
Multithreading et synchronisation

Guillaume Salagnac

Insa de Lyon – Informatique

Plan

1. Introduction : la notion de thread

2. Problème de l’exclusion mutuelle

3. Interblocages

4. Moniteurs et variables de condition

2/45

Rappel : la notion de processus
Définition : processus
«un programme en cours
d’exécution»
• isolés les uns des autres

• en temps : CPU virtuel
• en espace : mémoire virtuelle

• Process Control Block
• numéro = PID
• environnement, répertoire

courant, fichiers ouverts...
• copie des registres CPU
• vue mémoire = Page Table

• Page Table
• instructions = .text
• variables globales = .data
• tas d’allocation = .heap
• pile d’exécution = .stack

0

1

2

VPN

Virtual Address Space
3/45

Notion de thread (VF fil d’exécution)

Définition : thread
«une tâche indépendante à
l’intérieur d’un processus»

• pourquoi les threads?
• profiter de plusieurs CPU
• faciliter la programmation

• vue mémoire commune
• pas d’isolation matérielle
• variables globales partagées
• tas d’allocation commun

• ordonnancement indépendant
• un VCPU privé

TCB = Thread Control Block
• une pile d’exécution privée
• variables locales privées

0

1

2

VPN

Virtual Address Space

4/45

Notion de thread : remarques

• parfois appelé «processus léger» mais vision archaïque
• en vrai : un PCB = une PT et un/plusieurs TCB
• par ex : task_struct et mm_struct dans Linux

• un thread ne peut pas vivre en dehors d’un processus
• besoin d’une vue mémoire

• un processus vivant a toujours au moins un thread
• «main thread» = thread qui exécute main()
• lorsque zéro thread ▶ processus terminé

5/45

Rappel : changement de contexte

charger les
registres CPU
depuis TCB2

Thread 1 Noyau Thread 2

interruption
ou syscall

T1 est actif

T1 est inactif

copier les
registres CPU
vers TCB1

choisir T2

RETI

T2 est inactif

T2 est actif

ssi P1 6= P2:
vidanger cache
et adopter PT
de P2

6/45

API POSIX : Threads
#include <pthread.h>

/* opaque typedefs */ pthread_t, pthread_attr_t;

// create and start a new thread
int pthread_create(pthread_t *thread,

pthread_attr_t *attr,
void * (*function) (void *),
void *arg);

// terminate the current thread
void pthread_exit(void *retval);
// terminate another thread
int pthread_cancel(pthread_t thread);

// wait for another thread to terminate
int pthread_join(pthread_t thread, void **retvalp);

7/45

Plan

1. Introduction : la notion de thread

2. Problème de l’exclusion mutuelle

3. Interblocages

4. Moniteurs et variables de condition

8/45

Accès concurrents à une variable partagée

Thread A

{
...
...
var = var+1;
...
...

}

Variable partagée

int var = 5;
Thread B

{
...
...
var = var-1;
...
...

}

Question : que vaut var à la fin de l’exécution?
• intuition : var==5
• réalité : var==5 ou var==4 ou var==6

9/45

Explication : code source ̸= instructions du processeur

Thread A

...

...
LOAD REGa←[var]
INCR REGa
STORE REGa→[var]
...
...

Variable partagée

var: 00000005
Thread B

...

...
LOAD REGb←[var]
DECR REGb
STORE REGb→[var]
...
...

Remarque : A et B exécutés sur des (V)CPU distincts
▶ REGa et REGb (physiquement ou logiquement) distincts

10/45

Quelques exécutions possibles

TA TB

LOAD REGa←[var]

INCR REGa

STORE REGa→[var]

context switch

LOAD REGb←[var]

DECR REGb

STORE REGb→[var]

var = 5

var = 5

TA TB

LOAD REGa←[var]

INCR REGa

STORE REGa→[var]

context switch
LOAD REGb←[var]

DECR REGb

STORE REGb→[var]

var = 5

var = 6

context switch

TA TB

LOAD REGb←[var]

INCR REGa

STORE REGa→[var]

context switch

LOAD REGa←[var]

