

Polycopié de cours CONception et ANalyse des systèmes mécaniques

Table des matières

_			
•	Table	des matières	1
	1.	Théorie des mécanismes	4
	1.1.	Objectifs de l'analyse d'un système mécanique	4
	1.2.	Schéma bloc de puissance	4
	1.3.	Classes d'équivalence cinématique	5
	1.4.	Modélisation des liaisons – Contact et liaisons	8
	1.5.	Modélisation des éléments de contact courant	12
	1.6.	Nature des surfaces et modèle de liaison retenu	14
	1.7.	Graphe des contacts	15
	1.8.	Schéma cinématique niveau architectural	16
	1.9. ypers	Aspects cinématiques des contacts : notion de mobilité tatisme	
	1.10.	Contact ponctuel, contact surfacique, pression de contact	18
	1.11.	Analyse du graphe des contacts : Liaisons en parallèle	19
	1.12.	Analyse des graphes de contacts : chaines	21
	1.13.	Schéma cinématique minimal	23
	1.14.	Analyse des graphes de contacts boucle	24
	1.15. ersta	Analyse des graphes de contacts mécanismes multi boudtisme	
2	2.	Éco-conception et choix de matériaux	27
	2.1.	Contexte	27
	2.2.	Réserves de matériaux pour la conception	28
	2.3.	Terres « rares » et matériaux stratégiques	31
	2.4.	Les terres « abondantes »	32
	2.5.	Le recyclage et les limites de l'économie « circulaire »	33
2	2.6.	Cercle vicieux matière énergie matière	35
	2.7.	Caractérisation des impacts environnementaux	35
	2.8.	Eco indicateur 99	40
2	2.9.	Eco-conception	41
	2.10. ⁄ironn	Choisir les matériaux d'un produit en prenant en compte les impa ementaux	
;	2.11.	Procédure de choix des matériaux	47
;	2.12.	Procédure de choix des procédés	50
;	2.13.	Calcul des indices de performances	50
	2.14.	Synthèse	51

3.	Guidage en rotation	52
3.1.	Nomenclature	52
3.2.	Généralités	52
3.3.	Contact direct	61
3.4.	Coussinet ou palier lisse	66
3.5.	Validation des pivots et pivots glissants en deux paliers	72
3.6.	Calculs complémentaires	72
4.	Roulements	74
4.1.	Généralités	74
4.2.	Dimensionnement – vérification d'un roulement à contact radial	84
4.3.	Chargement des roulements à contacts obliques	91
4.4.	Conclusion: détermination et vérification des roulements et butées.	93
4.5.	Montage des roulements	94
4.6.	Montage à contacts obliques	. 104
5 .	Mécanique des solides déformables	. 111
Intro	duction pour la conception/dimensionnement	. 111
Intro	duction pour la conception/dimensionnement	. 111
5.1.	Repère en mécanique des solides déformables	. 111
5.2.	Modes de déformation du milieu continu	. 111
5.3.	Expressions de la déformation	. 112
5.4.	Déformations logarithmiques	. 113
5.5.	Sollicitations simples	. 113
5.6.	Les poutres	. 115
5.7.	Efforts internes	. 115
5.8.	Flexion 3 et 4 points	. 116
5.9.	Torseur de cohésion pour des sollicitations simples	. 117
5.10.	Moments quadratiques	. 117
5.11.	Efforts internes	. 119
5.12.	Relations torseur de cohésion et contraintes	. 121
5.13.	Comportement : relation contrainte déformation	. 124
5.14.	Comportement élastique linéaire isotrope	. 125
5.15.	Le modèle de poutre de Bernoulli	. 127
5.16.	Synthèse pour une barre en traction	. 127
5.17.	Synthèse pour un barreau cylindrique en torsion	. 128
5.18.	Synthèse pour une poutre en flexion pure	. 129
5.19.	Coefficient de concentration de contrainte	. 129

5.20.	Contrainte équivalentes	133
5.21.	Critères de validation	133
6.	La fonction étanchéité	138
6.1.	Position du problème	138
6.2.	Les paramètres de l'étanchéité	138
6.3.	Etanchéité statique	139
6.4.	Etanchéité dynamique	143
7.	Emploi et données matériaux pour la conception	149
7.1.	Généralités : le matériau en conception mécanique	149
7.2.	Matériaux usuels	151
7.3.	Données d'écoconception relative aux matériaux	164
7.4.	Données coefficient frottement et adhérence	169
8.	Ajustements	171
9.	Bibliographie	174
9.1.	Les bases	174
9.2.	Pour approfondir	175
9.3.	Pour l'Eco Conception	176

1. Théorie des mécanismes

1.1. Objectifs de l'analyse d'un système mécanique

Un système mécanique est caractérisé par une cinématique interne liée à la réalisation d'une ou plusieurs fonctions techniques. Dans le cadre de ce cours, les objectifs de l'analyse d'un tel mécanisme sont :

- Comprendre son fonctionnement;
- Trouver les lois d'entrée-sortie du système (nécessaire pour établir son pilotage par asservissement);
- Mettre en évidence les conditions de compatibilité géométriques (nécessaire à la cotation géométrique des pièces);
- Caractériser les contacts entre les pièces et la nature des actions mécaniques internes;
- Déterminer pour des cas simples ces actions mécaniques de liaisons permettant ainsi de valider le choix de composants de liaison ou les dimensions nominales des pièces.

Dans un premier temps, les hypothèses de cette analyse sont :

- Les solides sont indéformables ;
- Les liaisons sont parfaites.

1.2. Schéma bloc de puissance

En partant du mouvement d'entrée (rotation continue d'un moteur électrique ou thermique par exemple) ou d'un mouvement de sortie (plus facile à identifier pour les systèmes hydraulique ou pneumatique que le mouvement de sortie car l'énergie d'entrée est l'énergie de pression) on peut remonter la chaine de transmission de puissance et ainsi analyser le système mécanique. Ce flux de puissance peut être représenté par un schéma bloc de puissance :

- Un bloc équivaut à une pièce ou un sous ensemble qui transmet la puissance ;
- Une flèche orientée entre chaque bloc depuis la source d'énergie à la pièce exécutant la fonction mécanique souhaitée.

Figure 1 : schéma bloc de puissance de l'embrayage de navette décrit ci-après

Au niveau de chaque bloc peut être précisé :

- Puissance reçue (du bloc précédent);
- Type de mouvement (typiquement translation et rotation), vitesse de mouvement (typiquement continue, alternative);
- Rendement;
- Rapport de transmission.

1.3. Classes d'équivalence cinématique

Le schéma bloc précédent fait apparaître des groupes de pièces reliées entre eux par des fonctions cinématiques. La recherche et la communication de cette cinématique est facilitée par une schématisation mettant en valeur les mouvements au détriment des formes de pièces. Dans le sens de cette simplification, on ne représente que les ensembles ayant le même mouvement : les classes d'équivalence cinématique.

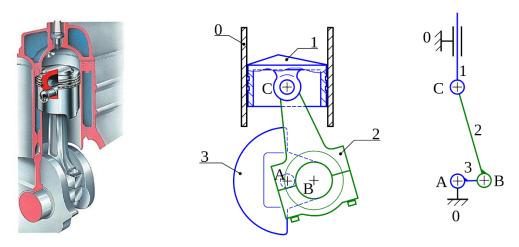
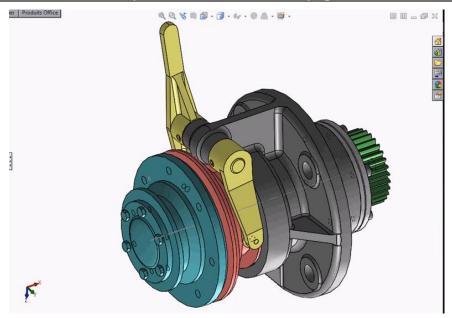


Figure 2 de gauche à droite : croquis du Larousse montrant un piston, dessin de Wikipédia d'un piston et schéma cinématique associé

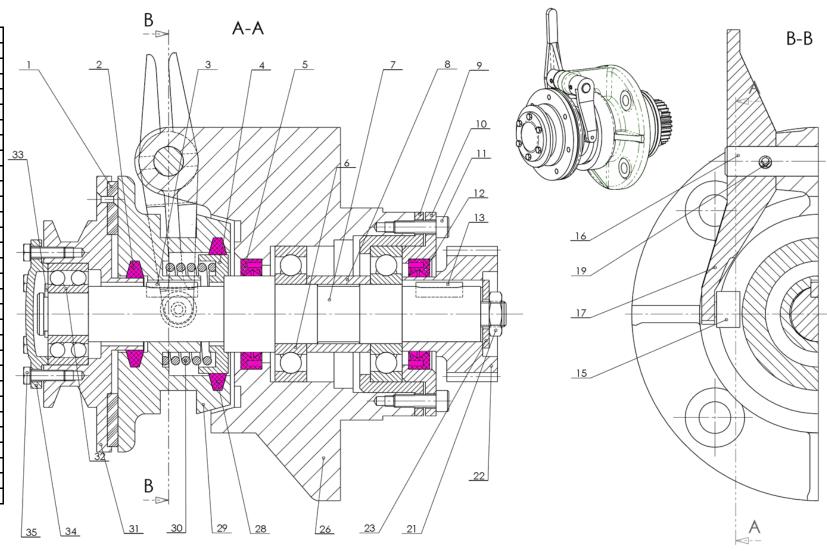
Deux pièces appartiennent à la même classe d'équivalence si elles sont en contact et si elles sont en encastrement ; c'est à dire n'ont pas de mouvement relatif (au cours du fonctionnement du système).

Pour identifier ces pièces, on peut s'aider de la nomenclature :


- Les ressorts, les éléments de guidage, roulements, paliers lisses, les joints dynamique sont entre deux pièces mobiles l'une par rapport à l'autre ;
- Les vérins, moteurs, actionneurs sont entre deux classes d'équivalence et se décomposent eux-mêmes en 2 classes d'équivalences (corps de vérin et tige de vérin, bâti moteur et axe moteur);
- Les vis, goupilles, clavettes, écrou participent généralement à des liaisons complètes entre pièces d'une même classe. Vérifier aussi la présence de soudures...;
- Certains noms de pièces permettent de connaître leur mouvement :
 - o Rotation continue : manivelle, vilebrequin, arbre, came, pignon, roue dentée...
 - o Rotation alternée : levier, balancier
 - o Translation: poussoir, coulisse, tige, crémaillère, piston
 - o Mouvement plan : bielle
 - o Fixe : bâti, carter

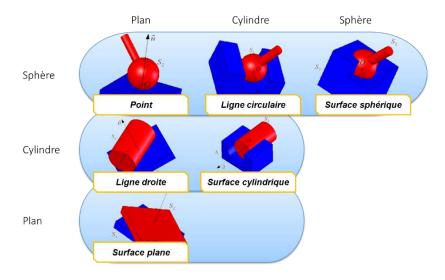
Par ailleurs, une rapide coloriage sur un plan est un bon moyen de visualiser rapidement les différentes classes d'équivalence d'un système mécanique.

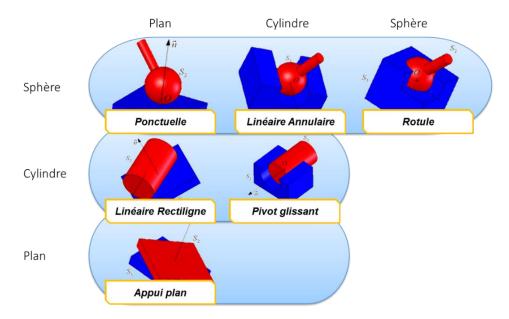
Exemple : étude d'un embrayage de métier à navette


La poulie 31 entraînée en rotation par l'intermédiaire de la courroie 36 tourne en permanence. Suivant l'action de l'utilisateur sur le levier de commande 17, l'arbre 7 peut soit être entraîné en rotation (position embrayée), soit être freiné (position débrayée). L'étude est faite en position débrayée. En vous aidant de la nomenclature et du plan, lister les 6 classes d'équivalence :

Exemple embrayage métier à navettes

37	rivet
35	Vis H M16
34	Chapeau
33	Anneau élastique
32	Roulement
31	Poulie
30	Ressort
29	Baladeur
28	Joint Ø56
26	Corps
23	Rondelle
22	Pignon
21	Ecrou H M12
19	Demi-fourchette
18	Goupille
17	Levier de commande
16	Axe
15	Galet
14	Vis axe
13	Clavette 7x7x22
11	Vis CHc M5
10	Couvercle
09	Boîtier
08	Entretoise
07	Arbre
06	Roulement Ø28
05	Joint à lèvre
04	Butée
03	Clavette parallèle 7x7x24
02	Joint Ø34
01	Garniture




1.4. Modélisation des liaisons - Contact et liaisons

La norme NF E 04 015 s'intéresse aux 6 contacts élémentaires entre les surfaces sphériques, planes et cylindriques car elles sont aisément fabricables.

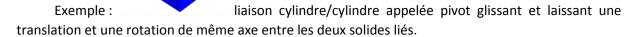
6 types de contacts simples sont issus de ces surfaces :

6 liaisons élémentaires sont associées à ces contacts :

Mais ceci est insuffisant pour décrire toutes les liaisons existantes dans les systèmes.

Pour obtenir une description plus complète il est nécessaire de faire un détour par la mécanique générale. Le mouvement instantané d'un solide (indéformable) S_i par rapport à un autre solide S_j peutêtre décrit par le torseur cinématique $\vartheta_{i/j}$ caractérisé par <u>6 quantités scalaires</u> (éléments de réduction en un point quelconque A aussi appelée coordonnées pluckériennes)

$$\{\mathcal{V}_{i/j}\}: egin{pmatrix} \omega_x & v_x \ \omega_y & v_y \ \omega_z & v_z \end{pmatrix}_{(ec{x},ec{y},ec{z})}$$


Si ces 6 quantités varient <u>de façon indépendante</u>, <u>le solide S_i est dit libre par rapport à S_i</u>

Si moins de 6 paramètres indépendants permettent de décrire le mouvement relatif de S_i par rapport à S_i alors S_i est dit lié à S_i .

Le nombre de paramètres permettant de décrire ce mouvement est appelé degré de liberté.

Dans un mécanisme réel, l'interdépendance des paramètres est due à des relations de <u>contacts</u> <u>entre les pièces S_i et S_j</u>.

Sur les 64 combinaisons possibles pour arranger les paramètres dans le torseur cinématique, certaines sont « faciles » à réaliser techniquement par des contacts simples ou par combinaison de contacts simples : <u>ce sont les 10 liaisons normalisées.</u>

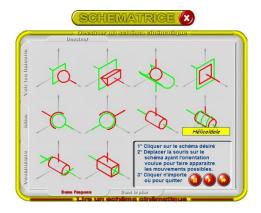
Les 64 combinaisons possibles :

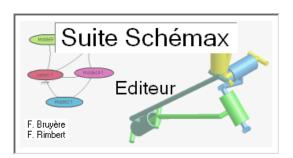
T 0 0 0	T 1 0 0	T 0 1 0	T 0 0 1	T 0 0 0	T 0 0 0	T 0 0 0	T 0 0 0
R 0 0 0	R 0 0 0	R 0 0 0	R 0 0 0	R 1 0 0	R 0 1 0	R 0 0 1	R 1 1 1
T 0 0 0	T 0 0 0	T 0 0 0	T 1 0 0	T 0 1 0	T 0 0 1	T 1 1 0	T 1 1 1
R 1 1 0	R 1 0 1	R 0 1 1	R 1 0 0	R 0 1 0	R 0 0 1	R 0 0 0	R 0 0 0
T 1 1 0	T 1 0 1	T 0 1 1	T 1 0 0	T 1 1 0	T 1 1 0	T 1 0 1	T 1 1 1
R 0 0 1	R 0 1 0	R 1 0 0	R 0 1 0	R 1 0 1	R 0 1 1	R 0 0 0	R 1 0 0
T 1 1 0	T 1 1 0	T 1 0 1	T 1 0 0	T 1 0 1	T 1 0 1	T 0 1 1	T 1 1 1
R 1 0 0	R 0 1 0	R 1 0 0	R 0 0 1	R 1 1 0	R 0 1 1	R 0 0 0	R 0 1 0
T 0 1 1	T 0 1 1	T 1 0 1	T 0 1 0	T 0 1 1	T 0 1 1	T 1 0 0	T 1 1 1
R 0 0 1	R 0 1 0	R 0 0 1	R 1 0 0	R 1 1 0	R 1 0 1	R 0 1 1	R 0 0 1
T 1 1 0	T 1 0 1	T 0 1 1	T 0 1 0	T 1 0 0	T 0 1 0	T 0 0 1	T 0 1 0
R 1 1 0	R 1 0 1	R 0 1 1	R 0 0 1	R 1 1 0	R 1 1 0	R 1 1 0	R 0 1 1
T 1 0 0	T 0 1 0	T 0 0 1	T 0 0 1	T 1 0 0	T 0 1 0	T 0 0 1	T 0 0 1
R 1 1 1	R 1 1 1	R 1 1 1	R 1 0 0	R 1 0 1	R 1 0 1	R 1 0 1	R 0 1 1
T 1 1 1	T 1 1 1	T 1 1 1	T 0 0 1	T 1 1 0	T 1 0 1	T 0 1 1	T 1 1 1
R 0 1 1	R 1 0 1	R 1 1 0	R 0 1 0	R 1 1 1	R 1 1 1	R 1 1 1	R 1 1 1

Les 10 liaisons normalisées :

Туре	Schémas	Torseur Cinématiq ue	Torseur Intereffort s	Туре	Schémas	Torseur Cinématiqu e	Torseur Intereffo rts
Pivot d'axe (A, x)	\$ the state of the	$\begin{cases} \omega_{x} & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{A}$ $\forall M$ $\in (A, \vec{x})$	$ \begin{pmatrix} X & 0 \\ Y & M \\ Z & N \end{pmatrix}_A $	Appui plan de normale x	-	$ \begin{cases} \omega_x & 0 \\ 0 & V_y \\ 0 & V_z \end{cases}_A $ $ \forall A $	$ \begin{pmatrix} X & 0 \\ 0 & M \\ 0 & N \end{pmatrix}_A $
Glissière d'axe x		$ \begin{cases} 0 & V_x \\ 0 & 0 \\ 0 & 0 \end{cases}_A $ $ \forall A $	$ \begin{cases} 0 & L \\ Y & M \\ Z & N \end{pmatrix}_{A} $	Rotule de centre A		$ \begin{cases} \omega_x & 0 \\ \omega_y & 0 \\ \omega_z & 0 \end{cases}_A $	$ \begin{pmatrix} X & 0 \\ Y & 0 \\ Z & 0 \end{pmatrix}_A $
Hélicoïdale d'axe (A, x)	6 - M -	$\begin{cases} \omega_{\chi} & V_{\chi} \\ 0 & 0 \\ 0 & 0 \end{cases}_{A}$ $\forall M \in (A, \vec{x})$ $V_{x} = pas \times \omega_{x}$	$ \begin{cases} X & L \\ Y & M \\ Z & N \end{cases}_{A} $ $ X = pas \times L $	Rotule à doigt d'axes (A, x) et (A, y)		$ \left\{ $	$ \begin{pmatrix} X & 0 \\ Y & 0 \\ Z & N \end{pmatrix}_A $
Pivot glissant d'axe (A, x)		$ \begin{cases} \omega_{x} & V_{x} \\ 0 & 0 \\ 0 & 0 \end{cases}_{A} $ $\forall M \in (A, \vec{x}) $	$ \begin{cases} 0 & 0 \\ Y & M \\ Z & N \end{cases}_{A} $	Linéaire rectiligne de normale x et axe y	→	$\begin{cases} \omega_{x} & 0 \\ \omega_{y} & V_{y} \\ 0 & V_{z} \end{cases}_{A}$ $\forall M$ $\in (A, \vec{x}, \vec{y})$	$ \begin{pmatrix} X & 0 \\ 0 & 0 \\ 0 & N \end{pmatrix}_A $
Linéaire annulaire centre (A, x)	\$	$ \begin{cases} \omega_x & V_x \\ \omega_y & 0 \\ \omega_z & 0 \end{cases} $ $ \forall A $	$ \begin{cases} 0 & 0 \\ Y & 0 \\ Z & 0 \end{cases}_{A} $	Ponctuelle de normale (A, x)	<u>6</u>	$\begin{cases} \omega_{x} & 0 \\ \omega_{y} & V_{y} \\ \omega_{z} & V_{z} \end{cases}_{A}$ $\forall M$ $\in (A, \vec{x})$	$ \begin{pmatrix} X & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_A $

D'autres éléments technologiques peuvent être nécessaires pour établir un schéma cinématique complet :



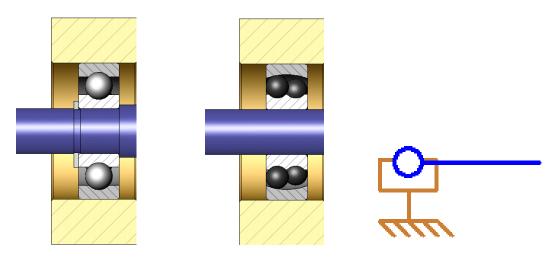

Utiliser un logiciel de schématisation cinématique

Pour réaliser un schéma cinématique plusieurs solutions numériques existent, notamment mecaXP (disponible sur moodle), schematrice ou schemax disponibles sur internet :

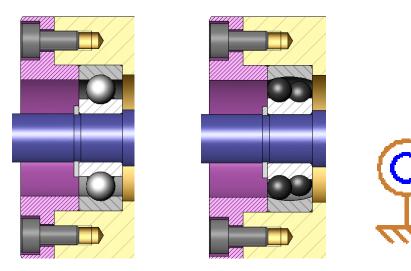
http://eduscol.education.fr/sti/ressources_pedagogiques/schemax

http://eduscol.education.fr/sti/ressources_pedagogiques/schematrice

Globalement, il peut être plus rapide de faire un schéma proprement sur papier et de le scanner... Cette solution n'est donc pas à négliger.

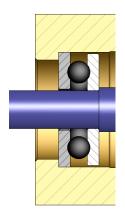


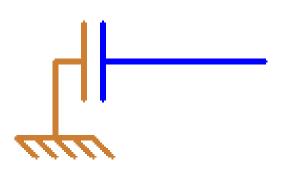
L'identification des surfaces de contact, le recensement des mobilités possibles et le choix d'un modèle de liaison sont une phase critique de l'analyse d'un mécanisme (d'ailleurs aussi de la conception de ce mécanisme !). Cela peut être fait à partir d'une méthode en 3 étapes :

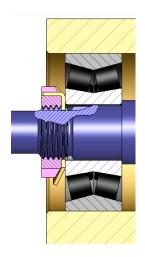

- ✓ La liaison est-elle réalisée par interposition d'un élément de contact ? par exemple roulement, clavette, cannelure...
- ✓ Sinon qu'elle est la nature des surfaces en contact ? leurs dimensions ? des « petites » mobilités (jeux) existent-elles ? sont-elles nécessaires pour le bon fonctionnement ?
- ✓ Et en dernier lieu quelles sont les mobilités restantes ? mais seulement en dernier lieu car c'est souvent trompeur !

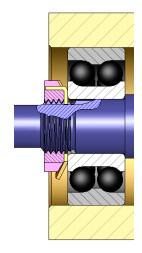
1.5. Modélisation des éléments de contact courant

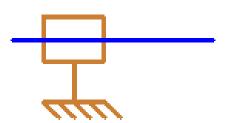
Le modèle de linéaire annulaire pourra être retenu pour un roulement à bille à contact radial avec 2 arrêts sur la même bague (intérieur ou extérieur), un coussinet court (rapport L/d<0.8), un roulement rotule sans arrêt axial.


Le modèle de rotule pourra être retenu pour un roulement à bille à contact radial avec 4 arrêts sur les bagues (intérieur et extérieur), un roulement rotule avec arrêts axiaux.

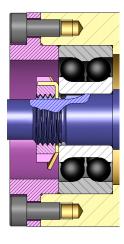


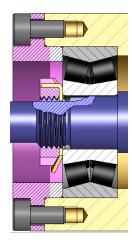


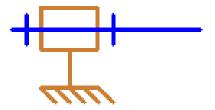

Le modèle d'appui plan être retenu pour une butée.



Le modèle de pivot glissant pourra être retenu pour un roulement à 2 rangées de billes à contact obliques si les arrêts axiaux sont sur une seule bague , un roulement à aiguille.







Le modèle de glissière pourra être retenu pour un guidage long avec clavette ou cannelures. Attention si le guidage associé est court (cylindre dans cylindre avec un rapport L/D faible <0.8) ce modèle ne conviendra pas car 2 rotations perpendiculaires (nommées rotulages car de très faible ampleur) seront possibles.

Le modèle de pivot pourra être retenu pour un roulement combiné à aiguilles, un roulement à 2 rangées de billes à contact radial avec des arrêts axiaux sur 2 bagues...

1.6. Nature des surfaces et modèle de liaison retenu

Un plan sur un plan peut être modélisé par un appui plan mais si les dimensions d'une des surfaces sont faibles une ponctuelle sera plus réaliste.

Figure 3 : A gauche un appui-plan, à droite quatre petits appuis-plan équivalents à des ponctuelles

Si une seule dimension est faible (hauteur ou largeur par rapport à la longueur), un modèle de linéaire rectiligne sera plus adapté

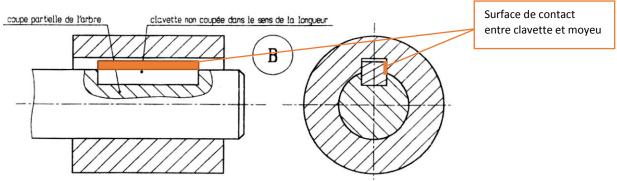


Figure 4 : la surface de contact entre le moyeu et la clavette est un rectangle de hauteur faible par rapport à sa longueur, assimilable à un contact linéique

De la même façon, un contact cylindrique peut être assimilé à un contact linéique si le cylindre est de faible rayon voire une ponctuelle s'il est aussi de faible hauteur.

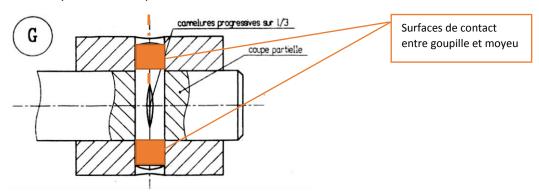
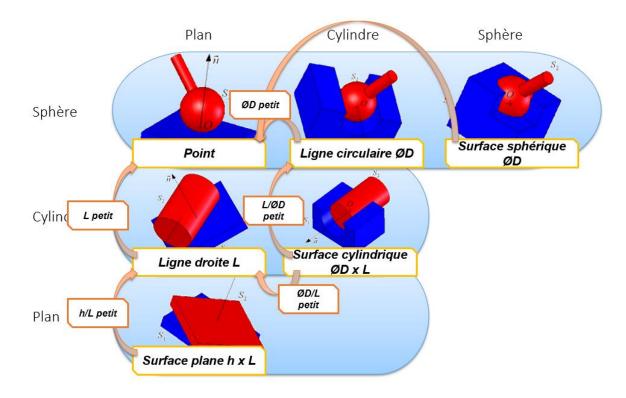
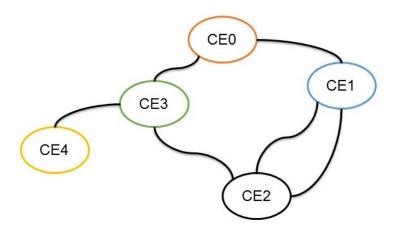



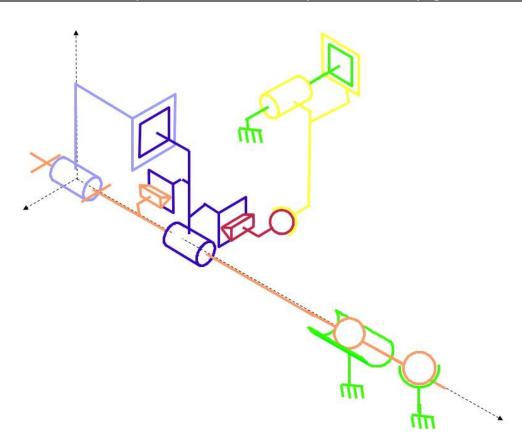
Figure 5 : le contact goupille/moyeu est constitué de deux cylindres de rayon et hauteur faibles assimilables à deux ponctuelles


De manière générale, il faut considérer la dimension des formes de contact afin d'identifier le « juste » contact créé. Ceci est résumé dans la figure ci-dessous :

1.7. Graphe des contacts

Ces modèles liaisons permettront de tracer le graphe des contacts. Pour cela chaque classe d'équivalence est représentée par un sommet dans un graphe. Chaque contact entre deux classes d'équivalence est représenté par un lien entre les deux sommets correspondants. Dans un graphe des contacts il peut y avoir plusieurs liens entre deux sommets, donc plusieurs contacts entre deux classes d'équivalence cinématique. Les contacts sont nommés suivants les 6 liaisons élémentaires existantes : ponctuelle, linéaire annulaire, rotule, linéaire rectiligne, pivot glissant et appui plan. Si la liaison équivalente n'est pas une liaison normalisée on pourra indiquer le torseur cinématique correspondant, ou la combinaison en parallèle ou en série de liaisons normalisées équivalente.

Exemple de l'embrayage : Analyse des contacts


1.8. Schéma cinématique niveau architectural

Le schéma cinématique niveau architectural ou schéma d'architecture est la traduction schématisée du graphe des contacts entre classes d'équivalence. Chaque couple de surfaces de contacts est traduit par une liaison. Il peut donc exister plusieurs liaisons entre chaque classes d'équivalence. Il permet de conserver une information technique sur l'architecture de chaque liaison entre classe d'équivalence. En cela, il est un intermédiaire essentiel entre l'analyse technique et l'analyse cinématique d'un mécanisme.

Méthodologie:

- ✓ Tracer l'épure du schéma : repère, axes, centres de liaison ;
- ✓ Placer les différentes liaisons correctement orientées ;
- ✓ Relier les liaisons entre elles pour compléter les classes d'équivalence ;
- ✓ C'est un exercice de communication technique : la disposition des liaisons doit privilégier la lisibilité par rapport à la réalisation technique des liaisons et des pièces.

Exemple : schéma cinématique de l'embrayage :

1.9. Aspects cinématiques des contacts: notion de mobilité et d'hyperstatisme

Le mouvement instantané d'un solide Si par rapport à un solide Sj peut être décrit à l'aide du torseur cinématique $\{V_{i/j}\}$ caractérisé par 6 quantités scalaires

Si ces 6 quantités scalaires sont indépendantes alors le mouvement est sans contrainte

Si ces 6 quantités scalaires sont dépendantes les unes des autres, le mouvement est contraint : le solide Si est lié à Sj

Pour une liaison ponctuelle, La vitesse relative est contenue dans le plan tangent commun de normale \vec{n} . Cela impose $\vec{V}_{(O \in S2/S1)} \cdot \vec{n} = 0$. Le contact ponctuel impose donc une seule relation linéaire homogène entre les six composantes du torseur cinématique.

Si on impose entre deux solides k points de contacts, on peut écrire k relations de type $\vec{V}_{(O \in S2/S1)}$. $\vec{n} = 0$. Cet ensemble de relation peut se mettre sous forme matricielle :

Cette matrice a un rang maximal de 6

Si r = 6, la seule solution est que le torseur cinématique soit nul, c'est la liaison fixe

Si r < 6, l'ensemble des torseurs cinématique solutions de l'équation doivent être de dimension 6-r : les k contacts réalisent une liaison de degré de mobilité $\underline{m = 6-r}$

Si k = r, les k contacts sont indépendants

Si k > r les contacts ne sont pas indépendants, certains contacts sont dans des positions particulières par rapport aux autres. <u>C'est un positionnement hyperstatique</u> et la quantité $\underline{h = k - r}$ est appelé degré d'hyperstatisme

1.10. Contact ponctuel, contact surfacique, pression de contact

Une première déduction qui peut être faite de l'étude précédente est qu'un contact surfacique est par nature hyperstatique : il ne peut être assuré que par une concordance parfaite de la géométrie des surfaces, ce qui est incompatible avec les surfaces réelles des pièces mécaniques.

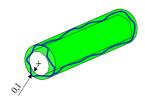


Figure 6 : contact théorique parfait et contact réel

Il en résulte que la surface théorique est plus grande que la surface réelle de contact. Cette surface dépend des conditions de fonctionnement, de la nature des matériaux et des surfaces, des efforts appliqués ... Afin d'éviter des pressions trop importantes il convient tout de même d'assurer :

- Une rugosité des surfaces adaptée à la fonction technique de liaison ;
- Une tolérance de forme permettant de limiter les défauts des surfaces.

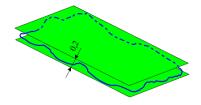
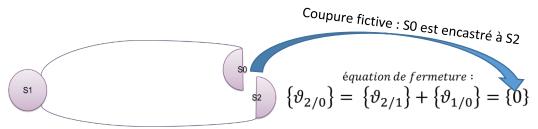
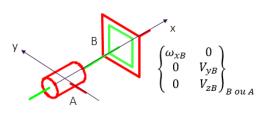
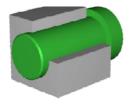


Figure 7 : tolérance de cylindricité et tolérance de planéité. Ci-dessous, rugosité adaptée à la fonction

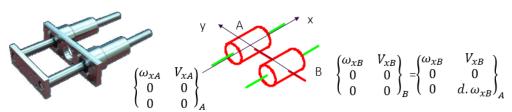

Surface	Prévue pour	Condition de fonctionnement	Matière	Exemples	Valeur maximale de R (μm)	Symbol	
		Très difficile	Acier	Axe de piston Axe du pignon fou de la pompe à huile	0,4		
			Fonte		0,63	1	
			Aluminium		1	;	
			Bronze	Alésage du pied de bielle	2,5		
		Difficile	Acier	Queue de soupape Diamètre extérieur du poussoir	2,5		
	Frottement de glissement		Fonte	Portée d'arbre à cames Diamètre extérieur du pignon de commande d'allumeur	4	√FG	
			Aluminium		6,3		
relatif			Bronze	Bague de la pompe à huile Alésage et face du pignon intermédiaire de distribution	6,3		
Avec déplacement relatif		Moyenne Facile	Acier	Face du pignon de la pompe à engrenage Glissières	6,3		
			Fonte	Face de butée d'arbre à cames Surface de freinage et d'embrayage	6,3		
vecd			Aluminium	Jupe de piston Alésage du logement de pignon (pompe à huile)	6,3		
4			Bronze	Alésage du pignon intermédiaire de distribution	6,3		
			Acier	Faces latérales de tête de bielle	6,3		
			Fonte	Butée du palier central du vilebrequin	6,3		
			Aluminium	Alésage pour arbre de pompe à huile	10	0	
			Bronze		10		
	Frottement de roulement	Très difficile	Acier	Billes et chemin de roulement à billes	0,1		
		Difficile	Acier	Cames et galets très chargés	0,25	√FR	
		Moyenne	Acier	Dents d'engrenage chargées Cames et galets chargés	1		
		Facile	Acier	Dents d'engrenage peu chargées	2,5		




1.11. Analyse du graphe des contacts : Liaisons en parallèle

L'étude d'une liaison équivalente consiste à analyser la relation entre la somme des torseurs cinématiques et le torseur nul.

Exemples



$$\begin{pmatrix}
\omega_{xA} & V_{xA} \\
0 & 0 \\
0 & 0
\end{pmatrix}$$

- 1 mobilité conservée : ω_x la liaison équivalente est une pivot d'axe x

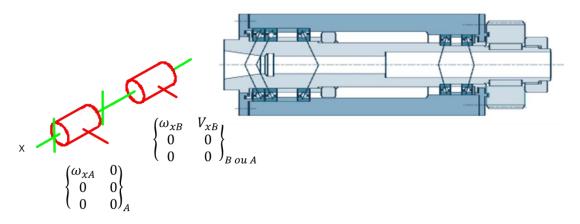
$$\begin{cases} \begin{pmatrix} \omega_{xA} & V_{xA} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{A} \\ \bullet & 2 \text{ lignes } \text{``} 0 = 0 \text{``} : h = 2 \\ \bullet & 3 \text{ mobilit\'e perdue par} \\ \text{I' association } : V_{xA}, V_{yB} \text{ et } V_{zB} \\ \bullet & 1 \text{ mobilit\'e conserv\'ee} : \omega. \end{cases}$$

Analyse des contraintes géométriques liées à l'hyperstatisme: orientation autour de y et z perpendicularité de l'appui plan par rapport à l'axe de la pivot glissante

la liaison équivalente est une glissière d'axe x

• 3 lignes «
$$0 = 0$$
 » : $h = 3$
• 2 mobilités perdues par l'association : ω_{XB} et ω_{XA}
• 1 mobilité conservée : V_X

Analyse des contraintes géométriques liées à l'hyperstatisme : position suivant y, orientation autour de y et z $>>$ entraxe et parallélisme


Analyse des

Guidage en rotation d'une machine-outil

Démontrer l'hyperstatisme de degré 4 de la liaison pivot réalisée et préciser les tolérances d'orientation qui en découlent.

L'analyse des contacts parallèles met en évidence :

- La mobilité résultante de ces contacts et donc la liaison résultante ;
- L'éventuel hyperstatisme de liaison ;
- Et surtout en cas d'hyperstatisme les positionnements et orientations surabondants.

En cas d'hyperstatisme, il est alors obligatoire de préciser les <u>tolérances d'orientation et de</u> <u>position</u> qui vont permettre de limiter les défauts géométriques <u>entre</u> les surfaces de contact : la surface réelle doit être comprise entre deux surfaces idéales correctement orientées et/ou positionnées.

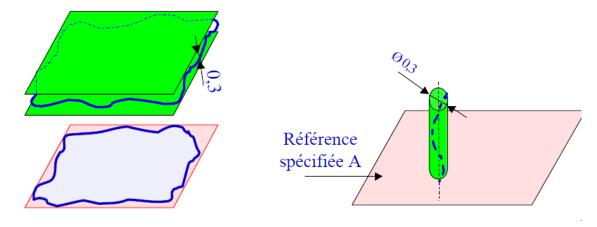


Figure 8 : tolérance d'orientation entre éléments d'une même pièce (Parallélisme entre deux plans et perpendicularité entre un axe et un plan.

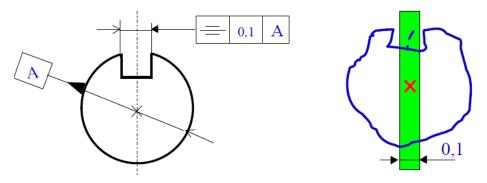
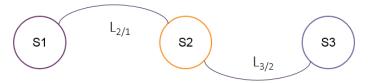



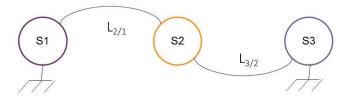
Figure 9 : cotation "classique" de symétrie d'une rainure de clavette

L'hyperstatisme au niveau des associations de contact peut être assurée techniquement par le <u>contrôle géométrique</u> (problème de coût de fabrication) ou <u>l'intégration de réglages</u> (problème de coût de main d'œuvre). <u>Cette hyperstatisme peut être nécessaire afin d'obtenir une rigidité compatible avec le cahier des charges.</u>

1.12. Analyse des graphes de contacts : chaines

composition de mouvement:

$$\{\theta_{3/1}\} = \{\theta_{3/2}\} + \{\theta_{2/1}\}$$

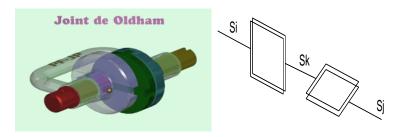

équation de mobilités:

$$m_{3/1} = m_{3/2} + m_{2/1} - m_{internes}$$

identification des mobilités internes :

$$\{0\} = \left\{\vartheta_{3/2}\right\} + \left\{\vartheta_{2/1}\right\}$$

On « bloque » virtuellement les solides S1 et S3 : si la relation ci-dessus donne plus d'inconnues cinématiques que d'équations, il y a des mobilités internes...



Exemple: le joint d'Oldham

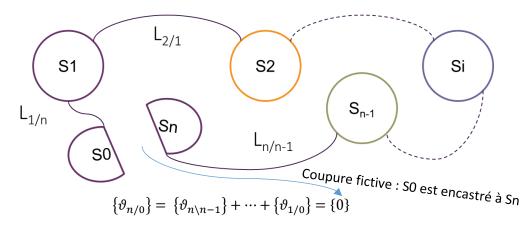
Indiquer les mobilités résultantes du joint de oldham ci-dessous dont le modèle cinématique est donné. Préciser l'intérêt pratique d'installer ce joint dans une chaîne de puissance.

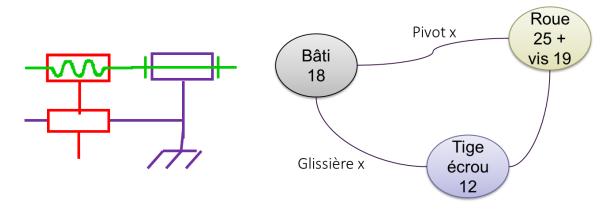
Exemple le joint de cardan

Indiquer la liaison équivalente réalisée par ce joint de cardan simple constitué de deux liaisons pivots coplanaires et perpendiculaires.

1.13. Schéma cinématique minimal

Le schéma cinématique minimal découle du schéma d'architecture mais ne comporte qu'un seul lien entre deux classes d'équivalence (aussi appelé 1-graphe). Il est donc nécessaire de modéliser la liaison équivalente résultant des éventuelles combinaisons de contacts entre deux classes d'équivalence.


Exemple : schéma cinématique minimal de l'embrayage



1.14. Analyse des graphes de contacts boucle

L'étude d'une boucle consiste à analyser la relation entre la somme des torseurs cinématiques et le torseur nul

Exemple liaison vis écrou du vérin électrique

L'hyperstaticité au niveau des boucles de liaisons doit en général être évité. L'isostaticité des boucles permet le montage indépendamment des défauts de fabrication. Cette isostaticité est permise par des jeux fonctionnels suffisants vis-à-vis des tolérances de fabrication tout en restant suffisamment faible pour assure le bon fonctionnement du système. Cette recherche de compromis fonction/procédé donne lieu à des chaînes de cotes ou des boucles de contact 3D.

1.15. Analyse des graphes de contacts mécanismes multi boucle, hyperstatisme

Le nombre cyclomatique γ est le nombre de boucles indépendantes du mécanisme :

 γ = Nombre de liaisons – Nombre de solide + 1

La fermeture des γ boucles de liaisons donne un système de 6γ équations de rang r_c entre les inconnues cinématiques N_c du mécanisme avec r_c = N_c – m, m étant le nombre de mobilités du mécanisme

 6γ - r_c = h, l'hyperstatisme global du mécanisme

Note : Le degré d'hyperstatisme global ne donne pas d'informations sur l'origine de cette hyperstaticité : associations de liaisons ? Boucle de liaisons ? Laquelle ?

