
TD2 : Ordonnancement de processus

1 Ordonnancement de tâches
On s’intéresse dans cette partie à des tâches purement calculatoires (autrement dit, des CPU-bursts) A,
B, C... dont les instants d’arrivée et les durées d’exécution sont indiquées par le tableau suivant :

tâche A B C D E F G
arrivée 2 4 5 7 9 15 16
durée 3 2 1 4 2 6 8

Exemple Le chronogramme ci-dessous représente l’exécution de ces différentes tâches, ordonnan-
cées selon la politique FCFS (First Come First Served). Le tableau indique les temps de séjour (TT
pour Turnaround Time) et temps d’attente (WT pour Waiting Time) :

0
Ø

2
A

5
B

7
C

8
D

12
E

14
Ø

15
F

21
G

29

tâche A B C D E F G
TT 3 3 3 5 5 6 13

WT 0 1 2 1 3 0 5

Ce scénario génère un temps d’attente total de 12 unités de temps.

Exercice 1 Faites le même travail pour la politique d’ordonnancement SJF (Shortest Job First) :
dessinez le chronogramme et calculez le temps d’attente total.

Exercice 2 Même consigne pour SRTF (Shortest Remaining Time First) puis RR (Round-Robin) avec
un quantum de 1 puis RR avec un quantum de 5.
Remarque : il faut lire les dates d’arrivée comme «juste avant» l’instant indiqué. Par exemple la tâche A
arrive «juste avant 2» et donc à l’instant t=2 elle est déjà prête.

Exercice 3 Quel(s) seraient le/les avantages de choisir une politique Round Robin avec un quantum
encore plus long, par exemple 20? Respectivement, quels seraient les inconvénients? Répondez à
chaque fois par une phrase rédigée.

2 Ordonnancement de processus avec entrées-sorties
On s’intéresse dans cette partie à des processus faisant successivement des calculs et des entrées-
sorties. Plus précisément, chaque processus fait une CPU-burst (de la durée indiquée ci-dessous) puis
une IO-burst durant 10 unités de temps, puis une seconde CPU-burst identique à la première, puis il se
termine.

Processus 1ière CPU-burst, puis IO-burst, puis 2nde CPU-burst
A 2 10 2
B 3 10 3
C 7 10 7
D 18 10 18

À l’instant initial (t=0) tous les processus sont prêts à s’exécuter. On suppose que la machine ne
dispose que d’un unique processeur, mais qu’elle peut traiter plusieurs requêtes d’entrées-sorties
simultanément. 1

Exercice 4 Dessinez quatre chronogrammes représentant l’ordonnancement de ces processus selon
les stratégies suivantes : SJF, SRTF, RR avec quantum=6, et RR avec quantum=20. Discutez avec votre
voisin de table des avantages et inconvénients de chacune de ces stratégies sur ce scénario.

1. Si ça vous chagrine trop, imaginez plutôt que ce sont des sleep(N), l’exercice reste le même.

1



3 Prédiction des durées de CPU-burst
Dans plusieurs politiques d’ordonnancement, le choix du processus à exécuter dépend des durées des
prochaines CPU-burst des différents candidats. Dans le cas général, cette information n’est pas connue
à l’avance. Mais pour chaque processus il est possible d’en faire une estimation en se basant sur les
durées effectivement observées dans le passé.
Typiquement, la durée de la prochaine CPU-burst d’un processus P est prédite à l’aide d’une moyenne
mobile exponentielle de ses précédentes durées. Notons d(n) la durée de la ne CPU-burst de P et
notons e(n + 1) la durée estimée de sa prochaine CPU-burst. Pour un certain paramètre α fixé entre 0
et 1, l’estimation se fait par la formule suivante :

e(n + 1) = α · d(n) + (1 − α) · e(n)

