Multithreading et synchronisation

Guillaume Salagnac

Insa de Lyon — Informatique

Plan

1. Introduction : la notion de thread
2. Probleme de I'exclusion mutuelle
3. Interblocages

4. Moniteurs et variables de condition

2/45
Rappel : la notion de processus Notion de thread (VF fil d’exécution)
Définition : processus 5 SEfen e 0
« I! o . 7 A
’un programme en cours «une tache indépendante a 1
d’exécution» 1 g ,
—— I'intérieur d’'un processus» 2
e isolés les uns des autres 2 -
* entemps : CPU virtuel . ® pourquoi les threads ? ’
* en espace : mémoire virtuelle . : ?"0_1;!1” Ide prlusrlerL:]r;CtrLrJ] :
* Process Control Block : actiter 'a programmatio .
e numéro = PID ® vue mémoire commune
® environnement, répertoire ® pas d'isolation matérielle
courant, fichiers ouverts... * variables globales partagées
* copie des registres CPU - [ESlaEIGEatoRcommun
* vue mémoire = Page Table e ordonnancement indépendant
e Page Table . * un VCPU privé :
® instructions = .text TCB = Thread Control Block .
¢ variables globales = .data : ® une pile d’exécution privée .
. _ . e |variables locales| privées Virtual A S
T Virtual Address Space irtual Address Space
° pile d’execution = .stack 3/45 4/45
Notion de thread : remarques Rappel : changement de contexte
Thread 1 Noyau Thread 2
1 U
1 U
1 U
e parfois appelé «processus léger» mais vision archaique .]
® envrai : un PCB = une PT et un/plusieurs TCB interruption 1 :
® par ex : task_struct et mm_struct dans Linux I ou syscall k
e un thread ne peut pas vivre en dehors d’'un processus g i
® besoin d’'une vue mémoire : :
® un processus vivant a toujours au moins un thread) !
® «main thread» = thread qui exécute main() i f
* lorsque zéro thread » processus terminé g]
RETI
| | il
1] 1
1] 1
I 1
1] 1
1] 1
v v v
5/45 6/45

APl POSIX : Threads

#include <pthread.h>
/* opaque typedefs */ pthread_t, pthread_attr_t;

// create and start a new thread

int pthread_create(pthread_t *thread,
pthread_attr_t *attr,
void * (xfunction) (void %),
void *arg);

// terminate the current thread

void pthread_exit(void #*retval);

// terminate another thread

int pthread_cancel(pthread_t thread);

// wait for another thread to terminate
int pthread_join(pthread_t thread, void **retvalp);

Plan

1. Introduction : la notion de thread
2. Probleme de I'exclusion mutuelle
3. Interblocages

4. Moniteurs et variables de condition

7145 8/45
Acceés concurrents a une variable partagée Explication : code source # instructions du processeur
Thread A Variable partagée Thread B Variable partagée
int var = 5; Thread A |var: 00000005 | Thread B
{ {
_) o) LOAD REGa< [var] LOAD REGb¢[var]
var = var+l; var = var-1; INCR REGa DECR REGDb
STORE REGa — [var] STORE REGb — [var]
} }
Que.StIOI’.l.. que vaut var a la fin de l'exécution ? Remarque : A et B exécutés sur des (V)CPU distincts
* intuition : var== » REGa et REGb (physiquement ou logiqguement) distincts
e réalité : var==5 ou var==4 ou var==
9/45 10/45
Quelques exécutions possibles Notion de «data race»
VF «situation de concurrence», course critique, accés concurrents
- = = Définition : data race
var=5 T8 var=s 1B var=s TB Situation ot le résultat du programme dépend de I'ordre dans
LOAD REGa<-[var] i J| L0AD REGa¢—[var] lequel sont exécutées les instructions des threads
context switch i| DECR REGD
U

context switch
LOAD REGb¢ [var]
INCR REGa

LOAD REGb¢ [var]

DECR REGb

STORE REGb— [var]
context switch

INCR REGa I

STORE REGa— [var]ll

var =6 ' '