DECR REGb

STORE REGb→[var]

var = 5

var = 4

context switch

Remarque : 1 CPU ou 2 CPU ▶ problème semblable

11/45

Notion de «data race»
VF «situation de concurrence», course critique, accès concurrents

Définition : data race
Situation où le résultat du programme dépend de l’ordre dans
lequel sont exécutées les instructions des threads

Remarques
• plusieurs accès concurrents à une ressource partagée

• variable globale, fichier, réseau, base de données...
• écriture+écriture = problème
• écriture+lecture = problème

• concurrence : parallélisme et/ou entrelacement
• i.e. quand on ne maîtrise pas l’ordre temporel des actions

• risques : corruption de données et/ou crash

• mauvaise nouvelle : très difficile à débugger en pratique
• bonne nouvelle : des protections efficaces existent

12/45

Situation de concurrence : exemples

• deux écritures concurrentes = conflit

Thread A: x=10
Thread B: x=20 Question : valeur finale de x?

• une lecture et une écriture concurrentes = conflit

Init: x=5
Thread A: x=10
Thread B: print(x)

Question : valeur affichée?

Précepte : data race = bug

Un programme dans lequel plusieurs tâches peuvent se retrouver
en situation de concurrence est un programme incorrect.

13/45

Objectif : garantir l’exclusion mutuelle
Définitions
• Action atomique : action au cours de laquelle aucun état

intermédiaire n’est visible depuis l’extérieur
• Ressource critique : objet partagé par plusieurs threads et

susceptible de subir une data race
• Section critique : morceau de programme qui accède a

une ressource critique

Idée : on veut que chaque section critique s’exécute de façon
atomique

Définition : exclusion mutuelle
Interdiction pour plusieurs threads de se trouver simultanément
à l’intérieur d’une section critique

Idée : «verrouiller» l’accès à une section critique déjà occupée
14/45

Exclusion mutuelle par verrouillage

Thread A

{
...
lock(L);
var = var+1;
unlock(L);
...

}

Variables partagées

int var = 5;
lock_t L;

Thread B

{
...
lock(L);
var = var-1;
unlock(L);
...

}

On voudrait ces deux méthodes atomiques :
• lock(L) pour prendre le verrou L en exclusivité

▶ un seul thread peut entrer en section critique
• unlock(L) pour relâcher le verrou L

▶ permet aux autres threads de le prendre à leur tour

15/45

Exclusion mutuelle : illustration

TA

TB

lock()

lock()

unlock()

unlock()

A entre en section critique A sort de la section critique

B veut entrer en
section critique

        

B attend

B entre en
section critique

temps

B sort de la
section critique

16/45

Solution naïve (et incorrecte)

Thread A

while(1)
{ ...

while(turn==2)
{/* attendre */ }

// section critique
turn = 2;
...

}

partagé
int turn = 1; Thread B

while(1)
{ ...

while(turn==1)
{/* attendre */ }

// section critique
turn = 1;
...

}

• Exclusion mutuelle : OK
• Attente active : exécution pas très efficace
• Problème : alternance stricte ▶ progression non garantie

17/45

Problème : comment garantir l’exclusion mutuelle?

Autrement dit : comment implémenter lock() et unlock()?

Propriétés souhaitables
• Exclusion mutuelle : à chaque instant, au maximum une seule

tâche est en section critique
• sinon risque de data race

• Progression : si aucune tâche n’est en section critique, alors une
tâche exécutant lock() ne doit pas se faire bloquer
• sinon risque de deadlock, en VF interblocage

• Équité : aucune tâche ne doit être obligée d’attendre indéfiniment
avant de pouvoir entrer en section critique
• sinon risque de starvation, en VF famine, privation

• Généralité : pas d’hypothèses sur le nombre de tâches ou sur
leurs vitesses relatives
• on veut une solution universelle

• Bonus : implem simple, algo prouvable, exécution efficace...

18/45

Solution naïve no 2 (incorrecte aussi)

Thread A

while(1)
{ ...

while(occup != 0)
{/* rien */ }
occup = 1;

// section critique
occup = 0;
...

