Systémes d’exploitation
Introduction: shell, noyau, syscalls

Guillaume Salagnac

Insa de Lyon — Informatique

IFA-3-SYS : Systéemes d’Exploitation
Guillaume Salagnac <guillaume.salagnac@insa-lyon.fr>
e enseignement : architecture, compilation, systéme, algo
¢ recherche : numérique pour I'anthropocene, logiciel soutenable

Objectifs de ce cours

e Comprendre les «concepts clés» des systemes d’exploitation
® quel est le probleme ? pourquoi se pose-t-il ? toujours ?
® quelle sont la/les solutions ? pourquoi ga marche ?
» prenez des notes en cours !
e Pratiquer leur usage
® TP de programmation en C sous Linux (4 x2h)
® TD sur papier (3x2h, dont 1 contréle continu)
» pas de CR; prenez des notes aussi!

Ressources
® http://moodle.insa-lyon.fr > Informatique > IFA-3
» vidéos et diapos; sujets de TD et de TP ; annales d’examen

* Permanence en salle 208 tous les jeudi de 13h a 14h ous

Plan du cours

e Chap 1 Noyau, processus, appels systéme 28/01 |
TP manipulation de processus : fork(), exec(), waitpid()

e Chap 2 Multitache, temps partagé, ordonnancement
TD ordonnancement de processus

e Chap 3 Mémoire virtuelle, isolation, pagination a la demande
TP allocation et entrées-sorties fichier avec mmap ()

Contréle continu (30 min, coeff 1) 24/02 a 8hJ

e Chap 4 Allocation dynamique
TP implémentation de malloc() et free()
e Chap 5 Concurrence et synchronisation

TD algorithmes concurrents avec mutex et moniteurs
TP programmation avec pthreads

Examen final (1h30, coeff 2) 18/03)

3/48

Evaluation

Contréle «continu»
¢ sous forme de QCM papier (30 min, le 24/02)

e questions de compréhension et petits exercices
® dont des questions sur les TD/TP

¢ sans documents sauf une feuille A4 recto-verso manuscrite
¢ plusieurs contréles au fil de 'eau pendant le semestre
e anciens sujets sur Moodle

Examen final
e épreuve écrite de 1h30 le 18/03
¢ sans documents sauf une feuille A4 recto-verso manuscrite
® anciens sujets sur Moodle

4/48

Plan

1. Introduction : définition du terme «Systeme d’exploitation»
2. Interface entre OS et utilisateur : le shell

3. Interface entre logiciel et matériel : I'architecture

4. |solation entre noyau et applications : les syscalls

5. Quelques syscalls UNIX incontournables

5/48

Vous avez dit «Systéme d’exploitation» ?

Hardware

6/48

Quelques définitions

Utilisateur = 'humain devant la machine

e suivant le contexte : utilisateur final, ou
développeur
® interagit directement... avec le matériel |

Applications = les logiciels avec lesquels
veut interagir I'utilisateur final

®* messagerie, traitement de texte, lecteur de
musique, etc

Matériel = la machine physique

Et donc : Operating System = tout le reste

* |ogiciel d’'infrastructure : «noyau», «pilotes»,

«services», etc
* «entre le matériel et les applications»

Applications

Operating System

| [3

Hardware

7/48

Role de I'OS : les deux fonctions essentielles

et largement interdépendantes !

Machine virtuelle
e cacher la complexité sous une interface «plus jolie»
e fournir certains services de base aux applications
* |HM, stockage persistant, accés internet, gestion du temps
¢ permettre la portabilité des programmes
® pouvoir lancer un méme exécutable sur différents matériels |

Gestionnaire de ressources

e partager chaque ressource entre les applications
* exploiter «au mieux» les ressources disponibles
e assurer la protection des applications (et du systeme)

8/48

Plan

1. Introduction : définition du terme «Systeme d’exploitation»
2. Interface entre OS et utilisateur : le shell

3. Interface entre logiciel et matériel : I'architecture

4. |solation entre noyau et applications : les syscalls

5. Quelques syscalls UNIX incontournables

9/48

Interface entre OS et utilisateur : le shell

Les services offerts par un shell :
e exécution de programmes

¢ charger un programme en mémoire, le lancer, I'arréter
e choisir quel programme est au premier-plan

e exploration et administration des espaces de stockage
® naviguer dans les fichiers, copier, supprimer

e confort et ergonomie
® presse-papiers, drag-and-drop, corbeille

10/48

Différents types de shell : I'interpréteur de commandes

Attention : terminal (ou émulateur de terminal) # shell !

