur un allocateur dynamique (similaire a celui implémenté en TP).
Pour chaque proposition, entourez V si elle est correcte, ou entourez F si elle est fausse ou absurde.
Lors d'une allocation :

découper un bloc (pour n’en allouer qu’une partie) sert a réduire la fragmentation externe.
découper un bloc (pour n’en allouer qu’une partie) sert a réduire la fragmentation interne.
Lors d’'une désallocation :

fusionner plusieurs blocs voisins sert a réduire la fragmentation externe.

fusionner plusieurs blocs voisins sert a réduire la fragmentation interne.

Question 11 Cette question porte sur la stratégie d’allocation dynamique best-fit. Pour chaque
proposition ci-dessous, entourez V si elle est correcte, ou entourez F si elle est fausse ou absurde.
Cette stratégie n’est pas compatible avec les mécanismes de découpage/fusion de blocs.
Cette stratégie n’est jamais victime du probléme de fragmentation du tas.

Cette stratégie nécessite d'initialiser le tas avec des blocs libres de tailles bien choisies.

Cette stratégie cherche a exploiter en priorité les blocs libres les plus petits.

5 Concurrence et synchronisation

Question 12 Pour chaque proposition ci-dessous, entourez V si elle est correcte, ou entourez F si
elle est fausse ou absurde.

Différents threads du méme processus ont la méme pile d’exécution.

Différents threads du méme processus ont la méme table de pages.

Différents threads du méme processus ont le méme CPU.

Différents threads du méme processus ont les mémes sections critiques.

Exercice : synchronisation par sémaphores

Dans cet exercice, on s’intéresse a un programme concurrent similaire a ceux vus en cours et en TD, ou
plusieurs threads se partagent 'accés a une ressource critique. Il y a deux catégories de threads : les
lecteurs qui accedent a cette ressource uniquement en lecture, et les threads rédacteurs qui peuvent
également en modifier le contenu. Plusieurs lecteurs peuvent lire simultanément sans que cela pose de
probléme. Par contre, pendant qu’un rédacteur est en cours de modification, I'état de la ressource n’est
pas cohérent et on veut donc empécher tous les autres threads (lecteurs et rédacteurs) d’y accéder.

Autrement dit, on s’intéresse a un programme dans lequel une quantité arbitraire de threads exécutent
chacun l'un ou l'autre des comportements ci-dessous, et on veut garantir les trois contraintes de
synchronisation suivantes :

— il est permis a plusieurs lecteurs de 1ire () simultanément

— il est interdit a plusieurs rédacteurs de modifier () simultanément

— il est interdit aux lecteurs de 1ire () pendant qu’un rédacteur est en train de modifier ()

threads lecteurs

threads rédacteurs

while(true) while(true)

{ {
// A? // C?
lire(); modifier();
// B? // D?

} }

Dans les questions suivantes, votre travail va consister a implémenter les synchronisations (points

notés A, B, C et D) a I'aide de sémaphores et/ou de variables partagées.

page 5/8

Question 13 Une approche simpliste est de restreindre I'accés a la ressource a un seul thread au

maximum, sans tenir compte des deux catégories de threads. Implémentez ci-dessous les synchronisa-
tions nécessaires.

Remarques :

— n’oubliez pas de préciser la valeur initiale de vos sémaphores et/ou variables partagées.
— vous pouvez utiliser autant de code et/ou d’appels a P() et/ou a V() que vous jugerez utile.
— Vous pouvez aussi laisser un cadre vide pour dire «aucune synchronisation n’est nécessaire ici».

Conditions initiales

lecteur : synchro A rédacteur : synchro C

lecteur : synchro B rédacteur : synchro D

N’hésitez pas a ajouter des commentaires pour expliquer votre démarche :

page 6/8

Question 14 Vous remarquez que cette solution simpliste est certes correcte en termes de synchro-
nisation, mais qu’elle aura probablement des performances assez mauvaises. Proposez une nouvelle
solution qui autorise des lecteurs multiples a accéder simultanément a la ressource.

Conditions initiales

lecteur : synchro A rédacteur : synchro C

lecteur : synchro B rédacteur : synchro D

N’hésitez pas a ajouter des commentaires pour expliquer votre démarche :

page 7/8

Question 15 Vous remarquez que cette nouvelle solution souffre d’'un risque de famine. En réalité,
ce sont nos trois contraintes de synchronisation (cf page 4) qui, a elles seules, sont insuffisantes pour
garantir un comportement «raisonnable» du systéme.

Décrivez un scénario d’exécution dans lequel une situation de famine se produit.

Question 16 Proposez une nouvelle solution évitant ce risque de famine.

Conditions initiales

lecteur : synchro A rédacteur : synchro C

lecteur : synchro B redacteur : synchro D

Annexe : aide pour les calculs en binaire

Les premiers nombres entiers, notés en décimal, hexadécimal, et binaire :

page 8/8

Dec Hex Bin Dec Hex Bin Dec Hex Bin Dec Hex Bin
0 0 0 5 5 101 10 A 1010 15 F 1111
1 1 1 6 6 110 11 B 1011 16 10 10000
2 2 10 7 7 111 12 C 1100 17 11 10001
3 3 11 8 8 1000 13 D 1101 18 12 10010
4 4 100 9 9 1001 14 E 1110 19 13 10011

Les premiéres puissances de 2, notées en décimal :

20 = 1[2®= 65536 | 2% = 4294 967 296 | 2%8 = 281 474 976 710 656
2! = 2|27 = 131 072 | 238 = 8589934 592 | 2% = 562 949 953 421 312
22 - 4| 218 - 262 144 | 234 = 17 179 869 184 | 2%0 = 1 125 899 906 842 624
28 = 8|219= 524 288 | 2% = 34 359 738 368 | 2°' = 2 251 799 813 685 248
24 = 16 | 220 = 1048 576 | 2% = 68 719 476 736 | 252 4 503 599 627 370 496
25 = 32| 22" = 2097 152 | 2%7 = 137 438 953 472 | 2% = 9 007 199 254 740 992
26 = 64 | 222 = 4194 304 | 2%8 = 274 877 906 944 | 254 = 18 014 398 509 481 984
27 = 128 | 2% = 8388 608 | 2%9 = 549 755 813 888 | 2% = 36 028 797 018 963 968
28 = 256 | 2% = 16777216 | 2*0= 1099511627 776 | 25 72 057 594 037 927 936
29 = 512|2%5= 33554432 | 2% = 2199023255552 | 257 = 144 115 188 075 855 488
210= 1024 | 2%6= 67108864 |22= 4398046511104 | 2% = 288230376 151 711 744
2= 2048 | 227 = 134217728 | 2 = 8796093022208 | 2% = 576 460 752 303 423 488
212- 4006 | 228 = 268435456 | 2** = 17 592 186 044 416 | 2%0 = 1 152 921 504 606 846 976
218= 8192 | 2% = 536870912 | 25 = 35184 372088832 | 26" = 2 305 843 009 213 693 952
214=16384 | 230 =1 073741824 | 26 = 70368744 177664 | 252 = 4 611 686 018 427 387 904
215 =32768 | 231 =2 147 483 648 | 2*7 = 140 737 488 355 328 | 283 = 9 223 372 036 854 775 808

264 = 18 446 744 073 709 551 616

On rappelle également que :

1 kio = 1024 octets,
1 Mio = 1024 Kio,
1 Gio = 1024 Mio,
1 Tio = 1024 Gio,

etc. (avec dans l'ordre : Pio, Eio, Zio, Yio)
En cas de doute sur ces unités, n’hésitez pas a demander des précisions.