Les relations précédentes permettent d'établir $h = 6 \times Nombre de liaison - Nc - 6 \times (Nombre de solides - 1) + m$

En remarquant que 6 x Nombre de liaison – $Nc = I_S$ nombre d'inconnues statiques de liaisons, et que 6 x (Nombre de solides – 1) = E_S nombre d'équations statiques indépendantes, il vient :

$$h = I_S - E_S + m$$

Le nombre m de mobilité peut être réparti en mobilité interne mi et mobilité utile (ou loi d'entrée-sortie) mu, on écrit alors :

$$h = I_S - E_S + m_i + m_u$$

Un système hyperstatique n'est pas solutionnable par les équations de la mécanique générale. Il est donc nécessaire de disposer d'une modélisation isostatique pour effectuer un prédimensionnement d'un mécanisme <u>même si cette modélisation n'est pas en adéquation vis-à-vis</u> des choix technologiques.

Bien conçue, une liaison hyperstatique est plus rigide. C'est pourquoi des liaisons « filtres » placées aux entrées et sorties des mécanismes, mais aussi les guidages précis à l'intérieur des mécanismes sont souvent réalisés de cette manière.

<u>La « bonne » hyperstaticité est localisée</u> au niveau de liaisons rigides. Elle apparaît sur le schéma d'architecture.

L'hyperstaticité néfaste, elle, apparaît sur le schéma cinématique.

Exemple calcul de h sur le vérin électrique :

2. Éco-conception et choix de matériaux

2.1. Contexte

La Terre est un système clos, qui ne reçoit de l'extérieur pratiquement aucun matériau (150 000/an tonnes de météorites, ce qui fait 2,5. 10^{-15} % par rapport à la masse totale de la Terre...). Par contre, ce n'est pas un système fermé car elle reçoit **3850.** 10^{21} **J par an** d'énergie solaire. La majeure partie sert à maintenir l'équilibre thermique de la Terre (la température serait de

de $-18^{\circ}C$ au lieu de $15^{\circ}C$ en moyenne sans la combinaison du soleil et de l'effet de serre). Une infime partie : $3.10^{21}J$, est captée par photosynthèse pour alimenter le cycle de la vie, $2.2.10^{21}J$ se transforme en énergie cinétique du vent. Et enfin la moitié des **besoins énergétiques actuels soit** $0.5.10^{21}J$, sont couverts par l'énergie solaire, essentiellement de façon passive (chaleur due à l'ensoleillement), mais aussi sous forme transformée $(0.06.10^{21}J)$ en électricité).

L'énergie solaire est donc la seule énergie réellement durable car présente sous forme d'un flux qui nous approvisionne pour les 5 prochains milliards d'années à venir (durée de vie du soleil).

Par ailleurs, l'humanité dispose à l'heure actuelle d'un stock de 40.10^{21} d'énergie fossile, de $0,3.10^{15}$ à 3.10^{15} tonnes de minerais dont 110.10^6 tonnes de terres rares. Cette quantité d'énergie non-renouvelable et de minerai résulte de l'activité géothermique et microbiologique durant les 3,5 milliards d'années précédentes. C'est un stock actuellement sous forte tension (Figure 10), à économiser et à

gérer pour l'avenir. Force est de constater que depuis 1950 environ cette gestion n'a pas été anticipée et continue de ne pas l'être suffisamment.

La période qui démarre de 1950 à nos jours est appelée « la grande accélération » (Figure 11) ; Elle est caractérisée par une croissance exponentielle de l'exploitation des ressources dans leur ensemble audelà de leur seuil de renouvellement. Cette surconsommation d'une petite partie de la population, permise par les mécanismes de la mondialisation, se fait au détriment non seulement du reste de l'humanité (croissance des inégalités) mais aussi de l'ensemble du vivant (perte de biodiversité : 6ème extinction, voir rapport Union Internationale pour la Conservation de la Nature) tout comme des générations futures.

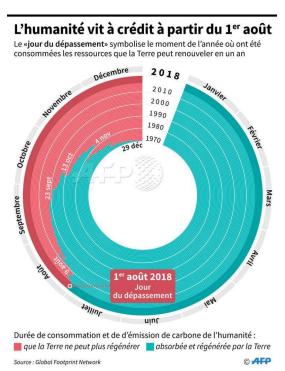


Figure 10: épuisement des ressources terrestres

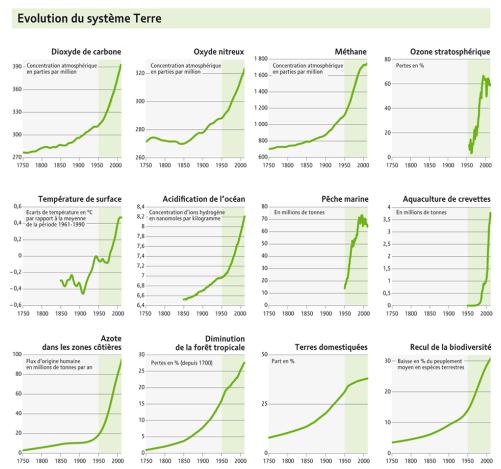


Figure 11: La grande accélération, emballement des prélèvements et des pollutions depuis 1950 (source : Global Change and the Earth System 2004 W.Steffen)

2.2. Réserves de matériaux pour la conception

Les réserves actuelles sont très inégales suivant les matériaux considérés, suivant la géographie et suivant notre capacité à extraire ces ressources. On parlera de :

- **Réserve exploitée** : réserve connue et en cours d'exploitation.
- Réserve de base : réserve connue, exploitable mais non encore exploitée.
- **Réserve potentielle** : réserve connue mais non encore exploitée car économiquement non rentable.
- Réserve ultime: réserve inconnue mais estimée par extrapolation des réserves précédentes.
- Réserve en circulation: réserve de matériaux déjà mise en service au travers des produits manufacturés. Une partie parfois importante peut être récupérée par recyclage pour limiter les prélèvements miniers directs.

On peut donc estimer un nombre d'années de réserve pour chaque matériau résultant du rapport entre la réserve de base et le niveau actuel de production. Cette durée théorique permet d'appréhender le niveau de tension d'un matériau donné. On peut noter le développement de l'extraction qui ne peut en aucun cas être « durable » ou « soutenable » : au rythme actuel la majorité des matériaux techniques seront épuisés d'ici 100 ans ! (Figure 12). Ceci implique de diminuer l'extraction directe tant par une diminution de nos besoins que par un recyclage des déchets (exemple de l'aluminium).

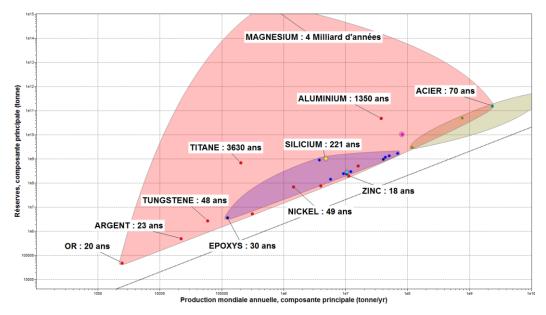
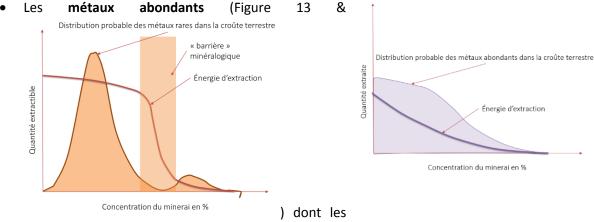



Figure 12: "burn rate" des matériaux en années, fourni par CES Edupack

Le paramètre actuellement déterminant entre réserve de base et réserve potentielle est la concentration pour laquelle l'exploitation d'un matériau génère du profit. Deux tendances peuvent être dégagées :

réserves sont présentes sous forme de mines de concentration progressivement décroissante. Les coûts d'extraction sont donc progressivement croissants et en partie prévisibles.

 Les métaux rares (Figure 15) très inégalement distribués: des filons richement concentrés en certains points du globe, et la majorité de la ressource présente sous forme diffuse dans le reste de la roche mère, et donc essentiellement inexploitable en raison de coûts et impacts d'extraction inacceptables.

Figure 13: métaux abondants (source : Quel futur pour les métaux ?, Philippe Bihouix)

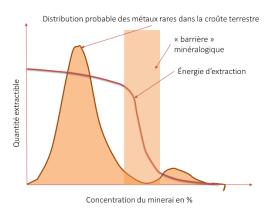


Figure 15 : barrière minéralogique des métaux rares (source : Quel futur pour les métaux, Philippe Bihouix)

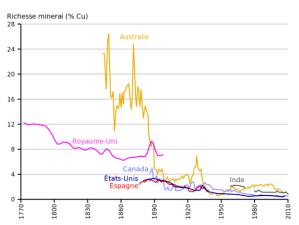


Figure 14 : rendement décroissants des métaux abondants, cas du cuivre (source : Quel futur pour les métaux ? Philippe Bihouix)

2.3. Terres « rares » et matériaux stratégiques

Le cas des terres rares est un cas un peu à part parmi les matériaux. Quatre critères permettent en effet de les caractériser :

- Quantitatif: il s'agit de petites productions, inférieures à deux cent mille tonnes, par rapport à celles des métaux industriels, qui dépassent très souvent le million de tonnes.
- Technique : il s'agit majoritairement de sous-produits de l'industrie minière ou métallurgique, **l'offre n'est donc pas adaptable à la demande.**
- Economique : ces produits ont une valeur élevée, voire très élevée, et connaissent, parfois, d'importantes fluctuations, ainsi que des crises, alimentées aussi par la spéculation et le positionnement géostratégique des pays producteurs.
- Criticité ou importance stratégique : en particulier pour les nouvelles filières industrielles « high tech » fortement dépendantes des terres rares.

Les terres rares sont au nombre de 17 : scandium, l'yttrium, et les quatorze lanthanides stables : lanthane, cérium, praséodyme, néodyme, prométhium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, et lutétium. Toutes ont des propriétés uniques (optiques, chimiques, mécaniques, magnétiques...) qui les rendent utiles voire indispensables dans de nombreuses applications (Figure 17). Ces matériaux ont aussi en commun d'être extrêmement impactants pour l'environnement.

En effet, **l'extraction et le raffinage des terres** rares entraînent le **rejet** (Figure 16) de nombreux éléments toxiques : **métaux lourds, acide sulfurique ainsi que des éléments radioactifs** (uranium et thorium). « Il faut injecter sept ou huit tonnes de sulfate d'ammonium dans le sol pour extraire une tonne d'oxyde, ces liquides toxiques vont résider longtemps et les conséquences seraient épouvantables si l'eau souterraine était polluée », a indiqué le vice-ministre de l'Industrie et des Technologies de l'information chinois Su Bo.

Figure 16 : rejets d'exploitation en Chine

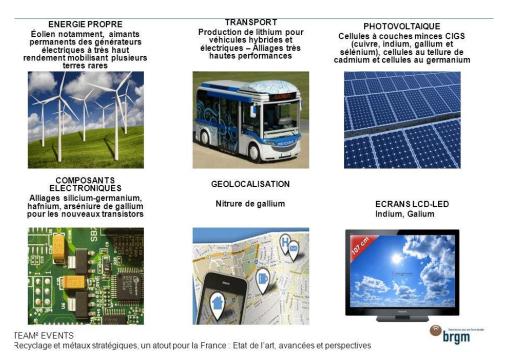


Figure 17 : principaux domaines d'utilisation

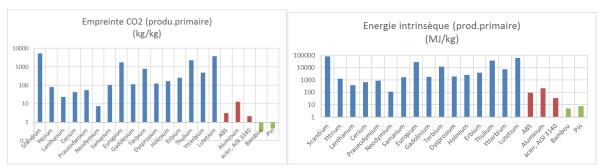


Figure 18 : Impact des terres rares comparé à l'ABS, l'acier l'aluminium, le bambou et le pin, échelle logarithmique

L'utilisation croissante de ces 17 terres rares pose donc la question de la « croissance » verte basée sur l'utilisation accrue de ce type de ressources (Figure 18).

A ces terres rares on ajoute souvent les matériaux suivants pour constituer la famille des matériaux dits « stratégiques », c'est-à-dire critiques de part leur rareté, leur indispensabilité ou leur exclusivité géographique : antimoine, indium, béryllium, magnésium, cobalt, niobium, fluor, les platinoïdes (ruthénium, rhodium, palladium, osmium, iridium, platine, rhénium), gallium, germanium, tantale, graphite, tungstène.

Le concepteur doit donc tenir compte de ce contexte géostratégique global s'il veut être à même de penser son produit de façon pérenne tout en diminuant l'exploitation de ressources rares, précieuses et surtout polluantes.

2.4. Les terres « abondantes »

Face à la pénurie de certains matériaux et la disproportion d'énergie et de rejets associés, on pourrait imaginer que l'utilisation de matériaux abondants constitue une alternative, malheureusement cette abondance permet un coût particulièrement bas qui à son tour entraîne la surexploitation. C'est le cas du silicium, élément le plus abondant sur la Terre après l'oxygène.

Les utilisations de cet élément sont multiples : bâtiment, verre, panneaux photovoltaïques, électronique. Cela conduit à ce que 70% des rivages sableux de la planète soient soumis à l'érosion avec notamment la moitié des plages en Floride (Figure 20) menacées de disparition et la disparition d'une vingtaine d'îles en Indonésie suite à l'extraction de sable permettant l'expansion de Singapour (Figure 19).

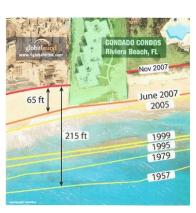


Figure 20 : recul des côtes en Floride (source : Florida Department of Environmental Protection)

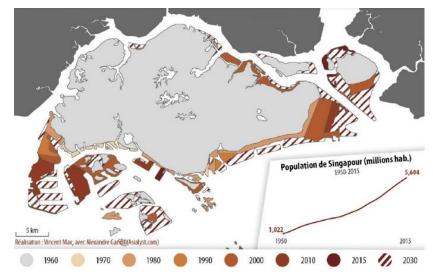


Figure 19 : expansion territoriale de Singapour (1960 à 2030) (source : AsiaLyst.com)

2.5. Le recyclage et les limites de l'économie « circulaire »

Face à l'intensité des prélèvements observée, une réponse courante de l'ingénierie consiste à repousser les limites d'usage des matériaux. Une suite en « R » est souvent évoquée pour faciliter l'innovation : Refuser, Renoncer, Repenser, Réduire, Réutiliser, Réparer, Recycler, Rendre à la Terre...

Refuser, Repenser, Réduire renvoient directement à la remise en question des besoins et de la nécessité des produits : le produit qui pollue le moins est encore celui qui n'existe pas ! Et s'il n'est pas toujours possible, facile ou souhaitable de renoncer à certains besoins (quoique...) on peut souvent y répondre par autre chose qu'un nouveau produit : service, produit existant, mutualisation de produits existants, détournement d'usage, etc.

Réutiliser, Réparer, Recycler, Rendre à la Terre renvoient quant à eux à la fin de vie des produits : constatant la pollution d'un produit, il peut être souhaitable d'en prolonger l'existence ou de récupérer au maximum les composants pour de nouvelles applications. Mais cette voie de remédiation sera toujours bornée par les limites d'irréversibilité énergétique (second principe de la thermodynamique) et d'irréversibilité des transformations de matière (usure, dispersions irréversibles...). Cette logique vertueuse ne permet donc pas le renouvellement de la totalité des ressources : leur extraction, leur transformation et l'utilisation par addition en faible pourcentage les disperse de façon définitive et irréversible, générant par la même occasion une pollution des milieux.

2.5.1. Dispersion lors de la transformation des matériaux.

Ce sont les industries de transformation qui sont à la source de nombreuses pollutions métalliques (Figure 21); chaque crassier industriel contient des centaines de milliers de tonnes de déchets, les fumées des centres industriels ou des centrales thermiques sont riches en métaux et en soufre. L'arsenic est par exemple un déchet des gisements d'or et d'uranium, un minerai aurifère contenant environ 1 kg d'arsenic pour 1g d'or. L'utilisation d'explosifs augmente les possibilités de contact avec les voies de circulation des eaux de surface et souterraines.

► Les rejets industriels	
Métaux (plomb, cadmium, nickel, mercure)	70 %
Pyralènes (PCB) (transformateurs)	31 %
Hydrocarbures aromatiques polycycliques (HAP)	93 %
Micropolluants organiques (composés bromés, dioxines, benzène)	4 %

Figure 21 : Pourcentage des points de contrôle en France présentant une concentration moyenne à élever de la substance concernée (source : IFEN Octobre 2006)

Autre exemple : dans l'estuaire de la Seine les flux journaliers avoisinent 3 t pour le zinc, 700 kg pour le chrome et 50 kg pour le cadmium, l'ensemble des éléments transportés en solution est de 35 t /km² et par an (Figure 22). A l'échelle de la France, le recensement des pollutions des eaux par dispersion permet de connaître pour différents polluants leur concentration en différents points de contrôle.



Figure 22: points de contrôle pour l'arsenic, la dose de 30mg/kg est la dose létale pour 50% d'une population de rongeurs. La dose létale pour l'homme est de 763 mg/kg (source : http://eau-evolution.fr/)

2.5.2. Dispersion des matériaux durant l'utilisation.

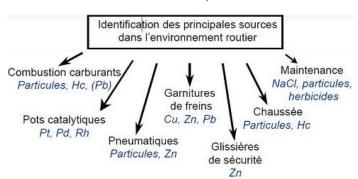


Figure 23 : dispersion de l'environnement routier

L'usage est également générateur de dispersion, l'exemple le plus frappant est celui du trafic routier: Une route à deux voies supportant un trafic de 10000 véhicules/jour génère 200 à 1200 kg / km de matières en suspension (Figure 23).

Il est donc important de ne pas favoriser les utilisations dispersives de ressources rares quand elles peuvent être

évitées. Petit florilège d'usages dispersifs : les shampoings, teintures (sélénium, strontium,

bismuth, plomb, cobalt, mercure), les cosmétiques (argent, or, titane, aluminium, silicium, plomb, mercure, bismuth), les désinfectants (arsenic, sélénium, argent), le dentifrice (titane), les lames de rasoir (acier au cobalt), les encres et papiers (titane, cobalt, zinc, bismuth, cadmium, cuivre, argent...), les lubrifiants, les engrais, ...

2.6. Cercle vicieux matière énergie matière...

Les ressources devenant de plus en plus rares, leur extraction demande de plus en plus d'énergie. Mais l'extraction (Figure 24) de la ressource énergétique demande à son tour de plus en plus d'énergie et de matériaux, qui demande à leur tour de plus en plus de ressources devenant de plus en plus rares, ...

Figure 24: Extraction des ressources

Le rapport entre l'énergie récupérée l'énergie consommée pour la production est définie l'EROI : Energy Returned On Investment taux de retour énergétique. Ce taux doit être de 7 pour permettre la durabilité de la société (Figure 25); cette énergie devant également permettre le fonctionnement d'autres secteurs comme l'alimentation, l'habitat, la santé...

Figure 25 : Taux de retour énergétique selon les sources d'énergie (source : https://www.canal-u.tv/video/canal_uved/la_finitude_des_ressources.32677)

La limite de ressources en matériaux se double donc aussi d'une limite de ressource énergétique : affronter cette double limite est un défi sans précédent dans l'histoire de l'humanité, défi auquel les ingénieurs devront répondre!

2.7. Caractérisation des impacts environnementaux

Nous avons présenté les difficultés liées à l'extraction des matériaux et les limites quantitatives posées par le développement de la société de consommation. Un autre aspect fondamental a été esquissé : la limite liée aux dégradations environnementales. Cette limite est multiple car les pollutions sont multiples et intimement liées entre elles. Connaître dans le détail toutes ces pollutions et les mécanismes écologique, toxicologique, biologique qui permettent d'en évaluer la gravité dépasse le cadre de ce cours. Mais des indicateurs environnementaux synthétiques permettent tout de même de caractériser les interactions d'un produit et de son environnement sur l'ensemble de son cycle de vie et donc d'évaluer quantitativement et qualitativement la dégradation environnementale d'un produit.

Nous nous limiterons à quelques indicateurs communs à tous les logiciels d'évaluation du cycle de vie : l'énergie grise, la consommation de ressources rares, l'émission de gaz à effet de serre, l'acidification, la consommation en eau.

2.7.1. Énergie grise

L'énergie grise ou contenu énergétique est la quantité d'énergie utilisée pour un produit, y compris l'énergie dépensée pour l'élaboration des matériaux entrant dans la composition du produit, et celle utilisée par les services impliqués.

Pour l'obtenir, il "suffit" de faire la somme des consommations d'énergies à chaque étape du cycle de vie, et de lui soustraire la somme des énergies récupérées (par exemple lors de son incinération et/ou lors de la production d'énergie éventuellement générée).

Le calcul du contenu énergétique peut s'avérer difficile car il nécessite une parfaite connaissance des matériaux et procédés entrant dans la composition du produit. On se basera sur les données fournies par CES Edu Pack (Base de données matériaux et procédés) dans les critères **Energie grise, production primaire** (Figure 26) et **Energie grise, recyclage.**

Figure 26 : **Production primaire** Voiture électrique 34700 kWh

Voiture thermique 20800 kWh

2.7.2. Consommation de ressources rares

Cet indicateur exprime la quantité de matières « rares » consommée sur tout le cycle de vie du produit. Le calcul correspond à la somme des masses de matières « rares », au niveau contenu dans les minerais. Le seuil de « raréfaction » a été fixé juste au-dessus du niveau des ressources énergétiques fossiles (qui sont donc exclues du calcul).

De la même façon que la contribution à l'effet de serre est traduite en référence à un équivalent CO₂, l'unité utilisée ici est le kg équivalent antimoine (kg Sb eq.).

Exemple:

Aluminium (mix européen)
 49 g Sb/kg

• Acier courant: 12 g Sb/kg

• ABS: 44 g Sb/kg

La conversion des quantités brutes vers leur équivalent en kg d'antimoine fait intervenir la quantité totale de matière première disponible sur terre, ainsi l'aluminium consomme donc 4 fois plus de ressources rares que l'acier et pratiquement autant que l'ABS (Figure 27).

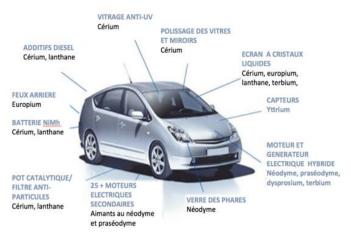


Figure 27: Mise en œuvre de huit terres rares pour un véhicule hybride (source: https://www.capital.fr)

2.7.3. Émission de gaz à effet de serre

Les principaux gaz à effet de serre (GES) (Figure 28 & Figure 29) d'origine anthropique sont évalués et exprimés en fonction de leur pouvoir de réchauffement global (PRG) relativement au dioxyde carbone (CO₂), sur une durée de 100 ans, qui est la durée de séjour dans l'atmosphère du CO₂

- Dioxyde de carbone, PRG = 1
- Méthane (CH4), PRG = 34
- Protoxyde d'azote (N2O), PRG = 298
- Perfluorocarbures (CnF2n+2) PRG = 12200
- Hydrofluorocarbures (CnHm+p) PRG = 1550
- Hexafluorure de soufre (SF6). PRG = 22800

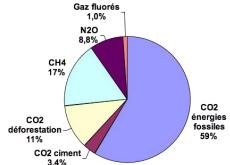


Figure 28 : pourcentage d'émission massique des GES (source : https://jancovici.com/changement-climatique)

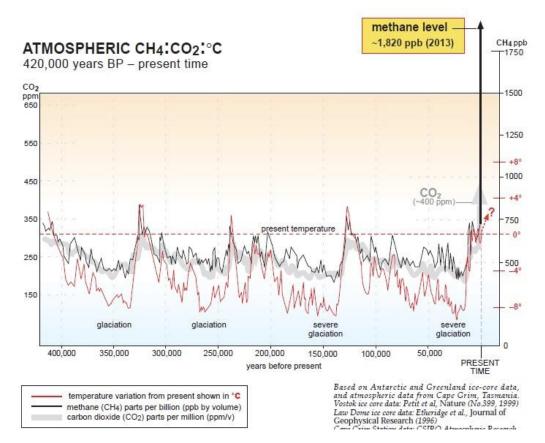


Figure 29 : variation des température, du CO₂ et du CH₄ au cours du temps

Les principales sources industrielles d'émission des GES sont la combustion d'énergie (sources fixes), le transport, les sources fugitives d'énergie et enfin les procédés industriels et utilisation de produits.

Le PRG d'un gaz dépend du **forçage radiatif** (c'est à dire la puissance radiative que le gaz à effet de serre renvoie vers le sol, un forçage positif se traduira par une élévation de la température alors qu'un forçage négatif correspondra à une diminution), de sa concentration dans l'atmosphère et de la dégradation en fonction du temps du gaz en question à la suite de son émission instantanée.

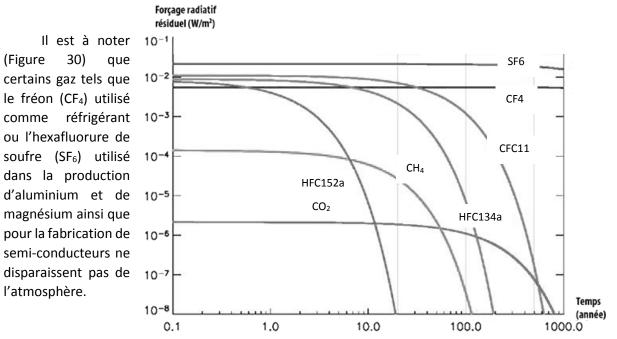


Figure 30 : Forçage radiatif résiduel en fonction du temps pour différents gaz (source : https://jancovici.com/changement-climatique)

Les conséquences de ce réchauffement climatique sont multiples mais les plus alarmantes sont :

- La désertification et la hausse du niveau moyen des océans conduisant à 250 millions de réfugiés climatiques d'ici 2050 pouvant entraîner des instabilités géopolitiques majeures.
- La dégradation irréversible de la capacité des océans à absorber le CO₂ via le phénomène décrit dans le chapitre suivant : l'acidification.
- La menace de 80% des espèces par la destruction des habitats et des écosystèmes.

2.7.4. L'acidification

Cela correspond à l'augmentation de l'acidité d'un sol, d'un cours d'eau ou de l'air en raison des activités humaines. Ce phénomène peut modifier les équilibres chimiques et biologiques et affecter gravement les écosystèmes. L'augmentation de l'acidité de l'air est principalement due aux émissions de SO₂, NOx et HCl, lesquels, par oxydation, donnent les acides HNO₃ et H₂SO₄. Les pluies acides qui en résultent ont un pH voisin de 4 à 4,5.

Le phénomène le plus alarmant est l'acidification des océans (Figure 31) soit la diminution progressive du pH des océans. Ce phénomène est induit par l'augmentation des émissions de dioxyde de carbone (CO₂) d'origine anthropique dans l'atmosphère qui en en se combinant avec l'eau génère de l'acide carbonique abaissant ainsi le pH de l'eau; cette acidité attaque les éco systèmes et en particulier les récifs coralliens. Par voie de conséquence, la capacité de l'océan à absorber le CO₂ diminue. Se

capacité de l'océan à absorber le CO₂ diminue. Selon l'ONU, le pompage océanique du carbone est en 2013 70 % moins efficace qu'au début de l'ère industrielle.

Figure 31 : effet de l' acidification au bout de 45 jours pour le pH attendu en 2100

Sur la base des prévisions du GIEC (Groupe d'experts Intergouvernemental sur l'Evolution du Climat ou IPCC en anglais), l'augmentation actuelle du taux de CO₂ dans l'atmosphère devrait encore diminuer le pH des eaux du globe de 8,14 actuellement à 7,8 d'ici la fin du siècle

2.7.5. Consommation en eau ou eau virtuelle

L'eau virtuelle est la quantité d'eau totale pour la fabrication d'un produit (Figure 33). La consommation d'eau totale correspondant au niveau de vie d'un français moyen à travers l'utilisation de tous les biens de consommation correspond à 5000 litres/ jour environ (Figure 32).

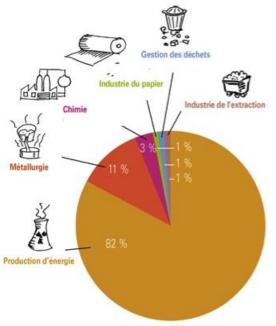
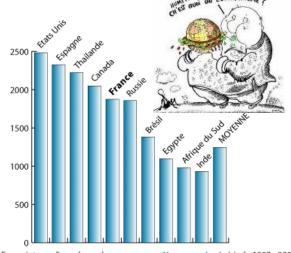



Figure 33 : consommation d'eau de différents secteurs industriels (source : http://les.cahiers-developpement-durable.be)

Empreinte sur l'eau de quelques pays en m³/personne/an (période 1997 - 2001)

Figure 32 : Empreinte sur l'eau de quelques pays en

 $m^3/personne/an$ (période 1997 à 2001) (Source : Water footprint of nations, A.K.Chapagain et A.Y. Hoekstra, Unesco, 2004)

2.8. Eco indicateur 99

La multiplicité des indicateurs ne facilite pas l'évaluation du « coût » environnemental de façon synthétique et surtout ne facilite pas la comparaison entre deux produits (Figure 34).

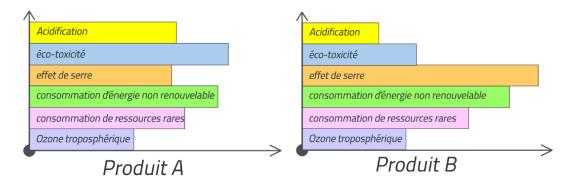
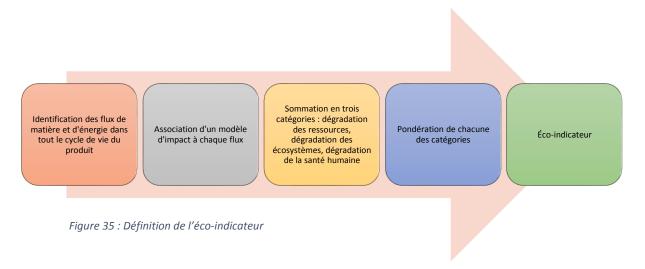



Figure 34: du produit en version A ou version B, lequel est le moins polluant?

Afin d'obtenir une « note environnementale » unique, il est nécessaire de pondérer et moyenner les différents impacts entre eux. Mais sur quelle base ? il est nécessaire d'avoir un référentiel commun : c'est ce que propose l'éco-indicateur 99 (Figure 35).

L'éco indicateur 99 vise à évaluer de façon pondérée 3 types d'impacts:

- **Ressources** : prise en compte de l'augmentation de l'énergie nécessaire pour l'extraction de minerai et d'énergies fossiles dont la qualité décroît. La raréfaction de terres arables et granulats (sable et gravier).
- **Ecosystèmes** : effets sur la biodiversité (écotoxicité, acidification, eutrophisation et exploitation des terres)1 .
- Santé humaine : nombre et durée des maladies, années de vie perdues dues à la mort prématurée liée à des causes environnementales : changement climatique, trou de la couche d'ozone, effets cancérigènes, effets respiratoires et radiations.

L'éco indicateur évolue : l'éco indicateur 99 se différencie du 95 principalement par la prise en compte de la dispersion et de la dégradation des ressources, leur raréfaction, la déforestation et l'affectation des sols.

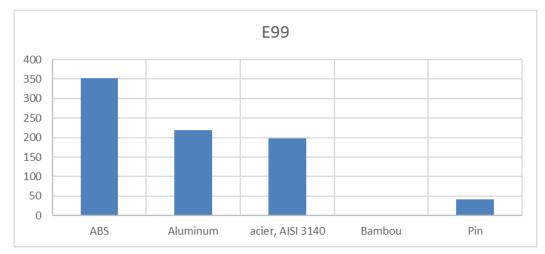


Figure 36 : eco-indicateur 99 de cinq matériaux de référence

L'unité de quantification est le millipoint : 1 point représente un millième de l'empreinte environnementale moyenne d'un européen au cours d'une année. Dans les logiciels on utilisera les millipoints ($mPt = 10^{-3} Pt$) (Figure 36).

Attention: l'utilisation d'un éco-indicateur peut masquer la disparité des impacts: dans certains cas le choix de l'indicateur le plus fort ou le plus susceptible d'être modifié est préférable.

2.9. Eco-conception

Le panorama présenté jusqu'ici n'est guère engageant : la Terre dont les ressources sont pourtant immenses atteint une double limite : capacité à satisfaire notre boulimie énergétique et matérielle, mais aussi capacité à traiter un volume de déchets et de polluants fantastiquement élevé. Comment l'ingénieur du XXIème siècle peut-il continuer à concevoir, innover, penser le monde dans ces conditions ? La réponse à cette question n'est ni unique ni simple mais prendre conscience du problème est déjà un pas vers la solution.

Pour autant, il faut aller plus loin. La réponse apportée dans ce cours va être celle de (Figure l'éco-conception 37) particulièrement du choix de matériaux prenant en compte les impacts environnementaux. Cette réponse n'est que partielle et se situe dans le champ de la réduction des impacts et non de leur élimination. Cela étant précisé, l'écoconception peut donner naissance à des approches innovantes et des produits bien mieux pensés. Elle consiste à intégrer les aspects environnementaux dans la conception des produits (ISO 14040) en vue de réduire les

cle de vie conception

impacts environnementaux négatifs de ceux-ci au long de leur Figure 37 : Cycle de vie d' un produit cycle de vie. En effet, on estime que **plus de 80 % des impacts** environnementaux liés aux produits se décident au cours de la

(source : pôle Eco Conception)

phase de conception. Afin de préserver les qualité d'usage voire de les améliorer, l'éco conception s'appuie sur l'innovation et sur l'analyse du besoin de l'utilisateur. Concrètement toutes les

connaissances, compétences, outils et méthodes de l'ingénieur, scientifique comme technique, peuvent servir une démarche d'éco-conception, <u>si l'objectif environnemental est clairement défini et assumé</u>:

- Analyse fonctionnelle : phases de vie et contraintes environnementales exprimées
- Brainstorming : utiliser des critères environnementaux dans la phase de tri
- Design for assembly (DFA): anticiper sur la fin de vie, le recyclage
- Conception à coût objectif : faire entrer les coûts environnementaux
- Analyse de la valeur : intégrer la valeur environnementale (la définir aussi !)

2.9.1. Cadre réglementaire de l'éco-conception

La loi impose la prise en compte des impacts environnementaux dans la conception des produits. La Charte de l'Environnement intégrée à la constitution française en 2005 précise notamment :

- Article 1. Chacun a le droit de vivre dans un environnement équilibré et respectueux de la santé.
- Article 2. Toute personne a le devoir de prendre part à la préservation et à l'amélioration de l'environnement.
- Article 9. La recherche et l'innovation doivent apporter leur concours à la préservation et à la mise en valeur de l'environnement.

Cette charte est en cours de retranscription dans le droit français. Malheureusement elle n'est pour l'instant pas déclinée en lois et décrets qui pourraient accélérer la mise en place de solutions environnementales efficaces...

Par ailleurs plusieurs directives européennes, retranscrites dans le droit français se rapportent à la prise en compte de l'environnement :

• Directive RoHS (Figure 38 & Figure 39):
Restriction of Hazardous Substances, interdit à compter du 1er juillet 2006 l'utilisation de certaines substances dangereuses. Elle a pour objet de limiter l'utilisation de substances dangereuses dans les équipements électriques et électroniques et de contribuer à la protection de la santé humaine, à la valorisation et à l'élimination des déchets d'équipements électriques et électroniques. Les substances visées par la directive RoHS sont certains métaux lourds et retardateurs de flamme bromés dont la concentration ne doit pas dépasser 0,1% en masse:

Figure 38: Sigle norme RoHS

- o Plomb
- o cadmium (<0,01%!)
- o chrome hexavalent
- o mercure
- o polybromobiphényles (PBB)
- polybromodiphényléthers (PBDE)

Le cas du chrome hexavalent est assez emblématique de ces matériaux : il est aussi toxique que les cyanures, entraîne allergies et cancers et touche le foie et les reins. L'OMS a fixé une valeur limite de 0,05mg par litre d'eau alors que dans l'environnement d'anciens sites industriels on a relevé jusqu'à 0,3mg/litre. Une dose de 1 à 2 grammes est létale pour l'homme lorsque certains traitements de surface comme les dépôts lamellaires ou l'anodisation en comportent

Figure 39: prise en compte de la directive RoHS pour la fabrication des vis

jusqu'à 10 g par m². Le contact avec la peau est également un mode de transmission et c'est pourquoi il sera interdit de la surface des pièces en contact avec le public.

Directive WEEE (Figure 40): Waste of Electric And Electronic Equipments, impose la collecte, le traitement et la valorisation de tous les déchets (à partir du 13/08/2005 pour les déchets « grand public »). Elle a pour objectif principal de réduire la quantité de déchets électriques et électroniques, et de développer la réutilisation et le recyclage. Elle contraint tout le secteur électrique et électronique à organiser et financer la collecte et la revalorisation de ses équipements en fin de vie. Au-delà du

simple « pollueur payeur », il s'agit d'optimiser la performance

Figure 40 : Sigle Directive WEEE

économique et environnementale des produits depuis leur design grâce à l'éco-conception jusqu'à la valorisation via la mise en place de filières dédiées et la recherche de nouveaux débouchés à nos « vieilleries ».

L'outil de base de l'éco-conception est l'analyse du cycle de vie qui fait l'objet d'une série de normes dédiées facilitant sa prise en compte et le précisant les moyens de la mettre en œuvre.

2.9.2. Analyse du cycle de vie ISO 14040 et suivantes

Selon l'ISO, il s'agit de la "Compilation et évaluation des consommations d'énergie, des utilisations de matières premières, et des rejets dans l'environnement, ainsi que de l'évaluation de l'impact potentiel sur l'environnement associé à un produit, ou un procédé, ou un service, sur la totalité de son cycle de vie". Le cycle de vie d'un produit, procédé ou service rassemble les phases de fabrication, transformation, utilisation et destruction. Cette méthode repose sur une démarche en 4 phases :

- la définition des objectifs et du champ de l'étude,
- l'analyse de l'inventaire,
- l'évaluation de l'impact,
- l'interprétation des résultats obtenus en fonction des objectifs initiaux.

Il existe aujourd'hui de nombreux logiciels d'ACV qui permettent de calculer les impacts environnementaux des produits : SimaPro, Wizard, EIME, GaBI, UMBERTO, KCL-ECO, The Boustead Model, EcoPro, EMIS, Ökobase, PEMS, ...

2.9.3. Démarche de conception

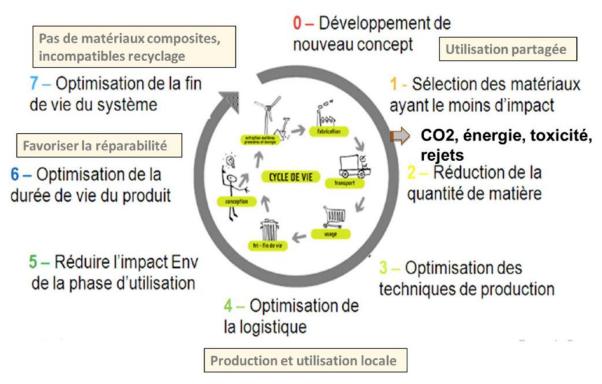


Figure 41 : l'approche cycle de vie et son impact sur la démarche de conception

Pour un bureau d'étude, l'analyse du cycle de vie peut s'avérer fastidieuse au regard de la quantité d'informations requises (Figure 41). On fera donc souvent au préalable **une évaluation simplifiée du cycle de vie (ESCV).** Aussi le concepteur pourra être amené à ne considérer dans un premier temps qu'une partie du cycle de vie et à guider sa recherche de solution à l'aide des principes suivants :

- Réduire la masse et le nombre des composants (optimisation minimum matière)
- Réduire le nombre de matériaux différents
- Réduire les consommations énergétiques à toutes les étapes du cycle de vie
- Augmenter les rendements à toutes les étapes du cycle de vie
- Augmenter la durée de vie, la maintenabilité, la fiabilité
- Privilégier les matériaux recyclés et/ou recyclable et vérifier leur recyclage effectif
- Faciliter le démantèlement (démontage aisé, marquage des pièces de + de 50g)
- Supprimer les produits toxiques

2.10. Choisir les matériaux d'un produit en prenant en compte les impacts environnementaux

2.10.1. Présentation de CES

La conception mécanique est un processus itératif menant d'un besoin au produit répondant à ce besoin. Le choix des matériaux et des procédés intervient à chaque étape de la conception, mais le nombre de matériaux à la disposition de l'ingénieur est estimé entre 40000 à 80000. Afin de permettre au concepteur d'innover dans le choix d'un matériau il est nécessaire de mettre en place une méthodologie prenant en compte les interactions entre :

- Les caractéristiques des matériaux
- Les procédés de mise en œuvre
- La géométrie désirée
- La fonction à remplir
- Et bien sûr les impacts environnementaux

Ce choix repose sur l'accès à une base de données conséquente et permettant un traitement croisé des caractéristiques (physiques et d'impacts) des matériaux. C'est ce que propose le logiciel CES de Granta Design disponible à l'INSA (Figure 42). Pour ce qui nous intéresse CES permettra de :

- Sélectionner les matériaux répondant à un profil de caractéristiques ou de performance (notion d'indice de performance, voir plus loin)
- Sélectionner les procédés compatibles avec une sélection de matériaux et avec les données physiques, fonctionnelles, économiques du produit (série, taille, forme...)
- Obtenir une évaluation simplifiée du cycle de vie d'un produit (éco-audit)

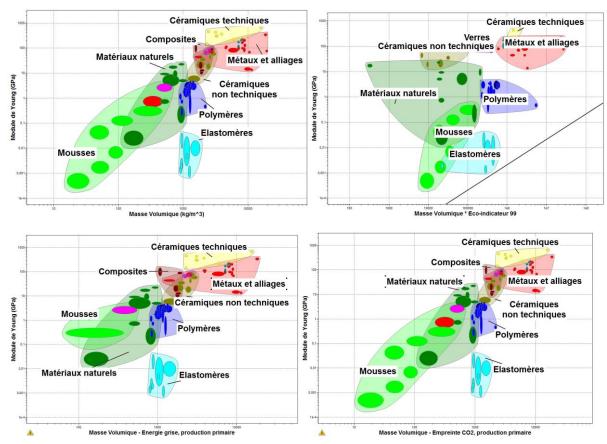


Figure 42 : profils de propriétés des familles de matériaux

2.10.2. Propriétés des matériaux : Essais normalisés

Pour chaque matériau, des essais normalisés permettent de définir ses caractéristiques (Figure 43):

- Essai de traction: Cet essai permet de connaître notamment les limites élastiques et de rupture, l'allongement, le module d'Young, le coefficient de poisson. Pour certains matériaux on remplace cet essai par un essai de compression.
- Essais de dureté: L'essai consiste à faire pénétrer un poinçon sous une charge donnée, la dureté étant l'aptitude d'un corps à résister à la pénétration d'un autre corps.
- Essai de ténacité : la ténacité est la capacité du matériau à résister à la propagation de fissures.
- Essai de résilience : La résilience est l'aptitude à résister aux chocs. Un corps est dit fragile lorsqu'il se rompt sous l'effet d'un choc ou d'efforts brusques.
- Essai d'endurance : L'essai de fatigue consiste à faire subir à une éprouvette un chargement cyclique entre une valeur minimale et maximale (inférieure à la limite à la rupture). Au bout de 10⁹ cycles on considère que la pièce ne se détruira pas.

