Systémes d’exploitation
Introduction: shell, noyau, syscalls

Guillaume Salagnac

Insa de Lyon — Informatique

IFA-3-SYS : Systemes d’Exploitation
Guillaume Salagnac <guillaume.salagnac@insa-lyon.fr>
e enseignement : architecture, compilation, systéme, algo
e recherche : numérique pour I'anthropocéne, logiciel soutenable

Obijectifs de ce cours

e Comprendre les «concepts clés» des systemes d’exploitation
® quel est le probleme ? pourquoi se pose-t-il ? toujours ?
® quelle sont la/les solutions ? pourquoi ¢ga marche ?
» prenez des notes en cours !
e Pratiquer leur usage
® TP de programmation en C sous Linux (4 x2h)
® TD sur papier (3x2h, dont 1 contréle continu)
» pas de CR; prenez des notes aussi !

Ressources
® http://moodle.insa-lyon.fr > Informatique > IFA-3
» vidéos et diapos; sujets de TD et de TP ; annales d’examen
e Permanence en salle 208 tous les jeudi de 13h a 14h

2/48
Plan du cours Evaluation
e Chap 1 Noyau, processus, appels systéme 28/01 | Contréle «continu»
TP manipulation de processus : fork(), exec(), waitpid() e sous forme de QCM papier (30 min, le 24/02)
e Chap 2 Multitache, temps partage, ordonnancement e questions de compréhension et petits exercices
TD ordonnancement de processus e dont des questions sur les TD/TP
* Chap 3 Mémoire virtuelle, isolation, pagination a la demande * sans documents sauf une feuille A4 recto-verso manuscrite
TP allocation et entrées-sorties fichier avec mmap () . A) ,
e plusieurs controles au fil de 'eau pendant le semestre
Contréle continu (30 min, coeff 1) 24/02 a ShJ e anciens sujets sur Moodle
e Chap 4 i i .
Chap ' Allc?cat|on 'dynamlque Examen final
TP implémentation de malloc() et free() , scrite de 1h30 le 18/03
[]
e Chap 5 Concurrence et synchronisation epreuve ecrite de ©))
TD algorithmes concurrents avec mutex et moniteurs e sans documents sauf une feuille A4 recto-verso manuscrite
TP programmation avec pthreads e anciens sujets sur Moodle
Examen final (1h30, coeff 2) 18/03)
3/48 4/48

Plan

1. Introduction : définition du terme «Systéme d’exploitation»

2. Interface entre OS et utilisateur : le shell

3. Interface entre logiciel et matériel : 'architecture

4. Isolation entre noyau et applications : les syscalls

5. Quelques syscalls UNIX incontournables

5/48

Vous avez dit «Systeme d’exploitation» ?

o
oeo& o Hn

ndf
<

Hardware

nju
\\ \
o

6/48

Quelques définitions

Utilisateur = ’humain devant la machine
® suivant le contexte : utilisateur final, ou
développeur
® interagit directement... avec le matériel!

Applications

1'
Applications = les logiciels avec lesquels Operating System
veut interagir 'utilisateur final

® messagerie, traitement de texte, lecteur de
musique, etc

] [

Hardware
Matériel = la machine physique

Et donc : Operating System = tout le reste
¢ |ogiciel d'infrastructure : «noyau», «pilotes»,
«services», etc
® «entre le matériel et les applications»

Role de 'OS : les deux fonctions essentielles

et largement interdépendantes !