STORE REGa— [var]
context switch
| STORE REGb— [var]

' var=5 ' '

var =4 '

Remarque : 1 CPU ou 2 CPU » probléme semblable

11/45

Remarques
e plusieurs acces concurrents a une ressource partagée

® variable globale, fichier, réseau, base de données...
® écriture+écriture = probléme
e écriture+lecture = probleme

e concurrence : parallélisme et/ou entrelacement
® i.e. quand on ne maitrise pas I'ordre temporel des actions

e risques : corruption de données et/ou crash

e mauvaise nouvelle : trés difficile a débugger en pratique
® bonne nouvelle : des protections efficaces existent
12/45

Situation de concurrence : exemples

« deux écritures concurrentes = conflit

x=10
x=20

Thread A:

L) 0
Thread B: Question : valeur finale de x 7

* une lecture et une écriture concurrentes = conflit

Init: x=5
Thread A: x=10 Question : valeur affichée ?
Thread B: print(x)

Précepte : data race = bug

Un programme dans lequel plusieurs taches peuvent se retrouver
en situation de concurrence est un programme incorrect.

Objectif : garantir 'exclusion mutuelle
Définitions

e Action atomique : action au cours de laquelle aucun état
intermédiaire n’est visible depuis I'extérieur

e Ressource critique : objet partagé par plusieurs threads et
susceptible de subir une data race

e Section critique : morceau de programme qui accéde a
une ressource critique

Idée : on veut que chaque section critique s’exécute de fagon
atomique

Définition : exclusion mutuelle

Interdiction pour plusieurs threads de se trouver simultanément
a l'intérieur d’une section critique

Idée : «verrouiller» 'accés a une section critique déja occupée

13/45 14/45
Exclusion mutuelle par verrouillage Exclusion mutuelle : illustration
Variables partagées
Thread A int var = 5; Thread B
lock_t L; {

{ lock() unlﬁfk()

e e |1

lock(L); lock(L); TA i 1 >

var = var+l; var = var-1;

unlock (L) ; unlock (L) ; Lock() anlock()
3 3 B e - - ’temps

On voudrait ces deux méthodes atomiques :

® lock(L) pour prendre le verrou L en exclusivité
» un seul thread peut entrer en section critique
e unlock(L) pour relacher le verrou L
» permet aux autres threads de le prendre a leur tour
15/45 16/45
Solution naive (et incorrecte) Probleme : comment garantir I'exclusion mutuelle ?
partagé Autrement dit : comment implémenter lock() et unlock() ?

Thread A Thread B Propriétés souhaitables

- - e Exclusion mutuelle : a chague instant, au maximum une seule
while(1) while(1)

{ ... { ...
while (turn==2) while(turn==1)
{/* attendre */ } {/* attendre */ }
// section critique // section critique
turn = 2; turn = 1;

e Exclusion mutuelle : OK
e Attente active : exécution pas trés efficace
e Probleme : alternance stricte » progression non garantie

17/45

tache est en section critique
® sinon risque de data race

® Progression : si aucune tache n’est en section critique, alors une
tache exécutant 1lock () ne doit pas se faire bloquer

® sinon risque de deadlock, en VF interblocage
e Equité : aucune tache ne doit étre obligée d’attendre indéfiniment
avant de pouvoir entrer en section critique
® sinon risque de starvation, en VF famine, privation

e (Généralité : pas d’hypothéses sur le nombre de taches ou sur
leurs vitesses relatives
® on veut une solution universelle

e Bonus : implem simple, algo prouvable, exécution efficace...