Interface textuelle = Command-Line Interface = CLI

exemples : Bourne shell (1977), bash, zsh...

11/48

Différents types de shell : le bureau graphique

Interface graphique = Graphical User Interface = GUI

exemples : Gnome, bureau de Windows, Aqua (Mac OSX)...

12/48

et encore : I'écran d’accueil du smartphone

Play Play Store

S0 9B

exemples : Android Launcher, Nova Launcher, Square Home...

13/48

Conclusion : le shell

différents types de shell : CLI vs GUI a souris vs GUI tactile
» fonctionnalités similaires
» pour I'OS : une «application» comme les autres !

votre OS contient volontiers des applications pré-installées...

e shell, navigateur web, explorateur de fichiers, messagerie,
lecteur multimedia, app store, etc

... et aussi plein de «programmes systéme» :
e développement : compilateur, assembleur, linker, etc
e sécurité : antivirus, pare-feu, sauvegarde
® maintenance : mise a jour, panneau de configuration
e services réseau : web, base de données, acces distant

Remarque :
dorénavant je vais appeler tous ces programmes des applications

14/48

Positionnement de 'OS

Application 1 Application 2

Hardware

Définition : Noyau, ou en VO kernel
Le noyau c’est la partie de 'OS qui n’est pas une application

15/48

Plan

1. Introduction : définition du terme «Systeme d’exploitation»
2. Interface entre OS et utilisateur : le shell

3. Interface entre logiciel et matériel : I'architecture

4. |solation entre noyau et applications : les syscalls

5. Quelques syscalls UNIX incontournables

16/48

Vous avez dit «une interface plus jolie» ?

et c’est vraiment cette formule qui est donnée dans les livres :

SEC. 1.1

WHAT IS AN OPERATING SYSTEM?

Application programs

e

Operating system

Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful abstractions.

~— Beautiful interface

-25,1| = Ugly interface

5

source : Tanenbaum. Modern Operating Systems (4th ed, 2014). page 5

17/48

Un exemple de programme : la commande cat

int main() {
char buffer[100];
int n;

int fd=open("filename.txt", O_RDONLY);
if (fd == -1)
exit(1);

n=read (fd, buffer, 100);
while(n > 0) {
write (STDOUT, buffer, n);
n=read(fd, buffer, 100);
}
exit (0);

18/48

Architecture d’'une machine typique

CPU1 |

[cpuz |

[cPuz | -

<: L JL - 10 L > System bus

main

memory 1/O bridge
JT
i) /0 bus
1L -1 1 I
usB disk network
USB bus controller controller adapter oo

mouse keyboard

i

network

19/48

Langage de programmation vs langage machine

00401beb5 <main>:
401beb:
401beb:
401be9:
401bed:
401bf2:
401bf7:
401bfc:
401c01:
401c04:
401c08:
401cOa:
401c0f:
401c14:
401c18:
401cib:
401c20:
401c23:
401c25:
401c2a:
401c2d:
401c2f:

55
48
48
be
bf
b8
e8
89
83
75
bf
e8
48
8b
ba
48
89
e8
89
eb
8b

89
83
00
10
00
7f
45
7d
Oa
01
Tc
8d
45
64
89
c7
86
45
30
45

eb
ec
00
20
00
cb
£8
£8

00
6a
44
£8
00
ce

c6
fc

fc

70
00
48
00
03

ff
00
00
90

00

03

00
00
00
00

00
00

00

00

push
mov
sub
mov
mov
mov
callq
mov
cmpl
jne
mov
callq
lea
mov
mov
mov
mov
callq
mov
jmp
mov