}

partagé
bool occup = 0; Thread B

while(1)
{ ...

while(occup != 0)
{/* rien */ }
occup = 1;

// section critique
occup = 0;
...

}

• Progression : OK
• Exclusion mutuelle : non garantie
• Problème : consultation-modification non atomique

19/45

Solutions correctes

Masquer les interruptions
• idée : empêcher tout changement de contexte
▶ dangereux, et inapplicable sur machine multiprocesseur

Approche purement logicielle
• idée : programmer avec des instructions atomiques
• autrefois seulement LOAD et STORE ▶ par ex. algo de Peterson
• de nos jours : TEST-AND-SET, COMPARE-AND-SWAP ▶ spin-lock
▶ attente active = souvent inefficace à l’exécution

Approche noyau : intégrer synchronisation et ordonnancement
• idée : programmer avec des instructions atomiques
• mais les cacher dans le noyau (derrière des appels système)

▶ permet de bloquer / réveiller les threads au bon moment

20/45

Mutex : définition
Verrou exclusif, ou en VO mutex lock
• objet abstrait = opaque au programmeur
• deux états possibles : libre=unlocked ou pris=locked
• offre deux méthodes atomiques lock() et unlock()

lock(L)
si le verrou L est libre, le prendre
sinon, attendre qu’il se libère

unlock(L)
libérer le verrou L

Remarques
• lock() et unlock() implémentés comme appels système
• threads en attente = état BLOCKED dans l’ordonnanceur
• une file de threads suspendus pour chaque mutex

• invoquer unlock() réveille un thread suspendu (s’il y en a)
• attention : ordre de réveil non spécifié

21/45

API POSIX : Mutex locks

#include <pthread.h>

/* opaque typedefs */ pthread_mutex_t, pthread_mutexattr_t;

// create a new mutex lock
int pthread_mutex_init(pthread_mutex_t *mutex,

pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

// attempt to lock a mutex without blocking
int pthread_mutex_trylock(pthread_mutex_t *mutex);

22/45

Exclusion mutuelle : en résumé
Notion de «data race»
• plusieurs accès concurrents à une même variable
• accès non atomique ▶ données incohérentes

Section critique
• morceau de code qu’on veut rendre atomique
▶ exécution nécessairement en exclusion mutuelle

Solution : utiliser un mutex lock

lock(L);
/* section critique */
unlock(L);

▶ nécessite que tous nos threads jouent le jeu

23/45

Plan

1. Introduction : la notion de thread

2. Problème de l’exclusion mutuelle

3. Interblocages

4. Moniteurs et variables de condition

24/45

Notion de «deadlock», en VF interblocage

Définition : interblocage, en VO deadlock

Situation dans laquelle deux (ou plusieurs) tâches concurrentes
se retrouvent suspendues car elles s’attendent mutuellement

▶...pour toujours
Exemple :
Init: Mutex X, Y
Thread A: lock(X); lock(Y); print("A"); ...
Thread B: lock(Y); lock(X); print("B"); ...

Exemple de trace d’exécution menant à un interblocage
1 Thread A : lock(X)
2 Thread B : lock(Y)
3 Thread A : lock(Y) ▶ suspend A
4 Thread B : lock(X) ▶ suspend B

25/45

Interblocage : conditions de Coffman

Quatre conditions nécessaires :

• exclusion mutuelle : chaque ressource critique est non
partageable entre plusieurs threads
• hold and wait : un thread possède déjà une ressource et attend

pour en avoir une autre
• non-préemption : une ressource verrouillée ne peut pas être

réquisitionnée, seulement libérée volontairement
• attente circulaire : A attend que B libère une ressource, mais B

attend que C libère une autre ressource, etc.