Outils diamants (dureté)

Acier haute performance (endurance)

Kayak en ABS (résilience)

Figure 43 : Performances des matériaux selon les applications

2.10.3. Etudes d'impacts

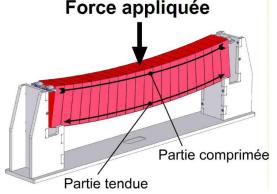
propriétés environnementales ne résultent pas d'essais d'impacts normalisées (ISO 14001). Chaque impact fait donc l'objet d'une méthodologie particulière et si possible normalisée, d'où parfois des écarts selon les sources. Par exemple pour l'empreinte carbone plusieurs méthodologies existent comme l'ISO 14067, le Greenhouse Gas Protocol et le PAS 2050. Pour l'empreinte en eau le Water Footprint Network met au point et améliore les standards de la comptabilité de l'empreinte eau. L'ISO travaille sur l'intégration de l'empreinte eau dans l'évaluation des impacts des produits, processus et organisations au sein de la norme 14044. Ce travail a donné lieu à un document préparatoire intitulé empreinte eau, exigences et ligne directrices (ISO /PWI 14046). Les bases de données utilisées par CES sont renseignées dans le logiciel et évoluent d'une version à l'autre.

Propriétés pour les systèmes mécaniques

Le concepteur conçoit son produit en vue de fonctions à réaliser. La performance du produit, c'est à dire son aptitude à réaliser sa fonction sans dépense d'énergie, sans dépense de matière et pour un impact nul est limitée par les propriétés des matériaux.

Type	Propriété	Symbole	Unité
Général	Coût	$C_{\rm m}$	\$/kg
	Densité	ρ	Kg/m ³
Environnementale	Consommation de ressources rares		kg Sb eq.
	Consommation en eau		litres
	Émission de CO ₂ , prod. primaire		kg CO ₂ eq.
	Eco-indicateur 99		millipoints
	Énergie grise, prod. primaire		MJ
	Acidification		kg SO ₂ eq.
Mécanique	Modules d'élasticité	E, G	GPa
	Limite de rupture, élastique, fatigue	$\sigma_r, \sigma_e, \sigma_f$	MPa
	Ténacité	Kc	MPa.m ^{1/2}
Thermique	Conductivité thermique	λ	W/K/m
	Chaleur spécifique	C _p	J/K/kg
	Température de fusion	Tf	K
	Coef. dilatation thermique	α	K ⁻¹
Electrique	Résistivité	ρ	Ω.m
	Permittivité relative	ε_{r}	F/m
	Tension de claquage	V	10^6 V/m
Usure	Coefficient d'usure	k_A	MPa ⁻¹
Magnétique	Induction	Bs, Bc	Tesla T
	Champ coercitif	H_{c}	A/m
Optique	Absorptivité	A	Sans unité
	Indice de réfraction	n	Sans unité
	Facteur de transmission	T	%/mm

D'autres propriétés concernant le vieillissement, la corrosion, l'usure, l'oxydation, la tenue aux agents extérieurs sont aussi à prendre en compte.


2.11. Procédure de choix des matériaux

2.11.1. Méthode de choix

Trouvons un matériau pour réaliser une pièce (Figure 44) de longueur L imposée et de section carrée b x b libre. Cette pièce doit se déformer le moins possible sous un effort de flexion F connu appliqué au milieu. Le matériau permettant la pièce d'éco-indicateur 99 le moins élevé sera choisi. Deux approches sont possibles :

 L'approche "catalogue": un module d'Young minimum est imposé pour limiter la déformation ainsi qu'un éco-indicateur maximal. Le ou les matériaux sont choisis en fonction de ces deux critères. >> peu innovant...

Figure 44 : Déformation d'une poutre de centre d'usinage

- L'approche "performance": *le compromis est le suivant : les matériaux rigides sont en général polluants, quelle relation entre E et E199 doit-on maximiser pour ce problème ?*Cette relation est appelée indice de performance.
 - 2.11.2. Détermination de l'indice de performance
- Contraintes dues à la fonction de la pièce : la flèche maximale de la poutre est $\delta = \frac{F.L^3}{4.E.b^4}$. La raideur de la poutre est donc $k = \frac{F}{\delta} = \frac{4.E.b^4}{L^3}$. Pour une rigidité donnée, connaissant E nous pouvons en déduire b.

- Performance visée : l'impact de la pièce est $E.I = m.I_{E99} = \mathbf{b}^2.$ L. $\rho.I_{E99}$ Connaissant $\rho.I_{E99}$ nous pouvons en calculer m. Ce calcul peut être mené pour tous les matériaux afin de choisir le plus performant...
- Indice de performance : plutôt que de calculer la masse des 40000 pièces dans 40000 matériaux différents, il est préférable de déterminer une relation à maximiser entre les caractéristiques **E** et p.I_{E99} du matériau... Il suffit pour cela d'éliminer le paramètre libre <u>b</u> entre les deux équations de contrainte et de performance :

$$k = \frac{4.E.b^4}{L^3}$$
 donne $b = \left(\frac{k.L^3}{4.E}\right)^{\frac{1}{4}}$

$$E.I_{E99} = \mathbf{b}^2.L.\,\rho.\,I_{E99}$$
 donne alors $E.I_{E99} = \left(\frac{\mathbf{k}.L^3}{4.E}\right)^{\frac{1}{2}}.L.\,\rho.\,I_{E99} = \left(\frac{\mathbf{k}}{4}\right)^{\frac{1}{2}}.\,(L)^{\frac{5}{3}}\left(\frac{\rho.I_{E99}}{E^{\frac{1}{2}}}\right)^{\frac{1}{2}}$

Les matériaux présentant le plus haut rapport $\frac{E^{\frac{1}{2}}}{\rho I_{E99}}$ sont à privilégier :

Matériau	E GPa	ρ.I _{E99} mpts/m ³	${ m E}^{1/2}$ / $ ho.{ m I}_{ m E99}~(10^{-5})$	EI99 mpt	b mm
Bambou	8	126,63	2233,6	0,7	74,8
Pin	10,4	16224	19,9	79,5	70,0
Acier	210	1554300	0,9	1695,9	33,0
Aluminium	72,5	613200	1,4	1138,7	43,

Remarque : cette sélection ne prend pas en compte les aspects de coûts de mise en forme, ni les possibilités d'améliorer la section (profilé en I), ni la possibilité de faire des composites sandwich de plusieurs matériaux...

2.11.3. Démarche générale du choix d'un groupe de matériaux

Tous les matériaux

Impacts environnement, recyclabilité, brillance, toucher ,contact alimentaire, température de fusion...

Matériaux respectant les limites de propriétés du cahier des charges

Fonctions:

A quoi sert la matière ? transmission d'effort, contact, guidage...

Objectif:

Quelle
performance est
recherchée (coût,
masse, impact
environnemental)

Contrainte :

Géométrique, mécanique, économique...

Indices de performance

Expertise locale

Groupes sélectionnés de matériaux classés par performances

2.11.4. Prise en compte de la géométrie de la section : facteurs de forme

En dehors des propriétés des matériaux, le concepteur peut aussi jouer sur la géométrie de la section pour augmenter la performance à masse égale. Cette géométrie joue un rôle prépondérant dans le cas des chargements en flexion et en torsion. Ce paramètre peut être évalué avec des facteurs de forme :

Contrainte de conception	Flexion	Torsion
Rigidité	$\phi_F^e = \frac{4\pi I}{A^2}$	$\phi_T^e = \frac{2\pi K}{A^2}$
Résistance	$\phi_F^f = \frac{4\sqrt{\pi}Z}{A^{3/2}}$	$\phi_T^f = \frac{2\sqrt{\pi}Q}{A^{3/2}}$

A: aire de la section; I, K, Z et Q sont des coefficients propres à chaque section, donnés ci-dessous

Section	A	I	K	Z	Q
Tube rond R, r	$\pi(R^2-r^2)$	$\pi (R^4 - r^4)/4$	$\pi(R^4-r^4)/2$	$\pi(R^4-r^4)/4R$	$\pi(R^4-r^4)/2R$
Tube rect. bxhxe	2e(h+b)	$h^3e(1+3b/h)/6$	$\approx 2eb^2h^2/(h+b)$	$h^2e(1+3b/h)/3$	2ebh
Poutre I	2e(h+b)	$h^3e(1+3b/h)/6$	$2be^{3}(1+4h/b)/3$	$h^2e(1+3b/h)/3$	$2be^2(1+4h/b)/3$
Poutre H	2e(h+b)	$e(h^3+4be^2)/6$	$2he^{3}(1+4b/h)/3$	$e(h^3+4be^2)/3h$	$2he^2(1+4b/h)/3$

2.11.5. Exemple: longeron d'avion

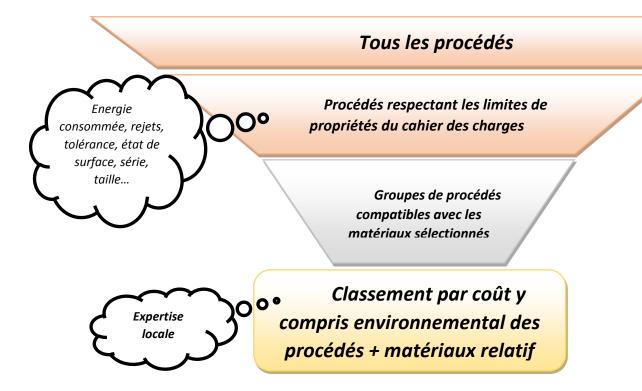
L'objectif est ici la masse minimale, avec comme contraintes la rigidité et une longueur spécifiés.

L'indice de performance, hors géométrie, est $M^* = \left(\frac{E^{\frac{1}{2}}}{\rho}\right)$. L'indice de performance matériau-

géométrie est $M_1=\frac{(\phi_F^e E)^{1/2}}{\rho}$. La section qui maximise le rapport $\frac{I}{A^2}$ s'avère la plus intéressante. Or le bambou est disponible naturellement en section tubulaire tandis que le pin l'est en section pleine. L'acier et l'aluminium sont disponibles dans des sections bien plus efficaces (Tubes et poutre IPN notamment) et ont des indices supérieurs. Malgré tout cela ne compense pas le faible performance environnementale initiale (Figure 45).

Matériau	Facteur de forme $oldsymbol{\phi}_F^e$	Indice E ^{1/2} /ρ.Ι _{Ε99} (10 ⁻⁵)	Indice M ₁ (10 ⁻⁵)
Bambou	10 - 15	2233,6	7063-8651
Pin	1 – 2	19,9	20-28
Acier	25 -30	0,9	4,7-5,1
Aluminium	15 – 25	1,4	5,4-6,9

Figure 45 : Echafaudage en bambou



2.12. Procédure de choix des procédés

La procédure de choix d'un procédé s'appuie sur la même démarche que celle des matériaux, à la différence près qu'il est plus difficile de caractériser un procédé et donc d'en **déterminer un indice de performance**. De plus, alors que le matériau d'une pièce est souvent unique, plusieurs procédés interviennent fréquemment dans la réalisation d'une pièce. Le choix optimal de ces procédés repose donc encore beaucoup sur **l'expertise locale du fabricant et les habitudes établies de l'entreprise**. Quoiqu'il en soit, ce choix doit intervenir au plus tôt dans la conception car son influence sur le produit et ses impacts peut être déterminante, au moins autant que les choix du matériau.

Démarche générale

2.13. Calcul des indices de performances

2.13.1. Indices de performance à objectif poids minimal (1) contraint par la rigidité.

Fonction, contraintes supplémentaires	Indice
Barre, rigidité, longueur spécifiées, section libre	Ε/ρ
Arbre, rigidité, longueur et géométrie spécifiées, section libre	$G^{1/2}/\rho$
Arbre, rigidité, longueur et rayon externe spécifiés, épaisseur libre	G/ρ
Arbre, rigidité, longueur et épaisseur spécifiées, rayon externe libre	$G^{1/3}/\rho$
Poutre, rigidité, longueur et géométrie spécifiées, section libre	$E^{1/2}/\rho$
Poutre, rigidité, longueur hauteur spécifiées, largeur libre	Ε/ρ
Poutre, rigidité, longueur et largeur spécifiées, hauteur libre	$E^{1/3}/\rho$
Colonne, charge de flambage, longueur et géométrie spécifiées, section libre	$\mathrm{E}^{1/2}\!/ ho$
Plaque en flexion rigidité, longueur, largeur spécifiées, épaisseur libre	$E^{1/3}/\rho$
Cylindre avec pression interne, déformation élastique, épaisseur libre	Ε/ρ
Coquille sous pression, déformation élastique, épaisseur libre	Ε/ (1-ν)ρ

2.13.2. Indices de performance à objectif poids minimal (1) contraint par la résistance

 σ_f représente la limite de résistance choisie : limite élastique σ_e , limite à la rupture σ_r ou encore limite d'endurance σ_a .

Fonction, contraintes supplémentaires	Indice
Barre, rigidité, longueur spécifiées, section libre	$\sigma_{ m f}/ ho$
Arbre, charge, longueur et géométrie spécifiées, section libre	$\sigma_{\rm f}^{~2/3}/\rho$
Arbre, charge, longueur et rayon externe spécifiés, épaisseur libre	$\sigma_{\rm f}/\rho$
Arbre, charge, longueur et épaisseur spécifiées, rayon externe libre	$\sigma_{\rm f}^{~1/2}\!/\rho$
Poutre, charge, longueur et géométrie spécifiées, section libre	$\sigma_{\rm f}^{~2/3}/\rho$
Poutre, charge longueur hauteur spécifiées, largeur libre	$\sigma_{\rm f}/\rho$
Poutre, rigidité, longueur et largeur spécifiées, hauteur libre	$\sigma_{\rm f}^{~1/2}\!/\rho$
Colonne, charge de flambage, longueur et géométrie spécifiées, section libre	$\sigma_{\rm f}/\rho$
Plaque en flexion rigidité, longueur, largeur spécifiées, épaisseur libre	$\sigma_{\rm f}^{~1/2}\!/\rho$
Cylindre avec pression interne, déformation élastique, épaisseur libre	$\sigma_{\rm f}/\rho$
Coquille sous pression, déformation élastique, épaisseur libre	$\sigma_{\rm f}/ ho$

⁽¹⁾ Remplacer ρ par $C_m \rho$ pour une conception à coût minimal et par $q \rho$ pour le contenu énergétique minimal et enfin par $l_e \rho$ pour l'éco-indicateur minimal

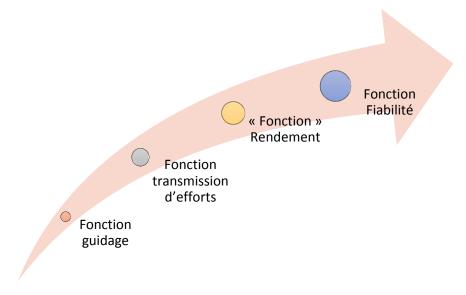
2.13.3. Organes spécifiques limités par la résistance

Fonction, contraintes supplémentaires	Indice
Ressort, énergie élastique emmagasinée maximale, pas de défaillance	$\sigma_{\rm f}^{^2}\!/\!E$
Ressort, énergie élastique massique emmagasinée maximale, pas de défaillance	$\sigma_{\rm f}^{^2}\!/{\rm E}\rho$
Charnières élastiques, rayon de courbure minimal (flexibilité maximale)	$\sigma_{\rm f}\!/\!E$
Pivots, surface de contact minimale, charge de contact maximale	$\sigma_{\rm f}{}^3/E^2$ et H
Joints, adaptabilité maximale, pression de contact limitée	$\sigma_{\rm f}^{3/2}/E$ et $1/E$
Diaphragmes, déformation maximale sous pression spécifiées	$\sigma_{\rm f}^{3/2}/E$
Tambours, vitesse angulaire maximale, rayon fixe, épaisseur libre	$\sigma_{\rm f}/ ho$

2.14. Synthèse

Les axes fondamentaux de l'éco-conception reposent sur la prise en compte de :

- La justification du besoin/ensemble du vivant et générations futures
- L'efficience de l'adéquation produit/besoin
- La rareté des ressources
- Les impacts associés à l'utilisation de l'énergie,
- Les impacts associés à l'extraction de cette énergie
- Les impacts liés à la dégradation du produit : un déchet en devenir et la durée de sa dégradation
- L'intégration de la capacité temporelle des ressources à se renouveler : produits durables et réparables à faible coût environnemental (low tech)

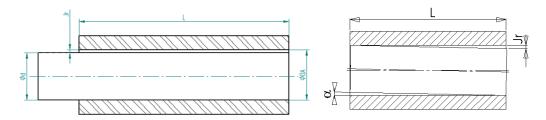

3. Guidage en rotation

3.1. Nomenclature

F_R	Effort radial sur le palier
F_A	Effort axial sur le palier
C	Couple sur le palier
L	Longueur du palier
d	Diamètre intérieur du palier
p_d	Pression diamétrale
p_M	Pression maximale pour une hypothèse de répartition en cos
p_{adm}	Pression admissible
θ_1	½ angle de portée pour une hypothèse de répartition en cos²
v	vitesse circonférentielle
ω	Vitesse de rotation en rad.s ⁻¹
Π_a	Puissance aréolaire admissible
C_f	Couple de frottement

3.2. Généralités

Les guidages en rotation se caractérisent par 4 fonctions, qui en fonction de leur exigence orienteront la solution technologique à employer.



3.2.1. Fonction Guidage

La façon la plus simple d'obtenir un guidage en rotation est de monter **un arbre** dans **un alésage**. La nécessité d'obtenir un mouvement relatif entre les deux impose un **jeu radial Jr** au montage.

Nécessairement ce jeu radial entraı̂ne la possibilité pour l'arbre de se désorienter angulairement : c'est **l'angle de rotulage** α .

On constate que tan $\alpha \approx \alpha = Jr/L$, L étant la portée du guidage

Pour compléter le guidage en rotation, il convient d'ajouter des arrêts axiaux empêchant le mouvement de translation axial. La mobilité relative impose là-encore un **jeu axial Ja**

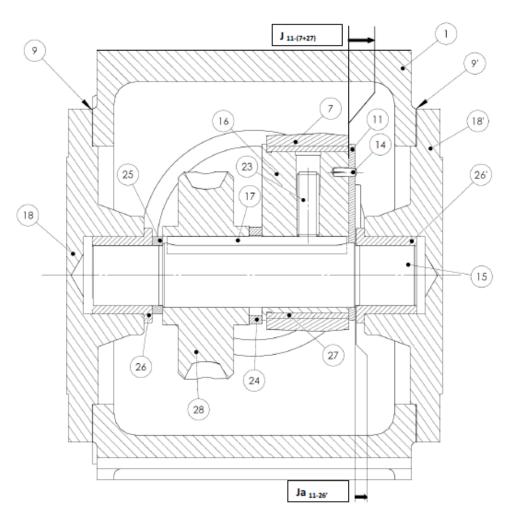


Figure 46 : exemple d'un arbre de pompe, jeux axial de la liaison, jeu de montage de la bielle

Liaisons		Encastrement		Glissière		Pi	vot
Catégories	Jeu linéaire mm	Jeu angulaire °	Jeu latéral mm	Angle de dévers °	Angle rotulage °	Jeu radial mm	Jeu axial mm
Horlogerie, machine outils précise, Hi-Fi	0,01	0,01	0,003	0,005	0,002	0,003	0,005
Machine outil, moteur automobile	0,04	0,05	0,005	0,01	0,005	0,005	0,01
Robot de précision	0,1	0,4	0,08	0,05	0,04	0,06	0,1
Bicyclette, engins de chantier	0,2	0,5	0,2	0,1	0,2	0,08	0,15
Outillage amateur à main	0,3	0,5	0,5	0,5	0,2	0,1	0,3
Appareil électroménager	1	1	0,3	0,5	0,2	0,2	0,5
Matériel agricole	1,5	2	1	0,5	0,5	0,3	1
Menuiserie	2,5	2	2	1	0,5	0,5	2,5

Tableau 1 : jeux conseillés suivants les différentes liaisons

3.2.2. Fonction transmission efforts

Le torseur d'action transmissibles par une liaison pivot est de forme $\begin{pmatrix} X & L = 0 \\ Y & M \\ Z & N \end{pmatrix}$

La symétrie de révolution permet d'identifier 3 chargements distincts :

- La charge radiale notée $\mathbf{F}_{\mathbf{R}}$ avec $\mathbf{F}_{\mathbf{R}} = (\mathbf{Y}^2 + \mathbf{Z}^2)^{1/2}$;
- La charge axiale notée F_A avec $F_A = X$;
- Le couple fléchissant sur le palier notée C avec C = (M²+N²)¹/².

Le chargement radial est repris par la surface cylindrique à l'aplomb du chargement. Au-delà du diamètre Ød et de la portée L, **l'influence du jeu radial** sur la pression de contact est déterminante pour la capacité de la liaison à reprendre ce chargement.

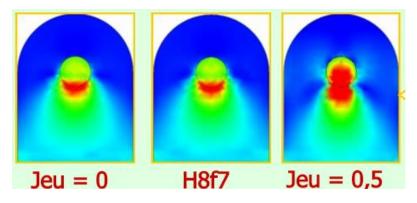
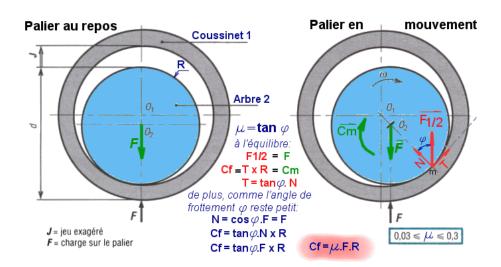
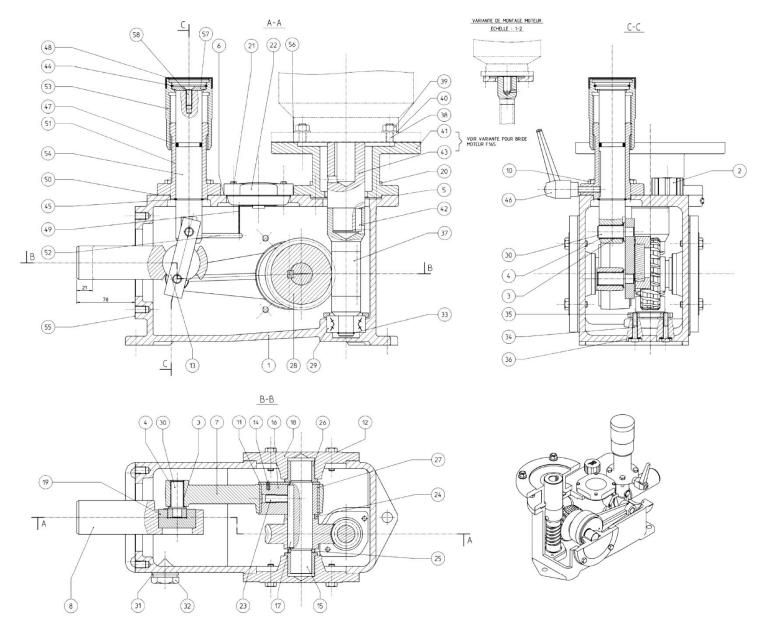


Figure 47 : influence du jeu sur le niveau de pression dans une liaison pivot

Le chargement axial est repris habituellement par une surface plane perpendiculaire à l'axe de la liaison. Cette surface devra être limitée en taille pour éviter l'hyperstatisme de liaison ET correctement spécifiée pour assurer un montage et une reprise des efforts corrects.

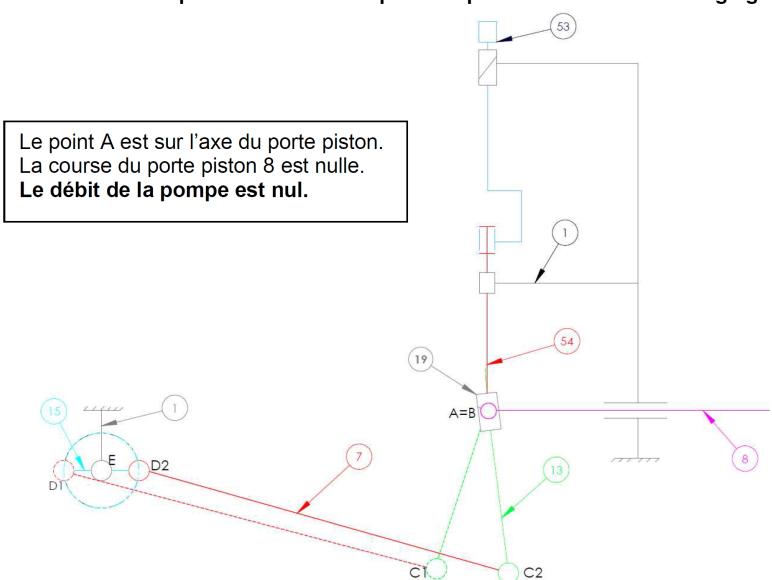

Le moment fléchissant entraîne des pressions de contacts maximales aux extrémités de la liaison, lieu de concentrations de contraintes : ce sont les effets de bords, particulièrement néfastes. La localisation des contacts (réalisation type rotule + linéaire annulaire) permet de mieux contrôler le phénomène en le limitant à des surfaces dédiées et de qualité localisée.

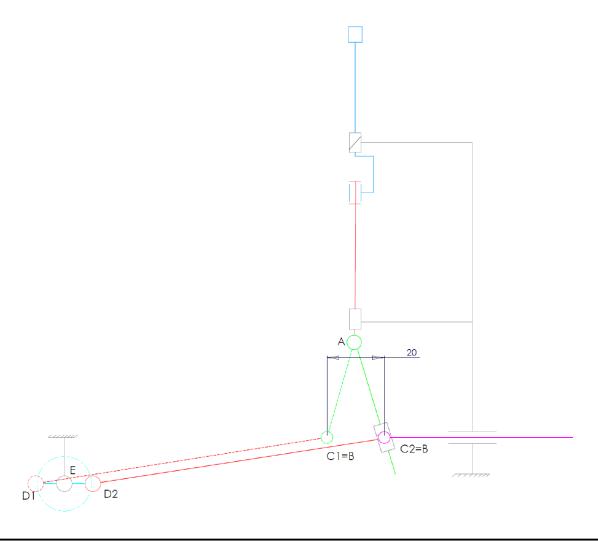
En supposant la pression uniforme sur la portée demi-cylindrique, on peut mettre en évidence la relation en le couple de frottement Cf, le coefficient de frottement, la charge axiale F_a et le rayon d'arbre R (source mathieu.barreau.fr)


3.2.4. Fonction fiabilité

Petit outillage	< 150h	Hydraulique fixe	10000 à 20000	Concasseur, broyeur	15000 à 40000
Outillage pro	100 à 500	Machine bureau	1500 à 13000	Réducteurs	20000 à 50000
Appareils ménagers	200 à 2200	Appareil manuel	2000 à 15000	Machine textile	50000 à 65000
Machine agricole	500 à 16000	Laminoir	2000 à 20000	Machine outil	20000 à 80000
Automobile	900 à 10000	Compresseur, 8h/jour	2600 à 20000	Machine impression	40000 à 100000
Travaux publics	1000 à 10000	Machine construction	10000 à 50000	Machine 24h/24	50000 à 60000
Machine intermittente	4000 à 80000	Machine 8h/jour	12000 à 30000	Machine papeterie	> 75000 h

La précision exigée pilote la conception d'une liaison pivot. Les considérations d'effort et de durée de vie n'interviennent qu'après. Toutefois la grande variété de solutions techniques et de performance oblige à procéder à une analyse plus fine, solutions par solutions, avant de déterminer un optimum...





Schémas cinématiques du mécanisme pour les positions extrêmes de réglage de débit

Les points C1 et C2 (positions extrêmes du point C) sont sur l'axe du porte piston. Cette position est la position maximale pour conserver un guidage correct de la glissière. La course du porte piston 8 est maximale, c = 20 mm. Le débit de la pompe est à 100% du débit maximal.

Notes personnelles :

3.3. Contact direct

Les développements ci-dessous sont valables dans les limites suivantes :

- ✓ f compris entre 0,1 et 0,3
- ✓ P_{adm} < 35 Mpa environ
- √ V_{glissement} < 0,01 m/s en général</p>

3.3.1.: Précision

Dans le tableau ci-dessous on trouve les ajustements usuels pour un guidage en rotation.

Cas d'emploi		Arbres (position)	Alésages				
		(position)	H6	H7	Н8	H9	H11
			Arbres (qua	ilité)			
bar bar	tournant ou glissant dans une bague ou palier	е		7	8	9	
les l'une utre		f	6	6- 7	7		
Pièces mobiles rapport à l'autre	Pièces avec guidage précis pour mouvement de faible amplitude	g	5	6			

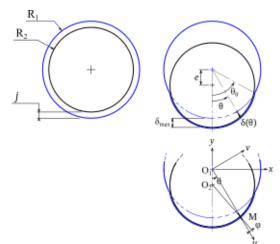
La surface en contact, pour la reprise des efforts diminue quand le jeu diamétral de guidage augmente. Cela influence forcement la pression qui est dimensionnant pour la liaison (voir précédemment).

3.3.2.: chargement radial pur

Premier modèle (qui ne sera pas utilisé mais que l'on retrouve souvent dans la littérature)

On rencontre dans la littérature le modèle de pression cosinusoïdale pour un contact direct :

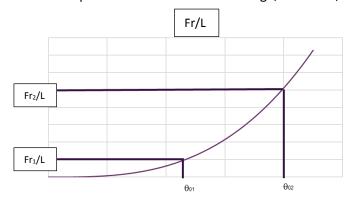
$$p(\theta) = A.\cos(\theta) + B$$


Entre l'arbre et l'alésage existe un jeu radial j initial. Sous la charge radiale, l'arbre déforme l'alésage (cette déformation δ est prépondérante, l'arbre étant plus rigide). La déformation δ dépend de l'angle θ par rapport à la direction du chargement radial selon la relation :

$$\delta(\theta) = j \cdot \left(\frac{\cos(\theta)}{\cos(\theta_0)} - 1 \right).$$

La pression de contact est proportionnelle à cette déformation selon une relation de type

$$p(\theta) = K \cdot \delta^{\alpha}(\theta)$$
.

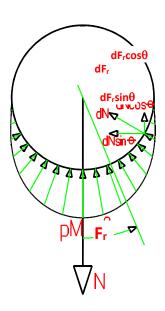

K étant un coefficient de raideur des matériaux en contact, α un coefficient dépendant du matériau. Pour les matériaux métalliques on peut le considérer égal à 1. Pour les matériaux polymères ce coefficient est supérieur à 1 (comportement visco-élastique ou visco-plastique).

Problème: K dépend des conditions de montage, diamètre, matériau, jeu...

Mais en considérant que α = 1, on peut obtenir la pression maximale malgré tout en suivant la démonstration ci-dessous.

On considère un contact de longueur L sur un rayon r (diamètre D) et angle de portée $2\theta_0$

La force sur une surface élémentaire est $dF_r = p(\theta)$. $dS = \frac{Kj}{2} \cdot \left(\frac{\cos\theta}{\cos\theta_0} - 1\right)$. $DL.\cos\theta d\theta$. En intégrant cette relation pour l'identifier à F_r l'effort radial on trouve :


$$F_r = \frac{\text{Kj. DL}}{2} \int_{-\theta_0}^{\theta_0} \left(\frac{\cos^2 \theta}{\cos \theta_0} - 1 \right) d\theta = \frac{\text{Kj. DL}}{2} \left[\frac{\theta + \sin\theta \cos\theta}{2\cos\theta_0} - \sin\theta \right]_{-\theta_0}^{\theta_0} = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0 \cos\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL}}{2} \left(\frac{\theta_0 - \sin\theta_0}{\cos\theta_0} \right) d\theta = \frac{\text{Kj. DL$$

On reconnaît : $sin2\theta = 2sin\theta cos\theta$

Donc
$$F_r = \frac{\text{Kj.DL}}{4cos\theta_0}(2\theta_0 - sin2\theta_0)$$
 et on en déduit que $K = \frac{F_r.4cos\theta_0}{\text{j.DL}.(2\theta_0 - sin2\theta_0)}$

On peut alors exprimer la pression maximale p_M en fonction de la pression diamétrale $p_D = F_r/DL$:

$$p_{M} = Kj \frac{1 - \cos\theta_{0}}{\cos\theta_{0}} = \frac{4F_{r}}{DL} \cdot \frac{1 - \cos\theta_{0}}{2\theta_{0} - \sin\theta_{0}} = 4p_{D} \cdot \frac{1 - \cos\theta_{0}}{2\theta_{0} - \sin\theta_{0}}$$

soit $p_M = A. p_d$ on a alors:

$$p_{M} = A \cdot \frac{F_{r}}{L \cdot d}$$

$$A = 4 \frac{1 - cos(\theta_{0})}{2\theta_{0} - sin(2\theta_{0})}$$

Angle de portée $2.\theta_0$	180	160	140	120	100	80	60	40	30
Facteur A	1.27	1.35	1.46	1.63	1.88	2,27	2,96	4,36	5,78

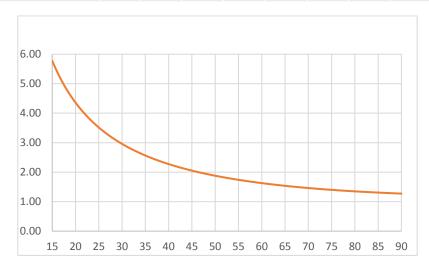


Figure 48 : Facteur A en fonction de $heta_0$

De cette analyse on en conclura:

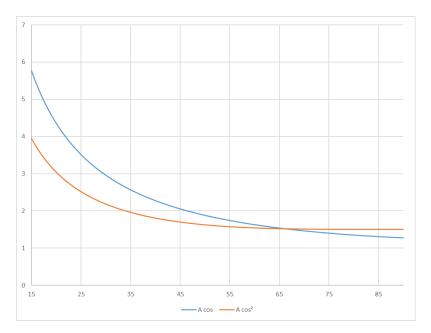
- Pour un jeu nul (θ_0 = 90°) $p_M = \frac{4}{\pi} \frac{F_r}{LD}$ et $p(\theta) = p_M \cos(\theta)$
- Pour des angles de portée « habituels » compris entre 180° (jeu nul) et 120° une variation entre 1,27 et 1,63 du coefficient A soit presque 30 % d'augmentation.

Cette variation importante des résultats sur une donnée mal maîtrisée (l'angle de portée) nous amène à considérer un second modèle, plus adapté à une phase de pré-dimensionnement : le modèle cosinus carré

Second modèle (qui sera utilisé par la suite)

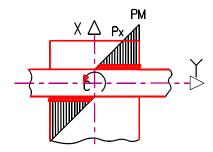
On considère maintenant un modèle proche (le contact se fait de la même façon, seul change la loi angulaire de pression) qui est $p(\theta) = p_M \cos^2(\theta)$

On obtient alors


$$\begin{split} F_r &= \int p(\theta) dS cos\theta = \int_{-\theta_0}^{\theta_0} p_M cos^2 \theta. r d\theta. L cos\theta = \int_{-sin\theta_0}^{sin\theta_0} p_M r L. (1 - sin^2 \theta) d(sin\theta) = p_M r L \left[sin\theta_0 - \frac{sin^3 \theta_0}{3} \right] \\ soit \ p_M &= A. \frac{F_r}{LD} \operatorname{avec} A = \frac{1}{\left[sin\theta_0 - \frac{sin^3 \theta_0}{3} \right]} \end{split}$$

LD surface projetée, $\frac{F_r}{LD}$ pression diamétrale

Comparaison entre les deux modèles :



On constate que le modèle en $\cos^2\theta_0$ donne une pression maximale égale à 1,5 la pression diamétrale pratiquement constamment entre 65 et 90° de demi angle de portée. Cette valeur est supérieure à celle donnée par le modèle en $\cos\theta_0$, ce qui permet une meilleure sécurité. <u>Il est donc préférable, en dehors de toute données complémentaires sur la rigidité des pièces en contact, de s'en tenir au modèle de pression en cosinus carré</u>.

3.3.3.: chargement Couple pur

Dans une section située à l'abscisse x, la pression maximum est p_x et le maximum est $p_M(x)$.

$$p_M(x) = \frac{2}{L} p_M x$$
 et $p_x(\theta) = p_M(x) cos^2 \theta$

Pour une longueur élémentaire dx et pour une portée hémicylindrique, la force résultante est :

$$dF_r = \int_{\theta} p_x(\theta) dS cos\theta = \int_{\theta} p_x(\theta) cos^2 \theta r d\theta dx cos\theta = p_x r dx \int_{\theta} cos^3 \theta d\theta = \frac{4}{3} p_x r dx$$
$$dF_r = \frac{8}{3L} p_M . r. x. dx$$

Le moment élémentaire de cette force par rapport au centre du palier est :

$$dM = \frac{8}{3L}p_M.r.x^2.dx$$

Pour un demi-palier:

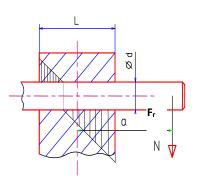
D'où:

$$M = \int_0^{L/2} \frac{8}{3L} p_M r x^2 dx = \frac{8}{3L} p_M r \int_0^{L/2} x^2 dx = \frac{4}{3L} p_M dx \left[\frac{x^3}{3} \right]_0^{L/2} = \frac{4}{3L} p_M dx \frac{L^3}{24} = \frac{p_M dL^2}{18}$$

Pour le palier entier en portée hémicylindrique, la relation entre couple et pression de contact est :

$$C = \frac{p_M dL^2}{9}$$
 soit $p_M = \frac{9C}{dL^2}$

3.3.4.: chargement superposition effort radial et couple


La superposition des cas précédents donne :

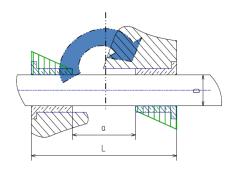
$$p_M = \frac{1.5 F_r}{L.d} + \frac{9C}{dL^2}$$

3.3.5. Chargement par effort radial F_r excentré

Attention si le couple C résulte d'un effort radial F_r excentré de la distance a on a alors :

$$p_M = \frac{1.5 F_r}{L.d} \left[1 + \frac{6a}{L} \right]$$

3.3.6. Chargement sur deux paliers distant l'un de l'autre


Le modèle de pression associé est le suivant :

$$p(x) = \frac{2p_M.x}{L}$$

Le moment résultant est

$$C = 2 \int_{a/2}^{L/2} p(x).D.x.dx = \frac{4p_M D}{L} \int_{a/2}^{L/2} x^2 dx = \frac{4p_M D.(L^3 - a^3)}{24.L}$$

D'où
$$p_M = \frac{6C.L}{D(L^3 - a^3)}$$

3.3.7.: Validation à la pression admissible

Nous connaissons maintenant p_M dans la plupart des cas de chargement. Il faut la comparer à la pression admissible p_{adm} des matériaux. On peut trouver des pressions admissibles dans la littérature résultant d'essais et de l'expérience. Afin d'en avoir une évaluation approchée basée sur la limite élastique des matériaux, il est proposé ici une méthode simple et malgré tout proche des résultats de la littérature. Attention toutefois, cette méthode n'est pas normalisée et ne permet qu'une estimation de pré-dimensionnement.

$$p_{adm} = \frac{limite etastique Ke}{\begin{bmatrix} Fonctionnement \\ mobile = 3 \\ statique = 1, 5 \end{bmatrix}} \times \begin{bmatrix} \frac{Charge}{vibrations} = 2 \\ chocs = 4 \\ continu = 1 \end{bmatrix} \times \begin{bmatrix} \frac{Contact}{lubrifié} = 1, 5 \\ a sec = 2 \end{bmatrix} \times \begin{bmatrix} \frac{Répartition}{uniforme} = 2 \\ Sinusoïdale = 3 \end{bmatrix}$$

On utilisera la limite élastique Re du matériau le plus faible dans le cas d'un contact direct entre 2 matériaux différents.

3.3.8.: Pression axiale

A vitesse de glissement faible (< 0,01 m/s) l'usure est négligeable et on ne vérifiera que :

$$p_M = \frac{Fa}{\pi(R^2 - r^2)} < p_{adm}$$

3.3.9.: Couple résistant (frottement)

Pour un effort radial

$$C_f = r^2 \cdot f \cdot L \int_{-\pi/2}^{+\pi/2} p M \cdot \cos\theta d\theta C_f = 2 \cdot r^2 \cdot f \cdot L \cdot p M = 2 \cdot r^2 \cdot f \cdot L \cdot 1, 5 \cdot \frac{N}{Ld} C_f = 1, 5 \cdot r \cdot f \cdot N$$

Pour un couple pur

$$C_f = 2. \int_0^{L/2} 2. r^2. f. pM. \frac{2}{L}. x dx C_f = 4. r^2. f. pM. \frac{2}{L}. \frac{L^2}{8} = 4. r^2. f. \frac{9C}{dL^2}. \frac{L}{4}$$

Pour un effort axial

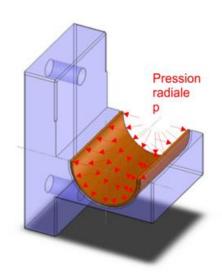
En supposant la pression axiale uniformément répartie car la vitesse de glissement est considérée faible (V<0,01m/s) on peut écrire :

$$C_f = \int_r^R \int_0^{2\pi} f \cdot \frac{Fa}{\pi \cdot (R^2 - r^2)} \cdot r \cdot r \cdot d\theta \cdot dr \, C_f = \frac{2}{3} \cdot f \cdot Fa \cdot \frac{R^3 - r^3}{R^2 - r^2}$$

3.4. Coussinet ou palier lisse

3.4.1. Architecture

Quel que soit le type de chargement, on caractérise la liaison par sa longueur L et son diamètre D. En pratique, on cherche à avoir :

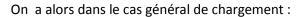

$$1.5 \le \frac{L}{D} \le 3$$

Pour avoir un guidage suffisant (ne pas s'approcher de la linéaire annulaire), mais ne pas être exagérément hyperstatique. La modélisation peut alors être celle du pivot ou pivot glissant (centrage long) suivant la présence ou non de butée axiale.

