## **Project Scope**

Design and size a water distribution network for the heating of two floors-building according to the heating demand



## Methodology

- Objectives
- Simplified sketch of the system
- Available and reliable data inputs (Pr. Christian Ghiaus)
- Unknowns and assumptions (hydraulic books for roughness, etc.)
- Sizing methods: equations, optimization, pressure verification (minimum 3-6 bars/floor)
- Sensitivity analysis and uncertainties



## Pipes features

| DN  |
|-----|
| 12  |
| 15  |
| 20  |
| 25  |
| 32  |
| 40  |
| 50  |
| 65  |
| 80  |
| 100 |

#### Losses in pipes

$$J = 10.69 * \frac{Q^{1.85}}{Chw^{1.85}*D^{4.87}}$$

| Material        | Chw |
|-----------------|-----|
| Cast Iron       | 100 |
| Stainless Steel | 120 |
| Cooper          | 130 |

## Friction losses diagrams



#### Exemple

Pour une tuyauterie en DN 50 (51,2 mm de diamètre intérieur), un débit-masse d'eau de 10 000 kg/h et une vitesse d'eau d'environ 1,4 m/s, le diagramme donne une perte de charge répartie R de 400 Pa/m.

Fig. 244-10. Diagramme de calcul de la perte de charge répartie R d'un tube en acier sans soudure en chaufage accéléré. Température de l'eau 80 °C, rugosité de la paroi interne  $\varepsilon$  = 0,045 mm (cf. tableau 148-2, tome 1),

## Friction losses diagrams



Fig. 244-12. Diagramme de calcul de la perte de charge répartie R de tubes en acier (NF A 49-115 et -145 de DN 10 à 40 puis 49-112, -141 et -142 de DN 50 à 200) pour de l'eau chaude à 60 °C, la rugosité  $\varepsilon$  des tuyauteries étant prise égale à 0.045 mm. w = vitesse de l'eau en m/s.

## Friction losses diagrams



#### Exemple

Pour un tube en cuivre  $22 \times 1$ , un débit-masse d'eau de 2 000 kg/h et une vitesse d'eau de 1,8 m/s, la perte de charge répartie R est égale à 1 400 Pa/m.

Fig. 244-14. Diagramme de calcul de la perte de charge répartie R d'une tuyauterie en cuivre, la température de l'eau étant de 80 °C et la rugosité du tube  $\varepsilon$  = 0,0015 mm.

Losses in taps



#### Losses in heaters





## Losses in boiler

|                                                                         |       |     |     |     |      |      |      |      |      |      |      |       |      |      | 16    |
|-------------------------------------------------------------------------|-------|-----|-----|-----|------|------|------|------|------|------|------|-------|------|------|-------|
| Poids à vide                                                            | kg    | 373 | 374 | 497 | 498  | 584  | 585  | 696  | 781  | 782  | 946  | 948   | 1249 | 1252 | 1256  |
| Volume d'eau chaudière                                                  | L     | 130 | 130 | 185 | 185  | 220  | 220  | 260  | 315  | 315  | 360  | 360   | 540  | 540  | 540   |
| Volume d'eau condenseur <sup>[1]</sup>                                  | L     | 32  | 32  | 38  | 38   | 48   | 48   | 64   | 64   | 64   | 83   | 83    | 107  | 107  | 107   |
| Pertes de charge côté fumées [2]                                        | da Pa | 4,5 | 8,6 | 10  | 16,5 | 18,2 | 27,1 | 22,3 | 27,5 | 35,3 | 29,4 | 39,2  | 29,5 | 39,5 | 57,5  |
| Pertes de charge 2 piquages côté eau <sup> 3 </sup>                     | da Pa | 190 | 320 | 250 | 340  | 380  | 500  | 330  | 500  | 640  | 750  | 880   | 500  | 670  | 870   |
| Pertes de charge 4 piquages côté<br>eau corps de chauffe <sup>(3)</sup> | da Pa | 170 | 290 | 140 | 200  | 250  | 340  | 280  | 330  | 440  | 530  | 640   | 310  | 420  | 550   |
| Pertes de charge 4 piquages côté eau condenseur <sup>(4)</sup>          | da Pa | 220 | 340 | 190 | 260  | 460  | 590  | 310  | 390  | 510  | 800  | 1 020 | 640  | 860  | 1 110 |

<sup>(1)</sup> Avec liaison hydraulique - {2} Pour un fonctionnement au gaz naturel et un taux d'excès d'air de 20 %. (3) À ΔT = 20 K - (4) À ΔT = 10 K.

## Pumps



# Methodology

#### Example