Machine virtuelle

e cacher la complexité sous une interface «plus jolie»
e fournir certains services de base aux applications

* |HM, stockage persistant, acces internet, gestion du temps
® permettre la portabilité des programmes

® pouvoir lancer un méme exécutable sur différents matériels

Gestionnaire de ressources

e partager chaque ressource entre les applications
e exploiter «au mieux» les ressources disponibles
e assurer la protection des applications (et du systeme)

7/48 8/48
Plan Interface entre OS et utilisateur : le shell
1. Introduction : définition du terme «Systéme d’exploitation» .
Les services offerts par un shell :
e exécution de programmes
2. Interface entre OS et utilisateur : le shell e charger un programme en mémoire, le lancer, l'arréter
 choisir quel programme est au premier-plan
3. Interface entre logiciel et matériel : 'architecture * exploration et administration des espaces de stockage
® naviguer dans les fichiers, copier, supprimer
) o e confort et ergonomie
4. Isolation entre noyau et applications : les syscalls ® presse-papiers, drag-and-drop, corbeille
[]
5. Quelques syscalls UNIX incontournables
9/48 10/48

Différents types de shell : I'interpréteur de commandes

1=

Attention : terminal (ou émulateur de terminal) # shell!
Interface textuelle = Command-Line Interface = CLI

exemples : Bourne shell (1977), bash, zsh...

11/48

Différents types de shell : le bureau graphique

Interface graphique = Graphical User Interface = GUI

exemples : Gnome, bureau de Windows, Aqua (Mac OSX)...

12/48

et encore : I'écran d’accueil du smartphone

exemples : Android Launcher, Nova Launcher, Square Home...

Conclusion : le shell

différents types de shell : CLI vs GUI a souris vs GUI tactile
» fonctionnalités similaires
» pour I'OS : une «application» comme les autres !

votre OS contient volontiers des applications pré-installées...

e shell, navigateur web, explorateur de fichiers, messagerie,
lecteur multimedia, app store, etc

.. et aussi plein de «programmes systeme» :
e développement : compilateur, assembleur, linker, etc
e sécurité : antivirus, pare-feu, sauvegarde
e maintenance : mise a jour, panneau de configuration
e services réseau : web, base de données, accés distant

Remarque :
dorénavant je vais appeler tous ces programmes des applications
13/48 14/48
Positionnement de 'OS Plan
Application 1 Application 2 1. Introduction : définition du terme «Systéme d’exploitation»
2. Interface entre OS et utilisateur : le shell
Kernel
_ 3. Interface entre logiciel et matériel : I'architecture
Hardware 4. Isolation entre noyau et applications : les syscalls
Définition : Noyau, ou en VO kernel 5. Quelques syscalls UNIX incontournables
Le noyau c’est la partie de I'OS qui n’est pas une application
15/48 16/48
Vous avez dit «une interface plus jolie» ? Un exemple de programme : la commande cat
et c’est vraiment cette formule qui est donnée dans les livres : int main() {
char buffer[100];
SEC. 1.1 WHAT IS AN OPERATING SYSTEM? 5 int n;
int fd=open("filename.txt", O_RDONLY);
Application programs if (fd - _1)
% ﬁ% %ﬁ @ ~<— Beautiful interface eXit(i) ;
Operating system n=read (fd, buffer, 100);
) while(n > 0) {
|~ Ugy interface write(STDOUT, buffer, n);
n=read(fd, buffer, 100);
}
Figure 1-2. Operating systems turn ugly hardware into beautiful abstractions. exit (0) H
}
source : Tanenbaum. Modern Operating Systems (4th ed, 2014). page 5
17/48 18/48

Architecture d’'une machine typique

[cput | [cpuz | [cPus | -
g i i i > System bus

10 18

| fadLndss ||/o bridge|
¢) 1/0 bus

i 8 i i i i

USB disk | network |
USB bus controller controller adzgter

— 3 network

mouse keyboard

19/48

Langage de programmation vs langage machine
00401beb5 <main>:

401be5: 55 push %rbp

401be6: 48 89 eb mov %rsp,hrbp

401be9: 48 83 ec 70 sub $0x70, %rsp

401bed: be 00 00 00 00 mov $0x0,%esi

401b£2: bf 10 20 48 00 mov $0x482010, %edi
401bf7: b8 00 00 00 00 mov $0x0, eax

401bfc: e8 7f ¢5 03 00 callg 43e180 <__libc_open>

401c01: 89 45 8 mov %heax,-0x8 (%rbp)
401c04: 83 7d f8 ff cmpl $OxfEEELEFF, -0x8 (%rbp)
401c08: 75 Oa jne 401c14 <main+0x2f>
401cOa: bf 01 00 00 00 mov $0x1,%edi

401c0f: e8 7c 6a 00 00 callg 408690 <exit>

401c14: 48 8d 4d 90 lea -0x70 (%rbp) , %rcx
401c18: 8b 45 £8 mov -0x8 (%rbp) ,%eax
401c1b: ba 64 00 00 00 mov $0x64, %edx

401c20: 48 89 ce mov Yrex, %hrsi

401c23: 89 c7 mov %eax, %hedi

401c25: e8 86 c6 03 00 callg 43e2b0 <__libc_read>

401c2a: 89 45 fc mov %heax ,-0x4 (%rbp)
401c2d: eb 30 jmp 401c5f <main+0x7a>
401c2f: 8b 45 fc mov -0x4 (%rbp) , %eax

20/48

Applications = CPU en «mode restreint»

CPU Rappel : le cycle de Von Neumann

I while True do :

charger une instruction depuis la «<mémaoire»
décoder ses bits : quelle opération, quelles
opérandes, etc

exécuter I'opération et enregistrer le résultat
repeat

Définition

: restricted mode = slave mode = ring 3 = user mode

e vue partielle de la machine : 1 CPU + 1 mémoire

e certaines instructions interdites, certaines adresses interdites
e utile pour exécuter sereinement du code applicatif

e instructions disponibles : opérations ALU, acces mémoire, sauts

Noyau = CPU en «mode superviseur»

| CPU1 | | CPU2 | | CPU3 |
< L i it > System bus
i aln
| Eaknds | ||/o bridge|
¢ I ﬁ VO bus
B 5 S —
usB disk’ network
USB bus |comroller |contro|ler | adEEter ees
— network

mouse k¢ yboa d

Définition : supervisor mode = ring 0 = kernel mode = privileged mode

e acces direct au matériel

: nécessaire pour le noyau et les drivers

e SW—HW = Memory-mapped I/O HW:—SW = Interruptions
\ADD R1 <- R3, R4\ \WRITE [R8] <- Rs\ CALL 123456
° mode par défaut au démarrage de la machine (boot)
21/48 22/48
Accés au matériel = Memory mapped Input/Output Exemple : lecture sur le disque 1/3 MMIO
== [cput | [cpuz | | cpus | -
= < ﬂ? il i > System bus
- 17 i
- | mglr?]lgry |I/Otridge|
VO bus
: = JI 1L 45‘9
usB i network
CPU _ by e USB bus controller controller adapter b
— 3 network
mouse key
mnmmw:: Pour initier 'opération, le CPU écrit une requéte a 'addresse
— mémoire du contrbleur de disque.
- requéte = commande + n°de bloc + addr. mem destination
23/48 24/48

Exemple : lecture sur le disque 2/3 DMA
cpui | [cpuz | | cpus | .-
< i I i > System bus
. L
| e |I/Otridge
< L 1/0 bus
u
)) s e Vo
usB difk network
USB bus controller contfoller adapter eoe
network
dibk

W)
mouse keyboard

données directement en mémoire vive a I'adresse voulue : c’est

Le contréleur de disque lit le secteur demandé et transfere les
un transfert DMA (Direct Memory Access) J

Exemple : lecture sur le disque 3/3

CRut | | cPu2 | | CPU3 | -
< — i > System bus
s i
| mglrglgry |VO ridge|
< L I/O bus
u
) Vs
yse disk network
USB bus controller controller adapter

mouse keyboard

network

IRQ

A la fin du transfert DMA, le contréleur du périphérique notifie
le CPU en lui envoyant une Requéte d’Interruption (IRQ)