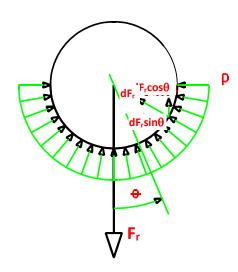
3.4.2.: Démarche de dimensionnement

Nous avons vu le problème que pose la rigidité des pièces dans l'évaluation de la pression de contact maximale. Les fournisseurs de paliers maîtrisent la rigidité de leurs pièces. Le modèle de calcul devient alors plus simple pour le concepteur : *il suffit de comparer la pression diamétrale Fr/LD à une pression admissible de référence.*

Attention : cette pression admissible n'est pas du tout la même que celle décrite précédemment, car elle prend justement en compte la rigidité du palier, voire aussi les effets de la température et de certaines conditions de lubrification. C'est une donnée globale qui reflète l'ensemble des paramètres dimensionnant.



3.4.3. Modèle de pression uniforme sous charge radiale pure


Par symétrie, les $dF_r.sin\theta$ s'annulent. Les $dF_r.cos\theta$ équilibrent

 F_r .

Et
$$p_D=rac{F_r}{L.D}$$

$$p_D = \frac{F_r}{L.d} + \frac{6C}{dL^2} < p_{adm}$$

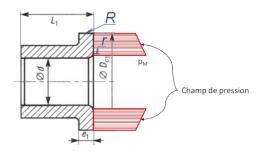
3.4.4. Détérioration par usure

Les dimensionnements précédents ne tiennent compte que du torseur d'action mécanique à transmettre. Ceci est valable tant que la vitesse de fonctionnement est faible (typiquement de l'ordre de 0,01 m/s). Au-delà le mode de détérioration n'est plus le dépassement de la limite en pression admissible, mais l'usure des surfaces de contact. Cette usure est pratiquement proportionnelle au produit de la pression p par la vitesse de glissement V (voir graphique ci-dessous que la pression admissible chute proportionnellement avec la vitesse de glissement jusqu'à une limite V_{max}). Cela amène un nouveau critère dimensionnant (pV)_{adm}: la limite de (pV) admissible

Figure 49 : domaine de bon fonctionnement d'un coussinet dans le diagramme pression vitesse

Le produit p x V est un indicateur de la chaleur de friction générée par le palier. Cette chaleur a une valeur limite au-delà de laquelle le palier se détériore. On doit donc vérifier que le produit (p x V) soit inférieur au produit (p x V) $_{adm}$

$$(pV) = \left(\frac{Fr}{L.d} + \frac{6C}{dL^2}\right) \times r\omega < (pV)_{adm}$$


$$(pV) = \frac{\omega(Fr.L+6C)}{2L^2} < (pV)_{adm}$$

La relation précédente a en général pour inconnue L au second degré, ce qui donne :

$$L \geq \frac{\omega.N + \sqrt{\omega^2.\operatorname{Fr} + 48.(pV)_{adm}.C.\omega}}{4.(pV)_{adm}}$$

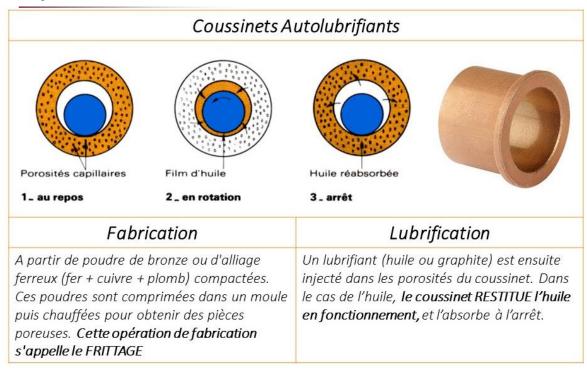
Pour les coussinets, on constate une usure équilibrée sur la surface de contact, proportionnelle au produit pV. On obtient alors la pression maximale sur le rayon intérieur r :

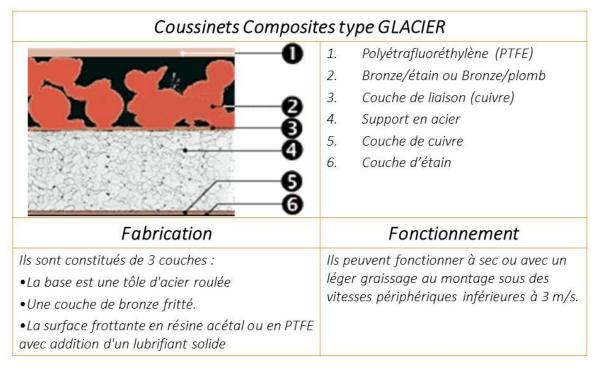
$$p_M = \frac{Fa}{2\pi r(R-r)} < p_{adm}$$

Toujours en considérant une usure équilibrée :

$$C_f = \int_r^R \int_0^{2\pi} f \cdot \frac{Fa}{2\pi \cdot (R-r)} \cdot r \cdot d\theta \cdot dr \, C_f = \frac{Fa \cdot f \cdot (R+r)}{2}$$

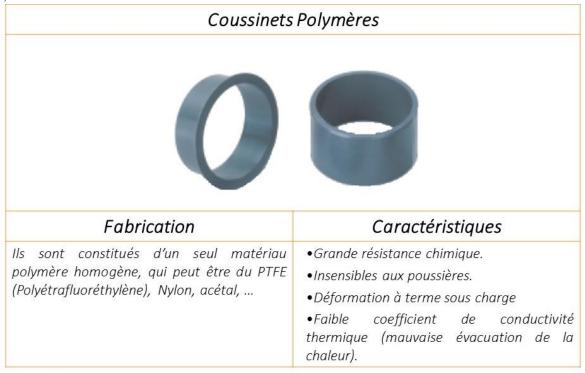
Туре	V _{max} (m/s)	T _{max} (°C)	P _{max} (MPa)	(PV) _{max} (W.mm ⁻²)	Prix coeff
Bronze plomb	7 à 8	< 180	15 à 60	35	7,5
Bronze étain	7 à 8	< 250	3 à 100	35	8,5
Bronze alu	7 à 8	< 250	15 à 30	30	10
Bronze zinc	7 à 8	< 250	8 à 10	30	6
Fonte ft14	-	-	1	2	1 à 20
Textolite	-	< 90	20	40	1 à 20
Autolubrifié fer	-	< 80	25	1,2 à 2,5	0,6
Autolubrifié bronze	-	< 80	25	1 à 1,8	1,3
Graphite	13	< 400	4	0,55	5
Nylon	-	< 90	6	0,04	2,5

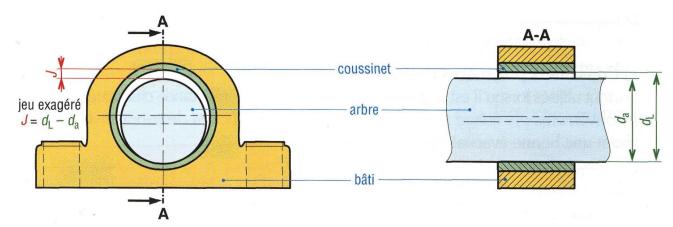

Notes personnelles :



3.4.5. Technologie des coussinets :

Autolubrifiant


Glacier



Polymère

3.4.6. Recommandations diverses pour la conception

- Les paliers sont des isolants électriques, il faut en tenir compte si une accumulation d'électricité statique pose un problème pour le système.
- Les paliers résistent bien à l'eau de mer et autres solutions salines.
- Les paliers ne résistent pas aux acides oxydants ni à la corrosion
- Afin de limiter la vitesse de glissement relative, on montera les coussinets serrés dans leur logement.
 La cotation du coussinet est donc prévue à cet effet, typiquement H7m6 ou H7p6.

• Evidemment cette condition de montage impose de pourvoir mettre en place une solution de montage de type presse : des dégagements peuvent être à prévoir...

3.5. Validation des pivots et pivots glissants en deux paliers

Lorsque L excède 3.d, il est conseillé de réaliser la liaison pivot glissant par deux paliers dont on supposera que le comportement est celui d'une linéaire annulaire. On recommande pour cela :

$$0.4 \le \frac{L}{D} \le 0.8$$

Cette disposition constructive peut aussi résulter d'un choix sur l'architecture du mécanisme (porte-à-faux, stabilité...). Chacun des deux paliers n'est alors supposé supporter qu'un glisseur. La modélisation est celle d'une linéaire annulaire (centrage court).

On peut alors effectuer les mêmes calculs qu'avec un seul palier :

- validation du contact cylindrique à la pression admissible ;
- validation du contact cylindrique à la puissance aréolaire;
- validation de la butée axiale à la pression admissible ;
- validation de la butée axiale à la puissance aréolaire.

3.6. Calculs complémentaires

3.6.1. Couple de frottement C_f en portée hémicylindrique

3.6.1.1. Sur la surface cylindrique, pour un palier avec glisseur

$$dC_f = rdT = rfdF_r = rfp(\theta)dS = rfp(\theta)rd\theta L$$

$$\begin{split} C_f &= r^2 f L \int_{\theta} \ p(\theta) d\theta = r^2 f L p_M \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} cos^2 \theta d\theta = \frac{1}{2} r^2 f L p_M \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + cos2\theta) d\theta = \frac{1}{2} r^2 f L p_M \left[\theta + \frac{sin2\theta}{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\ &= \frac{\pi}{2} r^2 f L p_M = \frac{\pi}{2} r^2 f L \frac{3}{2} \frac{F_r}{2Lr} \end{split}$$

Soit:

$$C_f = \frac{3\pi}{8} r f F r$$

3.6.1.2. Sur la surface cylindrique, pour un palier avec couple

A une abscisse x, on a : $d(dC_f) = rdT = rfdF_r = rfp_x(\theta)dS = rfp_x(\theta)rd\theta dx$

D'où

$$\begin{split} dC_f &= r^2 f \left(\int_{\theta} \ p_x(\theta) d\theta \right) dx = r^2 f dx \left(\int_{\theta} \ p_x cos^2 \theta d\theta \right) = r^2 f p_x dx \left(\int_{\theta} \ cos^2 \theta d\theta \right) = \pi r^2 f p_x dx \\ &= \pi r^2 f \frac{2}{L} p_M x dx \end{split}$$

Pour le palier entier :

$$C_f = 2\pi r^2 f \frac{2}{L} p_M \int_0^{L/2} x dx = 2\pi r^2 f \frac{2}{L} p_M \frac{L^2}{8} = \frac{\pi r^2 f p_M L}{2}$$

Or:
$$p_M = \frac{9C}{dL^2}$$

Donc :

$$C_f = \frac{\pi r^2 f 9CL}{2dL^2} = \frac{9\pi r f C}{4}$$

3.6.1.3. Cas général : superposition

$$C_f = \frac{3\pi}{8} rf F_r + \frac{9\pi}{4} \frac{rfC}{L}$$

Donc:

$$C_f = \frac{3\pi}{8} r f (F_r + 6\frac{C}{L})$$

3.6.2. Couple de frottement sur butée axiale

$$dC_{f} = \rho dT = \rho f dF_{a} = \rho f p dS = \rho f \frac{F_{a}}{2\pi \rho (r_{2} - r_{1})} \rho d\theta d\rho = \frac{F_{a} \cdot f}{2\pi (r_{2} - r_{1})} \rho d\theta d\rho$$

$$C_{f} = \iint \frac{F_{a} \cdot f}{2\pi (r_{2} - r_{1})} \rho d\theta d\rho = \frac{F_{a} \cdot f}{2\pi (r_{2} - r_{1})} \int_{0}^{2\pi} d\theta \int_{r_{1}}^{r_{2}} \rho d\rho = \frac{F_{a} \cdot f}{2\pi (r_{2} - r_{1})} 2\pi \frac{r_{2}^{2} - r_{1}^{2}}{2}$$

Soit:

$$C_f = \frac{F_a.\,f(r_2+r_1)}{2}$$

Le résultat est équivalent à celui produit par une force tangentielle unique T=A.f, placée au rayon moyen.

Attention : ce résultat fait l'hypothèse d'une puissance constante dissipée sur le contact annulaire. Ce modèle est adopté pour un contact glissant et s'usant (embrayage).

Rappel: Ce n'est pas le modèle convenable pour un couple d'adhérence à l'arrêt où l'hypothèse retenue est celle d'une pression constante. Le résultat obtenu en intégrant une force tangentielle élémentaire sur un élément de surface d'une couronne est le suivant : (exemple : limiteur de couple)

$$C_f = \frac{2}{3} f F_a \frac{r_2^3 - r_1^3}{r_2^2 - r_1^2}$$

4. Roulements

NOMENCLATURE

 L_{10} durée de vie du roulement à 90%

C charge dynamique de base

 F_r charge radiale

 F_a charge axiale

lpha angle de contact pour un roulement à contact oblique

P charge radiale équivalente

e discriminant du roulement

X, Y coefficient du roulement (radial et axial)

 C_0 charge statique de base

N nombre de millions de tours

n paramètre de loi de durée de vie (3 ou 1/3)

 P_m, P_M, P_{mov} charge minimum, maximum et moyenne équivalente si charge variable

 F_{ai} charge axiale induite

 F_{ae} charge axiale extérieure

 P_0 charge radiale statique équivalente

 J_f jeu de fonctionnement minimum

 J_0 jeu nominal avant serrage

 T_i, T_e taux de répercussion du serrage

 S_i, S_e serrage moyen des bagues (intérieure et extérieure)

4.1. Généralités

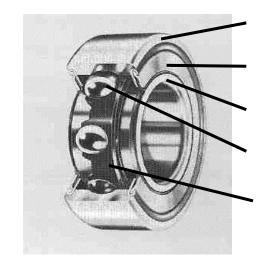
Les roulements font partie intégrante de la plupart des systèmes mécaniques. Ils permettent de réduire considérablement les frottements dans une liaison pivot ou dans une liaison glissière.

Ils ont plusieurs siècles et n'ont pas cessé d'évoluer¹. Actuellement le choix des matériaux et la

74

¹ Voir la salle à manger de Néron : https://youtu.be/r4wCXTZa8rs?t=15m54s

qualité d'usinage permettent d'obtenir des roulements dont la durée de vie est « infinie » c'est à dire que sa durée de vie est supérieure à celle du mécanisme qui l'utilise.


Les fabricants de roulements nous promettent des nouveaux matériaux toujours plus performants dans les années à venir avec des coûts de production toujours en diminution.

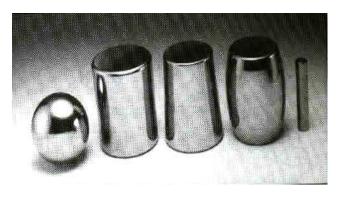
On trouve plus de 100 roulements sur une voiture haut de gamme, les roulements mesurent de quelques millimètres de diamètre à plusieurs mètres.

4.1.1. Architecture des roulements

4.1.1.1. Les baques

Elles supportent les éléments roulants et sont soumises à de la fatigue du fait des charges cycliques qui s'y appliquent. Les matériaux standards pour les fabriquer sont le 100Cr6 dégazé sous vide mais on trouve aussi des aciers de cémentation : 20NiCr6, du C60 pour les bagues minces, et des aciers « rapides » 80DCV40. Tous fabricants de roulement sont associés à des sidérurgistes pour rechercher des nouveaux matériaux permettant des vitesses de rotation et des charges plus importantes. Les bagues extérieures ou intérieures peuvent être éliminées et les éléments roulants roulent alors directement sur l'arbre ou l'alésage (encombrement réduit : roulement à aiguilles).

Bague extérieure


Etanchéité

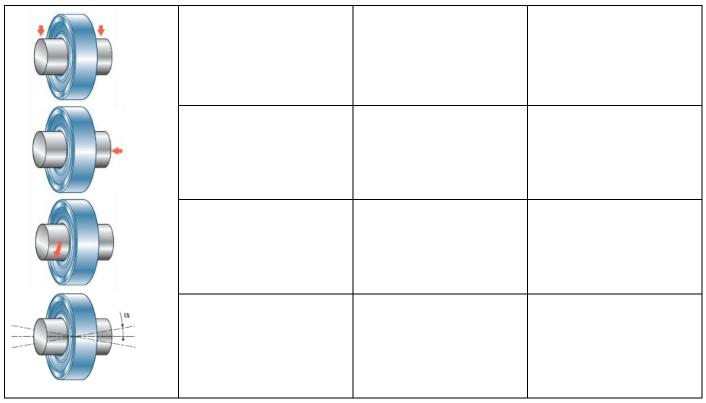
Bague intérieure

Eléments roulants

Cage

4.1.1.2. Les éléments roulants

Le choix des éléments roulants dépend de l'intensité des efforts que le roulement devra supporter et de l'encombrement dont on dispose. Les billes offrent un contact théoriquement ponctuel (surface de contact en fait elliptique d'après la théorie de Hertz²) alors que les rouleaux offrent un contact théorique linéïque (surface de contact en fait rectangulaire d'après la théorie de Hertz). Les rouleaux pourront donc accepter des <u>charges</u> beaucoup plus <u>importantes</u>. Les aiguilles seront utilisées lorsque l'encombrement disponible est faible.


Cas de charge par type d'éléments roulants A billes A rouleaux A aiguilles

75

² Voir plus loin pour le détail de ce modèle de calcul

4.1.1.3. L'étanchéité

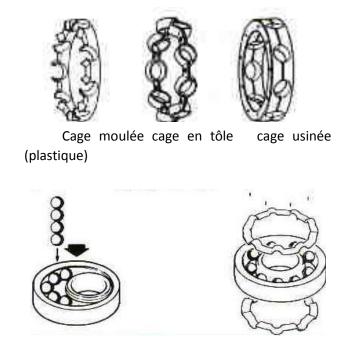
L'étanchéité a deux rôles :

- Empêcher le lubrifiant (huile ou graisse) de sortir du roulement,
- Empêcher les impuretés (poussières, humidité) d'entrer dans le roulement.

L'étanchéité est assurée par un élément qui peut être intégré au roulement (lorsque les roulements sont graissés à vie ou assurée par des joints indépendants montés sur le carter ou sur l'arbre).

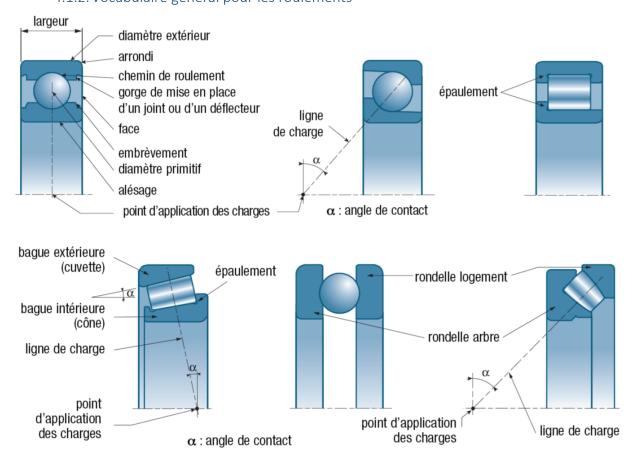
Ces systèmes imposent différentes qualités d'usinage de l'arbre et de l'alésage. Il faudra se reporter aux catalogues des fabricants pour en connaître toutes les spécificités.

Remarque sur l'usinage : il faudra veiller à ne pas avoir une rainure en spirale - due à l'avance de l'outil - sur l'arbre, ce qui pomperait le lubrifiant vers l'extérieur du mécanisme.


ETANCHEITE INTEGREE	AU ROULEMENT
	Joint Nitrile standard : Acrylite noir Vitesse de rotation limitée à 70% de la vitesse maxi du roulement Température d'utilisation : de –30°C à +110°C <u>Désignation</u> : E (étanche d'un coté) ou EE (étanche des deux cotés)
Etanchéité par contact	Joint haute température : Elastomère fluoré rouge Vitesse de rotation inchangée Température d'utilisation : de –40°C à +200°C <u>Désignation</u> : E3 (étanche d'un coté) ou E3E3 (étanche des deux cotés)
Etanchéité par Chicane	Déflecteur en acier : Tôle en acier doux pour les roulements graissés à vie dans une atmosphère peu agressive. Vitesse de rotation inchangée Température d'utilisation : aucune limite <u>Désignation</u> : Z (étanche d'un coté) ou ZZ (étanche des deux cotés)

4.1.1.4. La cage

La cage assure la position relative entre les billes. C'est une pièce soumise à des frottements importants, elle est donc faite avec des matériaux à faible coefficient de frottement. On trouve trois types de fabrication : plastique moulé (PA66 chargé fibre de verre), tôle emboutie (acier doux ou laiton) et cage usinée (résine phénolique, alliage cuivreux, alliage d'aluminium).



Pour permettre la mise en position des billes dans le roulement, il faut pouvoir assembler les cages en dernier. C'est pourquoi les cages embouties et usinées sont faites en deux parties tenues par des rivets (voir fig « Assemblage d'un roulement »).

4.1.2. Vocabulaire général pour les roulements

4.1.3. Les différents types de roulements

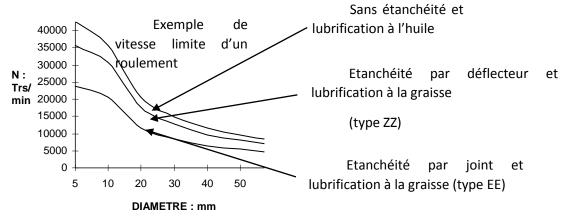
ROULEMENT	REMARQUES	V _{maxi} : N.D _{moyen} en (tr.min ^{-1).} mm.10 ³	angle de rotulage	prix relatif
Roulements à une r	angée			_
	Roulement à billes à gorge profonde (code 6) C'est le plus courant des roulements. On le trouve souvent avec une étanchéité intégrée. Excellent rapport qualité/prix	500	10'	1
	Roulement à billes à contact oblique (code 7) Il supporte des charges axiales importantes.	380	10′	2
	Roulement à rouleaux (code N) Il supporte des charges radiales très importantes mais aucune charge axiale dans la version présentée. Il existe des roulements radiaux à rouleaux acceptant des charges axiales. Il y a alors des épaulements sur les deux bagues.	400	5'	2,5
	Roulement à rouleaux à contact oblique (code 3 ou T) Il supporte des charges axiales et radiales très importantes.	250	5'	1,5
	Roulement à aiguilles Parfait lorsque l'on est contraint par l'encombrement. Charges radiales importantes			
Roulements à deux	Butée à billes Supporte des efforts axiaux très importants. Existe aussi en butée à aiguilles dont l'épaisseur est très réduite.			

Roulement à rotule sur billes (code 1) Il permet des désalignements dynamiques assez importants (4°). Lorsque l'on veut des grands angles de rotation il est préférable d'utiliser des rotules lisses ou des rotules sur billes (mais les vitesses de rotation maximum sont alors beaucoup plus faibles).	400	3°	2
Roulement à deux rangées de billes à contact radial Permet d'accepter de grands efforts radiaux. Grande rigidité mais nécessite un alignement rigoureux des portées.	330	0	2,5
Pivot à rouleaux (code 3) Permet une grande rigidité dans un très faible encombrement. La précharge est réglée en usine, il est donc très simple d'utilisation.		0	5
Pivot sur billes Permet une grande rigidité dans un faible encombrement axial. La précharge est réglée en usine, il est donc très simple d'utilisation.	320	0	3

4.1.4. Choix d'un roulement

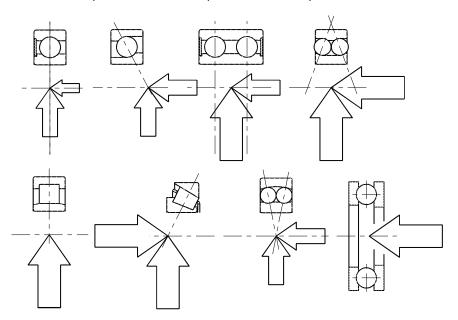
Les critères de choix d'un roulement sont :

- La vitesse de rotation
- L'intensité des efforts
- La direction des efforts
- Le type de liaison que l'on veut assurer (pivot, rotule, linéaire annulaire)


VITESSE LIMITE

La vitesse limite d'un roulement dépend :

- du diamètre du roulement à cause de l'effort centrifuge sur les éléments roulants (voir courbe ci-après) ;
- du type de lubrification (graisse ou huile);
- du type d'étanchéité (aucune, avec déflecteur ou avec joint) ;
- de la charge appliquée : si elle est très élevée ;
- d'une utilisation en milieu difficile : charge ou vibration élevée, humidité, température basse ou haute : prendre 2/3 de la vitesse limite.



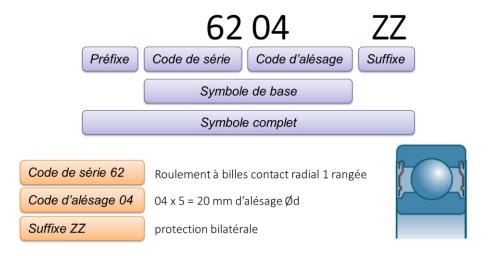
EFFORTS SUR LE ROULEMENT

Tableau comparatif des efforts que le roulement peut transmettre.

4.1.5. Désignation des roulements

Interchangeabilité

La désignation des roulements est normalisée, et l'interchangeabilité entre les types de roulements est assurée. Ainsi on pourra trouver un roulement à rouleaux qui tiendra dans l'encombrement d'un roulement à billes, et ce pour n'importe quel fournisseur.

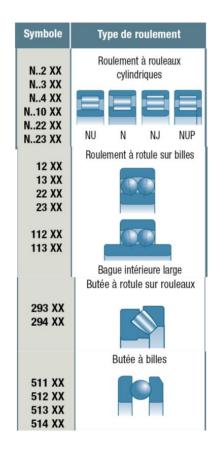

Dimensions caractéristiques

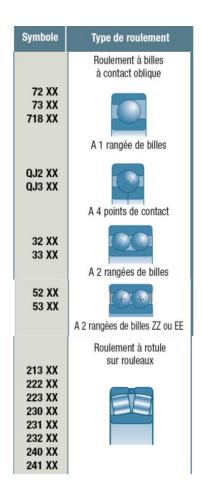
Les dimensions caractéristiques sont données dans le tableau ci-dessous.

Tous roulements exceptés roulements à rouleaux à contacts obliques et butées		Roulement à rouleaux à contacts obliques
	T P	C

Code de désignation des roulements

La symbolisation générale, issue des normes ISO 15 et ISO 104, s'applique à tous les types de roulements normalisés. Elle est composée d'un préfixe, d'un code série, d'un code alésage et d'un suffixe.





Principaux code série

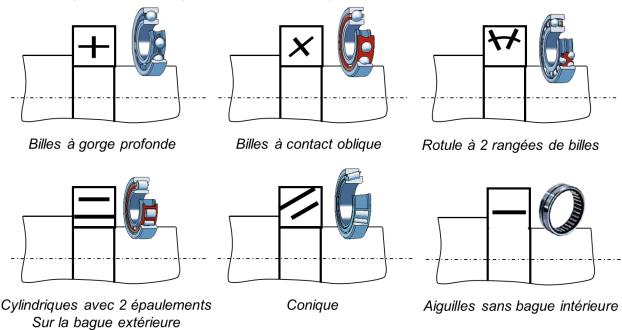
Symbole	Type de roulement
	Roulement à billes à contact radial
60 X 62 X 63 XX 64 XX 160 XX 618 XX 619 XX 622 XX 623 XX	A 1 rangée de billes
2 XX 3 XX	Avec encoche
42 XX 43 XX	A 2 rangées de billes
	Roulement à rouleaux coniques
302 XX	coniques
303 XX 313 XX	
320 XX 322 XX	
323 XX	
330 XX 331 XX	
332 XX	

Le code de série peut se décomposer en 2 parties, la première chiffre ou lettre indique le type de roulements et le second la série de dimension soit le rapport D/d.

Code alésage (attention cela permet de calculer d en mm diamètre intérieur du roulement)

Code	3	/4	4	5	6	/6	7	/7	8
Ød	3	4	4	5	6	6	7	7	8
Code	/8	9	00	01	02	03	/22	/28	/32
Ød	8	9	10	12	15	17	22	28	32
Code	04	05	06	07	80	09	10		
Ød	20	25	30	35	40	45			•••

De Ø20 à Ø480 il faut multiplier le code alésage par 5 pour obtenir le diamètre intérieur d.


Les roulements à rouleaux coniques font l'objet d'une symbolisation spécifique issue de la norme ISO 355.

Plus d'éléments http://www.ntn-snr.com/portal/fr/fr-fr/file.cfm/01-Notions_generales.pdf?contentID=4647

4.1.6. Représentation simplifiée des roulements principaux

4.2. Dimensionnement - vérification d'un roulement à contact radial

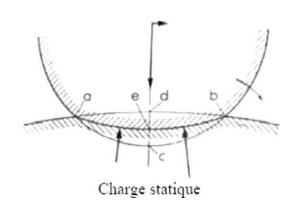
4.2.1. Nature du chargement des roulements

- Les roulements à aiguilles ou à rouleaux cylindriques sont destinés à recevoir une charge radiale pure.
- Les butées axiales sont destinées à recevoir une charge axiale pure.
- Dans la plupart des cas, une combinaison de charges radiale et axiale est possible.

Sur le mode de destruction des roulements : un roulement n'est pas détruit par déformation plastique globale ou par rupture (sauf accident), mais par des phénomènes locaux d'écaillage et de fissuration qui sont le résultat de fatigue locale et qui justifient un mode de validation tout à fait particulier.

4.2.2. Détérioration statique

Dans les cas où le roulement est chargé à l'arrêt ou sous de faibles mouvements ou soumis à des chocs, il faut vérifier que la pression de contact des éléments roulants sur le chemin de roulement ne dépasse pas la valeur admissible correspondant à un écrasement permanent total de 0,01% de D en mm. Soit 4600 Mpa pour les rotules à billes, 4200 Mpa pour les autres billes et 4000 Mpa pour les rouleaux.


$$C_0 > s_0 \times P_0$$

C est la capacité de charge statique du roulement

s un coefficient d'application de la charge

P la charge radiale statique équivalente

$$P_0 = \max (F_r; X_0.F_r + Y_0.F_a)$$

Mode de		Roulement en rotation						nt à l'arrêt
Fonctionnement		Exigence:	s de silenc	e de fonctio	nnement			
	Fa	ible	Non	males	Είε	?ข <i>้อย</i> ร		
	Billes	Rouleaux	Billes	Rouleaux	Billes	Rouleaux	Billes	Rouleaux
Régulier sans vibrations	0.5	1	1	1.5	2	3	0.4	0.8
Normal	0.5	1	1	1.5	2	3.5	0.5	1
Chocs prononcés	≥ 1.5	≥ 2.5	≥ 1.5	≥3	≥2	≥ 4	≥1	≥2

Coefficient de sécurité s_o (Source SKF)

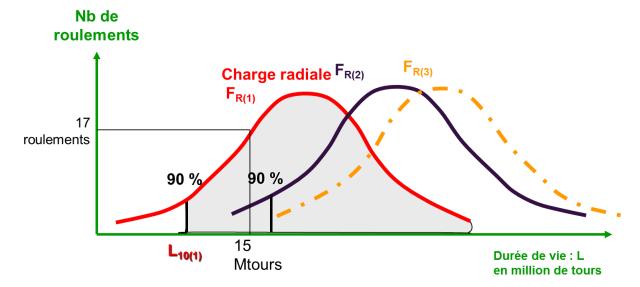
 X_0 et Y_0 selon ISO 76

Tve	Type de roulements		1 raı	ngée	2 rangées	
Type de roulements		X ₀	Y ₀	X0	Y ₀	
	à conta	ct radial	0.6	0.5	0.6	0.5
	à rot	ules	0.5	0.22.cotgα	1	0.4.cotgα
		α = 15°	0.5	0.46	1	0.92
		α = 20°	0.5	0.42	1	0.84
Roulements à billes		α = 25°	0.5	0.38	1	0.76
	à contact oblique	α = 30°	0.5	0.33	1	0.66
		$\alpha = 35^{\circ}$	0.5	0.29	1	0.58
		α = 40°	0.5	0.26	1	0.52
		α = 45°	0.5	0.22	1	0.44
Roulements	à rouleaux	à rouleaux coniques		0.22.cotgα	1	0.44.cotgα
à rouleaux	à rot	ules	0.5	0.22.cotgα	1	0.44.cotgα

4.2.3. Fatigue des roulements et durée de vie / Basic rating life model

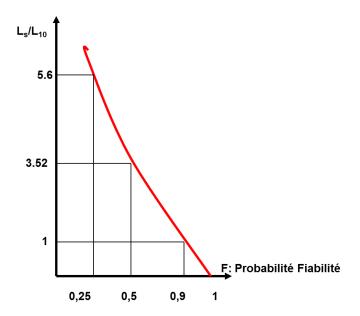
4.2.3.1. Durée de vie dans le cas général

En 1947 est proposé le Basic Rating Life Model permettant d'obtenir les dimensions « basique* » d'un montage en fonction de sa charge selon la loi simplifiée suivante :


Avec une charge radiale pure, on a $L_{10}=\left(\frac{c}{R}\right)^n$ avec n = 3 pour les billes et n = 10/3 pour les rouleaux. L₁₀ est en millions de tours. Pour obtenir une durée en heures

$$L_{10h} = \left(\frac{C}{P}\right)^n \frac{10^6}{60.N}$$

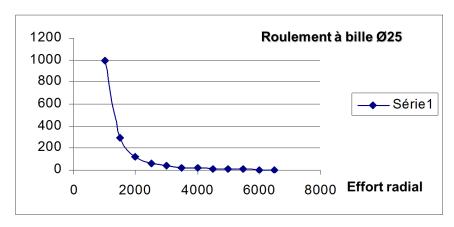
On effectue des essais sur un grand nombre de roulements identiques en les amenant à destruction sous la même charge radiale, à même vitesse de rotation. La « destruction » est décidée lorsqu'une déformation permanente atteignant 1/10000ème du diamètre d'élément roulant est constatée On relève le nombre de tours effectués pour atteindre cette destruction. Le résultat est classique en fiabilité : des roulements périssent rapidement, qui sont affectés par des défauts de fabrication ou des problèmes d'homogénéité de matériau constitutif, phénomène devenant de plus en plus limité grâce à la sévérité des contrôles. Une grande majorité de roulements ont une durée de vie proche, et quelques-uns survivent exceptionnellement longtemps. Le résultat N = f(n) est une courbe « en cloche » qui se décale en fonction de la charge radiale d'essai.



On obtient la courbe de survie en cumulant le nombre de survivants.

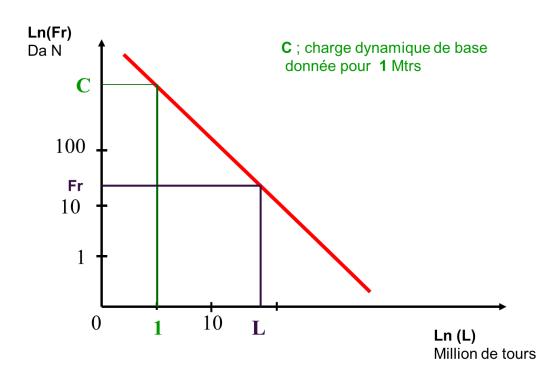
On appelle conventionnellement durée de vie du roulement L_{10} exprimée en millions de tours, le nombre de tours pour lequel il reste 90% de survivants. On accepte donc statistiquement 10% de risque qu'un roulement n'atteigne pas sa durée de vie conventionnelle. Chercher à minimiser le plus possible ce risque augmenterait le coût et conduirait à une très grande majorité de constructions surdimensionnées. 90% de roulements dépasseront L_{10} et certains très largement. Si l'on note S la probabilité de survie d'un roulement (S=0.9 pour L_{10} ; S=0.95 pour L_{5}) et Ld le nombre de tours correspondants, on a une relation empirique du type

$$\frac{L_d}{L_{10}} = \left(\frac{lnF}{-0.105}\right)^{2/3}$$


avec F la fiabilité du montage . On a par exemple L_{50} = 3.51. L_{10} (50% de roulements survivent à 3.5 L_{10}) et L_{75} = 5.57. L_{10} (25% de roulements survivent à 6 L_{10}).

On renouvelle l'essai en faisant varier la charge radiale F_r . On peut ensuite tracer L_{10} en fonction de R. Plus la charge est importante, plus L_{10} diminue.

Durée de vie en M de tours

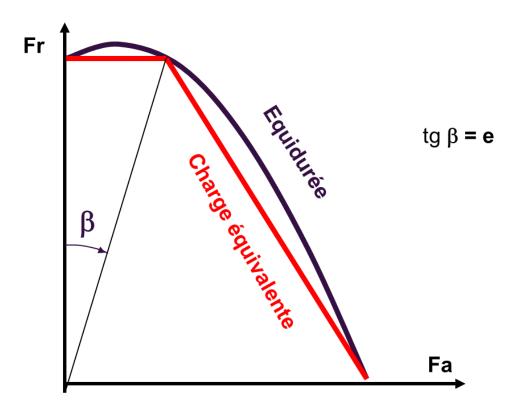

Dans un système de coordonnées bi-logarithmique, cette fonction est linéaire. On définit la charge dynamique de base du roulement notée C comme valeur de la charge pour laquelle L_{10} = 1. La pente de ce segment est voisine de -3 pour des billes et -10/3 pour des rouleaux.

On a: $\ln L_{10} = a. \ln R + b$ avec $0 = a. \ln C + b$ donc $b = -a. \ln C$ soit $\ln L_{10} = a. \ln R - a. \ln C = \ln (R/C)^a$

Donc:

$$L_{10} = \left(\frac{R}{C}\right)^{-a}$$
 avec :

- a = 3 pour les billes, soit : $L_{10} = \left(\frac{C}{R}\right)^3$;
- a = 10/3 pour les rouleaux, soit : $L_{10} = \left(\frac{c}{R}\right)^{10/3}$



4.2.3.2. Charge équivalente

Les essais sont menés avec une charge purement radiale R. Lorsqu'on a une combinaison de chargement axial F_a et radial F_r , on recherche expérimentalement la charge purement radiale qui aurait les mêmes effets destructeurs que la combinaison F_a et F_r . Cette charge est appelée charge radiale équivalente et notée P. Elle est évidemment supérieure ou à la limite (si $F_a = 0$), égale à F_r .

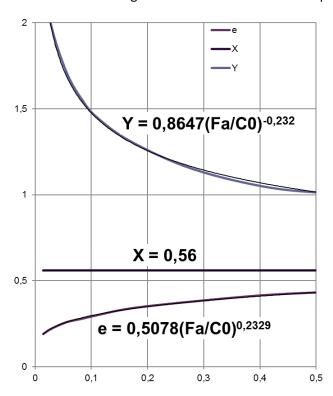
On pose $P=F_r$. ϕ avec $\phi\geq 1$ et on linéarise sur deux tronçons séparés par une valeur e de $\frac{F_a}{F_r}$ caractéristique d'un roulement et nommée **discriminant**.

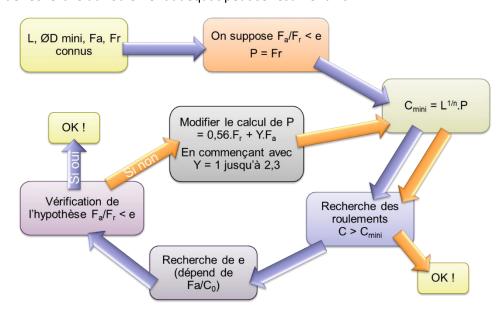
Pour $\frac{F_a}{F_r}$ compris entre 0 et e, on a $\phi=\frac{P}{F_r}=1+Y_2\frac{F_a}{F_r}$ donc $P=F_r+Y_2F_a$.

$$\operatorname{Pour} \frac{F_a}{F_r} \operatorname{sup\acute{e}rieur} \grave{\mathsf{a}} \ e \text{, on a} \ \phi = \frac{P}{F_r} = 1 + Y_2 e + Y_1 \left(\frac{F_a}{F_r} - e \right) \operatorname{donc} P = F_r (1 + Y_2 e - Y_1 e) + Y_1 F_a = X_1 F_r + Y_1 F_a.$$

Conclusion, la charge radiale équivalente P est de la forme P = X.Fr + Y.Fa, X coefficient radial et Y coefficient axial dépendant de la position du rapport F_a/F_r par rapport à e discriminant du roulement.

$\frac{F_a}{F_r} \le e$	$\frac{F_a}{F_r} > e$
$P = F_r$	$P = X_1 F_r + Y F_a$

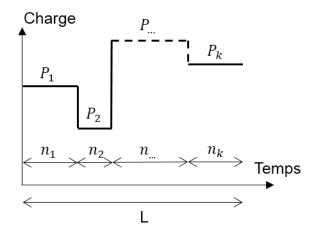

Attention: X, Y et e sont des caractéristiques du roulement qui dépendent pour les roulements à contact radiaux du rapport Fa/C_0 , deplus e est fonction de l'angle de contact.



Fa/C0 e	Х	Υ	'
0,014	0,19	0,56	2,3
0,028	0,22	0,56	1,99
0,056	0,26	0,56	1,71
0,084	0,28	0,56	1,55
0,11	0,3	0,56	1,45
0,17	0,34	0,56	1,31
0,28	0,38	0,56	1,15
0,42	0,42	0,56	1,04
0,56	0,44	0,56	1

On peut faire une interpolation linéaire entre 2 lignes du tableau ou utliser les équations ci-dessous.

La démarche de recherche du roulement adéquat peut se résumer ainsi :

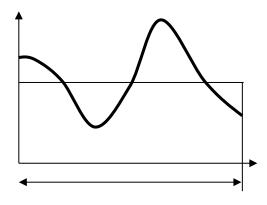


4.2.3.3. Détériorations cumulatives – Loi de FISHER

Il s'agit du cas d'une fonction charge constante par morceaux.

Soit un roulement effectuant au cours de sa durée de vie un certain nombre de millions de tours L effectués sous diverses conditions de chargements équivalents P_i pendant un nombre de tours n_i : il effectue n_1 millions de tours sous charge équivalente P_1 , n_2 sous P_2 ,

Sa durée de vie sous charge unique P_1 serait L_1 . En faisant n_1 Mtours sous P_1 , il va consommer une fraction n_1/L_1 de sa durée de vie totale. On aura donc $\sum_{i=1}^k n_i/L_i = 1$. Or $L_i = \left(\frac{C}{P_i}\right)^n$. Donc $\sum_{i=1}^k \frac{n_i P_i^n}{C^n} = 1$ soit $\sum_{i=1}^k n_i P_i^n = C^n$.


La charge équivalente à l'ensemble des k cas de chargement notée P_{moy} correspond à une durée de vie totale L. On peut donc poser :

$$L = \left(\frac{C}{P_{moy}}\right)^n = \frac{\sum_{i=1}^k n_i P_i^n}{P_{moy}^n}$$

Finalement:

$$P_{moy} = \left(\frac{\sum_{i=1}^{k} n_i P_i^n}{L}\right)^{1/n}$$

4.2.3.4. Généralisation

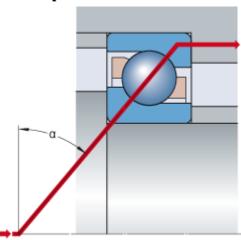
$$P_{moy} = \frac{1}{3}(2P_M + P_m).$$

 n_i tend vers d_n , pendant lequel la charge instantanée vaut P et $P^n_{moy}=rac{1}{k}\int_0^k P^n dk$.