%rbp

%rsp,hrbp

$0x70,%rsp

$0x0, %esi

$0x482010, %edi

$0x0, %eax

43e180 <__libc_open>
%eax,-0x8 (%rbp)
$0xfffff££f,-0x8(Yrbp)
401c14 <main+0x2f>
$0x1,%edi

408690 <exit>
-0x70(%rbp) ,%hrcx
-0x8 (%rbp) , heax
$0x64, fhedx

Yrex,hrsi

%eax,%edi

43e2b0 <__libc_read>
fheax,-0x4 (%rbp)
401cb5f <main+0x7a>
:Ox4(%rbp),%eax 20/48

Applications = CPU en «mode restreint»

CPU Rappel : le cycle de Von Neumann

while True do :
charger une instruction depuis la «mémoire»

décoder ses bits : quelle opération, quelles
opérandes, etc

exécuter I'opération et enregistrer le résultat
repeat

memory

Définition : restricted mode = slave mode = ring 3 = user mode

vue partielle de la machine : 1 CPU + 1 mémoire
certaines instructions interdites, certaines adresses interdites
utile pour exécuter sereinement du code applicatif

¢ instructions disponibles : opérations ALU, accés mémoire, sauts

[ADD R1 <- R3, R4| |WRITE [R8] <- R5|

21/48

Noyau = CPU en «mode superviseur»

cPUl | | cPu2 | | cPus | e
<: i il i > System bus
10 10
mrg;'gry 1/O bridge
1T
-) 110 bus
B . B iF 15
usB disk network
USB bus controller controller adapter

(b B network
mouse keyboard

Définition : supervisor mode = ring 0 = kernel mode = privileged mode

e acces direct au matériel : nécessaire pour le noyau et les drivers
¢ SW—HW = Memory-mapped 1/O

HW—SW = Interruptions
* mode par défaut au démarrage de la machine (boot)

22/48

Acces au matériel = Memory-mapped Input/Output

Gerrre_rTn

oxrroo_ooon

170 Space

CPU

Extemal Memory Space

Gerre0_o001

MOUSE
u2
0srr40_0000
Gerro_oao
5Pl
uz
oxrrso_san
TeTTan_ 5007
12
i1}
Gerran_oo11
EMAC
u2
osrra0_ooon
vBA T
u2
oerrzo_oogg
Gerrio_0007
WVIDED
u2
oxrr0_0000
Gerran_sa0T
o
uz
GeoaLn_pimn
NANDBOARD_RAM [Volatiis RAM)
ry

oz0s00_0000

EMAC_RAM Volatic RAM)
us

VIDED_RAM (Valule Rtbl)
it

os0300_0000

Tevore_FrFT

Oxb000_p000

Intomal Memory

G30000_5000

U3 (ROM)

Geo00_aTFT

0x0000_0000

Gx3000_5600

23/48

Exemple : lecture sur le disque 1/3

MMIO
| cput | | cpu2 | | cpus | .-
<: il i > System bus

10 I

mrggg‘ry /0 Hridge

(~ AET) /0 bus

! B iF 15

usB dibk network
USB bus controller controller adapter

network

Pour initier 'opération, le CPU écrit une requéte a 'addresse
mémoire du contrbleur de disque.

requéte = commande + n°de bloc + addr. mem destination

mouse keyboard

24/48

Exemple : lecture sur le disque 2/3

DMA
cPUi | | cPu2 | | cPus | e
<: i il i > System bus
| L
mg“n;‘gry /O Hridge
T
- —) 110 bus
. B 32 @
usB disk network
USB bus controller conﬁ oller adEEter
Saseee] . network
mouse keyboard disk

Le contréleur de disque lit le secteur demandé et transfere les

données directement en mémoire vive a I'adresse voulue : c’est
un transfert DMA (Direct Memory Access)