La mesure d(n) est notre information la plus récente sur le comportement de P. La valeur e(n) représente
l’historique de nos prédictions. Les paramètres de notre estimateur sont α et e(1). Le choix de α permet
de pondérer la «faculté de mémoire» de l’ordonnanceur, et la valeur de e(1) sert d’estimation par défaut
pour les processus encore inconnus.
Exercice 5 On s’intéresse à un ordonnanceur avec les paramètres suivants : α = 0.5 et e(1) = 5.
Soit un processus P dont les durées successives de CPU-burst sont 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 1,
1 (on rappelle que l’ordonnanceur ne connait pas ces durées à l’avance.)
Dans le tableau ci-dessous, indiquez les prévisions successives de l’ordonnanceur (ne gardez pas plus
d’un ou deux chiffres après la virgule) au fur et à mesure de l’exécution.

n 1 2 3 4 5 6 7 8 9 10 11 12

e(n) 5

d(n) 10 10 10 10 10 10 1 1 1 1 1 1

Exercice 6 Représentez toutes ces valeurs sur le graphe ci-dessous. Utilisez des couleurs distinctes
pour d(n) et e(n).

n

d,e

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

10

Note : Remarquez au passage que ça ne voudrait rien dire de relier entre eux les points successifs
sur ce graphe. Pourquoi?
Exercice 7 Supposons maintenant que l’ordonnanceur est paramétré avec une valeur de α plus petite,
par exemple 0.25 voire 0.1? Quel impact cela aurait-il sur les prévisions? Illustrez ce changement sur
votre graphique (pas la peine de refaire les calculs). Mêmes questions avec une valeur de α plus proche
de 1, par exemple 0.75 ou 0.9.
Exercice 8 Proposez un scénario (sous forme d’une séquence de durées de CPU-burst) pour lequel
une trop petite valeur de α conduirait l’ordonnanceur à faire de «mauvaises» prédictions. Justifiez votre
réponse par une phrase rédigée et illustrez ce scénario sur un graphique.
Respectivement, proposez un scénario pour lequel une valeur de α trop proche de 1 conduirait
l’ordonnanceur à faire de «mauvaises» prédictions. Justifiez votre réponse par une phrase rédigée et
illustrez ce scénario sur un graphique.

2



4 Taux d’utilisation du processeur
Un des critères d’évaluation en ordonnancement est le taux d’utilisation du processeur (en VO CPU
utilization rate) c’est à dire la fraction du temps effectivement passée à exécuter du code applicatif.
Notons cette valeur U.
On s’intéresse à un système dans lequel les processus s’exécutent en moyenne pendant une durée
T entre deux requêtes d’entrées-sorties. Lorsqu’un processus se bloque, l’ordonnanceur fait une
commutation de contexte vers un processus prêt (on suppose qu’il y en a toujours). Notons S ce temps
de context-switch, pendant lequel aucun processus ne fait de travail utile. L’ordonnanceur applique une
politique round-robin avec un quantum de durée Q.

Exercice 9 Donnez une formule pour U dans chacun des cas suivants :
a) Q ≈ +∞
b) Q > T
c) S < Q < T
d) Q = S
e) Q ≈ 0

5 Multi-Level Feedback Queues Scheduling
Dans cet exercice, on s’intéresse à un ordonnanceur multi-niveaux avec trois ready queues. De la plus
prioritaire à la moins prioritaire :

— la file Q0 est ordonnancée en round-robin avec un quantum de 8,
— la file Q1 est ordonnancée en round-robin avec un quantum de 16,
— la file Q2 est ordonnancée en premier arrivé premier servi (FCFS).

Les nouvelles tâches sont ajoutées à la file la plus prioritaire. À chaque changement de contexte (i.e.
en cas de préemption, ou lorsqu’une nouvelle tâche devient prête) l’ordonnanceur examine chaque
file successivement par ordre de priorité et donne la main au premier processus recontré. Chaque fois
qu’un processus épuise son quantum il est «préempté» et rétrogradé vers la file suivante.

Exercice 10 Dessinez un chronogramme représentant l’exécution des tâches ci-dessous par notre
ordonnanceur.

tâche A B C D E
arrivée 0 12 28 36 46
durée 17 25 8 32 18

3


	Ordonnancement de tâches
	Ordonnancement de processus avec entrées-sorties
	Prédiction des durées de CPU-burst
	Taux d'utilisation du processeur
	Multi-Level Feedback Queues Scheduling