Solutions aux problèmes d’interblocages :
• Prévention : garantir leur absence, par conception
• Détection : reconnaître le problème quand il arrive
• Résolution : régler le blocage une fois qu’il est là

26/45

Plan

1. Introduction : la notion de thread

2. Problème de l’exclusion mutuelle

3. Interblocages

4. Moniteurs et variables de condition

27/45

Scénario producteur-consommateur : introduction
Deux threads communiquent via une file FIFO partagée

P C

Producteur

while(1)
{

item=produce();
fifo_put(item);

}

Consommateur

while(1)
{

item = fifo_get();
consume(item);

}

Remarques :
• file = tampon circulaire de taille constante
• producteur doit attendre tant que la file est pleine
• consommateur doit attendre tant que la file est vide

28/45

Prod.-consomm. : solution naïve (et incorrecte)
partagé

item_t buffer[N];
int count=0;

Producteur

int in = 0;
while(1)
{

item=produce()
while(count == N) {}
buffer[in] = item;
in = (in+1) % N;
count = count + 1;

}

Consommateur

int out = 0;
while(1)
{

while(count == 0) {}
item = buffer[out];
out = (out+1) % N;
count = count - 1;
consume(item);

}

Observation : ce programme a des bugs de synchronisation
▶ Question : comment corriger le problème?

29/45

Producteur-consommateur : remarques

• buffer partagé de taille N (constante) initialement vide
• buffer circulaire : x%N se lit « x modulo N »

• fonctions produce() et consume() non pertinentes
• supposées «purement séquentielles» i.e. n’accédant à

aucune ressource partagée
• variable partagée count pour la synchronisation

• indique le nombre d’éléments actuellement dans le buffer
• variables in et out : non partagées
• exemple avec N=10 :

0 1 2 3 4 5 6 7 8 9

B ON J O U R

in = 5 out = 8
count = 7

30/45

Tentative avec mutex 1 : deadlock
partagé

item_t buffer[N];
int count=0;
mutex L;

Producteur

int in = 0;
while(1)
{

item=produce()
lock(L);
while(count == N) {}
buffer[in] = item;
in = (in+1) % N;
count = count + 1;
unlock(L);

}

Consommateur

int out = 0;
while(1)
{

lock(L);
while(count == 0) {}
item = buffer[out];
out = (out+1) % N;
count = count - 1;
unlock(L);
consume(item);

}

31/45

Tentative avec mutex 2 : encore un deadlock

item_t buffer[N];
int count=0;
mutex L;Producteur

int in = 0;
while(1)
{

item=produce()
lock(L);
while(count == N) {}
unlock(L);
buffer[in] = item;
in = (in+1) % N;
lock(L);
count = count + 1;
unlock(L);

}

Consommateur

int out = 0;
while(1)
{

lock(L);
while(count == 0) {}
unlock(L);
item = buffer[out];
out = (out+1) % N;
lock(L);
count = count - 1;
unlock(L);
consume(item);

}
32/45

Tentative avec mutex 3 : attente active
Producteur
int in = 0;
while(1)
{

item=produce()
lock(L);
while(count == N) {

unlock(L);
lock(L);

}
unlock(L);
buffer[in] = item;
in = (in+1) % N;
lock(L);
count = count + 1;
unlock(L);

}

Consommateur
int out = 0;
while(1)
{

lock(L);
while(count == 0) {

unlock(L);
lock(L);

}
unlock(L);
item = buffer[out];
out = (out+1) % N;
lock(L);
count = count - 1;
unlock(L);
consume(item);

}
33/45

Producteur-consommateur : à retenir
Hypothèses :
• file partagée de taille constante
• thread producteur doit attendre tant que la file est pleine
• thread consommateur doit attendre tant que la file est vide

Problèmes des solutions à base de mutex :
• mauvaise concurrence
• risques de deadlock
• attente active

Mauvaise nouvelle
Ce scénario est insoluble avec seulement lock()/unlock()

▶ besoin d’un mécanisme spécifique pour attendre et signaler
des évènements quelconques