25/48

Exemple : lecture sur le disque 3/3

IRQ
cPui | | cPu2 | | cpu3 | e
i T JC
<; > System bus
17 il
Addnndds /O ridge
(o i) 10 bus
2 S| [s
usB disk network
USB bus controller controller adapter oo
o, 2823222 0 — network
e
A la fin du transfert DMA, le contréleur du périphérique notifie
le CPU en lui envoyant une Requéte d’Interruption (IRQ)

26/48

Un processeur avec support des interruptions

Le cycle de Von Neumann avec interruptions

while True do :
charger une instruction depuis la mémoire
décoder ses bits : quelle opération, quelles opérandes, etc
exécuter 'opération et enregistrer le résultat

if interruption demandée then :

sauvegarder le contenu des registres

déterminer I'adresse de la routine de traitement

passer en mode superviseur

sauter a la routine = écrire son adresse dans le compteur ordinal

endif
repeat

Note : a la fin de la routine de traitement, une instruction RETI
repassera le CPU en mode restreint.

27/48

Mécanisme d’interruptions : déroulement

Routine de
Pro'gra.mme traitement
principal d’interruption
1
1
1
requéte :
d’interruption !
1
; ! TSR: ...
RETI

:
1
1
1 1
1 1
v v

28/48

Mécanisme d’interruptions : vocabulaire

¢ |IRQ = Interrupt Request
® un «message» envoyé par un périphérique vers le processeur
® de facon asynchrone (vs polling, inefficace)
® chaque IRQ porte un numéro identifiant le périphérique d’origine
¢ |SR = Interrupt Service Routine
® un fragment de programme (= séquence d’instructions) exécuté a
chaqgue occurence de I'événement matériel associé
® termine toujours par une instruction RETI «retour d’interruption»
® pendant une ISR : nouvelles IRQ temporairement mises en
attente (permet au programmeur d’étre «seul au monde»)
¢ Table des Vecteurs d’Interruptions
® tableau de pointeurs indiquant I'adresse de chaque ISR
® |e CPU utilise le numéro d’IRQ pour savoir ou sauter

Définition : Noyau, ou en VO kernel

Le noyau c’est (exactement) 'ensemble des ISR de la machine
® et de toutes les fonctions que celles-ci appellent

29/48

Différentes sources d’interruptions
e Périphériques d’entrées-sorties
e clavier, souris, disque, GPU, réseau, etc

e Pannes matérielles
* température excessive, coupure de courant, etc

e Minuteur systeme, ou en VO System Timer
® aka Programmable interval timer
® interruptions périodiques, typiquement 100Hz ou 1000Hz
® permet a I'OS de percevoir le passage du temps
® bonus : permet au noyau de reprendre la main sur les
applications (cf chap. 2)

e Evénements logiciels exceptionnels
® erreurs fatales : division par zéro, instruction invalide, etc
® trappes volontaires : appels systéme (cf diapos suivantes)
¢ fautes de pages : constatées par la MMU (cf chap 3)

30/48

Plan

1. Introduction : définition du terme «Systeme d’exploitation»
2. Interface entre OS et utilisateur : le shell

3. Interface entre logiciel et matériel : I'architecture

4. |solation entre noyau et applications : les syscalls

5. Quelques syscalls UNIX incontournables

31/48

Changement de mode d’exécution : trappes

Probleme : comment une application peut-elle invoquer une
méthode du noyau ?

Mauvaise solution : autoriser les applications a sauter vers les
fonctions situées dans le noyau

e destination arbitraire » failles de sécurité
® passage en mode superviseur » quand ? comment ?