Si le chargement est périodique angulairement de période $H=2\pi n$, alors

$$P^n_{moy} = \frac{1}{H} \int_0^H P^n d\alpha.$$

Dans le cas fréquent d'une charge linéairement variable entre un minimum P_m et un maximum P_M , on a le résultat approché :



4.3. Chargement des roulements à contacts obliques

4.3.1. Equilibre statique des roulements à contact oblique

Du fait de leur géométrie, les roulements à contacts obliques (à billes à contacts obliques ou à rouleaux coniques) ont besoin, sous l'action d'une charge radiale, d'une charge axiale qui permette l'équilibre axial du roulement (déplacement d'une bague par rapport à l'autre). Cette charge est qualifiée de *charge axiale induite*. Les charges des roulements sont donc appliquées au **centre de pression** qui ne se situe pas, comme pour un roulement à contact radial, dans le plan médian du roulement. L'angle de contact associé est noté α et vaut entre 15 et 45°.

On a donc des montages à centres de pression rapprochés ou "en X" et des montages à centres de pression éloignés ou "en O" (voir ci-après montages à contacts obliques)

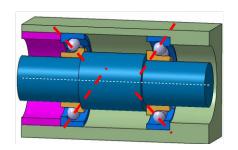
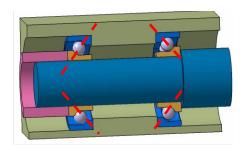
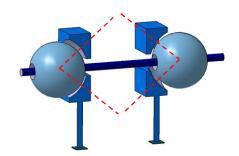
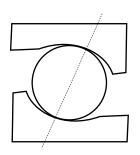
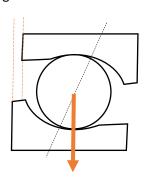
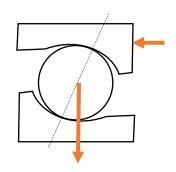



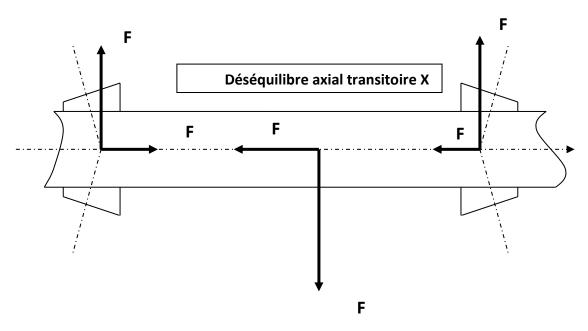
Figure 50 : montage en X


Figure 51 : Montage en O

4.3.2. Valeur des charges axiales induites.

Sous une charge radiale pure, la bague intérieure laissée libre se déplace par rapport à la bague extérieure. Ce jeu est incompatible avec un bon fonctionnement. Pour que le roulement se comporte correctement, il faut que l'angle de transmission des efforts corresponde à l'angle de contact.



Ceci impose un effort axial Fai induit dont la valeur dépend de la géométrie du roulement selon la relation :

- Pour les roulements à rouleaux coniques, $Fai = \frac{Fr}{2y}$
- Pour les roulements à billes à contacts obliques, $Fai = \frac{Fr}{e}$

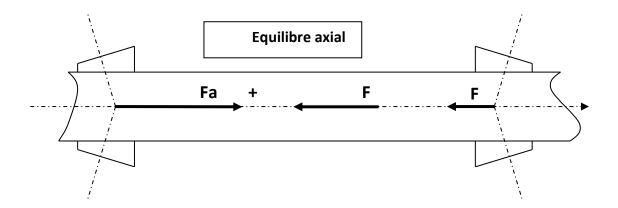
4.3.3. Cas d'un montage à centres de pression rapprochés ou "en X".

La figure ci dessous représente l'arbre et les bagues intérieures de roulements à galets coniques. Le chargement de l'arbre a une composante radiale Fr et une composante axiale Fa. Fr engendre des actions radiales aux roulements Fr1 et Fr2 qui ont pour conséquence des **charges axiales induites** Fai1 et Fai2 dirigées vers l'intérieur du montage.

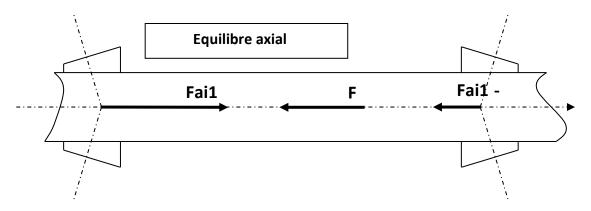
Etude du « Déséquilibre » axial transitoire par la méthode des indices :

A priori, Fa, Fai1 et Fai2 ne sont pas en équilibre. **Par convention** : le roulement qui s'oppose à la force axiale externe (Fa_E) sans prendre en compte les forces axiales induites, est repéré 1 , l'autre est noté 2 .

On étudie l'expression suivante : Fa_E+ Fai2 -Fai1 = R


- Cas a : R > 0 alors le roulement 1 travaille en butée et le roulement 2 est déchargé.
- Cas b : R < 0 alors le roulement 2 travaille en butée et le roulement 1 est déchargé.

Pour assurer l'équilibre statique, on applique les conditions de bon fonctionnement décrite précédemment : le roulement qui ne travaille pas en butée subit sa charge axiale induite et le roulement qui travaille en butée assure l'équilibre axial. On en déduit plusieurs cas :


• Cas A: Fa1 = Fa + Fai2 et Fa2 = Fai2.

• Cas b: Fa1 = Fai1 et Fa2 = Fai1 - Fa

4.3.4. Cas d'un montage "en O".

Les charges axiales induites Fai1 et Fai2 sont dirigées vers l'extérieur du mécanisme.On applique la même convention et la même regle que pour le montage en « X »

4.4. Conclusion: détermination et vérification des roulements et butées.

4.4.1. Détermination.

Elle n'est possible qu'en cas de charge radiale pure pour les roulements et axiale pure pour les butées

Charge radiale pure.

- Si le roulement est chargé à l'arrêt, P0 = Fr et il faut C0>P0
- En fonctionnement, P = Fr et il faut C>P
- En durée de vie,

Charge axiale pure.

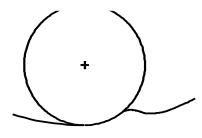
- Si la butée est chargée à l'arrêt, P0 = Fa et il faut C0>P0
- En fonctionnement, P = Fa et il faut C>P
- En durée de vie,

4.4.2. Vérification.

On est en situation de vérification dès que la charge est combinée. Cette validation est le résultat d'une démarche itérative qui commence par un choix de roulement ou butée, ce qui permet d'obtenir ses caractéristiques e, X0, Y0, X, Y, C, C0. En fonction du résultat, on ajuste ensuite ce choix.

- Si le roulement (la butée) est chargé(e) à l'arrêt, PO = XO.Fr + YO.Fa et il faut CO>PO
- En fonctionnement, P = X.Fr + Y.Fa et il faut C>P
- En durée de vie,

Pour mener à bien ces validations, on a besoin, en cas de chargement variable, de la loi de FISHER, et en cas de contacts obliques d'un travail préliminaire sur l'équilibre axial.

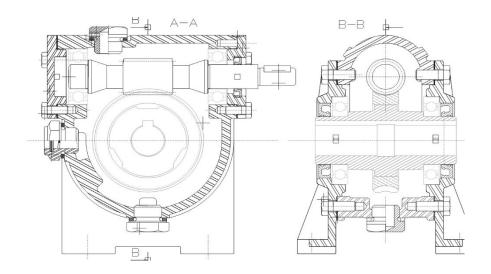

4.4.3. Pondération des charges.

On recommande en général l'application de facteurs de service qui majorent la charge. Ils dépendent du mode d'application des charges et éventuellement de températures exceptionnellement hautes ou basses. On peut les appliquer indifféremment aux données initiales Fr et Fa ou aux charges équivalentes P.

4.5. Montage des roulements

4.5.1. Maîtrise du jeu radial

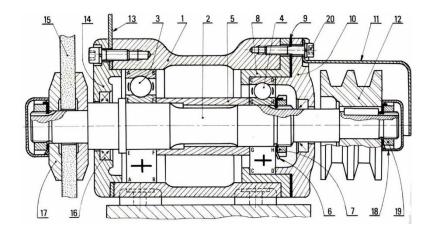
Il faut monter avec serrage les bagues tournantes par rapport à la direction de la charge.

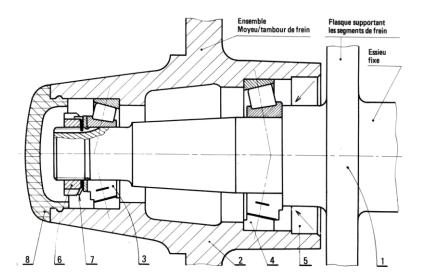


Cette règle trouve sa justification dans le phénomène dit « de laminage ». La charge produit une déformation élastique devant l'élément roulant qui tend à entraîner la bague **mobile par rapport à la direction de la charge**. Si la charge est de direction fixe, c'est la bague tournante, si la charge est tournante, c'est la bague fixe. On monte avec un ajustement serré cette bague, pour résister à cette tendance à l'entraînement. Au besoin les 2 bagues peuvent être montées avec ajustement serré.

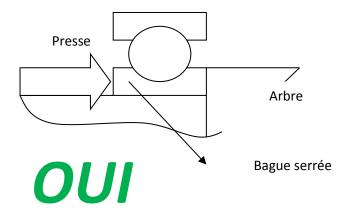
Ce serrage n'est pas un blocage en translation du roulement.

Exemples:

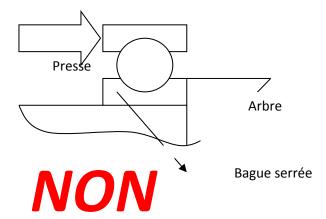

Reducteur



Touret à meuler



Roue de caravane


4.5.2. Dispositions relatives au montage

L'effort de montage ne doit jamais transiter par les éléments roulants. L'architecture du mécanisme, la gamme de montage, le recours éventuel à des procédés de contraction – dilatation doivent assurer le respect de cette règle. L'enfreindre détériore les éléments roulants.

4.5.3. Exemples d'outils de montage

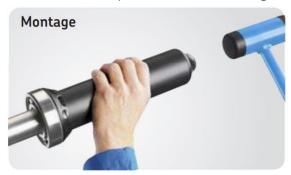


Figure 52: outil multifonctions et extracteur à 3 broches

Figure 54 : Clés à douilles pour écrous de serrage

4.5.4. Ajustement radiaux préconisés :

SERRAGE	ARBRE		LOGEMENT	
	Cas de charge	Ajustement	Cas de charge	Ajustement
Bague	Charge normale P <c 5<="" td=""><td>j6/k6</td><td>Cas général</td><td>H7/J7</td></c>	j6/k6	Cas général	H7/J7
intérieure serrée sur	Charge élevée		Bague libre sur sa portée	G7/H7
l'arbre	Charge élevée P> C/5	m6/p6	Roulement à rouleaux (cylindrique et conique)	M7/P7
Bague extérieure	Cas général	g6/h6	Charge normale P <c 5<="" th=""><th>M7/N7</th></c>	M7/N7
serrée dans le logement	Bague libre sur sa portée	f6/g6	Forte charges Charge P> C/5	N7/P7
Autres cas	Charge axiale pure	h6/g6	Charge axiale pure	G7/H7
Auties cas	Manchon de serrage	h9	Onarge axiale pure	<i>571111</i>

4.5.5. Jeu radial résiduel (après montage)

Le jeu radial d'un roulement est normalisé. Il doit être maîtrisé quel que soit le serrage que l'on impose à l'une des bagues. Les fabricants nous proposent donc différentes catégories de jeu : CO, C2, C3, C4 et C5.

On ne parle de jeu radial que pour les roulements à contact radial.

Catégorie de jeu	JEU	REMARQUE	Exemple pour ØD = 20 (en μm)	EXEMPLE POUR UN D = 50 EN μm
C0	Jeu normal	Utilisation courante	5 – 20	6 - 23
C2	Jeu faible	Pour de très bon guidages, ou des chocs importants	0-10	1-11
C3	lou	Utilisé lorsque le serrage est	13 – 28	18 – 36
C4	Jeu augmenté	important, ou lorsqu'il y a des défauts d'alignement, ou des	20 – 36	30 – 51
C5		risques de dilatation.	28 - 48	45 - 73

Le jeu de fonctionnement minimum se calcule avec la formule :

$$J_f = J_0 - T_i S_i - T_e S_e$$
 avec :

- J_f: jeu de fonctionnement minimum ;
- J₀: jeu nominal dans le roulement avant serrage (voir exemple ci-dessus ou tableau dans le memotech);
- T_i et T_e: taux de répercussion du serrage sur la bague intérieure et extérieure;
- S_i et S_e : serrage moyen en micron de la bague intérieure et extérieure :
 - S_i = (écart moyen arbre –écart moyen bague intérieure)
 - S_e =- (écart moyen bague extérieure– écart moyen alésage)

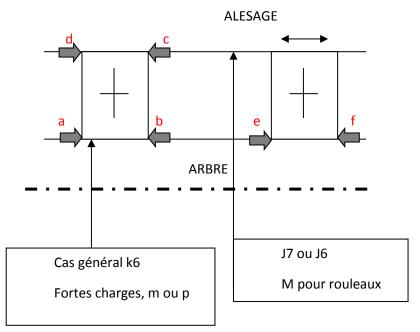
Estimation du jeu de fonctionnement minimum J_f en μ m

TYPE DE ROULEMENT	JEU MINIMUM DE FONCTIONNEMENT
Roulement à billes à contact radial	$J_f = \sqrt{d}$
Roulement à rouleaux cylindriques	$J_f = 4\sqrt{d}$
Roulement à rotule sur billes	$J_f = 2\sqrt{d}$
Roulement à rotule sur rouleaux	$J_f = 5\sqrt{d}$

Tableau des taux de répercussion

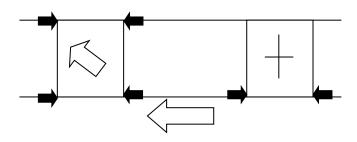
	TYPE DE PIECE	TAUX DE REPERCUSSION : T_i ET T_e
BAGUE INTERIEURE	Arbre plein	0,8
	Arbre creux	0,6
BAGUE Carter acier ou fonte EXTERIEURE Carter aluminium		0,7
	0,5	

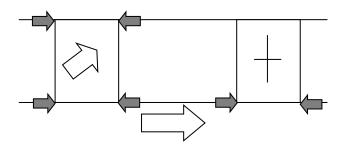
Chaque bague a un mouvement de translation éventuel dans deux directions, ce qui fait un total de 8 mouvements (4x2). **Un montage correct (isostatique) doit assurer 6 arrêts en translation**.


- Ces arrêts peuvent être assurés par adhérence (collage) ou par obstacle (anneau élastique, épaulement, écrou, chapeau...).
- Cette règle doit être adaptée à chaque situation, essentiellement en fonction de la nature et de l'intensité des efforts axiaux.
- Rappel : le « serrage » appliqué au roulement n'est en aucun cas un arrêt en translation.

Note:

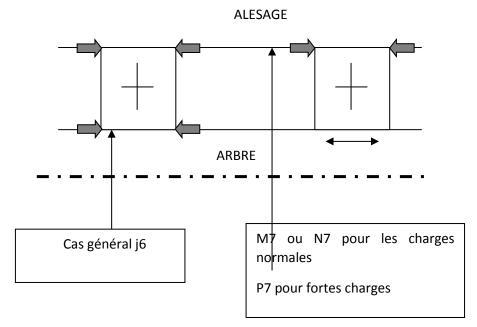
: Symbole représentant un arrêt axial quelconque sur une bague intérieure ou extérieure d'un roulement.



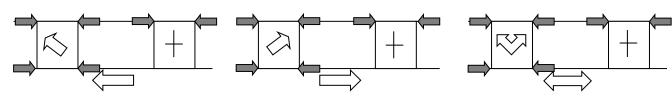

Montage dissymétrique (4/2) en bagues intérieures serrées, type arbre long. Un roulement assure 4 arrêts **a**, **b**, **c**, **d**. C'est lui qui positionne axialement le montage et qui est susceptible de supporter une charge combinée. L'autre roulement n'a que la bague intérieure arrêtée en **e** et **f**. Il ne peut donc être chargé que radialement.

La bague extérieure est libre de se déplacer par rapport à l'alésage, ce qui est utile d'une part pour tenir compte des imprécisions sur les cotes des différentes pièces, d'autre part pour permettre des dilatations éventuelles.

En cas de montage à la presse, les arrêts de presse doivent résister. Ce sont le plus souvent des épaulements de l'arbre.

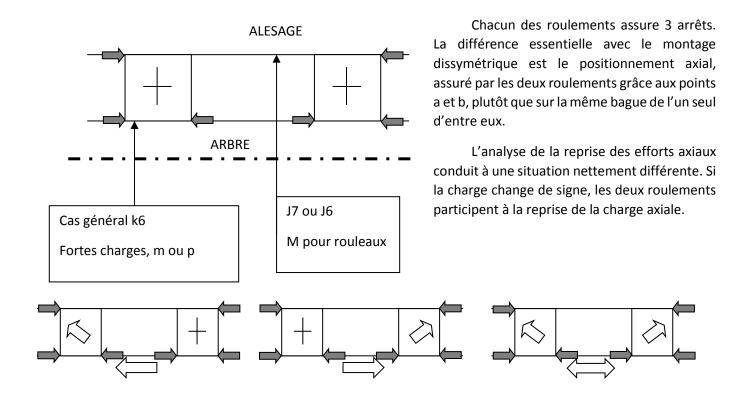

Pour décider de la nature des arrêts axiaux (simple serrage sur l'arbre, anneau élastique sur l'arbre ou l'alésage, chapeau pour l'alésage ou écrou sur l'arbre), il convient d'observer les efforts axiaux (unilatéraux ou bilatéraux et leur intensité (nuls, faibles, forts)).

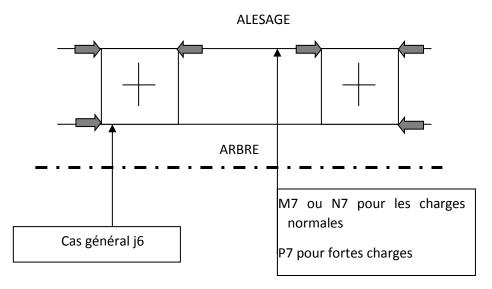
4.5.6.1. Montage dissymétrique (4/2) en bagues extérieures serrées, type arbre long

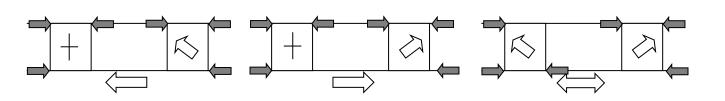


C'est sur l'alésage que l'on retrouve les 4 arrêts.

Une bague intérieure est libre de se déplacer par rapport à l'arbre. Une analyse identique à la précédente concerne les arrêts de presse et la nature des arrêts axiaux en fonction de la direction et de l'intensité de la charge axiale.

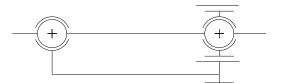

Les différents cas de montage Iso avec le sens de transmission des efforts



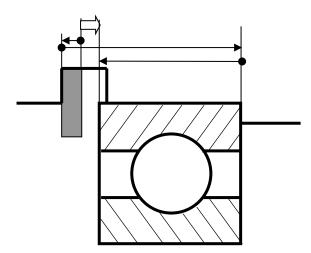


4.5.6.2. Montage symétrique (3/3) en bagues intérieures serrées

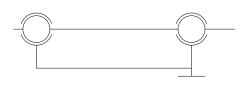
4.5.6.3. Montage symétrique (3/3) en bagues extérieures serrées



4.5.7. Comparaison des montages dissymétrique et symétrique


Cette comparaison se fait en fonction de deux critères : la maîtrise du jeu axial liée au modèle cinématique, et la facilité de réalisation.

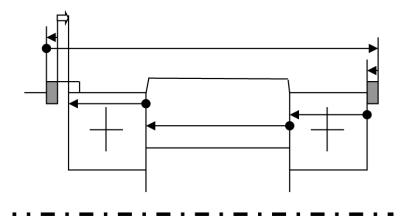
Le modèle dissymétrique est isostatique. Le roulement arrêté axialement est modélisé par une rotule et le roulement libre par une linéaire annulaire. La liaison composée en série obtenue est une liaison pivot isostatique.


Ce montage est bien adapté à l'utilisation de roulements de dimensions différentes, ce qui est cohérent avec une plus grande dimension du roulement qui supporte la charge combinée. La bague extérieure libre permet des fluctuations de cotes (L par exemple) et une dilatation différentielle arbre/bâti.

On peut annuler le jeu axial du montage par serrage de la bague extérieure entre les points a et b, serrage qui n'affecte pas les éléments roulants.

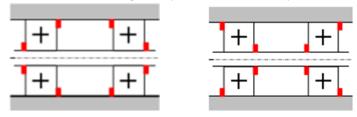
En cas d'arrêt sans serrage par un anneau élastique, la condition fonctionnelle de jeu de montage dépend d'une chaîne à 3 maillons : la largeur du circlips, une cote du bâti et la largeur de la bague.

L'intervalle de tolérance sur le jeu est la somme de trois IT de pièces.

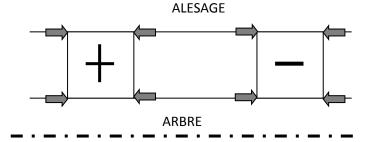


Le modèle symétrique est hyperstatique. Les deux roulements étant arrêtés axialement sont modélisés par des rotules. La liaison composée en série obtenue est une liaison pivot hyperstatique d'ordre 1. Il y a risque de contrainte excessive du montage, ou de maîtrise difficile du jeu.

Ce montage est bien adapté à l'utilisation de roulements identiques, ce qui est positif en cas de volonté de standardisation. Les cotes arbre et alésage sont communes. Mais l'annulation du jeu axial par chapeaux par exemple risque de « coincer » le montage entre les points a et b.



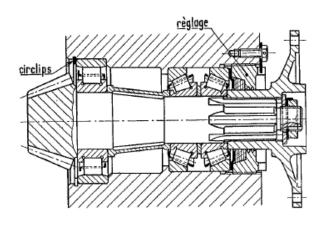
En cas de montage avec anneaux élastiques, le jeu fonctionnel de montage dépend d'une chaîne à 6 maillons : les deux largeurs de circlips, les deux largeurs de roulements, une cote arbre et une cote bâti

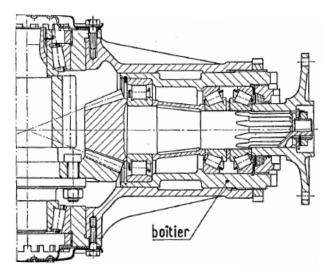

Le montage dissymétrique présente donc des qualités incontestables par rapport au montage symétrique.

4.5.8. Montage simplifié dit économique

Ce montage fait l'économie de deux arrêts axiaux surabondant et n'offre pas la sécurité contre les chocs axiaux. Il est par contre d'un montage et d'une réalisation plus aisée. Comme son nom l'indique, il est à utiliser sur des montages peu exigent.

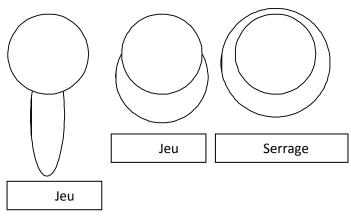
4.5.9. Montage avec roulement à rouleaux ou aiguilles


La plupart de ces roulements sont à bagues séparables et possèdent un degré de liberté en translation entre bague intérieure et bague extérieure. 8 points d'arrêt sont alors nécessaires



4.5.10. Montage en boîtier

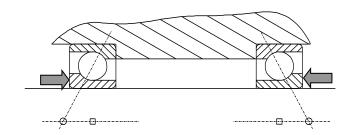
Le montage en boîtier permet une rationalisation des étapes de montages en créant un sous ensemble « guidage en rotation » dédié. Ce sous ensemble est souvent d'une taille réduite, son procédé d'obtention permet de pratiquer les nombreux usinages de précision requis par la fonction du guidage à moindre coût. Et surtout, il permet un remplacement et donc une maintenance aisée.


4.6. Montage à contacts obliques.

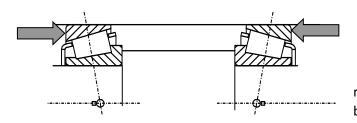
4.6.1. Présentation du problème

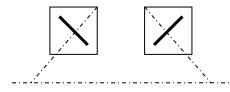
Les deux roulements sont modélisés par des rotules (demi rotules ou rotule unilatérale). La liaison composée en série obtenue est une liaison pivot hyperstatique d'ordre 1. Il y a ici également un problème de règlage convenable du jeu axial.

4.6.2. Jeu normal de fonctionnement et réglage de ce jeu.



excessif ou un serrage excessif.

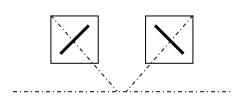

Si le jeu est excessif, trop peu d'éléments roulants portent sur les bagues, jusqu'à la limite de un seul. Si le serrage est excessif, même les éléments roulants opposés à la direction de la charge sont chargés. On qualifie de jeu normal de fonctionnement la configuration pour laquelle la moitié des éléments roulants sont chargés. La figure ci-contre évoque la répartition des efforts subis par les éléments roulants. La situation de « jeu normal » n'est pas sans évoquer la répartition de pression d'un palier lisse. La durée de vie est maximum pour le jeu normal de fonctionnement. Elle diminue de part et d'autre, que ce soit avec un jeu


Le réglage de ce jeu se fait par les bagues non serrées. On voit ci-contre que pour un montage à centres de pression éloignés dit « en O », le réglage le plus aisé est par les bagues intérieures.

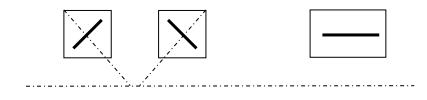
Ci-contre, pour un montage à centres de pression rapprochés dit « en X », le réglage le plus aisé est par les bagues extérieures.

4.6.3. Montage à centres de pression éloignés dit « en O ».

L'éloignement des centres de pression est nécessaire.


C'est le cas où, pour des raisons de compacité, on a un arbre très court. Pour augmenter la stabilité du montage, on éloigne les centres de pression et cette considération l'emporte sur le problème de réglage du jeu.

L'éloignement des centres de pression est indifférent.


La facilité de réglage du jeu par les bagues libres en translation prend le pas sur toute autre considération. Ce sont donc les bagues intérieures qui doivent être libres. Dans la plupart des cas, le montage en O est associé à des bagues extérieures serrées.

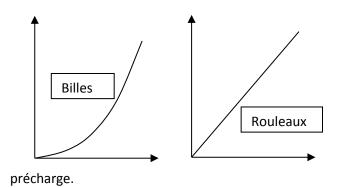
4.6.4. Montage à centres de pression rapprochés dit « en X ».

Le rapprochement des centres de pression est nécessaire.

C'est le cas où, pour des raisons de modélisation cinématique, on chercha à avoir des centres de pression confondus ou très proches. La paire de roulement se comporte alors comme une seule rotule et cette considération l'emporte sur le problème de réglage du jeu. Cette paire de roulement constitue une butée axiale bilatérale à forte capacité de charge radiale.

Pour compléter le montage, cette paire est associée à un autre roulement chargé uniquement radialement, le plus souvent à rouleaux cylindriques.

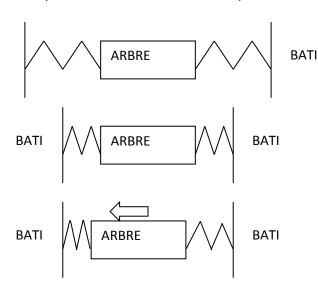
Le rapprochement des centres de pression est indifférent.


La facilité de réglage du jeu par les bagues libres en translation prend le pas sur toute autre considération. Ce sont donc les bagues extérieures qui doivent être libres.

Dans la plupart des cas, le montage en O est associé à des bagues extérieures serrées.

4.6.5. Ajustements.

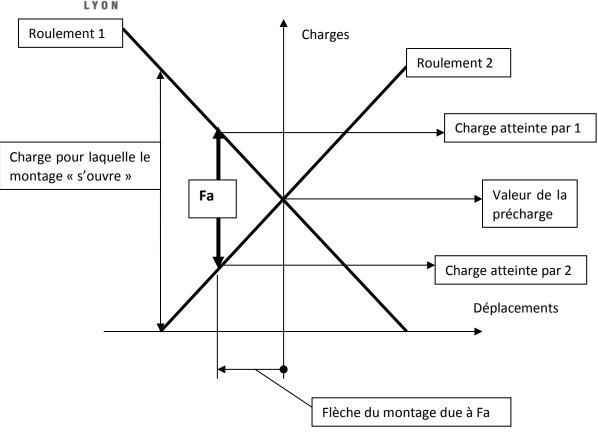
Dans les applications courantes, les ajustements des roulements à contact radial peuvent être indiqués. Il faut se référer aux recommandations des constructeurs dans le cas d'applications particulières.


4.6.6. Rigidité du montage.

A partir du moment où les éléments roulants sont au contact des bagues, un roulement à contacts obliques se comporte comme un ressort très raide, de raideur linéaire pour un roulement à rouleaux et non linéaire (3ème degré) pour un roulement à billes. On appelle « courbe de déflexion » du roulement cette caractéristique.

Lorsqu'on serre la bague de réglage, on installe une

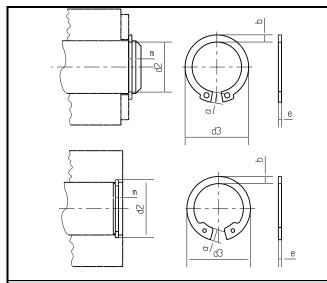
On peut schématiser les différentes phases comme suit : Les roulements 1 et 2 sont symbolisés par des ressorts.


Les bagues sont simplement en contact

On applique la précharge en l'absence de la charge extérieure, par réglage du jeu de fonctionnement. Les deux roulements sont également comprimés.

La charge extérieure Fa s'applique : le roulement 1 est plus comprimé alors que le roulement 2 est soulagé. Cela correspond au diagramme de fonctionnement suivant :




Dans la phase de chargement sans ouverture, la raideur du montage est double de celle d'un seul roulement. L'intérêt de montages contraints est une diminution du bruit de fonctionnement et une compensation d'usure.

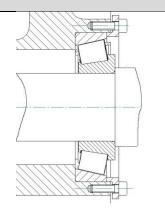
4.6.7. Les éléments de blocage en translation

Paramètres de calculs :

diamètre : d

(Résist.:120 daN pour ϕ 16)

Remarque : Le jeu axial après montage est


0.1 mm mini.

Réalisation:

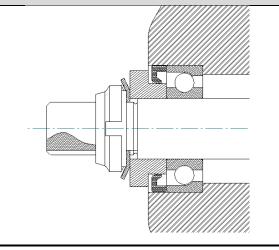
Fabrication: extérieur: 30 min

intérieur : 45 min

CHAPEAU

Cotation fonctionnelle:

Toutes les surfaces fonctionnelles du chapeau.


Taraudage et alésage dans le corps.

Remarque:

Ce type de montage permet de régler le jeu

axial.

ECROUS A ENCOCHES

Cotation :

Attention l'arbre est fileté avec un pas fin.

Réalisation :

Usinage d'un filetage et d'une rainure.

Fournisseur: FAG, (10 ϵ pour ϕ 20)

Remarque:

Utilisation : L'écrou à encoches permet de

contrôler le jeu axial dans un montage.

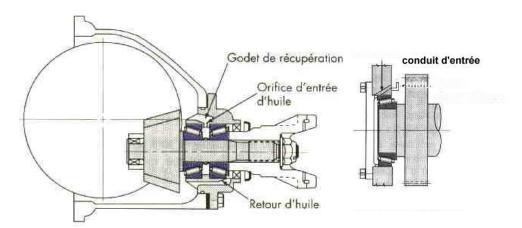
4.6.7.1. Lubrification à l'huile

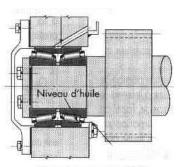
Le lubrifiant a pour fonctions

- principalement de séparer l'élément roulant du chemin de roulement, en maintenant un film d'huile entre les deux pièces (fonctionnement **élastohydrodynamique**);
- de refroidir le roulement et d'évacuer les corps étrangers ;
- d'éviter l'oxydation.

AVANTAGES

- Bonne pénétration dans le roulement ;
- Refroidissement possible;
- Vitesse de rotation autorisée importante;
- Evacuation des corps étrangers ;
- Contrôle possible du lubrifiant : vérifier le niveau, régénérer (vidange).


INCONVENIENT


- Nécessité d'avoir un carter étanche ;
- Oxydation en cas d'arrêt prolongé;
- Mauvaise lubrification au démarrage.

SYSTEME DE LUBRIFICATION A L'HUILE

Les lubrifications à l'huile sont utilisées lorsqu'il existe déjà un système lubrifié à l'huile et lorsque les vitesses de rotation l'imposent. C'est un principe plus coûteux que la graisse (étanchéité, entretien...) mais qui a de meilleures performances.

- Bain d'huile: utilisé lorsque l'on ne doit pas faire circuler l'huile (refroidissement inutile) dans des carters fermés (réducteur). Le niveau de l'huile doit arriver au milieu de l'élément roulant le plus bas. L'ensemble du système sera lubrifié par barbotage.
- Projection et ruissellement : on utilise le barbotage fait par un autre élément pour lubrifier les roulements. On trouve souvent des gouttières pour diriger le fluide vers les roulements.
- Circulation d'huile: utilisée avec une pompe, on injecte l'huile sur les billes, ou entre les billes si l'on a un roulement à deux rangées de billes (les roulements à rouleaux sphériques comprennent des perçages dans la bague extérieure pour amener le lubrifiant dans les éléments roulants.
- **Brouillard d'huile** : utilisé pour les roulements de précision tournant à haute vitesse.

Jet d'huile

4.6.7.2. Lubrification à la graisse

L'utilisation croissante des roulements lubrifiés à la graisse, associée au concept de graissage à vie fait de la graisse un composant à part entière du roulement.

Des graisses spéciales doivent être utilisées pour supporter les contraintes imposées par le malaxage ininterrompu du roulement.

De plus la graisse sert de barrière contre les impuretés dans le cas d'un roulement dont l'étanchéïté est assurée par déflecteur.

AVANTAGE

- Propreté du mécanisme ;
- Simplicité de mise en œuvre ;
- Etanchéité réalisée directement sur le roulement.

INCONVENIENT

- Rendement plus faible qu'avec de l'huile;
- Evacuation thermique faible;
- Impossibilité de connaître l'état du graissage.

CARACTERISTIQUE DE LA GRAISSE

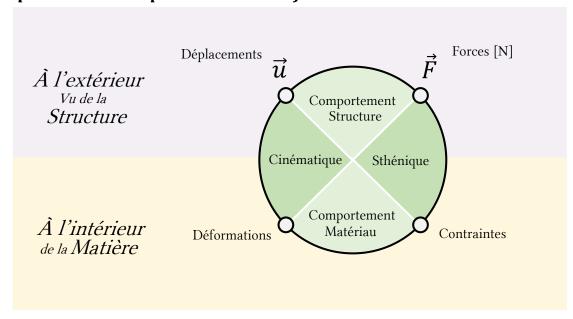
Le grade généralement retenu est NLGI2 ou NLGI3.

La quantité à insérer dans le roulement si vous n'utilisez pas un roulement prégraissé :

 $G = 0,005.D.B (cm^3)$

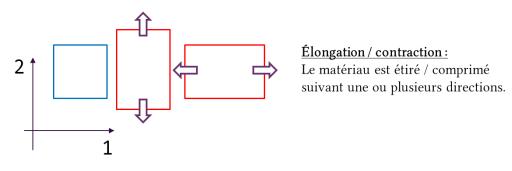
avec B la largeur du roulement et D le diamètre extérieur.

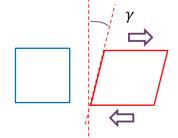
Lorsque les roulements tournent à faible vitesse, il est possible de les remplir totalement, ce qui améliore la protection contre les pollutions extérieures.



5. Mécanique des solides déformables

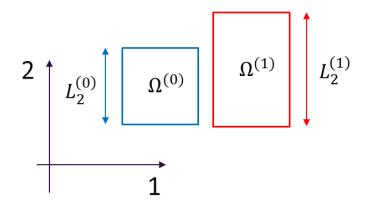
Introduction pour la conception/dimensionnement


Introduction pour la conception/dimensionnement

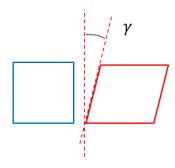

5.1. Repère en mécanique des solides déformables

5.2. Modes de déformation du milieu continu

Concentrons-nous sur un élément de grille (carré) ; on s'intéresse aux modes de déformation homogène ; dans le plan (2D) nous en avons 3 (en 3D, 6)


Distorsion (Cisaillement):

Le matériau subit une distorsion, que l'on appelle également cisaillement.



On peut paramétrer ces transformations... sur la base de <u>grandeurs physiques mesurables</u>, aussi appelées <u>variable observables</u> ou <u>variables d'état</u> (mesurable = que l'on peut caractériser expérimentalement).

Dans chaque direction, on peut mesurer un allongement (changement de longueur) : $\Delta L_2 = L_2^{\left(1\right)} - L_2^{\left(0\right)}$

Que l'on peut exprimer également sous la forme d'un rapport d'allongement : $\lambda_2 = \frac{L_2^{(1)}}{L_2^{(0)}}$

Dans le plan (2D), il suffit de 3 paramètres pour caractériser la transformation : λ_1 , λ_2 , γ est appelé angle de distorsion.

On décide de se doter d'autres grandeurs adimensionnées, que l'on nomme déformations.

On va choisir arbitrairement une première expression des déformations.

$$\varepsilon_{22} = \frac{L_2^{(1)} - L_2^{(0)}}{L_2^{(0)}} = \lambda_2 - 1$$

Dans l'autre direction on aura

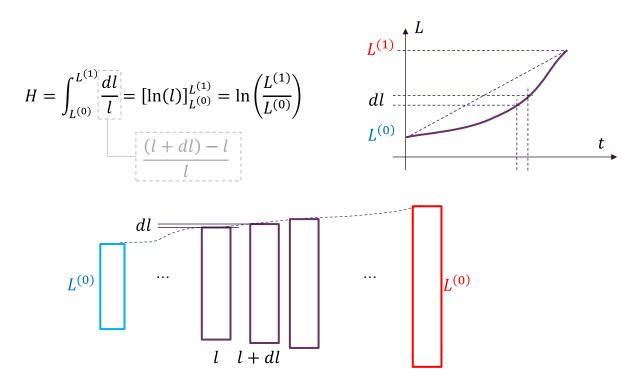
$$\varepsilon_{11} = \frac{L_1^{(1)} - L_1^{(0)}}{L_1^{(0)}} = \lambda_1 - 1$$

Pour le cisaillement, la déformation est liée à l'angle de distorsion :

$$\varepsilon_{12} = \frac{\gamma}{2}$$

5.3. Expressions de la déformation

On a donc une première expression de la déformation.


Elle a plusieurs noms (pour faire simple...):

- Déformation linéarisée
- Déformation nominale
- Il s'agit des composantes du tenseur des déformations linéarisé
- Cette expression de la déformation linéarise la transformation entre l'état initial et final...
- Elle n'est pas recommandée pour de grandes transformations.

5.4. Déformations logarithmiques

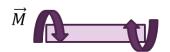
Il existe d'autres expressions de la déformation ! (car le choix est arbitraire)

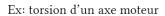
On utilise souvent la déformation logarithmique (appelée aussi déformation vraie, ou naturelle...). Elle linéarise la déformation par morceaux...

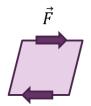
5.5. Sollicitations simples

Les cas de chargement suivants sont souvent appelés des sollicitations simples.

On les retrouve couramment en mécanique des structures, mais ils présentent aussi des intérêts comme <u>essais</u> <u>de caractérisation de matériaux</u>. Ils sont dit « simples » car ils engendrent des états de déformation simples (parfois homogène). Nous allons utiliser ces essais pour illustrer les notions de contrainte et déformation.




• Traction / Compression

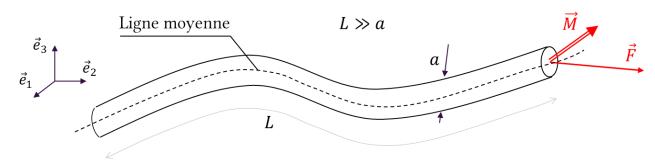

Ex: traction sur un câble

Ex: flexion d'une étagère

- Flexion
- Torsion
- Cisaillement

Ex: cisaillement d'une goupille

Traction/compression	\vec{F}		
Flexion	Flexion pure Flexion simple		
Torsion	\vec{M}		
Cisaillement			

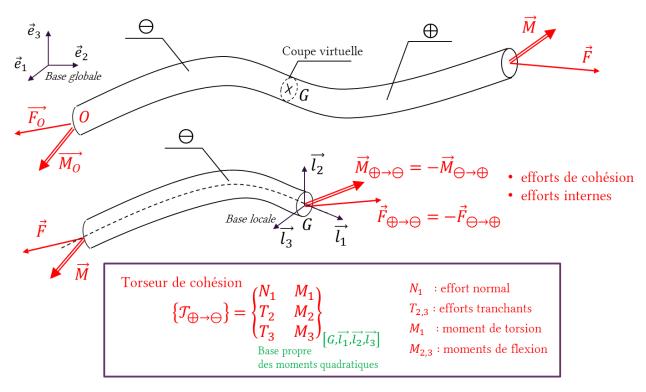


5.6. Les poutres

Les poutres sont des solides particuliers appartenant au groupe des structures élancées.

La longueur d'une poutre est grande devant ses autres dimensions.

Les actions extérieures à la poutre (moments, forces) sont appliquées en des points de la ligne moyenne.


La ligne moyenne est l'ensemble des barycentres des sections droites.

5.7. Efforts internes

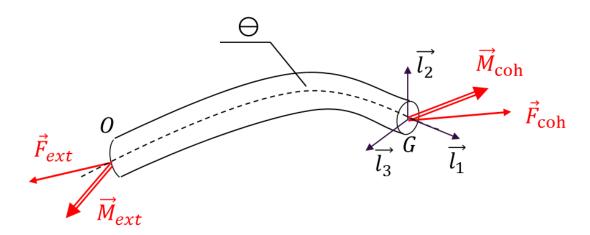
On peut toujours couper un solide virtuellement (= de manière fictive)

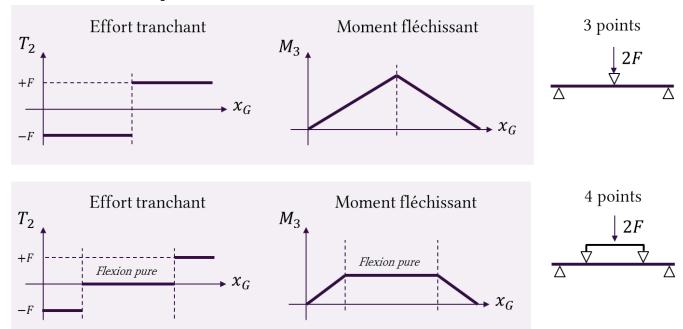
et regarder ce qui se passe à l'intérieur de la matière...