25/48 26/48
Un processeur avec support des interruptions Mécanisme d’interruptions : déroulement
Routine de
Le cycle de Von Neumann avec interruptions Programme traitement
while True do : principal d'interruption
1
charger une instruction depuis la mémoire :
décoder ses bits : quelle opération, quelles opérandes, etc requéte :
exécuter I'opération et enregistrer le résultat d'interruption !
if interruption demandée then : L ISR: ...
sauvegarder le contenu des registres
déterminer 'adresse de la routine de traitement
passer en mode superviseur
sauter a la routine = écrire son adresse dans le compteur ordinal B
. RETI
endif
repeat
Note : a la fin de la routine de traitement, une instruction RETI
repassera le CPU en mode restreint.
27/48 28/48
Mécanisme d’interruptions : vocabulaire Différentes sources d’interruptions
e Périphériques d’entrées-sorties
* IRQ = Interrupt Reques} L e clavier, souris, disque, GPU, réseau, etc
® un «message» envoyé par un périphérique vers le processeur
® de fagon asynchrone (vs polling, inefficace)
e chaque IRQ porte un numéro identifiant le périphérique d’origine e Pannes matérielles
e |SR = Interrupt Service Routine ® température excessive, coupure de courant, etc
* un fragment de programme (= séquence d’instructions) exécuté a
chaque occurence de I'événement matériel associé o Minut te VO Svstem Ti
® termine toujours par une instruction RETI «retour d’interruption» Inuteur systeme, ou gn _yS em timer
e pendant une ISR : nouvelles IRQ temporairement mises en * aka Programmable interval timer
attente (permet au programmeur d’étre «seul au monde») ° mterrupt\lons perlodlques,_typlquement 100Hz ou 1000Hz
e Table des Vecteurs d’'Interruptions * permet a I'OS de percevoir le passage du temps
® tableau de pointeurs indiquant I'adresse de chaque ISR ° bonIL'JS :t_perme; a;: noy2au de reprendre la main sur les
® |e CPU utilise le numéro d’IRQ pour savoir ou sauter applications (cf chap. 2)
Définition : Noyau, ou en VO kernel e Evénements logiciels exceptionnels
Le noyau c’est (exactement) I'ensemble des ISR de la machine e erreurs fatales : division par zéro, instruction invalide, etc
N les f . I . I ® trappes volontaires : appels systeme (cf diapos suivantes)
et de toutes les fonctions que celles-ci appellent ® fautes de pages : constatées par la MMU (cf chap 3)
29/48 30/48

Plan

1. Introduction : définition du terme «Systéme d’exploitation»

2. Interface entre OS et utilisateur : le shell

3. Interface entre logiciel et matériel : 'architecture

4. Isolation entre noyau et applications : les syscalls

5. Quelques syscalls UNIX incontournables

31/48

Changement de mode d’exécution : trappes

Probléme : comment une application peut-elle invoquer une
méthode du noyau ?

Mauvaise solution : autoriser les applications a sauter vers les
fonctions situées dans le noyau

e destination arbitraire » failles de sécurité
e passage en mode superviseur » quand ? comment ?

Solution : se donner une instruction spécialisée pour cet usage
e exemples : TRAP (68Kk), INT (x86), SWI (ARM), SYSCALL (x64)
e interruption logicielle = trappe = exception
e fonctionnement : similaire aux autres types d’interruption
® sauvegarde en mémoire I'état du CPU

® bascule vers mode superviseur
® branche dans le noyau vers une adresse bien connue

32/48

Appel systeme : principe

Appel systeme, ou en VO system call = syscall

Fonction située dans le noyau, invoquée par un processus
utilisateur via une interruption logicielle