Solution : se donner une instruction spécialisée pour cet usage
e exemples : TRAP (68k), INT (x86), SWI (ARM), SYSCALL (x64)
e interruption logicielle = trappe = exception
¢ fonctionnement : similaire aux autres types d’interruption

® sauvegarde en mémoire I'état du CPU
® bascule vers mode superviseur
® branche dans le noyau vers une adresse bien connue

32/48

Appel systeme : principe

Appel systéme, ou en VO system call = syscall

Fonction située dans le noyau, invoquée par un processus
utilisateur via une interruption logicielle

Cété application :

* I'appel est invoqué avec une instruction TRAP

¢ indifférent au langage de programmation utilisé

e encapsulation dans des fonctions de bibliotheque (ex : libc)
Cété noyau :

® on passe a chaque fois par I'lSR de TRAP

e qui appelle la bonne fonction dans le noyau,

¢ puis qui rend la main a I'application avec RETI

Exemples :
® read(), write(), fork(), gettimeofday()...
e plusieurs centaines en tout sous Linux

33/48

Appel systeme : déroulement
Application Noyau

printf("hello world")

write(1,"hello world",11)

34/48

Appel systeme : langage machine

00410700 <__libc_read>:

410700:
410704:
41070b:
41070d:
41070f:
410711:
410717
410719:
41071a:
410720:

004107a0

4107a0:
4107a4:
4107ab:
4107ad:
4107b2:
4107b4:
4107ba:
4107bc:

£3
80
T4
31
of
48
77
c3
66
55

0f 1le
3d 6d
13
c0
05
3d 00
af

0f 1f

<__libc_write>:

£3
80
74
b8
of
48
7

c3

0f 1e
3d cd
13
01 00
05
3d 00
54

fa
£3

f0

44

fa
f2

00

f0

08 00 00

ff ff

00 00

08 00 00

00

ff ff

endbr64

cmpb $0x0,0x8£36d (%rip)

je 410720 <__libc_read+0x20>
xor %eax, heax

syscall

cmp SOxEffFEfFFEFFFF000, frax
ja 410768 <__libc_read+0x68>
ret

nopw 0x0(%rax,%rax,1)

push Yrbp

endbr64

cmpb $0x0,0x8f2cd (Yrip)

je 4107c0 <__libc_write+0x20>
mov $0x1, %eax

syscall

cmp SOxffFFEEEEFFFFFO00, %rax
ja 410810 <__libc_write+0x70>

ret 35/48

- P <

Notion de processus

Applications exécutées sur la «machine virtuelle userland» :
¢ jeu d’instructions restreint (CPU en mode utilisateur)
® pas accés au mécanisme d’interruptions
e acces interdit a certaines adresses mémoire
® ex : code et données du noyau, périphériques matériels

Protection par «sandboxing» : une nouvelle instance de cette
machine virtuelle pour chaque application en cours d’exécution

e CPU virtuel (cf chap 2), mémoire virtuelle (cf chap 3)
e périphériques : accessibles seulement au travers du noyau

Notion de processus (ou en VO process)
« Un programme en cours d’exécution »

Systeme d’exploitation = illusionniste (VM) + sous-traitant (HW)
36/48

Notion de processus : remarques

Intuitions :

® un processus = un programme + son état d’exécution

e état d’exécution = valeurs des registres + contenu mémoire
+ «contexte d’exécution»

Le noyau :

e partage les ressources matérielles entre les processus
e crée/recycle les processus lorsqu’on lui demande

¢ dans le noyau : un Process Control Block par processus vivant
® PCB = carte d'identité du processus » stocke le contexte :
numéro (PID), répertoire courant, liste des fichiers ouverts...

A faire chez vous :
® essayer les commandes ’ ps aux ‘ et ’ top‘

° puiS’man ps‘et’man top‘

® et aussi ’ strace ./monprogramme‘

37/48

La VM userland : en résumé

Application

Kernel

—_—

CPU en CPU en
mode utilisateur mode superviseur

e code applicatif exécuté par CPU en mode utilisateur
e pour faire appel au noyau : interface des appels systeme

38/48

Positionnement de 'OS

Processus 1 Processus 2

Kernel

Hardware

e chaque application qui s’exécute est un processus userland
¢ |le noyau virtualise et arbitre les accés au matériel