Dans le cas des poutres on calcule les efforts de cohésion (ou efforts internes).

Méthodologie pour le calcul du torseur de cohésion

- Je choisis un repère pour la poutre (origine et orientation)
- J'isole la partie
 ⊕ (ou ⊕)




• J'écris l'équilibre sur cette partie du solide : on équilibre les efforts extérieurs et les efforts de cohésion.

Par exemple en isolant Θ :

$$\begin{split} \left\{ \mathcal{T}_{ext \to \ominus} \right\} + \left\{ \mathcal{T}_{coh\acute{e}sion} \right\} &= \left\{ 0 \right\} \\ &\text{avec} : \left\{ \mathcal{T}_{coh\acute{e}sion} \right\} = \left\{ \mathcal{T}_{\bigoplus \to \ominus} \right\} = \left\{ \mathcal{T}_{ext \to \bigoplus} \right\} \end{split}$$

5.8. Flexion 3 et 4 points

5.9. Torseur de cohésion pour des sollicitations simples

Traction/compression	$\vec{l_2}$ \uparrow \vec{r} $\vec{l_1}$	$ \begin{pmatrix} N_1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{\left[G, \overrightarrow{l_1}, \overrightarrow{l_2}, \overrightarrow{l_3}\right]} $
Flexion	\overrightarrow{M} $\overrightarrow{l_2}$ $\overrightarrow{l_1}$ Flexion pure	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & M_3 \end{pmatrix}_{\left[G, \overrightarrow{l_1}, \overrightarrow{l_2}, \overrightarrow{l_3}\right]} $
TICAIOII	Flexion simple \vec{l}_1	$\begin{cases} 0 & 0 \\ -F/2 & 0 \\ 0 & +\frac{Fx}{2} \end{cases} \qquad \begin{cases} 0 & 0 \\ +F/2 & 0 \\ 0 & +\frac{F}{2}(L-x) \end{cases}$
Torsion	\vec{l}_1	$ \begin{pmatrix} 0 & M \\ 0 & 0 \\ 0 & 0 \end{pmatrix}_{\left[G, \overrightarrow{l_1}, \overrightarrow{l_2}, \overrightarrow{l_3}\right]} $

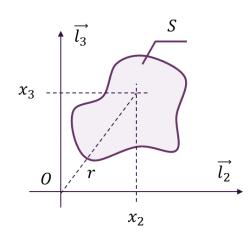
5.10. Moments quadratiques

On appelle <u>moment quadratique</u> une grandeur qui caractérise la géométrie de la section droite par rapport à un axe donné.

Les moments quadratiques traduisent la répartition de la matière.

Ils sont parfois appelés très abusivement moment d'inertie... qu'ils ne sont en rien car la masse n'intervient pas dans ce calcul.

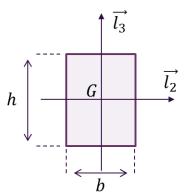
Pour le calcul de moment autour de l'axe 2


$$I_{O22} = \int_{S} x_3^2 \, dS$$

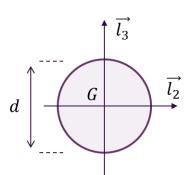
Pour le calcul de moment autour de l'axe 3

$$I_{O33} = \int_{S} x_2^2 \, dS$$

Pour la torsion autour de l'axe 1


$$I_{O11} = \int_{S} x_2^2 + x_3^2 dS = \int_{S} r^2 dS$$

5.10.1. Pour des sections courantes


$$I_{G11} = rac{bh(b^2+h^2)}{12}$$
 Pour la torsion autour de l'axe 1

$$I_{G22} = \frac{bh^3}{12}$$

Pour le calcul de moment autour de l'axe 2

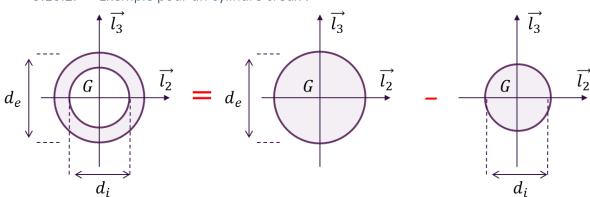
$$I_{G33} = \frac{b^3 h}{12}$$

Pour le calcul de moment autour de l'axe 3

$$I_{G11} = \frac{\pi d^4}{32}$$

Pour la torsion autour de l'axe 1

$$I_{G22} = \frac{\pi d^4}{64}$$


Pour le calcul de moment autour de l'axe 2

$$I_{G33} = \frac{\pi d^4}{64}$$

Pour le calcul de moment autour de l'axe 3

Pour des sections complexes, on peut utiliser une composition de moments quadratique de sections simples.

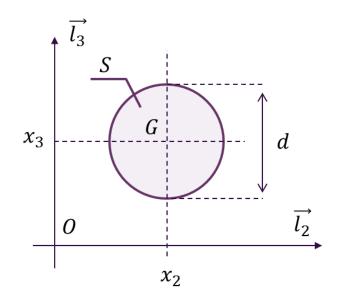
5.10.2. Exemple pour un cylindre creux:

$$I_{G22} = \frac{\pi \left(d_e^4 - d_i^4\right)}{64}$$

A condition que tous les moments quadratiques soient calculés au même point!

Sinon il faut « transporter » les moments quadratiques...

Il arrive de calculer un moment quadratique en un point spécifique (par exemple le barycentre, jugé plus simple) puis de devoir le transporter au point de la ligne moyenne.

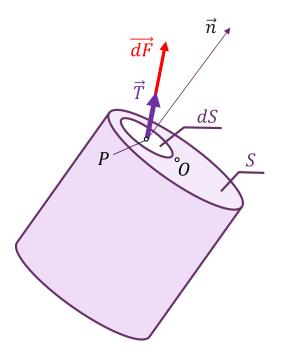


5.10.3. Formules de Huygens

$$I_{O22} = I_{G22} + Sx_3^2$$

$$I_{O33} = I_{G33} + Sx_2^2$$

$$I_{O11} = I_{G11} + Sx_2x_3$$



5.11. Efforts internes

Plus généralement on peut toujours découper virtuellement un solide, et s'intéresser aux efforts internes.

Il faut pour cela choisir une surface, définie par une surface de normale \vec{n} .

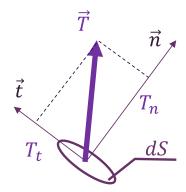
De cette manière on définit le vecteur contrainte, à partir d'un élément de surface infinitésimal dS.

$$\lim_{dS \to 0} \frac{\overrightarrow{dF}}{dS} = \overrightarrow{T}$$

La résultante de l'effort sur la face S s'écrit :

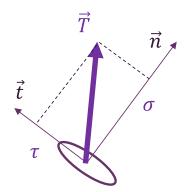
$$\vec{F} = \int_{S} \vec{T} dS$$

La résultante du moment en O sur la face S s'écrit :


$$\overrightarrow{M_O} = \int_S \overrightarrow{OP} \wedge \overrightarrow{T} dS$$

Définition du vecteur contrainte

$$\vec{T} = \lim_{dS \to 0} \frac{\overrightarrow{dF}}{dS} = T_n \vec{n} + T_t \vec{t}$$




On notera parfois (convention):

$$\vec{T} = \sigma \vec{n} + \tau \vec{t}$$

Avec

- σ la contrainte normale
- τ la contrainte tangentielle

Contrainte (normale)

- De Cauchy
- « Vraie »

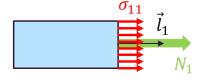
actuel
$$\sigma_{22} = \frac{F}{S^{(1)}}$$

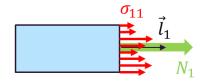
Contrainte (normale)

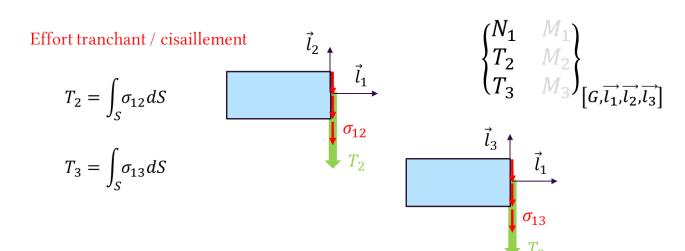
- Piola Kirchhoff 1 (PK1)
- « Nominale »
- Contrainte de l'ingénieur

mixte
$$\Pi_{22} = \frac{F}{S^{(0)}}$$

	$dS \stackrel{\overrightarrow{n}}{\longmapsto} Coupe$ virtuelle	$\sigma_{nn} \equiv \sigma$	$\sigma_{nt} \equiv au$	
Traction/compression	$\stackrel{\vec{F}}{\longleftrightarrow}$			
Flexion	M Flexion pure			
Hexion	Flexion simple			
Torsion	M A LOV			
Cisaillement		0		

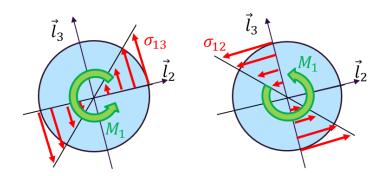

5.12. Relations torseur de cohésion et contraintes

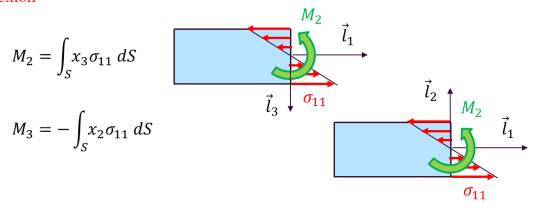

On cherche le lien entre les efforts extérieurs et les efforts internes (dans la matière).


Nous allons expliciter ces relations dans le cas des poutres.

Traction

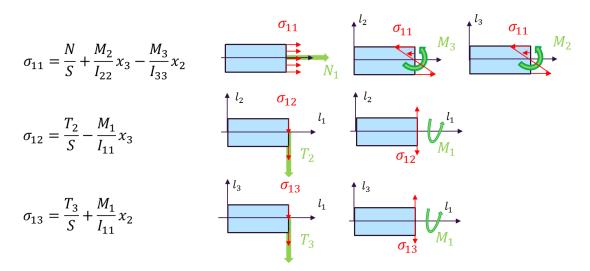
$$N_1 = \int_S \sigma_{11} dS$$





Torsion

$$M_1 = \int_{S} x_2 \sigma_{13} - x_3 \sigma_{12} \ dS$$


Flexion

5.12.1. Relations inverses

Le plus souvent en dimensionnement on fait l'inverse...

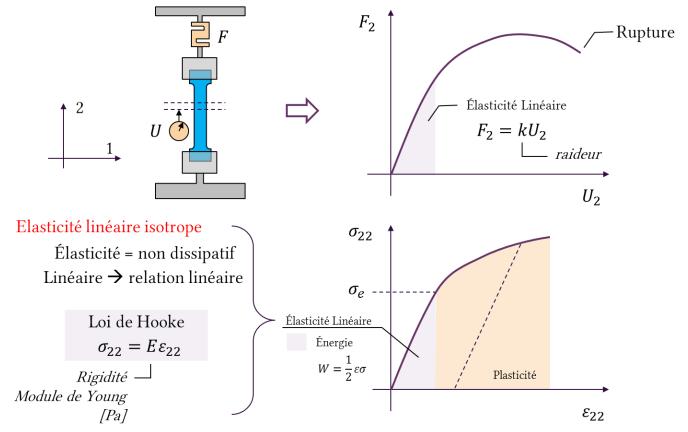
On connaît les composantes du torseur de cohésion et on cherche les contraintes dans la matière.

Synthèse : torseur ≒ contraintes

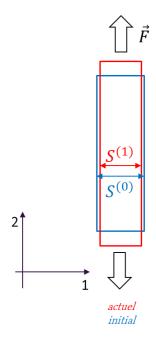
$$\sigma_{11} = \frac{N}{S} + \frac{M_2}{I_{22}} x_3 - \frac{M_3}{I_{33}} x_2 \qquad \qquad \sigma_{12} = \frac{T_2}{S} - \frac{M_1}{I_{11}} x_3 \qquad \qquad \sigma_{13} = \frac{T_3}{S} + \frac{M_1}{I_{11}} x_2$$

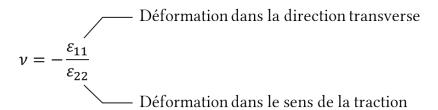
$$\begin{pmatrix} N_1 & M_1 \\ T_2 & M_2 \\ T_3 & M_3 \end{pmatrix}_{\left[G, \overrightarrow{l_1}, \overrightarrow{l_2}, \overrightarrow{l_3}\right]} \qquad \Longleftrightarrow \qquad \sigma_{11}, \sigma_{12}, \sigma_{13}$$

$$N_{1} = \int_{S} \sigma_{11} dS \qquad M_{1} = \int_{S} x_{2} \sigma_{13} - x_{3} \sigma_{12} dS$$


$$T_{2} = \int_{S} \sigma_{12} dS \qquad M_{2} = \int_{S} x_{3} \sigma_{11} dS$$

$$T_{3} = \int_{S} \sigma_{13} dS \qquad M_{3} = -\int_{S} x_{2} \sigma_{11} dS$$





5.13. Comportement: relation contrainte déformation

Le coefficient de Poisson ν traduit un couplage entre les directions de déformation. Dans un essai de traction il s'écrit :

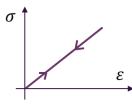
Le coefficient de Poisson régit également ce qui se passe dans la direction 3 (perpendiculaire au schéma) :

$$u = -rac{arepsilon_{33}}{arepsilon_{22}}$$
 C'est pourquoi la section change au cours de l'essai...

Si il y a parfaite conservation du volume de matière au cours de la transformation, le coefficient de Poisson vaut 0.5. Pour de nombreux métaux, il est proche de 0.2-0.3.

5.14. Comportement élastique linéaire isotrope

Un matériau <u>élastique linéaire isotrope</u> est défini par


2 propriétés mécaniques indépendantes.

L'ingénieur utilise souvent les deux paramètres E et ν .

Élastique : non dissipatif (l'énergie de déformation emmagasinée est restituée)

Linéaire : la relation de comportement est linéaire $\sigma = E\varepsilon$

Isotrope : les mêmes paramètres E et ν sont utilisés dans toutes les directions.

 $\sigma_{11}=E\,arepsilon_{11}$ Dans le cas d'une traction uni-axiale suivant l'axe 1 $\sigma_{22}=E\,arepsilon_{22}$ Dans le cas d'une traction uni-axiale suivant l'axe 2

Éprouvettes découpée dans une plaque et différentes directions

On utilise également une troisième propriété G appelée module de cisaillement

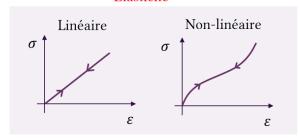
(ou module de Coulomb).

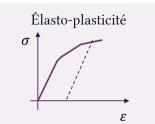
Cette appellation est justifiée par le rôle que G joue dans la relation de comportement reliant contraintes et déformations de cisaillement :

$$\tau = G\gamma$$

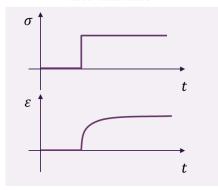
Avec au (ou σ_{ij}) la contrainte de cisaillement, γ (respectivement $arepsilon_{ij}$) est la déformation de cisaillement (respectivement l'angle de distorsion).

Pour un matériau élastique isotrope, cette propriété dépend de E et ν :


$$G = \frac{E}{2(1+\nu)}$$

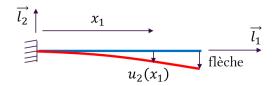


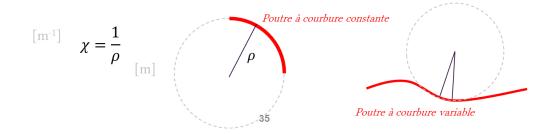
5.14.1. Classes de comportement


Élasticité

Plasticité

Visco-élasticité

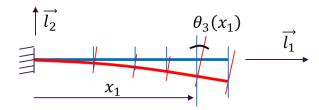



5.14.2. Calcul de la déformée

La « déformée » est une abréviation pour désigner la poutre dans sa configuration déformée. Calculer la déformée c'est chercher le déplacement de l'ensemble des points de la poutre.

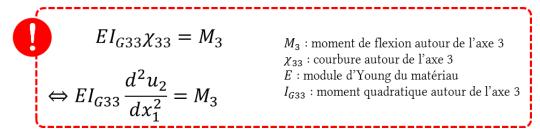
La déflexion maximum dans une poutre est appelée la flèche.

Courbure : La courbure χ est l'inverse du rayon de courbure (ρ), exprimée en m⁻¹



5.15. Le modèle de poutre de Bernoulli

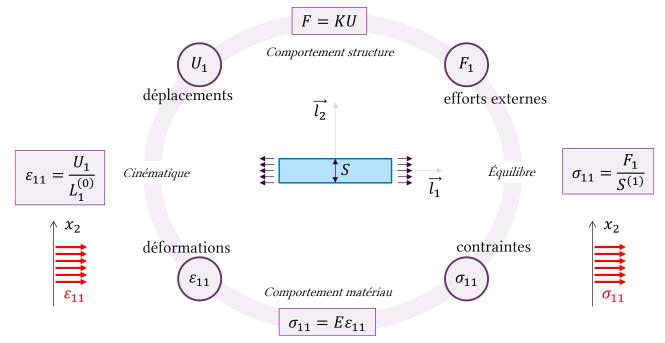
Pour les poutres droites à section constante


Le modèle de poutre de Bernoulli néglige le cisaillement transverse. La cinématique est basée sur une distribution linéaire des déformations dans l'épaisseur. Les sections droites restent droites et perpendiculaires à la ligne moyenne.

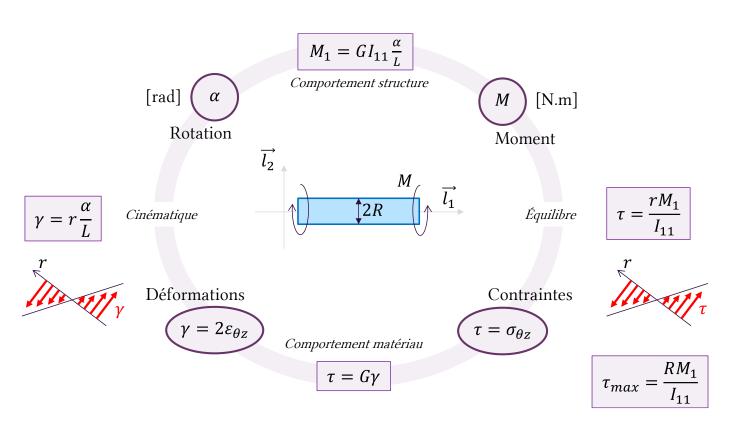
Dans les poutres de Bernoulli, les déplacements, les rotations et la courbure sont reliés.

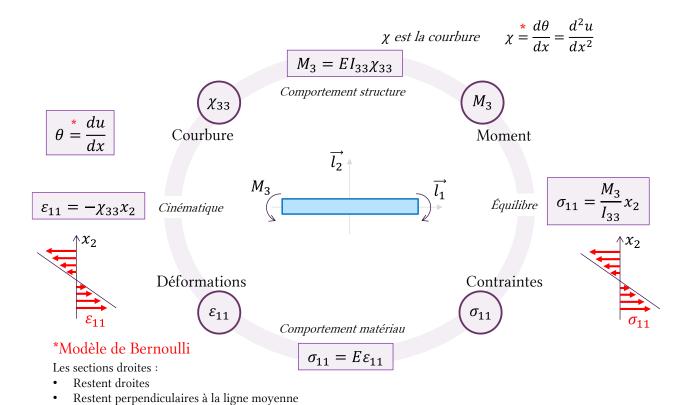
$$\chi_{33} = \frac{d\theta_3}{dx_1} = \frac{d^2u_2}{dx_1^2} \quad \boxed{ }$$

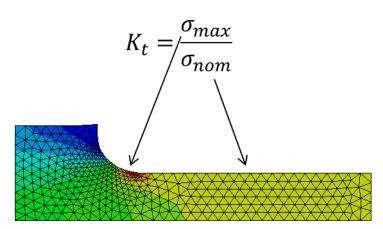
On donne (sans démonstration) la relation permettant de remonter à la déformée d'une poutre de Bernoulli (d'axe \vec{l}_1) en partant du torseur de cohésion.



Pour retrouver l'expression de la déformée (le déplacement en tout point) il suffit d'intégrer deux fois cette expression en considérant les conditions aux limites.

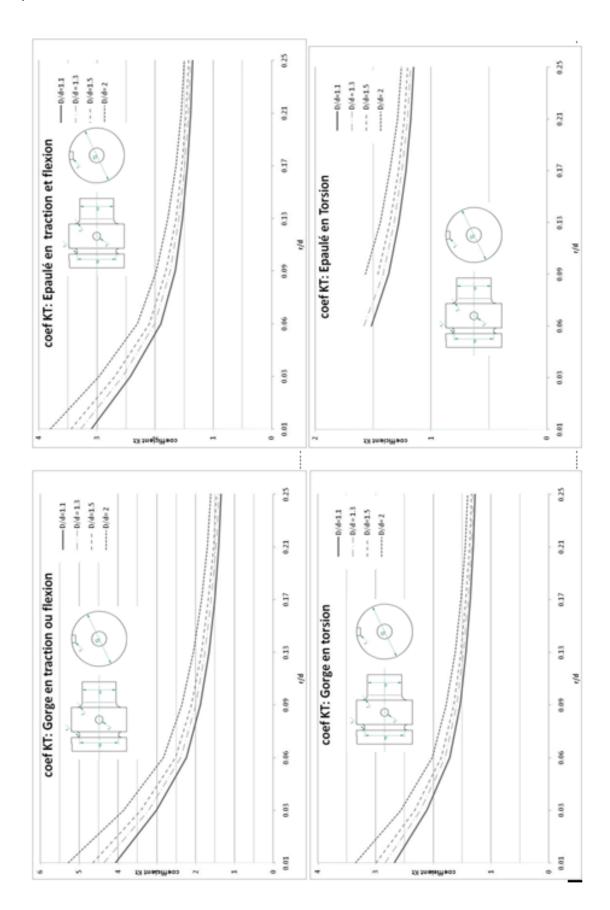

5.16. Synthèse pour une barre en traction

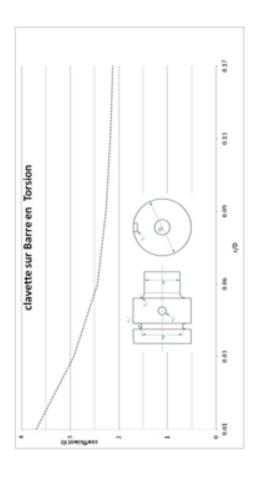

5.17. Synthèse pour un barreau cylindrique en torsion

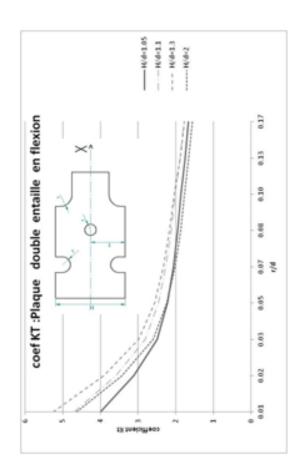


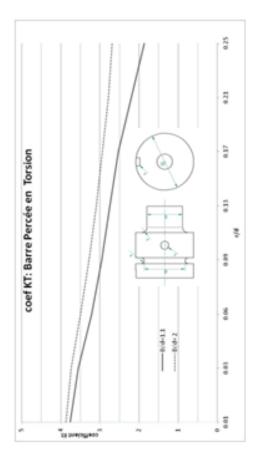
5.18. Synthèse pour une poutre en flexion pure

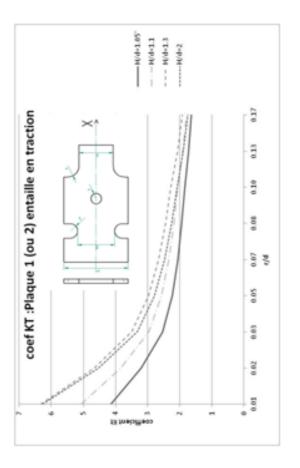
5.19. Coefficient de concentration de contrainte

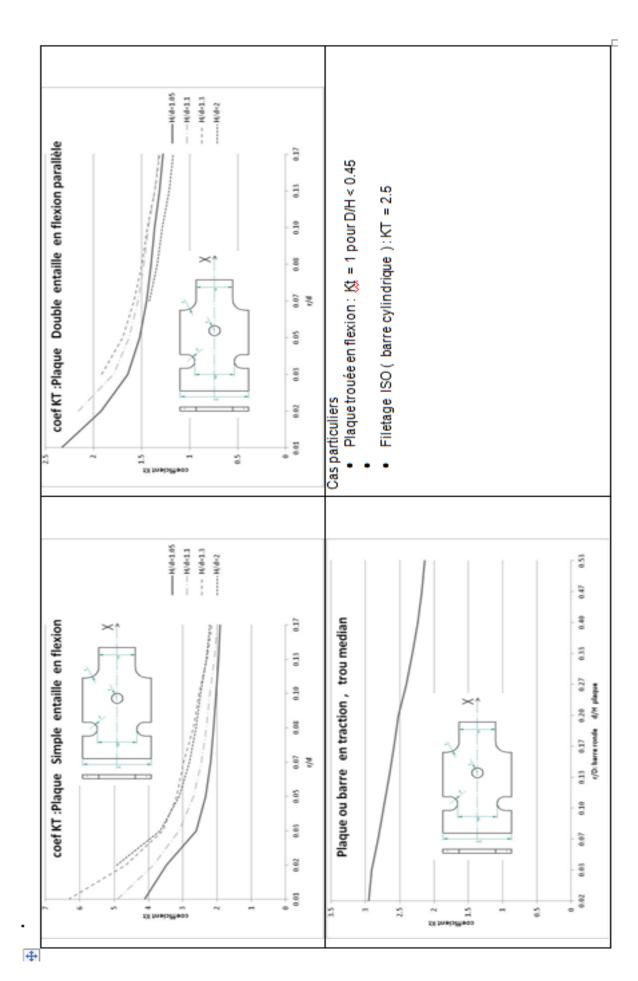

Le coefficient de concentration de contrainte traduit l'écart entre la contrainte maximale (équivalente) par rapport à la contrainte dite nominale (dans la zone qui est analysée).




Abaques des coefficients de concentrations de contraintes







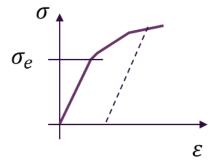
5.20. Contrainte équivalentes

Nous avons vu que l'état de contrainte peut être représenté par plusieurs composantes. Il est souvent utile de résumer plusieurs composantes dans un scalaire que l'on appellera contrainte équivalente.

Pour une sollicitation qui comprend un effort normal $\overrightarrow{N_1}$ (qui engendre une contrainte normale σ) et un effort tranchant $\overrightarrow{T_2}$ (qui engendre une contrainte tangentielle) τ

On donne (sans démonstration) l'expression de plusieurs contraintes équivalentes :

Contrainte équivalente de Von Mises : $\sigma_{VM} = \sqrt{\sigma^2 + 3\tau^2}$ Contrainte équivalente de Tresca : $\sigma_{TR} = \sqrt{\sigma^2 + 4\tau^2}$


5.21. Critères de validation

Un critère est l'expression d'une limite à ne pas dépasser pour vérifier la validité d'un problème ou assurer l'intégrité du matériau.

5.21.1. Critère en contrainte

On utilise un critère associé à une contrainte équivalente pour délimiter un domaine (domaine d'élasticité par exemple).

$$\begin{cases} \sigma_{eq} < \sigma_e & \text{élasticité} \\ \sigma_{eq} \ge \sigma_e & \text{plasticité} \end{cases}$$

5.21.2. Critère en déplacement

On peut vouloir limiter le déplacement maximum dans une structure pour en garantir le bon fonctionnement.

$$u < u_{lim}$$

5.21.3. Coefficient de sécurité

Nos calculs sont incertains pour de nombreuses raisons :

- Erreurs de modélisation
- Erreurs de données d'entrée
- Erreurs numérique de calcul (sur machine)
- Variabilité des matériaux
- Etc.
- Pour palier ce problème on est tentés d'utiliser des coefficients de sécurité dans nos dimensionnement. Un coefficient de sécurité est un coefficient multiplicatif sur le critère retenu. C'est une « marge de sécurité »...

$$s \sigma_{eq} < \sigma_e$$
 σ_e : limite élastique

Avec s > 1 permet de s'assurer que la contrainte équivalente ne dépasse pas la limite élastique.

On propose la méthode suivante pour définir ce coefficient.

5.21.4. Pondération sur la charge

Ces 3 coefficients sont destinés à chiffrer l'influence de chaque critère ci-dessous :

- Coefficient de précision des charges : α_p
- Coefficient d'application des charges ou coefficient dynamique : α_d
- Coefficient de transmission : α_t

En l'absence de données réglementaires sur les coefficients de pondération de la charge F (voir les valeurs ciaprès), on définit la charge pondérée F_{max} :

$$F_{max} = F. \alpha_p. \alpha_d. \alpha_t$$

Quelques exemples de valeurs à attribuer aux différents coefficients sont présentés dans les tableaux qui suivent. Ces valeurs ne sont en aucun cas des références mais une indication qui peut être corrigée en fonction du problème à traiter.

Coefficient de précision des charges : α_p

SITUATIONS	COEFFICIENT αp
Milieu naturel ou agressif: agriculture, marine, mines, T.P	4 à 6
Milieu industriel contrôlé	2 à 3
Machine grand public : outillage portatif, électroménager	1,5 à 1,8
Machine de laboratoire	1.5
Aéronautique, spatial	1 à 1,1
Systèmes soumis à une norme (ex : ascenseur)	Code de calcul
Limiteur de charge sûr (ex : limiteur de pression sur vérin)	1

 \bullet Coefficient d'application des charges ou coefficient dynamique : α_d II dépend du mécanisme. Les machines citées le sont à titre d'exemples :

	R1	R2	R3	R4	R5
M1	1,1	1,2	1,3	1,4	1,5
M2	1,1	1,2	1,3	1,4	1,5

M3	1,2	1,3	1,4	1,5	1,6
M4	1,3	1,4	1,5	1,6	1,7
M5	1,4	1,5	1,6	1,7	1,8

SOURCE D'ENERGIE	RECEPTEURS
M1 : continue (ex : moteur électrique asynchrone) M2 : faiblement variable M3 : fortement variable mais	R1: machine à très faible inertie (agitateurs à liquides, tamis, machines à fileter et à tailler les engrenages, perceuses sensitives, transporteurs à tapis) R2: machines à faible inertie (génératrices, ventilateurs, pompes centrifuges, compresseurs rotatifs, rectifieuses, aléseuses, fraiseuses, tours)
variation lente M4 : fortement variable et variation	R3: machines à inertie moyenne et chocs faibles (ventilateurs, pompes à pistons, presses, machines à meuler, cisailles, raboteuses, convoyeurs, métiers à tisser, machines à papier)
m5: variation brutale, transmission par choc (ex: moteur thermique monocylindre)	R4: machines à grande inertie et à chocs, à marche irrégulière très variable (gros ventilateurs, pompes à boue ou à eau chargée, appareils de levage, machines à bois, essoreuses, automobile) R5: machines à très grande inertie et à chocs violents (broyeurs, concasseurs, laminoirs, pompes et compresseurs à fort taux d'irrégularité)

ou de façon plus simple :

TYPE DE MISE EN CHARGE	COEFFICIENT αd
Mise en charge rapide	1.5
Mise en charge brutale	2
Chocs, « Coup de bélier »	> 2

$\bullet \quad \text{Coefficient de transmission}: \alpha_t$

Ce facteur est plus faible que les 2 premiers mais n'est pas à négliger car il peut induire des phénomènes de fatigue.

COEFFICIENT DE TRANSMISSION αt	
Engrenages rectifiés (qualité précise)	1,1
Engrenages taillés (qualité courante)	1,2
Transmission par chaîne	1.2
Transmission par courroie	1.05
Transmission Hydraulique	1

5.21.5. Pondération sur le matériau

• Coefficient d'homogénéité : α_h

 $\bullet \quad \text{Coefficient de surface}: \alpha_f$

• Coefficient de température : α_{θ}

On calcule alors la **résistance pratique du matériau** de la pièce :

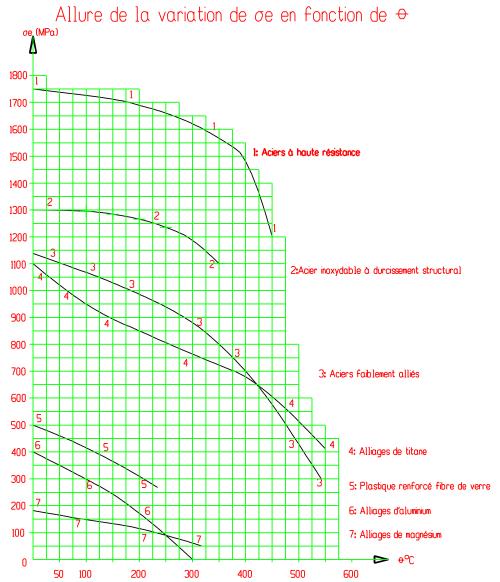
$$\sigma_p = \frac{\sigma_e}{\alpha_h.\,\alpha_f.\,\alpha_\theta}$$

• Coefficient d'homogénéité : α_h

TYPE D'ACIER	COEFFICIENT αh				
Aciers fortement et faiblement alliés	1 à 1,1				
Aciers C	1,1 à 1,2				
Aciers de base E S	1,2 à 1,5				
Alliages de fonderie	2				

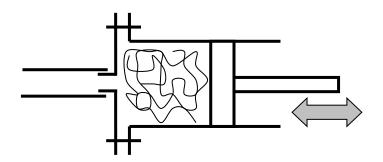
• Coefficient de surface : α_f

USINAGE	COEFFICIENT αf
Pièces usinées partout, injection en coquilles	1
Pièces corroyées, laminées, forgées, moulées pleines	1,1
Pièces moulées creuses	1,2


• Coefficient de température : α_{θ}

Pour les aciers S et C avec θ_{re} < 500 °C, on peut adopter :

$$\alpha_\theta=1+1{,}3.10^{-3}.\theta$$



6. La fonction étanchéité

6.1. Position du problème

Pour enfermer ou transvaser un fluide dans une enceinte fermée, il est nécessaire de relier en divers endroits cette enceinte à des pièces adjacentes fixes ou mobiles. En effet, le fluide ne peut se trouver spontanément dans cette enceinte. La « fonction étanchéité » est l'ensemble des moyens techniques mis en œuvre pour supprimer totalement ou partiellement les fuites aux diverses jonctions d'une enceinte fermée.

Cette fonction est souvent considérée comme annexe, ceci à tort car les fuites sont souvent sources de dysfonctionnements voire de ruine des mécanismes

- Soit directement par perte du fluide fonctionnel ou envahissement de l'enceinte protégée (circuit de climatisation – bateau)
- Soit indirectement par perte de fluide nécessaire au bon fonctionnement (Ex : circuits de refroidissement ou de lubrification d'un moteur).

6.2. Les paramètres de l'étanchéité

6.2.1. La nature du fluide

- Liquide
- Gazeux
- Solide pulvérulent

6.2.2. Les caractéristiques physico-chimiques du fluide

- Pression
- Température
- Viscosité
- Masse volumique
- Agressivité chimique (corrosivité, pouvoir solvant)
-

6.2.3. La nature de la liaison concernée

- Encastrement → étanchéité statique
- Liaison mobile → étanchéité dynamique, essentiellement en rotation ou translation.

6.2.4. La nature des pièces concernées

- Matériau
- Forme
- Dimension de l'interface
- Etat de surface
-

6.3. Etanchéité statique

Il n'y a pas de liaison mobile entre les pièces. Cela n'empêche pas dans certains cas des mouvements parasites (vibrations, dilatations ...) très importants pour la tenue du joint. Exemple : pour un bloc moteur, les liaisons avec le carter inférieur, la culasse, le corps de pompe à eau.

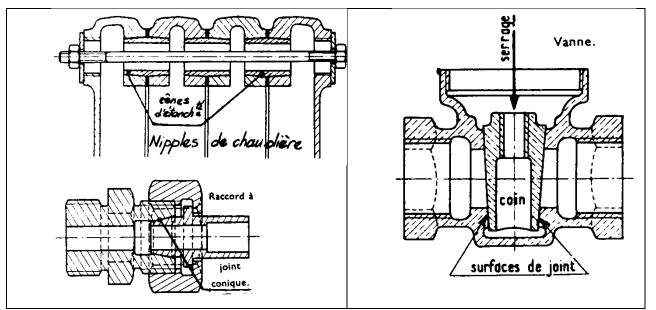
6.3.1. Etanchéité directe

Etanchéité rigoureuse

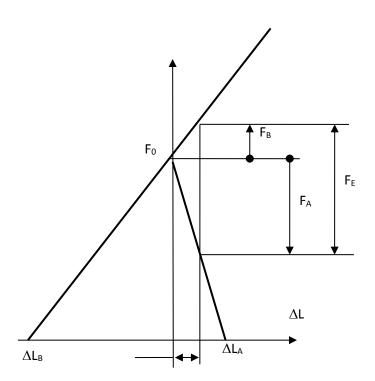
On recherche une étanchéité parfaite (impossible dans les faits), on considère cet objectif atteint quand la fuite n'est pas « mesurable ». Les conditions à respecter sont :

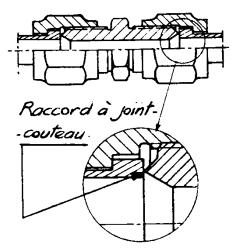
- Une correction géométrique précise (planéité, conicité, cylindricité)
- Un état de surface excellent (exemple dans le tableau ci-après, pour illustration)

								С	ritères				
Surface		Fonction appliquée à la surface		Profil de rugosité		Profil d'ondulation			Profil total				
		Désignation		Abréviations	R	Rmax	AR	W	Wmax	Wt	AW	Pt	Tp (c)
	_	Glissement (lubrifié)		FG	•			≤ 0,8 R			0		•
	relatif	Frottement à sec		FS	•		0		•		0		
		Roulement		FR	•			≤ 0,3 R	•		0		0
so m	ame	Résistance au matage	Résistance au matage		0		0	0			0		•
ojec	déplacement	Frottement d'un fluide		FF	•		0				0		
Contact de deux pièces			avec joint	ED	•	0	0	≤ 0,6 R	•		0		
ct de	Avec	Lianchette dynamique	sans joint	LD	0	•		≤ 0,6 R					•
Conta	fixe	Étanchéité statique	avec joint	ES	0	•		≤ R		0	0		
	plage		sans joint	2.0	0	•		≤R		•			
	sem	Ajustement fixe avec contrainte		AC	0								•
	As	Adhérence (collage)		AD	•							0	


- Critères principaux : spécifier au moins l'un d'eux.
- O Critères secondaires : à spécifier éventuellement selon la fonction de la pièce.

Les solutions adoptées ont en général recours à une liaison par assemblage (soudage) des pièces.


Ces deux conditions font que l'on trouve en général des surfaces d'étendue limitée et en pratique planes ou coniques. Exemples ci-dessous de « nipples » de chaudières, de raccord de tuyauterie ou de vanne.

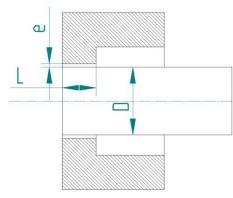

La bonne étanchéité dépend du serrage des pièces par rapport à la sollicitation qui tend éventuellement à ouvrir l'assemblage. Dans le cas d'un assemblage vissé ou boulonné, il faut prendre en compte les raideurs de l'organe de liaison et de l'assemblage (voir assemblages vissés dans le module CONDIM).

Si K_A est la raideur de l'assemblage et K_B la raideur de l'organe de liaison on a décollement donc certitude de perte d'étanchéité pour une charge extérieure $F_E = F_0(1 + \frac{K_B}{K_A})$. En contact direct, K_B est généralement très inférieure à K_A (exemple de culasse de compresseur à 4 vis pour lequel K_A =50. K_B) et la force de décollement est voisine de la précharge des éléments de liaison. Par ailleurs, la surcharge de l'élément de liaison est $F_B = \frac{K_B}{K_A + K_B} F_E$ (dans notre exemple 1/50ème de F_E).

On peut s'affranchir de ces conditions par une **déformation locale** des pièces mais c'est une solution qui dégrade les pièces et remet en cause la maintenance. Exemple ci-contre de raccord de tuyauterie à couteau.

Etanchéité contrôlée

L'étanchéité n'est pas parfaite et une légère fuite est tolérée. C'est souvent le cas d'une étanchéité statique entre des pièces qui ont un mouvement relatif dans une autre phase de leur fonctionnement. C'est le cas par exemple d'un distributeur hydraulique à tiroir.


Le débit volumique de fuite est donné par la formule : $Q=\frac{\pi D\Delta Pe^3}{96\mu L}$

avec:

- D le diamètre concerné,
- L la longueur du contact,
- ΔP la différence de pression de part et d'autre de la portée d'étanchéité,
- μ la viscosité dynamique du liquide,
- e le jeu radial.

On voit que celui-ci intervenant au cube, son importance est capitale. Dans ce type d'appareil, le jeu radial est de l'ordre de la dizaine de microns (type H5h5 voire H5h4). Par exemple, avec $D=16~mm,~\Delta P=150~bars,~e=5~\mu m,~\mu=0.05~kg.m^{-1}.s^{-1},~L=5~mm$, on trouve un débit de fuite de 4 mm³/s.

Dans le cas d'une fuite de section annulaire avec excentration δ , son débit volumique est exprimé par $Q'=\alpha Q$ avec $\alpha=1+\frac{3}{2}\Big[\frac{\delta}{e}\Big]^2$. Le débit de fuite augmente avec l'excentration.

ex: tiroir distributeur

Dans le cas d'une fuite de section rectangulaire, son débit volumique est exprimé par $Q=\frac{82b\Delta Pe^3}{\mu L}$ où e est la largeur de la fuite et b sa hauteur.

6.3.2. Étanchéité indirecte

Pour éviter la réalisation onéreuse ou techniquement impossible de l'étanchéité directe, on interpose entre les pièces un matériau déformable qui constitue le joint d'étanchéité. Ceci permet d'une part d'exécuter des surfaces moins soignées tant en forme qu'en état de surface et d'autre part de réduire notablement la pression de serrage.

Formes et matériaux des joints

Les formes les plus répandues en étanchéité statique sont :

- Les joints à bases de pâtes ;
- Les joints plans à section rectangulaire ;
- Les joints toriques à section circulaire ou quadrilobe ;
- Les joints moulés de section adaptée ;
- Les soufflets et membranes d'étanchéité.

Figure 55 : exemple de variété de joints à lèvre chez un fournisseur (PAULSTRA)

Les principaux matériaux sont :

- Les pâtes silicones qui polymérisent sous diverses conditions (air, humidité, chaleur);
- Les élastomères ;
- Les métaux « mous » ;
- Les fibres : cellulose, amiante ...