Cété application :

e 'appel est invoqué avec une instruction TRAP

e indifférent au langage de programmation utilisé

e encapsulation dans des fonctions de bibliothéque (ex : libc)
Coté noyau :

e on passe a chaque fois par I'|SR de TRAP

e qui appelle la bonne fonction dans le noyau,

® puis qui rend la main a I'application avec RETI

Exemples :
e read(), write(), fork(), gettimeofday()...
e plusieurs centaines en tout sous Linux
33/48

Appel systeme : déroulement

Application Noyau

printf("hello world")
"hello world",11)
ISR-TRAP:

sys_write(1,"hello world",11)

1

1 1

1 1 1

1 1 1

1 1 1

v v v v v

34/48

Appel systeme : langage machine
00410700 <__libc_read>:

410700: £3 0f le fa endbr64
410704 : 80 3d 6d £3 08 00 00 cmpb $0x0,0x8£36d (%rip)
41070b: 74 13 je 410720 <__libc_read+0x20>
41070d: 31 c0 xor %heax,heax
41070f: 0f 05 syscall
410711: 48 3d 00 fO ff ff cmp SOxEEFEFEFEFFFFFO00, Yrax
410717 77 4f ja 410768 <__libc_read+0x68>
410719: c3 ret
41071a: 66 0f 1f 44 00 00 nopw 0x0 (%rax,%rax,1)
410720: 55 push Yrbp

004107a0 <__libc_write>:
4107a0: £3 0f 1le fa endbr64
4107a4: 80 3d cd £2 08 00 00 cmpb $0x0,0x8f2cd (Yrip)
4107ab: 74 13 je 4107c0 <__libc_write+0x20>
4107ad: b8 01 00 00 00 mov $0x1,%eax
4107b2: 0f 05 syscall
4107b4: 48 3d 00 fOo ff ff cmp SOxFLFEFFFFFFFFFO00, Yrax
4107ba: 77 54 ja 410810 <__libc_write+0x70>
4107bc: c3 ret

35/48

Notion de processus
Applications exécutées sur la «machine virtuelle userland» :
e jeu d'instructions restreint (CPU en mode utilisateur)
® pas acces au mécanisme d’interruptions
e acces interdit a certaines adresses mémoire
® ex : code et données du noyau, périphériques matériels

Protection par «sandboxing» : une nouvelle instance de cette
machine virtuelle pour chaque application en cours d’exécution

e CPU virtuel (cf chap 2), mémoire virtuelle (cf chap 3)
e périphériques : accessibles seulement au travers du noyau

Notion de processus (ou en VO process)

« Un programme en cours d’exécution »

Systéme d’exploitation = illusionniste (VM) + sous-traitant (HW)

36/48

Notion de processus : remarques

Intuitions :

® un processus = un programme + son état d’exécution

e état d’exécution = valeurs des registres + contenu mémoire
+ «contexte d’exécution»

Le noyau :
e partage les ressources matérielles entre les processus
e crée/recycle les processus lorsqu’on lui demande
® dans le noyau : un Process Control Block par processus vivant

® PCB = carte d'identité du processus » stocke le contexte :
numéro (PID), répertoire courant, liste des fichiers ouverts...

A faire chez vous :

e essayer les commandes et

® puis ‘ man ps ‘ et ‘ man top‘

® et aussi ‘ strace ./monprogramme ‘

La VM userland : en résumé

Application

Kernel

_—

CPU en
mode superviseur

CPU en
mode utilisateur

e code applicatif exécuté par CPU en mode utilisateur
e pour faire appel au noyau : interface des appels systéeme

