TP6 : Moniteurs et programmation concurrente

Dans ce TP, on s’intéresse a un programme concurrent dans lequel plusieurs threads coopérent pour
réaliser une tdche commune. Une premiére implémentation vous est fournie, mais la synchronisa-
tion n’est pas faite correctement et le programme calcule un résultat faux. Votre travail va consister
principalemement a corriger les différents problemes de synchronisation.

1 Prologue : prise en main du code fourni

Le scénario étudié dans ce TP est similaire au scénario producteur-consommateur vu en cours, mais
avec N producteurs et N consommateurs. Tous ces threads coopérent en se partageant une structure
de données commune. Il s’agit d'un multiensemble’, aussi appelé «sac», c’est a dire un conteneur dans
lequel los threads vont déposer ou retirer des éléments. Contrairement a I'exemple du cours, I'ordre des
éléments dans le sac n’est pas significatif : on dira simplement qu’on «ajoute un élément dans le sac»
ou qu’on «retire un élément du sac».

Plus précisément, on s’intéresse dans ce TP a un sac de taille bornée (i.e. un «bounded bag») avec les
propriétés suivantes :

1. La capacité du sac (qu’on notera C) est fixée une fois pour toutes au moment de son initialisation.

2. Lopération d’ajout est bloquante : si le sac est «plein» (i.e. s’il contient C éléments) alors elle ne
rendra la main que lorsqu’une place se sera libérée et que I'élément aura bien été ajouté.

3. De méme, I'opération de retrait est bloquante sur un sac vide.

Exercice 1 Téléchargez puis décompressez I'archive correspondant a ce TP. Ouvrez et lisez bag.h
en vous aidant des explications ci-dessous. Posez des questions sur ce que vous ne comprenez pas.
— Le typedef struct définit les attributs d’un sac (taille max, etc). La déclaration void **elem ne
doit pas vous effrayer : elem est simplement un tableau de pointeurs universels (i.e. un tableau
de voidx). Notre cas d’utilisation d’aujourd’hui est illustré ci-dessous : on va stocker dans le sac
des valeurs entiéres, donc notre tableau elem contiendra des pointeurs d’entiers.
— Le drapeau is_closed, et la méthode bb_close () sont hors-sujet pour I'instant, vous pouvez
les ignorer. On s’y intéressera de nouveau a la partie 3.
— La fonction bb_create () est le constructeur : elle alloue et initialise un sac avec une capacité
donnée.
— Les méthodes bb_add () et bb_take () sont définies dans bag. c. Allez lire leur implémentation.
Vous remarquerez que les synchronisations par attente active (boucles while) sont simplistes et
risquent de de ne pas fonctionner correctement.

elem

capacity =5 42

—_

size=2

27

A W D

Exercice 2 Ouvrez et lisez main.c en vous aidant des explications ci-dessous. Posez des questions
Sur ce que vous ne comprenez pas.
— Les «éléments» de notre sac seront des int* pointant sur les nombres qui nous intéressent.
— Le programme principal crée N producteurs et N consommateurs, et leur indique a chacun leur
numeéro de thread.
— Chaque thread consommateur retire (avec bb_take) des éléments du sac et ajoute chaque
valeur obtenue a la variable partagée sum.

1. Pour les curieux, voir https://fr.wikipedia.org/wiki/Multiensemble

https://fr.wikipedia.org/wiki/Multiensemble

— Chaque thread producteur, en fonction de son numéro i, alloue i entiers de valeur 1 et les ajoute
au sac.

— Donc en comptant tous les producteurs, on aura au total fois le nombre 1 (mais pas
forcément en méme temps dans le sac, car C peut étre beaucoup plus petit que cette valeur).

— Le programme principal affiche le résultat «théorique» en utilisant la formule, ainsi que la valeur
de la variable sum. Si les synchronisations sont correctes, alors les deux valeurs sont identiques.

Nx (N+1)
2

Exercice 3 Tapez puis | . /main 500 10| pour exécuter votre programme avec N = 500 et

C = 10. Respectivement, essayez avec] ./main 10 500 \ Répétez I'expérience plusieurs fois en variant
les paramétres, et constatez que vous obtenez des résultats fantaisistes, et volontiers différents d’'une
fois sur 'autre : somme incorrecte, segmentation fault, messages assertion failed, ou encore des erreurs
dans l'allocateur mémoire (par exemple, erreur double free). Le comportement exact du programme
dépend de votre systeme : matériel, version de I'OS, etc. Si vous obtenez un comportement toujours
identique, essayez avec des plus grandes valeurs pour N et/ou C (vous pouvez aller jusqu’a des nombres
a quatre chiffres). Vous pouvez aussi décommenter les divers assert () marqués sanity check, pour
observer plus précisément les erreurs a I'exécution. Dans tous les cas, I'objectif de cet exercice est de
se convaincre, par 'observation, que le code distribué est faux. Au besoin, demandez de I'aide a un
enseignant.