34/45

Quelques scénarios classiques de synchronisation
Exclusion mutuelle

Producteur consommateur, en VO bounded buffer problem

P C

Boucle parallèle, en VO fork-join

Rendez-vous, en VO barrier

35/45

Notion de «variable de condition»
objet abstrait = opaque au programmeur
• contient une file d’attente de threads suspendus
• et une référence à un verrou mutex L
• offre trois méthodes atomiques : wait(), signal() et broadcast()

wait(cond_var C, mutex L)
1) atomiquement : déverrouiller L,

et suspendre le thread courant
2) au réveil : re-verrouiller L,

puis reprendre l’exécution

signal(cond_var C)

réveiller l’un des threads
suspendus sur C

broadcast(cond_var C)
réveiller tous les threads
suspendus sur C

36/45

Usage typique : la structure de «moniteur»

// section non critique
lock(L);
while(predicate == 0)

wait(C, L);

// section critique

signal(C);
unlock(L);
// section non critique

▶ on ne rentrera en section critique que si le prédicat est satisfait

37/45

Producteur-consommateur : solution avec CV
item_t buffer[N];
int count=0;
mutex L;
cond_var nonempty, nonfull;

Producteur
int in = 0;
while(1) {

item=produce()
lock(L);
while(count == N)

wait(nonfull, L);
buffer[in] = item;
in = (in+1) % N;
count = count + 1;
signal(nonempty);
unlock(L);

}

Consommateur
int out = 0;
while(1) {

lock(L);
while(count == 0)

wait(nonempty, L);
item = buffer[out];
out = (out+1) % N;
count = count - 1;
signal(nonfull);
unlock(L);
consume(item);

}
38/45

Variable de condition : remarques

• wait(C, L) relâche le verrou L
• au moment de l’appel, L doit être verrouillé par le thread courant

sinon c’est une erreur d’exécution

• signal() réveille un thread suspendu (s’il y en a)
• attention : ordre de réveil non spécifié

• signal() utile quand les threads ont tous le même prédicat
▶ pas la peine de réveiller tout le monde à chaque fois

• broadcast() utile quand les threads ont des prédicats distincts
▶ pour être sûr de réveiller aussi le bon thread

• bonne pratique : always hold the lock while signalling
• simplifie l’analyse des comportements possibles

39/45

Variables de condition : remarques, suite
• bonne pratique : always re-check predicate on wake-up

while(predicate==0)
wait(C, L);

vs if(predicate==0)
wait(C, L);

▶ protège contre les réveils intempestifs (spurious wake-up)

• Pourquoi la primitive wait() est-elle atomique? vs deux notions
distinctes de mutex et de CV, e.g.

lock(L);
while(predicate==0) {

unlock(L);
wait(C);
lock(L);

}

40/45

Réponse

Découpler mutex et CV causerait des risques à l’exécution :

Producteur Consommateur

while(count == N)

unlock(L)

lock(L)
...

count=count-1

signal(nonfull)

wait(nonfull)

context switch

context switch

41/45

API POSIX : variables de condition

#include <pthread.h>

/* opaque typedefs */ pthread_cond_t, pthread_condattr_t;

// create a new cond variable
int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr)

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

42/45

Implémenter des moniteurs dans d’autres langages

C++
• #include <mutex>

• classe std::mutex
• méthodes lock() et unlock()

• #include <condition_variable>
• classe std::condition_variable
• méthodes wait(), notify_one() et notify_all()

Java
• chaque java.lang.Object est un moniteur (mutex+CV)
• mot-clé synchronized pour délimiter les sections critiques
• méthodes wait(), notify(), notifyAll()

43/45

Plan

1. Introduction : la notion de thread

2. Problème de l’exclusion mutuelle

3. Interblocages

4. Moniteurs et variables de condition

44/45

Threads et synchronisation : en résumé

Processus VS thread VS mémoire virtuelle
• unité d’ordonnancement = thread
• unité d’isolation mémoire = espace d’adressage virtuel
• un processus = un espace d’adressage + un/plusieurs threads

Exclusion mutuelle AKA mutex
• stratégie permettant d’éviter les «data race conditions»
• mécanisme : méthodes atomiques lock() et unlock()

Structure de moniteur
• mutex + variable de condition (pour la signalisation d’évènements)
• wait(C,L) pour attendre
• signal(C)/broadcast(C) pour réveiller +

45/45