Propriétés du joint

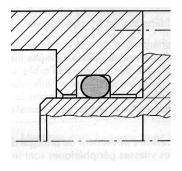
En fonction du cahier des charges, le joint doit :

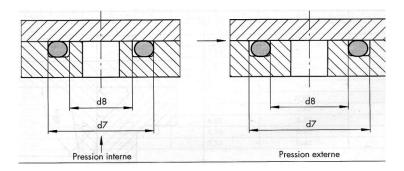
- S'adapter aux imperfections des surfaces des pièces en présence : déformation plastique ;
- Ne pas réagir chimiquement avec le fluide ;
- Résister à la différence de pression de part et d'autre du joint ;
- Résister à l'écrasement dû aux efforts de serrage.

Les joints plats

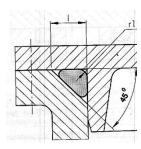
Adaptés aux paramètres du problème d'étanchéité, on peut citer quelques exemples :

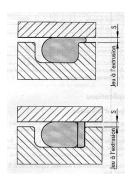
- Joints flués silicones : ils ont tendance à remplacer de plus en plus d'autres joints (papier, élastomères moulés) car ils sont très économiques : on dépose une pâte silicone sur la surface de joint. Le serrage des pièces chasse le matériau dans les interstices entre pièces. L'épaisseur finale peut être très faible.
- Joints en caoutchouc : souvent employés pour l'eau froide.
- Joints en élastomères pour l'huile.
- Joints en équivalent d'amiante entouré partiellement ou totalement de tôle mince en acier doux ou cuivre pour hautes températures : bougies d'allumage, culasse.


Remarque : La présence d'un joint peut perturber le comportement des assemblages en diminuant beaucoup la raideur de l'assemblage.


Les joints toriques

En élastomère, ils sont d'emploi très courant et évitent le problème évoqué précédemment car ils ne s'opposent pas au contact direct des pièces.




Montage radial statique

Montage axial statique

Gorge triangulaire

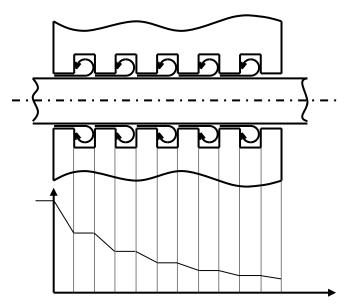
L'usinage de gorge est plus simple, le gonflement du joint doit être prévu. Le risque de coincement au montage existe. Les dimensions et la géometrie du chanfrein doivent être définies de manière précise et non comme une « cassure d'angle ».

Les bagues anti-extrusion

Lorsque la pression devient trop élévée, le joint a tendance à être extrudé dans l'interstice entre les deux pièces. Des bagues anti-extrusion evitent cet effet et permettent des pressions plus élevées,.

6.4. Etanchéité dynamique

6.4.1. Etanchéité directe


Par jeu réduit

Certaines applications (pompes et moteurs hydrostatiques, machines à vapeur) présentent des problèmes d'étanchéité tels que la combinaison des paramètres de pression et de vitesse rend difficile la tenue de joints. On accepte alors une faible fuite, le fluide fuyant étant récupéré côté basse pression. Ceci concerne des surfaces cylindriques (pistons de pompes hydrostatiques, tiroirs cylindriques en mouvement) ou planes (distributeurs plans, glaces de distribution de pompes, tiroirs de machines à vapeur).

Par labyrinthe

Comme dans le cas précédent, on accepte une fuite contrôlée et faible. Dans le cas d'un fluide incompressible, l'équation de Bernoulli s'écrit :

$$\frac{V_1^2}{2g} + \frac{p_1}{\rho_a} + z_1 = \frac{V_2^2}{2g} + \frac{p_2}{\rho_a} + z_2 + J$$

Si J, la perte de charge, est sensiblement égale au premier membre de l'équation qui représente l'énergie spécifique amont, p_2 et V_2 sont très inférieures à p_1 et V_1 . Le débit est donc très faible, d'où l'idée de produire des pertes de charge en série dans une succession d'étranglements et d'évasements où le fluide se détend, tourbillonne et perd de son énergie cinétique. Ce dispositif est connu sous le nom de « labyrinthe » ou « chicanes ». Il est employé, par exemple

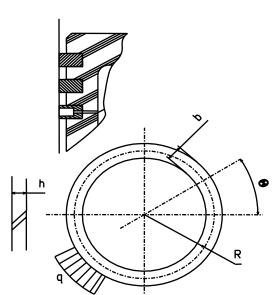
sur des tiges de soupapes et dans les turbines à vapeur.

6.4.2. Etanchéité indirecte

Mouvement relatif de translation

Un cas fréquent de problème d'étanchéité en translation est celui des vérins hydrauliques ou pneumatiques, tant pour le piston que pour la tige. On trouve diverses solutions suivant la nature du fluide, les pressions et vitesses considérées : joints toriques, joints quadrilobes, garnitures en U, en V et en chevrons, joints composites (bague PTFE + joint torique). Ces joints sont présentés dans le chapitre « Vérins » du cours de Transmissions Fluides.

JOINT QUADRILOBES



SEGMENTS

On a vu que dans certains cas de pression et vitesse importantes, on pouvait recourir à une étanchéité directe. Ce peut être insuffisant et si l'on veut améliorer l'étanchéité, en particulier afin d'améliorer le rendement du mécanisme, on emploie des segments d'étanchéité métalliques (moteurs, compresseurs).

Quelques données de calcul :

Sous l'effet de la charge répartie q, le moment de flexion dans une section définie par l'angle θ par rapport à la fente est :

$$M_f = qhR^2(1-\cos\theta)$$

R est le rayon moyen du segment, h son épaisseur et b sa largeur

Le moment de flexion maximum est donc :

$$M_{fmax} = 2qhR^2$$

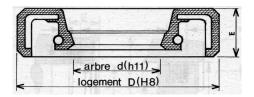
La contrainte normale correspondante est :

$$\sigma = \frac{12qR^2}{b^2}$$

En égalant la contrainte au moment de la mise en place du segment sur le piston par ouverture de l'anneau à la contrainte lors de la mise en place dans le cylindre par fermeture de l'anneau, on obtient le rayon ρ de fabrication, c'est-à-dire le rayon de courbure du segment à l'état libre :

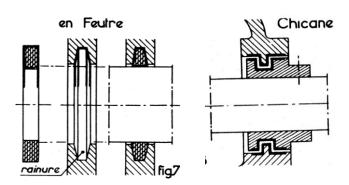
$$\rho = \frac{2\rho_1 \rho_2}{\rho_1 + \rho_2} = R - \frac{b^2}{4R}$$

où ρ_1 le rayon de courbure en place dans le cylindre et ρ_2 le rayon au montage sur le piston: $\rho_1 < \rho_2 < \rho_2$.


Mouvement relatif de rotation

JOINTS TORIQUES ET QUADRILOBES

Pour mouvements de rotation lents

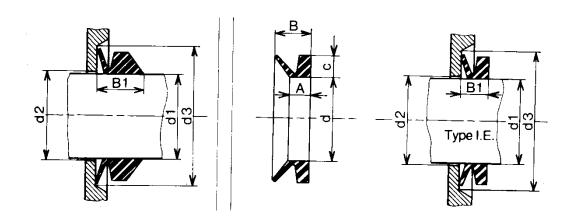

JOINTS A LEVRE

C'est la solution la plus répandue dans le cas d'une faible pression à étancher. Le constructeur aura à prendre garde au dimensionnement correct et au bon choix d'état de surface qui nécessite une rectification. Ceci peut imposer une portée d'arbre spécifique à la fonction étanchéité.

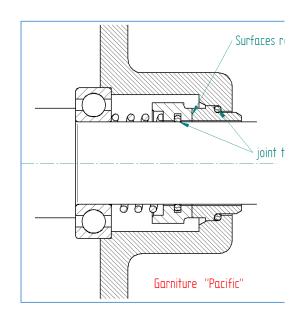
FEUTRES

Employés surtout pour la graisse et pour de l'huile à forte viscosité et faible pression. Ils sont souvent associés à des chicanes.

JOINT V-RING FACIAL


Ils décomposent un problème d'étanchéité dynamique en rotation en l'association d'une étanchéité statique en rotation et une étanchéité dynamique plane. Ceci présente quelques avantages :

- Ils tolèrent un important défaut de perpendicularité axe/face.
- Ils admettent un faux-rond

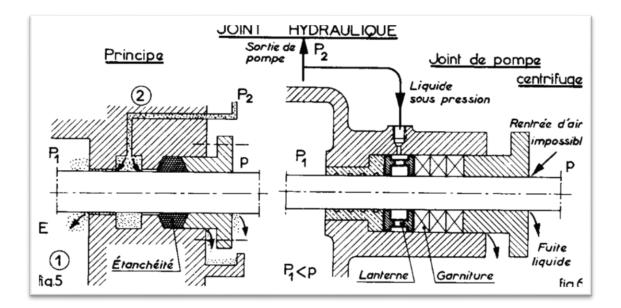


• Ils peuvent avoir une expansion radiale au montage, ce qui leur permet de franchir des épaulements.

GARNITURES MECANIQUES

Comme le joint précédent, elles associent une étanchéité statique en rotation et une étanchéité dynamique plane. La rectification plane est plus aisée à obtenir en grande qualité et surtout on a ici une compensation naturelle d'usure ce qui donne à ces garnitures une grande longévité. On trouvera ci-dessous un plan de principe et l'image d'une garniture double.

Garniture GENSEALCO



Mouvement relatif de rotation et/ou translation

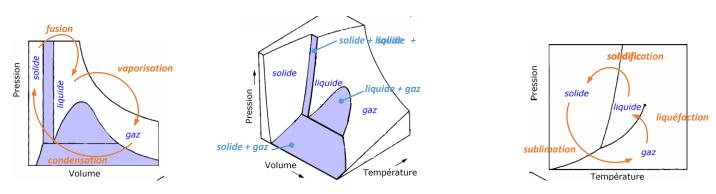
Pour ce type de mouvement, on trouve la solution classique du "presse-garniture" dont l'origine se trouve en robinetterie pour le mouvement hélicoïdal auquel on a à faire face dans ce cas.

Une pièce de serrage comprime un matériau déformable qui va prendre appui sur l'arbre et le bâti. On peut de temps à autre, si une fuite est constatée, resserrer la garniture.

Cette solution peut prendre des formes plus élaborées comme celles ci-dessous:

- Pour éviter la communication à l'extérieur de l'enceinte E, ou éviter l'entrée d'air dans cette enceinte, on utilise un fluide dit "fluide tampon" à une pression P₂ supérieure à P₁ et P dont lemélange avec le fluide 1 ne présente pas d'inconvénient et dont on récupère les fuites. On utilise cette solution dans le cas de fluides toxiques, dangereux, ou contenant des particules abrasives.
- Sur la figure de droite, ce principe est utilisé pour éviter l'entrée d'air côté aspiration d'une pompe centrifuge.
 Le fluide de sortie, sous haute pression P₂ est utilisé en tampon et sa fuite légère éventuelle récupérée.

7. Emploi et données matériaux pour la conception


7.1. Généralités : le matériau en conception mécanique

La conception mécanique est un processus itératif menant d'un besoin au produit répondant à ce besoin. Le choix des matériaux et de leur mise en œuvre intervient à chaque étape de la conception, mais le nombre de matériaux à la disposition de l'ingénieur est estimé entre 40000 à 80000. Afin de permettre au concepteur d'innover dans le choix d'un matériau il est nécessaire d'avoir une connaissance large du panorama des matériaux, ainsi que de leurs caractéristiques et cas d'application les plus courants.

Un matériau est une matière première choisie pour ses caractéristiques (mécaniques, physiques, thermiques, électriques, environnementales, économiques...) et transformée en vue d'assurer une fonction particulière tout en résistant aux sollicitations extérieures.

La matière se présente sous trois formes ou phases : solide, liquide et gaz. La présence de ces phases dépend des conditions de pression, volume et température.

Les matériaux pour la construction mécanique sont essentiellement des matériaux solides. Leur obtention se fait souvent par solidification. Celle-ci se fait de façon progressive et la proportion solide-liquide aux différentes températures est caractéristique. Dans le cas d'un mélange de deux éléments chimiques, on parle de diagramme binaire (voir équilibre fer-carbone ci-après): à une température donnée, la proportion des éléments est caractéristique et peut faire apparaître des combinaisons typiques du mélange (exemple Fe3C dans le diagramme Fer-Carbone)

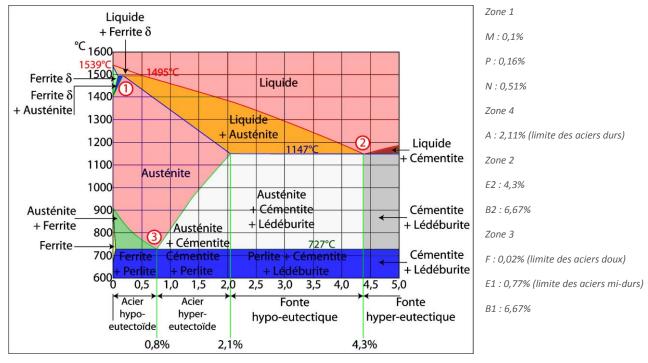
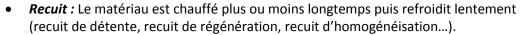



Figure 56 : Diagrammes fer – carbone pour les aciers et les fontes. En pointillés diagramme Fe-C (refroidissement lent), en continu diagramme Fe-Fe3C (refroidissement rapide)

La vitesse de solidification est également importante car elle influe sur la structure cristalline du solide. La connaissance de cette étape dite de germination permet d'obtenir une structure favorable à une utilisation dans tous les types de matériaux grâce à des traitements thermiques :

- *Trempe :* Refroidissement rapide, conduisant à une constitution hors d'équilibre, instable ou métastable.
- **Revenu**: À partir d'un état hors d'équilibre, échauffement qui provoque un retour plus ou moins complet vers l'état d'équilibre. Un revenu succède généralement à une trempe. Le stade ultime du revenu est l'état recuit.
- **Traitement superficiel :** Traitement thermique qui n'affecte que la zone superficielle de la pièce traitée, sur une épaisseur de quelques microns à quelques millimètres.
 - o Cémentation, apport de carbone puis durcissement par trempe
 - o Galvanisation à chaud, bain de la pièce dans du zinc fondu à 450°C, anticorrosion.
 - Nitruration, diffusion d'azote en surface, meilleure dureté que la cémentation, faible coefficient de frottement
 - o Carbonitruration, mélange de cémentation et nitruration
- *Traitement thermomécanique :* Traitement combinant des effets thermiques et des effets mécaniques (laminage et étirage à chaud et à froid, tréfilage, forgeage, estampage...)

7.2. Matériaux usuels

De nombreux éléments d'addition interviennent dans la formulation des aciers et des fontes afin d'obtenir des propriétés spécifiques. En voici un rapide résumé :

• Aluminium : augmente la trempabilité

Bore : améliore trempabilité aciers doux et demi-durs

• Chrome : Augmente la résistance à la corrosion et à l'oxydation

• Cobalt : Augmente la dureté à chaud

• Manganèse : Augmente la trempabilité

• Molybdène : Augmente la trempabilité, la dureté à chaud, la résistance à corrosion

• Nickel : Augmente résistance des aciers non trempés

• Phosphore : Augmente la résistance des aciers doux

Plomb : Améliore l'usinabilité

• Silicium : Augmente la résistance des aciers faiblement alliés et la trempabilité

• Tungstène : Augmente dureté et résistance à chaud

• Vanadium : Augmente la trempabilité, s'oppose à la détrempe pendant le revenu

7.2.1. Fontes

Désignation EN	description WN 17007	Module d'élasticité Mpa	Coefficient de Poisson	Module de cisaillement Mna	Coefficient de dilatation thermique K-1	Masse volumique	Conductivité thermique W/(m.K)	Chaleur spécifique J/(kg.K)	Limite de traction Mpa	Limite d'élasticité Mpa	Caractéristiqu es	Exemples d'usage
0.6010 (EN-GJL-100)	GG-10	185000	0,26	6500	0,0000105	7250	58	460	151	101		
0.6015 (EN-GJL-150)	GG-15	185000	0,26	6500	0,0000105	7250	58	460	151	101		
0.6020 (EN-GJL-200)	GG-20	120000	0,26	6500	0,0000105	7250	58	460	201	146		
											Très bonne usinabilité - bonne résistance à l'usure par frottement	Bâtis, carters, boîtiers, culasses, marbres, poulies, volants de manœuvre, roues de turbines, pièces de freins, chemises, cylindres de moteurs, corps
0.6025 (EN-GJL-250)	GG-25	120000	0,26	6500	0,0000105	7250	58	460	221	166		de distributeurs

LION												
0.6030 (EN-GJL-300)	GG-30	120000	0,26	6500	0,0000105	7250	58	460	351	226		
											Caractéristiques mécaniques élevées - grande résilience - très grande ductilité - excellente usinabilité - bonne tenue aux	Arbres à cames - bielles - blocs moteurs - carters - disques et mâchoires de freins - mandrins de M.O pignons - matrices - moyeux - tambours - vilebrequins -
0.7033 (EN-GJS-350-22-LT)	GGG 35.3	120000	0,26	6500	0,0000115	7250	58	460	350	225	vibrations	corps hydraulique H.P leviers
0.7040 (EN-GJS-400-15)	GGG 40	120000	0,26	6500	0,0000115	7250	58	460	350	225	Bonne ténacité - bonne	Idem GJL 250
0.7043 (EN-GJS-400-18-LT)	GGG 40.3	120000	0,26		0,0000115	7250	58	460	350	225	résistance à l'usure par frottement	
0.7050 (EN-GJS-500-7)	GGG 50	120000	0,26	6500	0,0000115	7250	58	460	350	225		
0.7060 (EN-GJS-600-3)	GGG 60	120000	0,26	6500	0,0000115	7250	58	460	350	225		
0.7070 (EN-GJS-700-2)	GGG 70	120000	0,26	6500	0,0000115	7250	58	460	350	225		
0.7080 (EN-GJS-800-2)	GGG 80	120000	0,26	6500	0,0000115	7250	58	460	350	225		
0.8035 (EN-GJMW-350-4)	GTW-35-04	120000	0.26	6500	0,0000115	7250	58	460	350	225	Caractéristiques mécaniques élevées - grandes résilience et ductilité - excellente usinabilité - bonne tenue aux vibrations	Carters, boîtiers, bielles, leviers divers - outillage - mâchoires de freins, manivelles, moyeux, poulies, volants - pédales - poignées
0.8038 (EN-GJMW-360-12)	GTW-53-04 GTW-S 38-	120000			0,0000115	7250	58	460	350	225	bonne tende aux vibrations	pedales - poignees
0.8040 (EN-GJMW-400-5)	GTW-40-05	120000			0,0000115	7250	58	460	350	225	Caractéristiques mécaniques élevées - grandes résilience et ductilité - excellente usinabilité - bonne tenue aux vibrations	Carters, boîtiers, bielles, leviers divers - outillage - mâchoires de freins, manivelles, moyeux, poulies, volants - pédales - poignées
0.8045 (EN-GJMW-450-7)	GTW-45-07	120000	0,26	6500	0,0000115	7250	58	460	350	225		
(EN-GJMB-700-2)											Caractéristiques mécaniques très élevées - bonne résistance à l'usure - faible coefficient de frottement	
1.0446 (G230)	GS-45	120000	0,26	6500	0,0000115	7250	58	460	350	225		
1.0552 (G260)	GS-52	120000			0,0000115	7250	58	460	350	225		
1.0558 (G300)	GS-60	120000		6500	0,0000115	7250	58	460	350	225		
1.0420 (G200)	GS-38	120000	0,26	6500	0,0000115	7250	58	460	350	225		

7.2.2. Les aciers

Famille d'acier	Désignation EN	description WN 17007	Module d'élasticité Mpa	Coefficient de Poisson	Module de cisaillement Mpa	Coefficient de dilatation thermique K-1	Masse volumique kg/m3	Conductivité thermique W/(m.K)	Chaleur spécifique J/(kg.K)	Limite de traction Mpa	Limite d'élasticité Mpa	AISI (USA) utile pour CES	AFNOR (France)	Caractéristiques et exemples
'n	1.2343 (X38CrMoV5-1)	X 38 CrMoV 5 1	210000	0,28	79000	0,000011	7800	14	440	900	800			
ls po	1.2365 (32CrMoV12-28)	X 32 CrMoV 3 3	210000	0,28	79000	0,000011	7800	14	440	900	800			
outils pour travail à	1.2367 (X38CrMoV5-3)	X 38 CrMoV 5 3	210000	0,28	79000	0,000011	7800	14	440	900	800			
να	1.2714 (56NiCrMoV7)	56 NiCrMoV 7	210000	0,28	79000	0,000011	7800	14	440	900	800			
	1.1193 (C45G)	Cf 45	210000	0,28	79000	0,000011	7800	14	440	651	331			
	1.7005 (45Cr2)	45 Cr 2	210000	0,28	79000	0,000011	7800	14	440	801	551			
	1.7043 (38Cr4)	38 Cr 4	210000	0,28	79000	0,000011	7800	14	440	851	601			
	1.7045 (42Cr4)	42 Cr 4	210000	0,28	79000	0,000011	7800	14	440	1001	701			
.0)	1.7223 (41CrMo4)	41 CrMo 4	210000	0,28	79000	0,000011	7800	14	440	1001	701	4142	42CD4	
,omé	1.8507 (34CrAlMo5-10)	34CrAlMo5	210000	0,28	79000	0,000011	7800	14	440	901	651			
allié chromé	1.8509 (41CrAlMo7)	41CrAlMo7	210000	0,28	79000	0,000011	7800	14	440	1001	721		41CAD7	Acier spécialement conçu pour la nitruration - dureté très élevée sur couche nitrurée pour pièces de très grande résistance à l'usure.
	1.8515 (31CrMo12)	31CrMo12	210000	0,28	79000	0,000011	7800	14	440	1001	786			
	1.8519 (31CrMoV9)	31CrMoV9	210000	0,28	79000	0,000011	7800	14	440	1001	801			
	1.8550 (34CrAlNi7-10)	34CrAlNi7	210000	0,28	79000	0,000011	7800	14	440	1001	651			
		50CrV4											50CV4	Acier pour ressorts plats et hélicoïdaux
	1.5714 (16NiCr4)	16NiCr4	210000	0,28	79000	0,000011	7800	14	440	901	296			
	1.5715 (16NiCrS4)	16NiCrS4	210000	0,28	79000	0,000011	7800	14	440	901	296			
	1.5752 (15NiCr13)	14NiCr 14	210000	0,28	79000	0,000011	7800	14	440	1101	786			
allié	1.5805 (10NiCr5-4)	10NiCr5-4	210000	0,28	79000	0,000011	7800	14	440	901	296			
	1.5810 (18NiCr5-4)	18NiCr5	210000	0,28	79000	0,000011	7800	14	440	1101	786			
	1.5918 (17CrNi6-6)	17CrNi 6-6	210000	0,28	79000	0,000011	7800	14	440	1101	296			
	1.6523 (20NiCrMoS2-2)	21NiCrMo2	210000	0,28	79000	0,000011	7800	14	440	881	591	8620	20NCD2	

1.6566 (17NiCrMo6-4)	17NiCrMo 6	210000	0,28	79000	0,000011	7800	14	440	1001	296		
1.6569 (17NiCrMoS6-4)	17NiCrMoS 6	210000	0,28	79000	0,000011	7800	14	440	1001	296		
1.6571 (20NiCrMoS6-4)	20NiCrMoS6	210000	0,28	79000	0,000011	7800	14	440	1001	296	20NC6	Aciers de trempabilité limitée mais de bonne résistance aux chocs - utilisés pour axes, fusées
	30NiCr11										30NC11	Aciers de trempabilité moyenne de bonne résistance - emploi courant pour arbres, essieux, vilebrequins, boulonnerie HR, engrenages, fusées Le 30 NC 11 est particulièrement adapté aux basses températures.
1.6587 (18CrNiMo7-6)	17CrNiMo 6	210000	0,28	79000	0,000011	7800	14	440	1101	786		
1.6657 (14NiCrMo13-4)	14NiCrMo13	210000	0,28	79000	0,000011	7800	14	440	1101	786		
1.7014 (17CrS3)	17CrS3	210000	0,28	79000	0,000011	7800	14	440	801	451		
1.7016 (17Cr3)	17Cr3	210000	0,28	79000	0,000011	7800	14	440	801	451		
1.7030 (28Cr4)	28Cr4	210000	0,28	79000	0,000011	7800	14	440	701	281		
1.7036 (28CrS4)	28CrS 4	210000	0,28	79000	0,000011	7800	14	440	701	281		
1.7131 (16MnCr5)	16MnCr 5	210000	0,28	79000	0,000011	7800	14	440	851	591	16MC5	
1.7139 (16MnCrS5)	16MnCrS 5	210000	0,28	79000	0,000011	7800	14	440	851	591		
	18MnS 5										18MF5	Acier spécifique de décolletage
1.7147 (20MnCr5)	20MnCr 5	210000	0,28	79000	0,000011	7800	14	440	1101	686		
1.7149 (20MnCrS5)	20MnCrS 5	210000	0,28	79000	0,000011	7800	14	440	1101	786		
	20MnB5										20MB5	Acier au bore à trempabilité limitée dont l'usage est en grand développement - le bore accroît la profondeur de trempe - rapport coût/performances intéressant
	35MnS6										35MF6	Acier spécifique décolletage
1.7243 (18CrMo4)	18CrMo4	210000	0,28	79000	0,000011	7800	14	440	901	296		
1.7244 (18CrMoS4)	18CrMoS4	210000	0,28	79000	0,000011	7800	14	440	901	296		
1.7319 (20MoCrS3)	20MoCrS3	210000	0,28	79000	0,000011	7800	14	440	901	296		
1.7320 (20MoCr3)	20MoCr3	210000	0,28	79000	0,000011	7800	14	440	901	296		
1.7321 (20MoCr4)	20MoCr 4	210000	0,28	79000	0,000011	7800	14	440	1001	591		
1.7323 (20MoCrS4)	20MoCrS 4	210000	0,28	79000	0,000011	7800	14	440	1001	591		
1.7333 (22CrMoS3-5)	22CrMoS 3-5	210000	0,28	79000	0,000011	7800	14	440	1101	296		
			_									

													Acier à haute trempabilité et haute limite
		45SiCrMo6										45SCD6	d'endurance réservé aux arbres de torsion
													Aciers pour ressorts, arbres de torsion - haute limite
		55Si7										55S7	d'endurance et bonne résistance à l'usure.
													Economie - ductilité - acier d'usage général pour
	1.0035 (S185)	St33	210000	0,28	79000	0,000011	7800	14	440	420	175	A33	construction économique sans traitement thermique et sans garantie de soudabilité
	1.0036 (S235JRG1)	USt37-2	210000	0,28	79000	0,000011	7800	14	440	350	275		
	1.0037 (S235JR)	St37-2	210000	0,28	79000	0,000011	7800	14	440	350	275		
	1.0038 (S235JRG2)	RSt37-2	210000	0,28	79000	0,000011	7800	14	440	501	275		
	1.0044 (S275JR)	St44-2	210000	0,28	79000	0,000011	7800	14	440	501	275		
	1.0045 (S355JR)	St52-3U	210000	0,28	79000	0,000011	7800	14	440	521	275		
	1.0050 (E295)	St50-2	210000	0,28	79000	0,000011	7800	14	440	420	275		
	1.0060 (E335)	St60-2	210000	0,28	79000	0,000011	7800	14	440	600	275	A60	idem S185- mais ductilité moindre
	1.0070 (E360)	St70-2	210000	0,28	79000	0,000011	7800	14	440	700	275	A70	idem
	1.0114 (S235J0)	St37-3U	210000	0,28	79000	0,000011	7800	14	440	350	275		Economie - ductilité - soudabilité - acier d'usage
u	1.0116 (S235J2G3)	St37-3U	210000	0,28	79000	0,000011	7800	14	440	350	275	E24	général - construction métallique - construction soudée
ructi	1.0117 (S235J2G4)	St37-2	210000	0,28	79000	0,000011	7800	14	440	350	275		
construction	1.0143 (S275J0)	St44-3U	210000	0,28	79000	0,000011	7800	14	440	501	275		
5	1.0144 (S275J2G3)	St44-3N	210000	0,28	79000	0,000011	7800	14	440	451	275		
	1.0145 (S275J2G4)	St44-3N	210000	0,28	79000	0,000011	7800	14	440	460	275		
	1.0490 (S275N)	StE 285	210000	0,28	79000	0,000011	7800	14	440	460	275		
	1.0491 (S275NL)	TStE 285	210000	0,28	79000	0,000011	7800	14	440	470	275		
	1.0545 (S355N)	StE 355	210000	0,28	79000	0,000011	7800	14	440	475	275		
	1.0546 (S355NL)	TStE 355	210000	0,28	79000	0,000011	7800	14	440	480	275		
	1.0553 (S355J0)	St52-3U	210000	0,28	79000	0,000011	7800	14	440	501	275	E36	
	1.0577 (S355J2G4)	StE355	210000	0,28	79000	0,000011	7800	14	440	481	275		
	1.0595 (S355K2G3)	StE355	210000	0,28	79000	0,000011	7800	14	440	501	275		
	1.0596 (S355K2G4)	StE355	210000	0,28	79000	0,000011	7800	14	440	501	275		
	1.5070 (S355J2G3)	St52-3N	210000	0,28	79000	0,000011	7800	14	440	481	275		
	1.8901 (S460N)	StE 460	210000	0,28	79000	0,000011	7800	14	440	510	275		

1.8902 (S420N)	StE 420	210000	0,28	79000	0,000011	7800	14	440	485	275			
1.8903 (S460NL)	TStE 460	210000	0,28	79000	0,000011	7800	14	440	520	275			
1.8912 (S420NL)	TStE 420	210000	0,28	79000	0,000011	7800	14	440	500	275			
1.0715 (11SMn30)	9 SMn 28	210000	0,28	79000	0,000011	7800	14	440	401	275			
1.0718 (11SMnPb30)	9 SMnPb 2	210000	0,28	79000	0,000011	7800	14	440	411	275			
1.0722 (10SPb20)	10 SPb 20	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.0725 (15SMn13)	15 SMn 13	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.0726 (35S20)	35 S 20	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.0727 (46S20)	45 S 20	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.0736 (11SMn37)	9 SMn 36	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.0756 (35SPb20)	35 SPb 20	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.0757 (46SPb20)	45 SPb 20	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.0760 (38SMn28)	38 SMn 28	210000	0,28	79000	0,000011	7800	14	440	350	275			
1.0762 (44SMn28)	44 SMn 28	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.0763 (44SMnPb28)	44 SMnPb 28	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.0764 (36SMn14)	36 SMn 14	210000	0,28	79000	0,000011	7800	14	440	350	275			
1.0721 (10S20)	10 S 20	210000	0,28	79000	0,000011	7800	14	440	451	275			
1.4000 (X6Cr13)	X 7 Cr 13	190000	0,28	79000	0,000011	7800	14	440	500	785	403	Z12C13	
1.4003 (X2CrNi12)	X 2 Cr 11	190000	0,28	79000	0,000011	7800	14	440	500	785			
1.4006 (X10Cr13)	X 12 Cr 13	190000	0,28	79000	0,000011	7800	14	440	650	520	403	Z12C13	Acier inoxydable de décolletage
1.4016 (X6Cr17)	X 6 Cr 17	190000	0,28	79000	0,000011	7800	14	440	500	785	430	Z8C17	
	V. C. O. A.O.	400000	0.20	70000	0.000044	7000		440		705		7042	Bonne résistance à l'oxydation aux températures moyennes et à la corrosion par hydrogène sous pression à chaud - ailettes de turbines à vapeur -
4 4024 (1/202 42)											400		industrie pétrochimique.
·													
•													
1.4031(X39Cr13)	X 39 Cr 13	190000	0,28	/9000	0,000011	7800	14	440	800	785	420		
1.4057 (X17CrNi16-2)	X 19 CrNi 17 2	190000	0,28	79000	0,000011	7800	14	440	650	520	431		
1.4105 (X6CrMoS17)	X 4 CrMoS 18	190000	0,28	79000	0,000011	7800	14	440	650	520			
1.4113(X6CrMoS17-1)	X 6 CrMo 17 1	190000	0,28	79000	0,000011	7800	14	440	500	785			
	1.8903 (S460NL) 1.8912 (S420NL) 1.0715 (11SMn30) 1.0718 (11SMnPb30) 1.0722 (10SPb20) 1.0725 (15SMn13) 1.0726 (35S20) 1.0736 (11SMn37) 1.0756 (35SPb20) 1.0757 (46SPb20) 1.0760 (38SMn28) 1.0762 (44SMn28) 1.0763 (44SMnPb28) 1.0764 (36SMn14) 1.0721 (10S20) 1.4000 (X6Cr13) 1.4003 (X2CrNi12) 1.4006 (X10Cr13) 1.4016 (X6Cr17) 1.4021 (X20Cr13) 1.4028 (X30Cr13) 1.4031(X39Cr13) 1.4057 (X17CrNi16-2) 1.4105 (X6CrMoS17)	1.8903 (S460NL) TStE 460 1.8912 (S420NL) TStE 420 1.0715 (11SMn30) 9 SMn 28 1.0718 (11SMnPb30) 9 SMnPb 2 1.0722 (10SPb20) 10 SPb 20 1.0725 (15SMn13) 15 SMn 13 1.0726 (35S20) 35 S 20 1.0736 (11SMn37) 9 SMn 36 1.0756 (35SPb20) 35 SPb 20 1.0757 (46SPb20) 45 SPb 20 1.0760 (38SMn28) 38 SMn 28 1.0762 (44SMn28) 44 SMn 28 1.0763 (44SMnPb28) 44 SMnPb 28 1.0764 (36SMn14) 36 SMn 14 1.0721 (10S20) 10 S 20 1.4000 (X6Cr13) X 7 Cr 13 1.4003 (X2CrNi12) X 2 Cr 11 1.4006 (X10Cr13) X 12 Cr 13 1.4016 (X6Cr17) X 6 Cr 17 X 6 Cr 13 1.4021 (X20Cr13) X 30 Cr 13 1.4028 (X30Cr13) X 39 Cr 13 1.4057 (X17CrNi16-2) X 19 CrNi 17 2 1.4105 (X6CrMoS17) X 4 CrMoS 18	1.8903 (S460NL) TStE 460 210000 1.8912 (S420NL) TStE 420 210000 1.0715 (11SMn30) 9 SMn 28 210000 1.0718 (11SMnPb30) 9 SMnPb 2 210000 1.0722 (10SPb20) 10 SPb 20 210000 1.0725 (15SMn13) 15 SMn 13 210000 1.0726 (35S20) 35 S 20 210000 1.0727 (46S20) 45 S 20 210000 1.0736 (11SMn37) 9 SMn 36 210000 1.0756 (35SPb20) 35 SPb 20 210000 1.0757 (46SPb20) 45 SPb 20 210000 1.0760 (38SMn28) 38 SMn 28 210000 1.0762 (44SMn28) 44 SMn 28 210000 1.0763 (44SMnPb28) 44 SMnPb 28 210000 1.0764 (36SMn14) 36 SMn 14 210000 1.0721 (10S20) 10 S 20 210000 1.4000 (X6Cr13) X 7 Cr 13 190000 1.4006 (X10Cr13) X 12 Cr 13 190000 1.4016 (X6Cr17) X 6 Cr 17 190000 1.4021 (X20Cr13) X 20 Cr 13 190000 1.4028 (X30Cr13) X 39 Cr 13 190000 <td>1.8903 (S460NL) TStE 460 210000 0,28 1.8912 (S420NL) TStE 420 210000 0,28 1.0715 (11SMn30) 9 SMn 28 210000 0,28 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 1.0722 (10SPb20) 10 SPb 20 210000 0,28 1.0725 (15SMn13) 15 SMn 13 210000 0,28 1.0726 (35S20) 35 S 20 210000 0,28 1.0727 (46S20) 45 S 20 210000 0,28 1.0736 (11SMn37) 9 SMn 36 210000 0,28 1.0756 (35SPb20) 35 SPb 20 210000 0,28 1.0757 (46SPb20) 45 SPb 20 210000 0,28 1.0760 (38SMn28) 38 SMn 28 210000 0,28 1.0762 (44SMn28) 44 SMn 28 210000 0,28 1.0764 (36SMn14) 36 SMn 14 210000 0,28 1.0721 (10S20) 10 S 20 210000 0,28 1.4003 (X2CrNi12) X 2 Cr 11 190000 0,28 1.4006 (X10Cr13) X 12 Cr 13 190000 0,28 1.4021 (X20Cr13)</td> <td>1.8903 (S460NL) TStE 460 210000 0,28 79000 1.8912 (S420NL) TStE 420 210000 0,28 79000 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 1.0726 (35S20) 35 S 20 210000 0,28 79000 1.0736 (11SMn37) 9 SMn 36 210000 0,28 79000 1.0757 (46SPb20) 35 SPb 20 210000 0,28 79000 1.0757 (46SPb20) 45 SPb 20 210000 0,28 79000 1.0760 (38SMn28) 38 SMn 28 210000 0,28 79000 1.0762 (44SMn28) 44 SMn 28 210000 0,28 79000 1.0764 (36SMn14) 36 SMn 14 210000 0,28 79000 1.0721 (10S20) 10 S 20 210000 0,28 79000 1.4003 (X2CrN12) X 2 Cr 11 190000 0,</td> <td>1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 0,000011 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 1.0736 (11SMn37) 9 SMn 36 210000 0,28 79000 0,000011 1.0756 (35SPb20) 35 SPb 20 210000 0,28 79000 0,000011 1.0757 (46SPb20) 45 SPb 20 210000 0,28 79000 0,000011 1.0760 (38SMn28) 38 SMn 28 210000 0,28 79000 0,000011 1.0763 (44SMnPb28) 44 SMn 28 210000 0,28 <</td> <td>1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 0,000011 7800 1.0727 (46S20) 45 S 20 210000 0,28 79000 0,000011 7800 1.0736 (11SMn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 1.0757 (46SPb20) 45 SPb 20 210000 0,28 79000 0,000011 7800 1.0762 (35SMn28) 38 SMn 28 210000 0,28 79000 0,000011 7800 1.0764 (36SMn14) 36 SMn 14 210000 0,28 79000 0,000011 7800 1.0764 (36</td> <td>1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 1.0715 (115Mn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 1.0718 (115MnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 7800 14 1.0736 (115Mn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 14 1.0756 (35SPb20) 35 SPb 20 210000 0,28 79000 0,000011 7800 14 1.0757 (46SPb20) 45 SPb 20 210000 0,28 79000 0,000011 7800 14 1.0762 (38SMn28) 38 SMn 28 210000 0,28 79000 0,000011 7800 14 1.0763 (34SMn</td> <td>1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 440 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 440 1.0715 (115Mn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 440 1.0718 (115Mn30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 440 1.0722 (105Pb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 440 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 0,000011 7800 14 440 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 1.0736 (1SMn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 14 440 1.0756 (3SSPb20) 35 SPb 20 210000 0,28 79000</td> <td>1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 440 520 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 440 500 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 440 401 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 440 411 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 440 451 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 451 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 451 1.0736 (1SSMn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 14 440 451</td> <td>1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 440 520 275 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 440 500 275 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 440 401 275 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 440 411 275 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0727 (46S20) 45 S 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0736 (11SMn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 14 440 451 <</td> <td>1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 440 520 275 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 440 500 275 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 440 401 275 1.0718 (11SMn9b30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0726 (3SS20) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0726 (3SSD0) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0736 (1SSMn37) 9 SMn 36 210000</td> <td> 1.8903 (\$460NL)</td>	1.8903 (S460NL) TStE 460 210000 0,28 1.8912 (S420NL) TStE 420 210000 0,28 1.0715 (11SMn30) 9 SMn 28 210000 0,28 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 1.0722 (10SPb20) 10 SPb 20 210000 0,28 1.0725 (15SMn13) 15 SMn 13 210000 0,28 1.0726 (35S20) 35 S 20 210000 0,28 1.0727 (46S20) 45 S 20 210000 0,28 1.0736 (11SMn37) 9 SMn 36 210000 0,28 1.0756 (35SPb20) 35 SPb 20 210000 0,28 1.0757 (46SPb20) 45 SPb 20 210000 0,28 1.0760 (38SMn28) 38 SMn 28 210000 0,28 1.0762 (44SMn28) 44 SMn 28 210000 0,28 1.0764 (36SMn14) 36 SMn 14 210000 0,28 1.0721 (10S20) 10 S 20 210000 0,28 1.4003 (X2CrNi12) X 2 Cr 11 190000 0,28 1.4006 (X10Cr13) X 12 Cr 13 190000 0,28 1.4021 (X20Cr13)	1.8903 (S460NL) TStE 460 210000 0,28 79000 1.8912 (S420NL) TStE 420 210000 0,28 79000 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 1.0726 (35S20) 35 S 20 210000 0,28 79000 1.0736 (11SMn37) 9 SMn 36 210000 0,28 79000 1.0757 (46SPb20) 35 SPb 20 210000 0,28 79000 1.0757 (46SPb20) 45 SPb 20 210000 0,28 79000 1.0760 (38SMn28) 38 SMn 28 210000 0,28 79000 1.0762 (44SMn28) 44 SMn 28 210000 0,28 79000 1.0764 (36SMn14) 36 SMn 14 210000 0,28 79000 1.0721 (10S20) 10 S 20 210000 0,28 79000 1.4003 (X2CrN12) X 2 Cr 11 190000 0,	1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 0,000011 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 1.0736 (11SMn37) 9 SMn 36 210000 0,28 79000 0,000011 1.0756 (35SPb20) 35 SPb 20 210000 0,28 79000 0,000011 1.0757 (46SPb20) 45 SPb 20 210000 0,28 79000 0,000011 1.0760 (38SMn28) 38 SMn 28 210000 0,28 79000 0,000011 1.0763 (44SMnPb28) 44 SMn 28 210000 0,28 <	1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 0,000011 7800 1.0727 (46S20) 45 S 20 210000 0,28 79000 0,000011 7800 1.0736 (11SMn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 1.0757 (46SPb20) 45 SPb 20 210000 0,28 79000 0,000011 7800 1.0762 (35SMn28) 38 SMn 28 210000 0,28 79000 0,000011 7800 1.0764 (36SMn14) 36 SMn 14 210000 0,28 79000 0,000011 7800 1.0764 (36	1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 1.0715 (115Mn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 1.0718 (115MnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 7800 14 1.0736 (115Mn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 14 1.0756 (35SPb20) 35 SPb 20 210000 0,28 79000 0,000011 7800 14 1.0757 (46SPb20) 45 SPb 20 210000 0,28 79000 0,000011 7800 14 1.0762 (38SMn28) 38 SMn 28 210000 0,28 79000 0,000011 7800 14 1.0763 (34SMn	1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 440 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 440 1.0715 (115Mn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 440 1.0718 (115Mn30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 440 1.0722 (105Pb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 440 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 0,000011 7800 14 440 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 1.0736 (1SMn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 14 440 1.0756 (3SSPb20) 35 SPb 20 210000 0,28 79000	1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 440 520 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 440 500 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 440 401 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 440 411 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 440 451 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 451 1.0726 (35S20) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 451 1.0736 (1SSMn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 14 440 451	1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 440 520 275 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 440 500 275 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 440 401 275 1.0718 (11SMnPb30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 440 411 275 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0725 (15SMn13) 15 SMn 13 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0727 (46S20) 45 S 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0736 (11SMn37) 9 SMn 36 210000 0,28 79000 0,000011 7800 14 440 451 <	1.8903 (S460NL) TStE 460 210000 0,28 79000 0,000011 7800 14 440 520 275 1.8912 (S420NL) TStE 420 210000 0,28 79000 0,000011 7800 14 440 500 275 1.0715 (11SMn30) 9 SMn 28 210000 0,28 79000 0,000011 7800 14 440 401 275 1.0718 (11SMn9b30) 9 SMnPb 2 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0722 (10SPb20) 10 SPb 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0726 (3SS20) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0726 (3SSD0) 35 S 20 210000 0,28 79000 0,000011 7800 14 440 451 275 1.0736 (1SSMn37) 9 SMn 36 210000	1.8903 (\$460NL)