Exercice 4 Lobjectif du TP est de corriger un a un les bugs de concurrence du programme : acces
aux variables partagées, synchronisation des threads, etc. Un premier probleme concerne l'affichage
du résultat, qui pour l'instant n’a aucune chance d’étre correct. En effet, notre main () lit la variable sum
immédiatement aprés avoir créé tous les threads, sans leur laisser le temps de s’exécuter. Pour vous
en convaincre, décommentez les divers affichages dans les threads pour mieux visualiser le détail de
I'exécution.

Dans main(), ajoutez un sleep(2) juste avant les deux printf (). Exécutez de nouveau votre pro-
gramme plusieurs fois, avec les différents parameétres essayés a I'exercice précédent.

Remarques
— Attention, il s’agit seulement d’un contournement (VO : workaround) et pas d’'une vraie solution.
On s’intéressera de nouveau a ce probleme de terminaison dans la derniére partie du TP.

2 Synchronisation des opérations concurrentes
Dans cette premiére partie, on s’intéresse aux acces concurrents.

Exercice 5 Dansmain.c, ajoutez des synchronisations pour garantir que tous les accés a la variable
partagée sum sont faits en exclusion mutuelle. Faites valider par un enseignant (mais n’attendez pas
pour avancer sur les exercices suivants)

Remarques

— Vous utiliserez les fonctions de pthread.h : pthread_mutex_init(), pthread_mutex_lock()
et pthread_mutex_unlock(). N’hésitez pas a relire les diapos correspondantes dans le cours,
et/ou les pages de manuel correspondantes.

— Attention, a ce stade votre programme n’affichera toujours pas un résultat correct! cf I'exercice
suivant.

Exercice 6 Ouvrez bag.c et trouvez a quel endroit sont implémentées les signalisations. Chacune
des deux boucles while voudrait faire attendre le thread appelant dans le cas ou les conditions ne
sont pas réunies. Par exemple dans bb_take () on scrute le nombre d’éléments du sac jusqu’a ce qu'il
devienne positif.

Cette facon naive de synchroniser les threads pose plusieurs problemes. D’une part, les accés concur-
rents a la variable size constituent une data race condition, mais en plus la sychronisation est basée
sur une attente active, ce qui occupe inutilement le processeur.

En supposant que plusieurs threads exécutent bb_add et/ou bb_take de fagon concurrente, donnez un
exemple de trace d’exécution produisant une erreur.

2

Remarques

— Votre réponse consistera en 1) un état initial des variables partagées et 2) une succession
d’actions par chaque thread (voir cours chapitre 5 diapo 11).

— Attention, méme si vous faites I'hypothése que chaque lecture et écriture mémoire est atomique,
une incrémentation de variable (e.g. var+=1;) ne sera pas atomique pour autant.

Exercice A l'aide de mutex et variables de conditions, modifiez le code de bb_add () et bb_take ()
pour corriger ces deux problemes de synchronisation.

Il s’agit d’'une part d’empécher les acces concurrents aux variables partagées (i.e. exclusion mutuelle)
et d’autre part d’assurer les blocages/réveils des threads en cas de sac plein/vide.

Faites valider par un enseignant (mais n’attendez pas pour travailler sur les exercices suivants)

3 Terminaison «propre» du programme

Faire dormir pendant deux secondes le thread principal permet de laisser du temps aux producteurs et
consommateurs pour s’exécuter, mais ce n’est pas tres élégant. Dans la suite, vous allez implémenter
une solution plus satisfaisante, basée sur une contrainte de précédence explicite : avant d’afficher le
résultat, le thread principal va maintenant se suspendre jusqu’a ce que tous les threads aient terminé.
Evidemment, la tache sera plus facile pour les producteurs (basés sur une boucle for) que pour les
consommateurs, qui pour l'instant ne se terminent pas.

Exercice 7 Rajoutez a votre main() des appels a pthread_join() pour attendre la fin des threads
producteurs.

Exercice 8 Attendre la fin des threads consommateurs sera plus difficile car pour I'instant, une fois
que le sac est vide ils vont tous se bloquer dans bb_take (), et ne jamais en sortir. Pour régler ce
probléme, vous allez rajouter a votre sac une nouvelle fonctionnalité, qui sera accessible via la méthode
bb_close() avec les effets suivants :

— une fois qu’un sac est fermé, il devient interdit d’appeler bb_add () ou bb_close().

— fermer un sac réveille tous les threads suspendus dans bb_take ().

— sur un sac fermé et non-vide, bb_take () retire un élément du sac, comme on a fait jusqu’ici.

— sur un sac fermé et vide, bb_take () renvoie NULL au lieu de bloquer.
Implémentez ces fonctionnalités dans bag. c et adaptez votre programme en conséquence : il vous
faudra appeler bb_close () au bon endroit depuis main (), mais également modifier consumer () puis-
qgu’on a changé le contrat de bb_take (). Vous pouvez finalement rajouter des pthread_join() pour
attendre la fin des threads consommateurs avant I'affichage de sum.

	Prologue: prise en main du code fourni
	Synchronisation des opérations concurrentes
	Terminaison <<propre>> du programme

