
TD5 : Synchronisation de threads
1 Concurrence et atomicité
On suppose une variable globale X initialisée à zéro et partagée entre N threads «incrémenteurs» et
N threads «décrémenteurs». Chaque thread incrémenteur exécute, de façon non atomique,1 l’opéra-
tion X=X+2, puis se termine. De même, chaque décrémenteur fait X=X-3.
On lance les 2N threads en concurrence et on attend la fin de l’exécution.

Exercice 1 Quelle est la valeur maximale possible pour la variable X? la valeur minimale? Donnez
une trace d’exécution justifiant chaque réponse.

Exercice 2 Quel est l’ensemble des valeurs possibles pour X?

Exercice 3 Même question, mais en supposant maintenant que l’exécution de chaque thread est
atomique.

2 Sections critiques et interblocages
On s’intéresse au programme ci-dessous, où deux ressources critiques X et Y sont partagées par
quatre threads concurrents A à D. Chaque ressource R est protégée par un verrou pour garantir son
accès exclusif : un thread fait toujours lock(LR) avant d’utiliser R et unlock(LR) ensuite.

Variables partagées

1 mutex LX, LY;

Thread A

1 while(true) {
2 lock(LX);
3 A3; // A utilise X
4 unlock(LX);
5 }

Thread B

1 while(true) {
2 lock(LY);
3 B3; // B utilise Y
4 unlock(LY);
5 }

Thread C

1 while(true) {
2 lock(LX);
3 C3; // C utilise X
4 lock(LY);
5 C5; // C utilise X et Y
6 unlock(LX);
7 unlock(LY);
8 }

Thread D

1 while(true) {
2 lock(LY);
3 D3; // D utilise Y
4 lock(LX);
5 D5; // D utilise X et Y
6 unlock(LX);
7 unlock(LY);
8 }

Exercice 4 Donnez un scénario d’exécution menant à un interblocage. Exprimez votre réponse sous
la forme d’une trace d’exécution de la forme (A1, B1, A2...) pour dire «A exécute sa ligne no 1, puis B
exécute sa ligne no 1, puis A exécute sa ligne no 2...»

Exercice 5 Donnez un scénario dans lequel toutes les sections critiques (A3, B3, D5, etc) sont
exécutées, sans pour autant provoquer d’interblocage.

Exercice 6 (facultatif) Réécrivez les synchronisations de ce programme de façon à garantir
l’absence d’interblocage. Vous devez bien sûr garantir l’exclusion mutuelle sur chaque ressource X et Y.
Par contre, on ne veut pas limiter artificiellement le parallélisme : par exemple, A3 et B3 doivent pouvoir
s’exécuter simultanément, de même que A3 et D3, ou encore C3 et D3, etc.

1. autrement dit, on considère que la lecture, le calcul, et l’écriture sont trois actions distinctes, qui peuvent arriver de
façon concurrente vis-à-vis de celles autres threads

1



3 Variantes sur le producteur-consommateur

On s’intéresse à une version du producteur-consommateur similaire à celle vue en cours mais utilisant
une seule variable de condition, comme illustré ci-dessous.

Variables partagées

item_t buffer[N];
int count=0;
mutex L;
cond_var bell;

Producteur

1 int in = 0;
2 while(1)
3 {
4 item=produce()
5 lock(L);
6 while(count == N)
7 {
8 wait(bell, L);
9 }

10 buffer[in] = item;
11 in = (in+1) % N;
12 count = count + 1;
13 signal(bell);
14 unlock(L);
15 }

Consommateur

1 int out = 0;
2 while(1)
3 {
4 lock(L);
5 while(count == 0)
6 {
7 wait(bell, L);
8 }
9 item = buffer[out];

10 out = (out+1) % N;
11 count = count - 1;
12 signal(bell);
13 unlock(L);
14 consume(item);
15 }

Exercice 7 Est-ce que cette implémentation est toujours correcte, ou bien a-t-on introduit des pro-
blèmes de concurrence (data race, interblocage...) ? En fonction de votre réponse, justifiez votre avis
par une phrase rédigée, ou donnez un exemple d’exécution menant à un problème.

Exercice 8 Même question, mais en remplaçant aussi les appels signal() par des appels broadcast().

4 Signalisation et précédence

Exercice 9 Soit le programme ci-dessous, composé de deux threads concurrents. Complétez ce
programme pour qu’il respecte le graphe de précédence A() → B() , c’est à dire pour qu’il garantisse
que l’exécution de A() soit terminée avant le le début de B(). Vous pouvez utiliser des verrous, des
variables de condition, et des variables partagées.

Conditions initiales Thread A

A();

Thread B

B();

2



5 Moniteurs
Exercice 10 Deux villes A et B sont reliées par une ligne de chemin de fer à une seule voie. Plusieurs
trains peuvent circuler dans le même sens, de A vers B, ou de B vers A, mais des trains circulant en
sens opposés ne doivent pas occuper la voie en même temps.

On modélise cette situation sous la forme d’un programme concurrent, dans lequel une quantité arbitraire
de threads exécutent chacun l’un ou l’autre des comportements ci-dessous :

Trains de A à B

1 // demander le droit de passage A vers B
2 circuler de A vers B
3 // sortir de la voie en B

Trains de B à A

1 // demander le droit de passage B vers A
2 circuler de B vers A
3 // sortir de la voie en A

Implémentez, pour chaque type de train, la procédure de demande d’autorisation et celle de sortie de
voie. Vous pouvez utiliser des verrous, des variables de condition, et des variables partagées.

3


	Concurrence et atomicité
	Sections critiques et interblocages
	Variantes sur le producteur-consommateur
	Signalisation et précédence
	Moniteurs