18/45

Solution naive n° 2 (incorrecte aussi)

partagé
Thread A bool occup = 0; | Thread B
while(1) while(1)
{... {...

while(occup !'= 0)
{/* rien %/ }

while(occup != 0)
{/* rien */ }

occup = 1; occup = 1;

// section critique // section critique
occup = 0; occup = 0;

} }

e Progression : OK
e Exclusion mutuelle : non garantie
® Probléme : consultation-modification non atomique

Solutions correctes

Masquer les interruptions
e idée : empécher tout changement de contexte
» dangereux, et inapplicable sur machine multiprocesseur

Approche purement logicielle
e idée : programmer avec des instructions atomiques
e autrefois seulement LOAD et STORE » par ex. algo de Peterson
® de nos jours : TEST-AND-SET, COMPARE-AND-SWAP » spin-lock
» attente active = souvent inefficace a I'exécution

Approche noyau : intégrer synchronisation et ordonnancement
e idée : programmer avec des instructions atomiques
® mais les cacher dans le noyau (derriere des appels systéme)
» permet de bloquer / réveiller les threads au bon moment

20/45

19/45
Mutex : définition m
Verrou exclusif, ou en VO mutex lock P ‘
e objet abstrait = opaque au programmeur .
e deux états possibles : libre=unlocked ou pris=locked & x
e offre deux méthodes atomiques lock () et unlock()

si le verrou L est libre, le prendre
sinon, attendre qu'’il se libére

libérer le verrou L

Remarques
® lock() etunlock() implémentés comme appels systeme
e threads en attente = état BLOCKED dans I'ordonnanceur
* une file de threads suspendus pour chaque mutex
e invoquer unlock() réveille unthread suspendu (s'il y en a)
e attention : ordre de réveil non spécifié

API POSIX : Mutex locks

#include <pthread.h>

/* opaque typedefs */ pthread_mutex_t, pthread_mutexattr_t;
// create a new mutex lock

int pthread_mutex_init(pthread_mutex_t *mutex,

pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex) ;

// attempt to lock a mutex without blocking
int pthread_mutex_trylock(pthread_mutex_t *mutex);

21/45 22/45
Exclusion mutuelle : en résumé Plan
Notion de «data race»
e plusieurs accés concurrents & une méme variable
e accés non atomique » données incohérentes) .
1. Introduction : la notion de thread
Section critique R)
, . 2. Probleme de I'exclusion mutuelle
® morceau de code qu’on veut rendre atomique
» exécution nécessairement en exclusion mutuelle
3. Interblocages
Solution : utiliser un mutex lock . . o
4. Moniteurs et variables de condition
lock(L);
/* section critique */
unlock(L) ;
» nécessite que tous nos threads jouent le jeu
23/45 24/45

Notion de «deadlock», en VF interblocage

Définition : interblocage, en VO deadlock

Situation dans laquelle deux (ou plusieurs) taches concurrentes
se retrouvent suspendues car elles s’attendent mutuellement

»...pour toujours
Exemple :
Init: Mutex X, Y
Thread A: lock(X); lock(Y); print("A"); ...
Thread B: lock(Y); lock(X); print("B"); ...

Exemple de trace d’exécution menant a un interblocage
© Thread A : lock(X)
® Thread B : lock(Y)
® Thread A : lock(Y) » suspend A
@ Thread B : lock(X) » suspend B

Interblocage : conditions de Coffman

Quatre conditions nécessaires :
e exclusion mutuelle : chaque ressource critique est non
partageable entre plusieurs threads

e hold and wait : un thread posséde déja une ressource et attend
pour en avoir une autre

e non-préemption : une ressource verrouillée ne peut pas étre
réquisitionnée, seulement libérée volontairement

e attente circulaire : A attend que B libére une ressource, mais B
attend que C libére une autre ressource, etc.

Solutions aux problémes d’interblocages :
e Prévention : garantir leur absence, par conception
e Détection : reconnaitre le probléme quand il arrive
e Résolution : régler le blocage une fois qu’il est la