39/48

Plan

1. Introduction : définition du terme «Systeme d’exploitation»
2. Interface entre OS et utilisateur : le shell

3. Interface entre logiciel et matériel : I'architecture

4. |solation entre noyau et applications : les syscalls

5. Quelques syscalls UNIX incontournables

40/48

Appels systéme : exemples

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

Windows Unix
Process CreateProcess () fork()
Control ExitProcess() exit ()
WaitForSingleObject() wait ()
File CreateFile() open ()
Manipulation ReadFile() read ()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode () ioctl()
Manipulation ReadConsole() read ()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarn()
Sleep() sleep()
Communication CreatePipe() pipe()
CreateFileMapping() shmget ()
MapViewOfFile () mmap ()
Protection SetFileSecurity() chmod()
InitializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup () chown()

source : Silberschatz. Operating Systems Concepts Essentials (2011). p 59
41/48

Une fonction qui cache un syscall : getpid()

Pour connaitre notre numéro de processus

#include <unistd.h>

int getpid(void);

Remarques :

¢ le noyau donne un numeéro unique a chaque processus

e attribué a la création du processus. ne change jamais ensuite.
e stocké dans le PCB du processus

42/48

Une fonction qui cache un syscall : exit()

Pour cesser définitivement I'exécution du programme

#include <stdlib.h>

void exit(int status);

Remarques :
e I'exécution ne «revient jamais» d’un appel a exit ()
® exit(n) équivalent a un return n depuis le main()

* le «exit status» n est transmis au processus parent

® convention : 0=0K, 1-255=erreur
¢ stocké dans le PCB en attendant un syscall wait () du parent

43/48

Une fonction qui cache un appel systéme : fork()
Pour dupliquer le processus en cours

#include <unistd.h>

int fork(void);

Remarques :

® SQUS Uunix : créer un processus # changer de programme
e fork() duplique le processus qui a invoqué le syscall
® processus d’origine = «parent», nouveau = «enfant»
e duplication intégrale de la machine virtuelle userland
e CPU virtuel : les deux processus s’exécutent en concurrence
°* mémoire virtuelle : chacun s’exécute dans un espace privé
® contexte : méme répertoire courant, mémes fichiers ouverts...

Paradigme «Call once, return twice»
e dans le nouveau processus fork() renvoie 0
e dans le parent, fork () renvoie le PID de I'enfant

44/48

Appel systeme fork : illustration

© 00 N O O A O N =

—_
- O

// only one process
int y = 5 ;
int x = fork();
if (x1=0) A
// parent only
y=y+t1
} else {
// child only
y=y -1
}
// both processes

parent [1]

y==5 x# 0
[2]—]3] 4]

enfant

[] [o]

-
x==0 4

Mon premier interpréteur de commandes

char command[...];
char params[...];
main() {
while(true) {
print_prompt () ;
read_command (&command, ¶ms) ;
x = fork();

if (x == 0) { // we are the child process
exec (command, params);

} else { // we are the parent process
wait (&status);

}

46/48

Encore des appels systéme

D’autres exemples, qu'on reverraen TP :

exec(filename) charger un autre programme (exécutable)
dans mon processus

sleep(int num) suspendre I'exécution de mon processus
pendant num secondes

wait(...) «attendre» qu’un de mes processus enfants ait
terminé son exécution

getppid() connaitre le PID de son processus parent

open(), read(), write() accéder aux fichiers

47/48

A retenir
Architecture
e cycle de Von Neumann, MMIO, DMA, interruptions
e CPU avec dual-mode operation : mode restreint vs privilégié
e instruction TRAP pour lever une interruption

Noyau
* 'ensemble des routines de traitement d’interruption (ISR)
® en particulier le syscall dispatcher
¢ et des fonctions appelées par les ISR
® en particuliers les drivers et les implems des syscalls

Processus
® une «machine virtuelle» offerte aux applications
¢ vue simplifiée et restreinte de I'architecture

Appels systéme
e interface entre les processus et le noyau
e accessibles via des fonctions de bibliothéque

OS = noyau + bibliothéques + programmes utilitaires
48/48

	Meta
	Introduction: définition du terme <<Système d'exploitation>>
	Interface entre OS et utilisateur: le shell
	Interface entre logiciel et matériel: l'architecture
	Isolation entre noyau et applications: les syscalls
	Quelques syscalls UNIX incontournables