37/48 38/48
Positionnement de 'OS Plan
Processus 1 Processus 2 1. Introduction : définition du terme «Systéme d’exploitation»
2. Interface entre OS et utilisateur : le shell
Kernel
3. Interface entre logiciel et matériel : I'architecture
Hardware 4. Isolation entre noyau et applications : les syscalls
e chaque application qui s’exécute est un processus userland 5. Quelques syscalls UNIX incontournables
e |e noyau virtualise et arbitre les acces au matériel
39/48 40/48
Appels systeme : exemples Une fonction qui cache un syscall : getpid()
EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS
Windows Unix = =
Process CronteProcess() om0 Pour connaitre notre numéro de processus
Control Ex:}thocn?sa()) BXl:t O
WaitForSingleObject () wait () #include <unistd . h>
File CreateFile () open ()
Manipulation Rez‘:dFi}s() ra'r?d()
Crammandiao et int getpid(void);
Device SetConsoleMode () ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid() Remarques :
Maintenance SetTimer() alarn() ~ . N
Sleep() sleep() e |e noyau donne un numéro unique a chaque processus
Communicati Cr ipe() ipe () i A At i i i
s 0 cr::;:gg;?appmo e e attribué a la création du processus. ne change jamais ensuite.
R0) e stocké dans le PCB du processus
Protection SetFileSecurity() chmod ()
Initiali i i O umask()
SetSecurityDescriptorGroup() chown()
source : Silberschatz. Operating Systems Concepts Essentials (2011). p 59
41/48 42/48

Une fonction qui cache un syscall : exit()

Pour cesser définitivement I'exécution du programme

#include <stdlib.h>

void exit(int status);

Remarques :
e I'exécution ne «revient jamais» d’un appel a exit ()
e exit(n) équivalent a un return n depuis le main()
® |e «exit status» n esttransmis au processus parent

e convention : 0=0K, 1-255=erreur
® stocké dans le PCB en attendant un syscall wait () du parent

Une fonction qui cache un appel systeme : fork()
Pour dupliquer le processus en cours

#include <unistd.h>

int fork(void);

Remarques :
® SOUS Unix : créer un processus # changer de programme
e fork() duplique le processus qui a invoqué le syscall
® processus d’origine = «parent», nouveau = «enfant»
e duplication intégrale de la machine virtuelle userland
® CPU virtuel : les deux processus s’exécutent en concurrence
® mémoire virtuelle : chacun s’exécute dans un espace privé
® contexte : méme répertoire courant, mémes fichiers ouverts...

Paradigme «Call once, return twice»
e dans le nouveau processus fork() renvoie 0
e dans le parent, fork () renvoie le PID de I'enfant

43/48 44/48
Appel systeme fork : illustration Mon premier interpréteur de commandes
1 |// only one process char commandl[...];
2 [int y = 5 ; char params[...];
3 |int x = fork(); main() {
4 |if (x '=0) { while(true) {
5 // parent only print_prompt () ;
6 y=y+1; read_command (&command, ¶ms) ;
7 |} else { x = fork();
8 // child only
9 y=y-1; if (x == 0) { // we are the child process
10 |} exec(command, params);
11 | // both processes } else { // we are the parent process
J wait (&status);
}
parent }
enfant X
45/48 46/48
Encore des appels systeme A retenir
D’autres exemples, qu’'on reverraen TP : Architecture
’ e cycle de Von Neumann, MMIO, DMA, interruptions
. , e CPU avec dual-mode operation : mode restreint vs privilégié
exec(filename) charger un autre programme (exécutable) o : ; .
instruction TRAP pour lever une interruption
dans mon processus
Noyau
o e 'ensemble des routines de traitement d’interruption (ISR)
sleep(int num) suspendre I'exécution de mon processus * en particulier le syscall dispatcher
pendant num secondes e et des fonctions appelées par les ISR
® en particuliers les drivers et les implems des syscalls
wait(...) «attendre» qu’'un de mes processus enfants ait Processus
terminé son exécution ® une «machine virtuelle» offerte aux applications
e vue simplifiée et restreinte de I'architecture
getppid () connaitre le PID de son processus parent Appels systeme
e interface entre les processus et le noyau
open(), read(), write() accéder aux fichiers e accessibles via des fonctions de bibliotheque
OS = noyau + bibliothéques + programmes utilitaires
47/48 48/48