25/45 26/45
Plan Scénario producteur-consommateur : introduction
Deux threads communiquent via une file FIFO partagée
ST -
1. Introduction : la notion de thread ® @
Producteur Consommateur
2. Probleme de I'exclusion mutuelle while(1) vhile(1)
{ {
3. Interblocages item=produce() ; item = fifo_get();
fifo_put(item); consume (item) ;
4. Moniteurs et variables de condition } }
Remarques :
¢ file = tampon circulaire de taille constante
e producteur doit attendre tant que la file est pleine
e consommateur doit attendre tant que la file est vide
27/45 28/45
Prod.-consomm. : solution naive (et incorrecte) Producteur-consommateur : remarques
partagé .) — .
- ® buffer partagé de taille N (constante) initialement vide
tem_t buffer[N]; e buffer circulaire : x%N se lit « x modulo N »
int count=0; e fonctions produce () et consume () non pertinentes
Producteur Consommateur . . . S R
® supposeées «purement séquentielles» i.e. n'accédant a
int in = 0; int out = 0; aucune ressource partagée
while(1) while(1) e variable partagée count pour la synchronisation
{ { e indique le nombre d’éléments actuellement dans le buffer
item=produce () while(count == 0) {} e variables in et out : non partagées
while(count == N) {} item = buffer[out]; « exemple avec N=10
buffer[in] = item; out = (out+1) % N; ' count = 7
in = (in+1) % N; count = count - 1;) B
count = count + 1; consume (item) ; in=5 out = 8
) b N|[J|O|U]|R B|O
Observation : ce programme a des bugs de synchronisation 0 ! 2 8 4 5 6 ’ 8 o
» Question : comment corriger le probléme ?
29/45 30/45

Tentative avec mutex 1 : deadlock
partagé

item_t buffer([N];
int count=0;

Tentative avec mutex 2 : encore un deadlock

item_t buffer[N];
int count=0;

mutex L; Producteur mutex L; Consommateur

Producteur Consommateur int in = 0; int out = 0;

int in = 0; int out = 0; while(1) while(1)

while(1) while(1) { {

{ { item=produce () lock(L);
item=produce () lock(L); lock(L); while(count == 0) {3}
lock(L) ; while(count == 0) {} while(count == N) {} unlock(L);
while(count == N) {} item = buffer[out]; unlock(L); item = buffer[out];
buffer[in] = item; out = (out+1) % N; buffer[in] = item; out = (out+l) % N;
in = (in+1) % N; count = count - 1; in = (in+1) % N; lock(L);
count = count + 1; unlock(L); lock(L); count = count - 1;
unlock(L) ; consume (item) ; count = count + 1; unlock(L);

} } unlock(L); consume (item) ;

} ¥
31/45 32/45
Tentative avec mutex 3 : attente active Producteur-consommateur : a retenir

Producteur Consommateur Hypothéses :

int in = 0; int out = 0; « file partagée de taille constante

while(1) while(1) . .

{ c e thread producteur doit attendre tant que la file est pleine
item=produce () lock(L); e thread consommateur doit attendre tant que la file est vide
lock(L); while(count == 0) {
while(count == N) { unlock(L); Problemes des solutions a base de mutex :

unlock(L); lock(L); ® mauvaise concurrence

lock(L); i e risques de deadlock
' unlock(L); o attente activ
unlock(L); item = buffer[out]; atiente active
buffer[in] = item; out = (out+1) % N; Mauvaise nouvelle
in = (in+1) % N; Lock(L); Ce scénario est insoluble avec seulement Lock () /unlock ()
lock(L); count = count - 1;
count = count + 1; unlock (L) ;
unlock(L) ; consume (item) ; » besoin d’'un mécanisme spécifique pour attendre et signaler

} } des événements quelconques
33/45 34/45
Quelques scénarios classiques de synchronisation Notion de «variable de condition»
Exclusion mutuelle objet abstrait = opaque au programmeur
= e contient une file d’attente de threads suspendus A
-—=1 =" -» e et une référence a un verrou mutex L =

Producteur consommateur, en VO bounded buffer problem
&~ -~

Boucle paralléle, en VO fork-join

Rendez-vous, en VO barrier

C | o — =]
- == E =1 -
C == = =

[=—T=—= =

35/45

e offre trois méthodes atomiques : wait (), signal() et broadcast ()

wait(cond_var C, mutex L)

1) atomiquement : déverrouiller L,
et suspendre le thread courant
2) au réveil : re-verrouiller L,
puis reprendre I'exécution

broadcast (cond_var C)

réveiller tous les threads
suspendus sur C

signal(cond_var C)

réveiller I'un des threads
suspendus sur C

36/45

Usage typique : la structure de «moniteur»

// section non critique

Producteur-consommateur : solution avec CV
item_t buffer[N];
int count=0;
mutex L;

lock(L); cond_var nonempty, nonfull;
snlel pEeiicets == O) Producteur Consommateur
wait(C, L); int in = 0; int out = 0;
) o while(1) { while(1) {
// section critique item=produce () lock(L);
i lock(L); while(count == 0)
sl (8 while(count == N) wait(nonempty, L);
unlock(F); o wait(nonfull, L); item = buffer[out];
/7 SEEieL wen EPLETGLE buffer[in] = item; out = (out+l) % N;
in = (in+1) % N; count = count - 1;
count = count + 1; signal (nonfull);
» on ne rentrera en section critique que si le prédicat est satisfait signal (nonempty) ; unlock(L);
unlock(L); consume (item) ;
} }
37/45 38/45
Variable de condition : remarques Variables de condition : remarques, suite
o wait(C, L) relache le verrou L e bonne pratique : always re-check predicate on wake-up
° au mon‘went de I'appel, L!dolit ét_re verrouillé par le thread courant while(predicate==0) vs if(predicate==0)
sinon c’est une erreur d’exécution wait(C, L); wait(C, L);
* signal() réveille un thread suspendu (s'ily en a) > protége contre les réveils intempestifs (spurious wake-up)
e attention : ordre de réveil non spécifié
e Pourquoi la primitive wait () est-elle atomique ? vs deux notions
e signal() utile quand les threads ont tous le méme prédicat distinctes de mutex et de CV, e.g.
» pas la peine de réveiller tout le monde a chaque fois
® broadcast () utile quand les threads ont des prédicats distincts lock(L);
» pour étre siir de réveiller aussi le bon thread while(predicate==0) {
unlock (L) ;
e bonne pratique : always hold the lock while signalling wait(C);
e simplifie I'analyse des comportements possibles) lock(L);
39/45 40/45
Réponse API POSIX : variables de condition
Découpler mutex et CV causerait des risques a I'exécution :
#include <pthread.h>
Producteur Consommateur
h /* opaque typedefs */ pthread_cond_t, pthread_condattr_t;
while(count == N) !
unlock(L) : .
context switch i // create a new cond variable
T loddL:> int pthread_cond_init(pthread_cond_t *cond,
| - const pthread_condattr_t *attr)
: count=count-1
] signal (nonfull) int pthread_cond_wait(pthread_cond_t *cond,
' < context switch pthread_mutex_t *mutex) ;
" vait(nonfull) m int pthread_cond_signal (pthread_cond_t *cond);
; ; int pthread_cond_broadcast (pthread_cond_t *cond);
41/45 42/45

Implémenter des moniteurs dans d’autres langages

C++
® #include <mutex>

® classe std: :mutex
e méthodes lock() et unlock()

® #include <condition_variable>

® classe std::condition_variable
® méthodes wait (), notify_one() etnotify_all()

Java
e chaque java.lang.0Object est un moniteur (mutex+CV)
® mot-clé synchronized pour délimiter les sections critiques
e méthodes wait (), notify (), notifyAll()

43/45

Plan

1. Introduction : la notion de thread
2. Probleme de I'exclusion mutuelle
3. Interblocages

4. Moniteurs et variables de condition

44/45

Threads et synchronisation : en résumeé

Processus VS thread VS mémoire virtuelle

e unité d’ordonnancement = thread

e unité d’isolation mémoire = espace d’adressage virtuel

e un processus = un espace d’adressage + un/plusieurs threads

Exclusion mutuelle AKA mutex A
e stratégie permettant d’éviter les «data race conditions» \ 1 J
e mécanisme : méthodes atomiques lock() et unlock()

Structure de moniteur
e mutex + variable de condition (pour la signalisation d’événements)
e wait(C,L) pour attendre

Ay
® signal(C)/broadcast(C) pour réveiller \‘J + &%

45/45