	1.4116 (X50CrMoV15)	X 45 CrMoV 15	190000	0,28	79000	0,000011	7800	14	440	850	785			
		X45 CrSiMo 10											Z45 CSD 10	Acier réfractaire - pièces de four et de brûleurs
		X 20 CrMo 5											Z20 CD 05	Acier réfractaire
	1.4122 (X39CrMo17-1)	X 35 CrMo 17	190000	0,28	79000	0,000011	7800	14	440	850	785			
														acier inoxydable austénitique type - grande ductilit et grande résilience y compris à haute température sensible à l'écrouissage - grande aptitude au formag à froid - très facilement soudable - industrie chimique ameublement (éviers) - industrie agro-alimentaire orfèvrerie
	1.4301 (X5CrNi18-10)	X 5 CrNi 18 10	190000	0,28	79000	0,000011	7800	14	440	600	465	304	Z6CN18-09	Uneviene
	1.4305 (X8CrNiS18-9)	X 10 CrNiS 18 9	190000	0,28	79000	0,000011	7800	14	440	650	520	303	Z10CNF18- 09	
	1.4306 (X2CrNi19-11)	X 2 CrNi 19 11	190000	0,28	79000	0,000011	7800	14	440	600	465	304L	Z2CN18-10	
	1.4307 (X2CrNi18-9)	X 2 CrNi 18 9	190000	0,28	79000	0,000011	7800	14	440	600	465	304L	Z3CN18-10	
	1.4310 (X10CrNi18-8)	X 12 CrNi 17 7	190000	0,28	79000	0,000011	7800	14	440	600	465	301		
	1.4313 (X3CrNiMo13-4)	X 4 CrNi 13 4	190000	0,28	79000	0,000011	7800	14	440	650	520	CA 6 NM	Z4CND13- 04 M	
	1.4401 (X5CrNiMo17-12- 2)	10	190000	0,28	79000	0,000011	7800	14	440	650	520	316		
	2)	X 2 CrNiMo 17 13 2	190000	0,28	79000	0,000011	7800	14	440	650	520	316L	Z2CND17- 12	
	1.4439 (X2CrNiMoN17- 13-5)	X 2 CrNiMoN 17 13 5	190000	0,28	79000	0,000011	7800	14	440	600	465	317 LMN		
	1.4460 (X3CrNiMoN27- 5-2)	X 4 CrNiMoN 27 5 2	190000	0,28	79000	0,000011	7800	14	440	650	520	329		
	1.4462 (X2CrNiMoN22- 5-3)	X 2 CrNiMoN 22 5 3	190000	0,28	79000	0,000011	7800	14	440	650	520	UNS31803		
	1.4511 (X3CrNb17)	X 6 CrNb 17	190000	0,28	79000	0,000011	7800	14	440	650	520			
	1.4541 (X6CrNiTi18-10)	X 6 CrNiTi 18 10	190000	0,28	79000	0,000011	7800	14	440	600	465	321		variante du X5CrNi18-9 - grosse chaudronnerie soudée en industrie agro-alimentaire
	1.4571 (X6CrNiMoTi17- 12-2)	X 6 CrNiMoTi 17 12 2	190000	0,28	79000	0,000011	7800	14	440	500	465	316Ti	Z8CNDT17- 12	
<u> </u>	1.1525 (C80U)	C 80 W 1	210000	0,28	79000	0,000011	7800	14	440	700	786			« Corde à piano » utilisée en fils pour ressorts
asiliable	1.1545 (C105U)	C 105 W 1	210000	0,28	79000	0,000011	7800	14	440	800	786			
3	1.1730 (C45U)	C 45 W 3	210000	0,28	79000	0,000011	7800	14	440	700	785			

1.1740 (C60U)	C 60 W 3	210000	0,28	79000	0,000011	7800	14	440	700	786			
1.0402 (C22)	C 22	210000	0,28	79000	0,000011	7800	14	440	501	275			
1.0406 (C25)	C 25	210000	0,28	79000	0,000011	7800	14	440	441	275			
1.0501 (C35)	C 35	210000	0,28	79000	0,000011	7800	14	440	521	275			
1.0503 (C45)	C45	210000	0,28	79000	0,000011	7800	14	440	420	275			
1.0601 (C60)	C 60	210000	0,28	79000	0,000011	7800	14	440	671	275			
1 1121 (C105)	Ck 10	210000	0.20	70000	0.000011	7900	1.4	440	F01	275	1010	VC10	Acier pour cémentation - pièces de petites sections résiliantes et ductiles à cœur et de bonne dureté et résistance en surface - soudable
											1010	XC10	resistance en surface - soudable
· · ·					,								
1.1141 (C15E)	CK 15	210000	0,28	79000	0,000011	7800	14	440	981	2/5			Aciers de trempabilité faible pour pièces de petite
1.1151 (C22E)	Ck 22	210000	0,28	79000	0,000011	7800	14	440	501	275			section
1.1158 (C25E)	Ck 25	210000	0,28	79000	0,000011	7800	14	440	501	275			Idem C22
1.1170 (28Mn6)	28 Mn 6	210000	0,28	79000	0,000011	7800	14	440	601	401			
1.1181 (C35E)	Ck 35	210000	0,28	79000	0,000011	7800	14	440	601	275	1038	XC38	Aciers de trempabilité limitée pour pièces de faible à moyenne section sollicitées moyennement - arbres -
1.1191 (C45E)	Ck 45	210000	0,28	79000	0,000011	7800	14	440	701	275	1045	XC48	bielles - leviers
1.1207 (C10R)	Cm 10	210000	0,28	79000	0,000011	7800	14	440	581	275			
1.1221 (C60E)	Ck 60	210000	0,28	79000	0,000011	7800	14	440	801	275	1065	XC65	
1.6511 (36CrNiMo4)	36 CrNiMo 4	210000	0,28	79000	0,000011	7800	14	440	700	700			
1.6580 (30CrNiMo8)	30 CrNiMo 8	210000	0,28	79000	0,000011	7800	14	440	750	700		30CND8	Acier de bonne trempabilité pour pièces de grosse et
1.6582 (34CrNiMo6)	34 CrNiMo 6	210000	0,28	79000	0,000011	7800	14	440	750	700		34CND6	très grosse section fortement sollicitées - arbres très sollicités pièces de sécurité
1 6773 (36NiCrMo16)	36 NiCrMo 16	210000	0.28	79000	0.000011	7800	14	440	800	700		35NCD16	Idem, avec des caractéristiques encore supérieures - élaboré spécialement pour l'industrie aérospatiale.
· ·												33110310	
· ·													
·	34 Cr 4							440					
1.7034 (37Cr4)	37 Cr 4						14	440	550	520			
1.7035 (41Cr4)	41 Cr 4						14	440	700	520	5147	42C4	
	1.0402 (C22) 1.0406 (C25) 1.0501 (C35) 1.0503 (C45) 1.0601 (C60) 1.1121 (C10E) 1.1140 (C15R) 1.1141 (C15E) 1.1151 (C22E) 1.1158 (C25E) 1.1170 (28Mn6) 1.1181 (C35E) 1.1191 (C45E) 1.1207 (C10R) 1.1221 (C60E) 1.6511 (36CrNiMo4) 1.6580 (30CrNiMo8) 1.6582 (34CrNiMo6) 1.7003 (38Cr2) 1.7006 (46Cr2) 1.7034 (37Cr4)	1.0402 (C22)	1.0402 (C22)	1.0402 (C22)	1.0402 (C22) C 22 210000 0,28 79000 1.0406 (C25) C 25 210000 0,28 79000 1.0501 (C35) C 35 210000 0,28 79000 1.0503 (C45) C45 210000 0,28 79000 1.0601 (C60) C 60 210000 0,28 79000 1.1121 (C10E) Ck 10 210000 0,28 79000 1.1140 (C15R) Cm 15 210000 0,28 79000 1.1151 (C22E) Ck 25 210000 0,28 79000 1.1158 (C25E) Ck 25 210000 0,28 79000 1.1170 (28Mn6) 28 Mn 6 210000 0,28 79000 1.1181 (C35E) Ck 35 210000 0,28 79000 1.1191 (C45E) Ck 45 210000 0,28 79000 1.1207 (C10R) Cm 10 210000 0,28 79000 1.6511 (36CrNiMo4) 36 CrNiMo 8 210000 0,28 79000 1.6582 (34CrNiMo6) 34 CrNiMo 6 210000 0,28 79000 1.6773 (36NiCrMo16) </td <td>1.0402 (C22) C 22 210000 0,28 79000 0,000011 1.0406 (C25) C 25 210000 0,28 79000 0,000011 1.0501 (C35) C 35 210000 0,28 79000 0,000011 1.0503 (C45) C45 210000 0,28 79000 0,000011 1.0601 (C60) C 60 210000 0,28 79000 0,000011 1.1121 (C10E) Ck 10 210000 0,28 79000 0,000011 1.1140 (C15R) Cm 15 210000 0,28 79000 0,000011 1.1151 (C22E) Ck 25 210000 0,28 79000 0,000011 1.1170 (28Mn6) 28 Mn 6 210000 0,28 79000 0,000011 1.1181 (C35E) Ck 45 210000 0,28 79000 0,000011 1.1191 (C45E) Ck 45 210000 0,28 79000 0,000011 1.1217 (C10R) Cm 10 210000 0,28 79000 0,000011 1.6511 (36CrNiM</td> <td>1.0402 (C22) C 22 210000 0,28 79000 0,000011 7800 1.0406 (C25) C 25 210000 0,28 79000 0,000011 7800 1.0501 (C35) C 35 210000 0,28 79000 0,000011 7800 1.0501 (C60) C 60 210000 0,28 79000 0,000011 7800 1.1121 (C10E) Ck 10 210000 0,28 79000 0,000011 7800 1.1140 (C15R) Cm 15 210000 0,28 79000 0,000011 7800 1.1151 (C22E) Ck 15 210000 0,28 79000 0,000011 7800 1.1151 (C22E) Ck 22 210000 0,28 79000 0,000011 7800 1.1170 (28Mn6) 28 Mn 6 210000 0,28 79000 0,000011 7800 1.1191 (C45E) Ck 45 210000 0,28 79000 0,000011 7800 1.1207 (C10R) Cm 10 210000 0,28 79000 0,000</td> <td>1.0402 (C22)</td> <td>1.0402 (C22)</td> <td>1.0402 (C22)</td> <td>1.0402 (C22)</td> <td>1.0402 (C22)</td> <td>1.0402 (C22)</td>	1.0402 (C22) C 22 210000 0,28 79000 0,000011 1.0406 (C25) C 25 210000 0,28 79000 0,000011 1.0501 (C35) C 35 210000 0,28 79000 0,000011 1.0503 (C45) C45 210000 0,28 79000 0,000011 1.0601 (C60) C 60 210000 0,28 79000 0,000011 1.1121 (C10E) Ck 10 210000 0,28 79000 0,000011 1.1140 (C15R) Cm 15 210000 0,28 79000 0,000011 1.1151 (C22E) Ck 25 210000 0,28 79000 0,000011 1.1170 (28Mn6) 28 Mn 6 210000 0,28 79000 0,000011 1.1181 (C35E) Ck 45 210000 0,28 79000 0,000011 1.1191 (C45E) Ck 45 210000 0,28 79000 0,000011 1.1217 (C10R) Cm 10 210000 0,28 79000 0,000011 1.6511 (36CrNiM	1.0402 (C22) C 22 210000 0,28 79000 0,000011 7800 1.0406 (C25) C 25 210000 0,28 79000 0,000011 7800 1.0501 (C35) C 35 210000 0,28 79000 0,000011 7800 1.0501 (C60) C 60 210000 0,28 79000 0,000011 7800 1.1121 (C10E) Ck 10 210000 0,28 79000 0,000011 7800 1.1140 (C15R) Cm 15 210000 0,28 79000 0,000011 7800 1.1151 (C22E) Ck 15 210000 0,28 79000 0,000011 7800 1.1151 (C22E) Ck 22 210000 0,28 79000 0,000011 7800 1.1170 (28Mn6) 28 Mn 6 210000 0,28 79000 0,000011 7800 1.1191 (C45E) Ck 45 210000 0,28 79000 0,000011 7800 1.1207 (C10R) Cm 10 210000 0,28 79000 0,000	1.0402 (C22)					

	ETON													
	1.7218 (25CrMo4)	25 CrMo 4	210000	0.28	79000	0,000011	7800	14	440	700	520		25CD4	Aciers de trempabilité limitée mais de bonne résistance aux chocs - utilisés pour axes, fusées
	1.7220 (34CrMo4)	34 CrMo 4	210000			0,000011		14	440	700	600	/1125	35CD4	
	1.7225 (42CrMo4)	42 CrMo 4	210000			0,000011		14	440	700	700	4133	42CD4	Aciers de trempabilité moyenne de bonne résistance - emploi courant pour arbres, essieux, vilebrequins, boulonnerie HR, engrenages, fusées.
	1.7228 (50CrMo4)	50 CrMo 4	210000	0,28	79000	0,000011	7800	14	440	700	700			
	1.8159 (51CrV4)	51 CrV 4	210000	0,28	79000	0,000011	7800	14	440	850	700			
	1.0301 (C10)	C10	210000	0,28	79000	0,000011	7850	14	440	420	600			
	1.0401 (C15)	C15	210000	0,28	79000	0,000011	7850	14	440	420	600			
	1.2083 (X42Cr13)	X 42Cr 13	210000	0,28	79000	0,000011	7800	14	440	1100	900			
	1.2311 (40CrMnMo7)	40 CrMnMo 7	210000	0,28	79000	0,000011	7800	14	440	800	785			
	1.2316 (X36CrMo17)	X 36 CrMo 17	210000	0,28	79000	0,000011	7800	14	440	1100	900			
	1.2436 (X210CrW12)	X 210 CrW 12	210000	0,28	79000	0,000011	7800	14	440	1100	900			
	1.2550 (60WCrV7)	60 WCrV 7	210000	0,28	79000	0,000011	7800	14	440	900	800			
	1.2764 (X19NiCrMo4)	X 19 NiCrMo 4	210000	0,28	79000	0,000011	7800	14	440	1000	850			
	1.3505 (100Cr6)	100 Cr 6	210000	0,28	79000	0,000011	7800	14	440	900	800	52100	100C6	Acier des composants de roulements et des profilés dits « STUB ».
	1.2083 (X40Cr14)	X42Cr13	210000	0,28	79000	0,000011	7850	14	440	640	600			
S	1.2085 (X33CrS16)	X 33 CrS 16	210000	0,28	79000	0,000011	7850	14	440	650	600			
outil	1.2162 (21MnCr5)	21 MnCr 5	210000	0,28	79000	0,000011	7850	14	440	720	600			
pour outils	1.2210 (115CrV3)	115 CrV 3	210000	0,28	79000	0,000011	7850	14	440	700	600			
<u>a</u>	1.2312 (40CrMnMoS8-6)	40 CrMnMoS 8 6	210000	0,28	79000	0,000011	7850	14	440	785	600			
	1.2343 (X37CrMoV5-1)	X 38 CrMoV 5 1	210000	0,28	79000	0,000011	7850	14	440	760	600			
	1.2344 (X37CrMoV5-1)	X 40 CrMoV 5 1	210000	0,28	79000	0,000011	7850	14	440	750	600			
	1.2379 (X155CrVMo 12- 1)	X 155 CrMoV 12 1	210000	0,28	79000	0,000011	7850	14	440	830	600			
	1.2510 (100MnCrW4)	100 MnCrW 4	210000	0,28	79000	0,000011	7850	14	440	750	600			
		X 120Mn 12											Z120M12	Haute résistance à l'usure - croisements et appareils de voies en chemin de fer - pièces de broyeurs et concasseurs - pièces de suspensions ferroviaires
	1.2767 (X45NiCrMo4)	X 45 NiCrMo 4	210000	0,28	79000	0,000011	7850	14	440	830	600			
	1.2842 (90MnCrV8)	90 MnCrV 8	210000	0,28	79000	0,000011	7850	14	440	800	600			

7.2.3. Les alliages d'aluminium

	amages a aranimi										,
Désignation EN	description WN 17007	Module d'élasticité Mpa	Coefficient de Poisson	Module de cisaillement Mpa	Coefficient de dilatation thermique K-1	Masse volumique kg/m3	Conductivité thermique	Chaleur spécifique J/(kg.K)	Limite de traction Mpa	Limite d'élasticité Mpa	d'usages d'usages
EN AW-1050A											Chaudronnerie - emboutissage - industries chimique et agro- alimentaire - ustensiles de cuisine
3.0205 (EN AW-1200)	Al99,0	70000	0,3897	27000	0,000024	2700	204	940	350	200	
3.0255 (EN AW-1350A)	Al99,5	70000	0,3897	27000	0,000024	2700	204	940	350	200	
3.0505 (EN-AW 3105)	AlMn0.5Mg0.5	70000	0,3897	27000	0,000024	2700	204	940	300	350	
3.0506 (EN-AW 3207)	AlMn0.6	70000	0,3897	27000	0,000024	2700	204	940	300	350	
3.0515 (EN-AW 3103)	AlMn1	70000	0,3897	27000	0,000024	2700	204	940	300	350	
3.0517 (EN-AW 3003)	AlMn1Cu	70000	0,3897	27000	0,000024	2700	204	940	400	350	Grande aptitude à la déformation et bonne résistance aux agents atmosphériques - ustensiles de cuisine - industrie chimique - échangeurs thermiques - radiateurs automobiles -
3.0526 (EN-AW 3004)	AlMn1Mg1	70000	0,3897	27000	0,000024	2700	204	940	400	350	
3.0526 (EN-AW 3005)	AlMn1Mg0.5	70000	0,3897	27000	0,000024	2700	204	940	400	350	
3.1255 (EN-AW 2014)	AlCu4SiMg	70000	0,3897	27000	0,000024	2700	204	940	400	350	
3.1305 (EN-AW 2117)	AlCu2,5Mg0.5	70000	0,3897	27000	0,000024	2700	204	940	400	350	
3.1325 (EN-AW 2017A)	AlCu4MgSi(A)	70000	0,3897	27000	0,000024	2700	204	940	400		Pièces de résistance chaudronnées ou usinées - aéronautique - matériels roulants - rivets - construction générale
3.1355 (EN-AW 2024)	AlCu4Mg1	70000	0,3897	27000	0,000024	2700	204	940	400	350	AU4G
	AlCu5MgTi	72000	0,3897	27000	0,000024	2700	140		420	370	Au5GT Automobile - aviation - armement - appareillages électriques
3.1645 (EN AW-2007)	AlCu4PbMgMn	70000	0,3897	27000	0,000024	2700	204	940	350	350	
3.1645 (EN-AW 2030)	AlCu4PbMg	70000	0,3897	27000	0,000024	2700	204	940	400	300	
3.1655 (EN AW-2011)	AlCu6BiPb	70000	0,3897	27000	0,000024	2700	204	940	400	350	
3.3315 (EN-AW 5005)	AlMg1	70000	0,3897	27000	0,000024	2700	204	940	300	300	mobilier - bardage - pièces embouties et repoussées
3.3315 (EN-AW 5005A)	AlMg1(C)	70000	0,3897	27000	0,000024	2700	204	940	400	285	
3.3320 (EN-AW 5019)	AlMg5	70000	0,3897	27000	0,000024	2700	204	940	400	285	

3.3326 (EN-AW 5051A)	AlMg2(B)	70000	0,3897	27000	0,000024	2700	204	940	400	285	
3.3523 (EN-AW 5052)	AlMg2,5	70000	0,3897	27000	0,000024	2700	204	940	400	285	
3.3527 (EN-AW 5049)	AlMg2Mn0.8	70000	0,3897	27000	0,000024	2700	204	940	400	285	
3.3535 (EN-AW 5154A)	AlMg3.5(A)	70000	0,3897	27000	0,000024	2700	204	940	400	285	
3.3535 (EN-AW 5754)	AlMg3	70000	0,3897	27000	0,000024	2700	204	940	400	285	
3.3537 (EN-AW 3535)	AlMg3Mn	70000	0,3897	27000	0,000024	2700	204	940	300	220	
3.3545 (EN-AW 5086)	AlMg4	70000	0,3897	27000	0,000024	2700	204	940	400	285	
3.3547 (EN-AW 5083)	AlMg4,5Mn	70000	0,3897	27000	0,000024	2700	204	940	400	285	Bonne résistance à l'eau de mer - construction navale - citernes - industrie chimique et cryogénique
3.3549 (EN-AW 5182)	AlMg4,5Mn0.4	70000	0,3897	27000	0,000024	2700	204	940	400	285	
EN-AW 6060											Menuiserie métallique - aménagements intérieurs - industrie textile - articles de ménage - visserie
EN-AW 7020	Al Zn4,5Mg1										Automobile - cycles - industrie pétrolière
EN-AW 7075											Hautes caractéristiques –matériel de sport , Aéronautique , matériel roulant

7.2.4. Les alliages de cuivres

Désignation EN	description WN 17007	Module d'élasticité Mpa	Coefficient de Poisson	Module de cisaillement Mpa	Coefficient de dilatation thermique K-1	Masse volumique kg/m3	Conductivité thermique W/(m.K)	Chaleur spécifique J/(kg.K)	Limite de traction Mpa	Limite d'élasticité Mpa	Exemples
2.0090 (Cu-DHP)	SF-Cu	120000	0,34	47000	0,000017	8900	384	390	250	210	
2.0060 (Cu-ETP)	E-Cu58	120000	0,34	47000	0,000017	8900	384	390	250	210	
	CuBe2										comparable aux bons aciers spéciaux - ressorts - moules
											Construction navale - industrie chimique - robinetterie -
2.0936 (CuAl10Fe3Mn2)	CuAl10Fe3Mn 2	90000	0,28	33000	0,000017	8900	384	390	600	300	quincaillerie - construction électrique
2.0966 (CuAl10Ni5Fe4)	CuAl10Ni5Fe 4	90000	0,28	33000	0,000017	8900	384	390	700	400	
	CuAl11Ni5Fe5										Pièces de bonne résistance à la corrosion même à haute température - bonne résistance aux chocs, aux vibrations, à la fatigue - caractéristiques proches de celles des aciers

LYUN											
	CuNi10Fe1Mn										Construction navale - haute résistance à la corrosion
	CuZn23Al4										Construction navale - hélices, arbres
2.0261 (CuZn28)	Ms72	90000	0,28	33000	0,000017	8900	384	390	360	100	
2.0321 (CuZn37)	Ms63	90000	0,28	33000	0,000017	8900	384	390	360	100	
2.0367 (CuZn40)	L-Ms 60	90000	0,28	33000	0,000017	8900	384	390	340	100	
	CuZn10										Tôles - médailles - support d'émaillage
2.0490 (CuZn31Si1)	CuZn31Si 1	90000	0,28	33000	0,000017	8900	384	390	480	200	
	CuZn36Pb3										Déformation à froid - repoussage - fils - lustrerie
2.0510 (CuZn38Mn1Al)	CuZn37Al 1	90000	0,28	33000	0,000017	8900	384	390	500	200	
2.0572 (CuZn40Mn2Fe1)	CuZn40Mn 2	90000	0,28	33000	0,000017	8900	384	390	500	200	
2.0371 (CuZn38Pb2)	Ms60Pb	90000	0,28	33000	0,000017	8900	384	390	450	200	
2.0375 (CuZn36Pb3)	MS 60 Pb	90000	0,28	33000	0,000017	8900	384	390	450	200	
2.0402 (CuZn40Pb2)	Ms58	90000	0,28	33000	0,000017	8900	384	390	450	200	
2.1016 (CuSn4)	CuSn 4	90000	0,28	33000	0,000017	8900	384	390	600	200	
2.1020 (CuSn6)	CuSn 6	90000	0,28	33000	0,000017	8900	384	390	480	200	
	CuSn7Pb6										Excellentes propriétés de fonderie et de frottement - usage général - construction navale - robinetterie haute pression
2.1030 (CuSn8)	CuSn 8	90000	0,28	33000	0,000017	8900	384	390	480	200	
2.1030 (CuSn8P)	CuSn 8	90000	0,28	33000	0,000017	8900	384	390	480	200	
	CuSn10Pb9										Pièces de frottement
	CuSn12										Excellentes propriétés de fonderie et de frottement - usage général - construction navale - robinetterie haute pression

Les plastiques

	Densité	Performance	Re (MPa)	A _{rupture} (%)	Tmaxi (°C)	Module E (GPa)
ABS	1,03 - 1,08	++	40 - 60	45 - 55	70-85	2,5 - 3
PA-6	1,15	++	40-50	50-300	85	1 - 2
PA-6.6	1,14	++	60-80	40-300	90	1,2 - 2,5
PC	1,2-1,24	+++	60-65	110	120	2,4
PEEK	1,34	++++	100	50		3,6
PE-HD	0,95	+	25-30	700-1000	90	0,4-1,2
PE-LD	0,91-0,93	+	10-15	400-600	70	0,15-0,3
PET PBTP	1,3	+++	50-60	5-250	100	2,7
PET PETP	1,3-1,39	+++	60-80	90-300	100	2-2,5
PMMA	1,18	++	60-70	4	60-90	3,2
POM	1,41	++	50-75	45-70		2,5-3,5
PP	0,91	++	20-40	150-600	100	1-1,5
PS « cristal »	1,05	+	40	4	60	3
PVC rigide	1,38	+	50	10-50	65	2-2,5
SAN	1,08	+	60-70	5		4

7.3. Données d'écoconception relative aux matériaux (niveau 2 de CES Edupack)

		Gén	érales				Méca	niques					Thern	niques				E	cologiq	ues	
	Ma: Volum (kg/r	nique	Pri (EUR,		Lim élast (MI	ique	Modul You (GP	ng	Dureté (H'		Tempé de fu (°	ısion	Dilata thern (µstra	nique	Temp. d'utilis (°C	ation	Empre CO (kg/	2	Ener intrins (MJ/	èque	Recy clable
	de	à	de	à	de	à	de	à	de	à	de	à	de	à	de	à	de	à	de	à	
Acier faiblement allié	7800	7900	0,655	0,72	400	1500	205	217	140	693	1380	1530	10,5	13,5	500	550	1,95	2,3	32	38	True
Acier inoxydable	7600	8100	6,07	6,68	170	1000	189	210	130	570	1370	1450	13	20	750	820	4,86	5,37	77,2	85,3	True
Acier à basse teneur en carbone	7800	7900	0,49	0,539	250	395	200	215	108	173	1480	1530	11,5	13	350	400	2,2	2,8	29	35	True
Acier à haute teneur en carbone	7800	7900	0,557	0,612	400	1160	200	215	160	650	1290	1480	11	13,5	350	400	2,2	2,8	29	35	True
Acier à teneur moyenne en carbone	7800	7900	0,518	0,57	305	900	200	216	120	565	1380	1510	10	14	370	420	2,2	2,8	29	35	True
Acrylonitrile butadiène styrène (ABS)	1010	1210	1,73	1,9	18,5	51	1,1	2,9	5,6	15,3	N/A		84,6	234	61,9	76,9	3,27	3,62	91	102	True
Alliages d'aluminium pour fonderie	2500	2900	1,79	1,96	50	330	72	89	60	150	475	677	16,5	24	130	220	12	13,1	203	238	True
Alliages d'aluminium pour forgeage et laminage ne durcissant pas par traitement thermique	2500	2900	1,76	1,93	30	286	68	72	30	100	570	670	22	25	130	220	11,2	12,8	200	215	True
Alliages d'aluminium pour forgeage et laminage susceptibles de durcissement par traitement thermique	2500	2900	1,72	1,89	95	610	68	80	60	160	495	640	22	24	120	200	11,3	12,8	200	218	True
Alliages de magnésium pour fonderie	1750	1870	3,49	3,83	70	215	42	47	35	90	447	649	24,6	28	130	190	22,4	24,8	356	394	True
Alliages de magnésium pour forgeage et lamination	1500	1950	3,44	3,79	115	410	42	47	43	135	447	649	24,6	28	120	200	22,4	24,8	360	400	True
Alliages de plomb	8850	11000	4,23	4,65	9	36	13	17	6	17	183	312	23	29	70	120	3,3	3,7	53	58	True
Alliages de titane	4400	4800	42	46,1	750	1200	110	120	267	380	1480	1680	8,9	9,6	450	500	38	44	600	740	True

LTUN																				. 1	
Alliages de tungstène	17800	19600	16,3	17,9	525	800	310	380	280	600	3200	3410	4	5,6	1350	1400	19,7	21,8	313	346	True
Alliages de zinc pour injection	4950	7000	1,77	1,95	80	450	68	100	55	160	375	492	23	28	80	110	3,7	4	70	75	True
Alliages nickel-chrome	8300	8500	24,2	26,7	365	460	200	220	160	200	1350	1430	12	14	900	1000	7,89	8,82	127	140	True
Alumine	3800	3980	13,3	20,1	350	588	343	390	1200	2060	2000	2100	7	7,9	1080	1300	2,67	2,95	49,5	54,7	False
Ardoise	2600	2900	0,496	0,655	15	30	60	90	22	60	N/A		10	12	350	500	0,06	0,08	1	1,2	False
Bambou	600	800	1	1,5	35	44	15	20	2	12	N/A		2,6	10	117	137	0,3	0,33	4	6	False
Bois dur : chêne dans le sens des fibres	850	1030	0,498	0,557	43	52	20,6	25,2	13	15,8	N/A		2,5	9	120	140	0,44	0,49	7,4	8,2	False
Bois dur : chêne dans le sens perpendiculaire aux fibres	850	1130	0,498	0,557	4	5,9	4,5	5,8	10	12	N/A		37	49	120	140	0,45	0,49	7,4	8,2	False
Bois tendre : pin parallèle à la fibre	440	600	0,502	1	35	45	8,4	10,3	3	4	N/A		2,5	9	120	140	0,4	0,46	7	7,8	False
Bois tendre : pin, perpendiculaire à la fibre	440	600	0,502	1	1,7	2,6	0,6	0,9	2,6	3,2	N/A		26	36	120	140	0,4	0,46	7	7,8	False
Brique	1600	2100	0,456	1,22	5	14	15	30	20	35	927	1230	5	8	927	1230	0,2	0,23	2,2	3,5	False
Bronze	8500	9000	5,51	6,06	100	500	70	105	60	240	887	1040	17	19	170	200	4,9	5,4	77	80	True
Béton	2300	2600	0,0304	0,0456	1	3	15	25	5,7	6,3	927	1230	6	13	480	510	0,13	0,15	1	1,3	True
Caoutchouc butadiène-styrène renforcé au noir de carbone (SBR)	1130	1150	2,76	3,04	16	26	0,0038	0,006	N/A		N/A		160	180	70	110	6,01	6,65	90,9	100	False
Caoutchouc butyle (IIR)	900	920	2,76	3,04	2	3	0,001	0,002	N/A		N/A		120	300	96,9	117	3,6	4,2	95	120	False
Caoutchouc naturel (NR)	920	930	2,65	2,91	20	30	0,0015	0,0025	N/A		N/A		150	450	68,9	107	1,5	1,6	62	70	False
Carbure de bore	2350	2550	44	65,3	350	560	440	472	3200	4000	2370	2510	3,2	3,4	727	1730	8,25	9,1	153	169	False
Carbure de silicium	3100	3210	10,6	15,2	400	610	400	460	2300	2600	2150	2500	4	4,8	1400	1700	6,25	6,91	70,2	77,6	False
Carbure de tungstène	15300	15900	13,7	21,2	335	550	625	700	2200	3600	2830	2920	5,2	7,1	750	1000	4,44	4,91	82,4	91,1	False
Chlorure de polyvinyle (tpPVC)	1300	1580	0,981	1,08	35,4	52,1	2,14	4,14	10,6	15,6	N/A		100	150	60	70	2,2	2,6	68	95	True
Ciment	1800	2200	0,0762	0,0908	1,9	3	30,2	41,6	5,6	6,2	930	1200	12	13	627	857	0,95	1,3	5,4	6	False
Composites renforcés de fibres de carbone (CFRP)	1500	1600	29,4	32,4	550	1050	69	150	10,8	21,5	N/A		1	4	140	220	16,1	18,5	259	286	False

Composites renforcés de fibres de verre (GFRP)	1750	1970	14,2	15,7	110	192	15	28	10,8	21,5	N/A		8,64	33	140	220	7,47	8,26	107	118	False
Compounds de moulage pré- imprégnés en pâte (en masse) à matrice polyester - DMC (BMC) pour "Dough (Bulk) Moulding Compounds,	1800	2100	3,31	3,65	25	55	12	14	7	16	N/A		24	34	140	210	7,5	8,5	109	121	False
Compounds pré- imprégnés en feuilles à matrice polyester SMC (Sheet Moulding Compounds)	1800	2000	3,93	4,31	50	90	9	14	15	25	N/A		18	33	180	220	7,7	8,5	110	120	False
Contre-plaqué	700	800	0,242	0,74	9	30	6,9	13	3	9	N/A		6	8	100	130	0,73	0,77	13	17	False
Cuir	810	1050	12,2	15,2	5	10	0,1	0,5	2	3	N/A		40	50	107	127	4,08	4,51	102	113	False
Cuivre	8930	8940	5,08	5,59	30	350	112	148	44	180	982	1080	16,9	18	180	300	4,9	5,6	68	74	True
Elastomères de silicone (SI)	1300	1800	9,45	10,4	2,4	5,5	0,005	0,02	N/A		N/A		250	300	227	287	8,17	9,03	152	168	False
Epoxys (Araldite)	1110	1400	1,61	1,81	36	71,7	2,35	3,08	10,8	21,5	N/A		58	117	140	180	4,22	4,56	105	130	False
Éthylène acétate de vinyle (EVA)	945	955	1,47	1,62	12	18	0,01	0,04	N/A		N/A		160	190	46,9	51,9	2,88	3,19	86,7	95,8	True
Etain	7260	7270	13,3	14,6	7	15	41	45	3	5	230	232	22,5	23,5	90	100	1,9	2	35	40	True
Fonte de fer ductile (nodulaire)	7050	7250	0,476	0,524	250	680	165	180	115	320	1130	1250	10	12,5	350	450	0,97	1,07	16,4	18,2	True
Fonte, grise	7050	7250	0,417	0,458	140	420	80	138	90	310	1130	1380	11	12,5	350	450	0,97	1,07	16,4	18,2	True
Granit	2630	3200	0,762	4,56	8	23	50	70	27	45	1200	1600	10	12	600	700	0,31	0,34	5,5	6,4	False
Grès	2240	2650	0,304	0,456	4	22	14	25	7	38	1200	1400	8	20	400	600	0,03	0,04	0,4	0,5	False
Ionomère (I)	930	960	2,05	2,68	8,27	15,9	0,2	0,424	2,5	4,8	80,9	95,9	180	306	48,9	61,9	3,96	4,38	102	112	True
Isoprène (IR)	930	940	2,16	2,38	20	25	0,0014	0,004	N/A		N/A		150	450	96,9	117	2,15	2,38	76,5	84,6	False
Laiton	7900	8550	3,88	4,27	95	500	90	110	65	220	882	967	17	20,7	210		5,8	6,74	65	80	True
Liège	120	240	2,01	10	0,3	1,5	0,013	0,05	N/A		N/A		130	230	117	137	0,19	0,21	4	5	False
Marbre	2720	2850	0,304	0,762	6	10	50	70	16	20	1230	1340	3	5	630	680	0,11	0,13	1,8	2,2	False
Matrice d'aluminium renforcée par carbure de silicium	2660	2900	4,56	6,07	280	324	81	100	70	140	525	627	15	23	227	367	14	16	250	300	True

																		_			
Mousse céramique	392	670	25,7	38,7	0,6	2,1	1,9	3,8	0,08	0,3	1980	2100	6,94	8,9	1500	1800	4,8	5,4	90	100	False
Mousse métallique	240	480	8,42	9,23	0,7	2	0,45	1,2	0,045	0,12	550	615	19	21	140	190	19	21	290	310	True
Mousses polymériques flexibles (Basse Densité BD)	38	70	2,12	2,28	0,02	0,3	0,001	0,003	0,002	0,03	112	177	115	220	82,9	112	4	4,8	102	115	True
Mousses polymériques flexibles (Densité Moyenne MD)	70	115	2,28	2,43	0,048	0,7	0,004	0,012	0,0048	0,07	112	177	115	220	82,9	112	4	4,8	104	115	True
Mousses polymériques flexibles (Très Basse Densité TBD)	16	35	2,12	2,28	0,01	0,12	0,00025	0,001	0,001	0,012	112	177	120	220	86,9	112	4	4,8	104	115	True
Mousses polymériques rigides (Basse Densité BD)	36	70	9,08	18,2	0,3	1,7	0,023	0,08	0,037	0,17	N/A		20	80	66,9	147	3,5	4	105	110	False
Mousses polymériques rigides (Haute Densité HD)	170	470	9,08	18,2	0,8	12	0,2	0,48	0,28	1,2	N/A		22	70	66,9	167	3,5	4	105	110	False
Mousses polymériques rigides (Moyenne Densié MD)	78	165	9,08	18,2	0,4	3,5	0,08	0,2	0,095	0,35	N/A		20	70	66,9	157	3,5	4	105	110	False
Nickel	8830	8950	28,3	31,1	70	900	190	220	80	300	1440	1470	12	13,5	240	370	7,89	8,82	127	140	True
Nitrure d'aluminium	3260	3330	76,2	122	300	350	302	348	990	1260	2400	2510	4,9	5,5	1030	1730	11,3	12,5	209	231	False
Nitrure de silicium	3100	3400	25,9	39,5	600	720	290	318	1400	1600	2390	2500	3,2	3,6	1000	1200	3,07	3,39	116	128	False
Papier et carton	480	860	0,645	0,806	15	34	3	8,9	4	9	N/A		5	20	77	130	1,23	1,55	24,2	32	True
Phénoliques (Céloron, Bakélite)	1240	1320	1,21	1,37	27,6	49,7	2,76	4,83	8,3	14,9	N/A		120	125	200	230	2,83	3,12	85,9	95	False
Pierre calcaire	2550	2600	0,304	0,762	8	22	35	55	3	18	1230	1350	3,7	6,3	330	380	0,014	0,018	0,24	0,3	False
Plomb commercialement pur	11300	11400	1,52	1,67	4	12	13	15	3	6,5	322	328	28	31	60	90	2,57	2,84	46,6	51,5	True
Plâtre de Paris	1180	1800	1,06	1,52	1	4,5	4,5	8	1	3	300	500	8	10	110	180	0,19	0,22	2	2,6	False
Polyamides (Nylons, PA, Rilsan)	1120	1140	2,89	3,17	50	94,8	2,62	3,2	25,8	28,4	210	220	144	149	110	140	5,5	5,6	121	135	True
Polycarbonate (PC, Makrolon)	1140	1210	2,79	3,07	59	70	2	2,44	17,7	21,7	N/A		120	137	101	144	5,4	5,9	105	116	True
Polychloroprène (Néoprène, CR)	1230	1250	3,79	4,17	3,4	24	0,0007	0,002	N/A		N/A		575	610	102	112	3,45	3,92	95,9	106	False
Polyester	1040	1400	2,98	3,27	33	40	2,07	4,41	9,9	21,5	N/A		99	180	130	150	2,7	3	84	93	False

Polyhydroxyalcanoates (PHA, PHB)	1230	1250	16	19,5	35	40	0,8	4	11	13	115	175	180	240	60	80	2,25	2,66	50	59	True
Polylactone (PLA)	1210	1250	1,77	1,96	48	60	3,45	3,83	14	18	160	177	126	145	70	80	2,3	2,43	52	54	True
Polymères cellulosiques (CA)	980	1300	2,87	3,16	25	45	1,6	2	10	15	N/A		150	300	52,9	89,9	4,4	4,87	108	119	True
Polyméthacrylate de méthyle (Acrylique, PMMA, Plexiglass)	1160	1220	2,01	2,22	53,8	72,4	2,24	3,8	16,1	21,9	N/A		72	162	41,9	56,9	3,4	3,8	93,8	110	True
Polyoxyméthylène (polyacétal, POM, Delrin)	1390	1430	1,66	1,83	48,6	72,4	2,5	5	14,6	24,8	160	184	75,7	202	76,9	96,9	3,8	4,2	99,5	110	True
Polypropylène (PP)	890	910	1,38	1,52	20,7	37,2	0,896	1,55	6,2	11,2	150	175	122	180	100	115	2,6	2,8	85	105	True
Polysaccharoses (TPS)	1260	1280	3,72	4,42	16	22	0,24	1,5	4,8	6,6	136	180	180	240	60	80	2,3	2,7	45	60	True
Polystyrène (PS)	1040	1050	1,53	1,68	28,7	56,2	1,2	2,6	8,6	16,9	N/A		90	153	76,9	103	2,7	3	86	99	True
Polyuréthane (elPU)	1020	1250	3,85	4,23	25	51	0,002	0,03	N/A		N/A		150	165	66,9	86,9	4,47	4,94	109	120	False
Polyuréthane (tpPUR)	1120	1240	3,74	4,12	40	53,8	1,31	2,07	16,1	22,7	74,8	137	90	144	64,9	80	4,57	5,28	113	125	True
Polyétheréthercétone (PEEK)	1300	1320	72,6	79,8	65	95	3,75	3,95	26,1	28,5	322	346	72	194	239	260	12,7	14	223	246	True
Polyéthylène (PE)	939	960	1,26	1,38	17,9	29	0,621	0,896	5,4	8,7	125	132	126	198	90	110	1,95	2,16	76,9	85	True
Polyéthylène téréphtalate (PET ou PETE)	1290	1400	1,21	1,33	56,5	62,3	2,76	4,14	17	18,7	212	265	115	119	66,9	86,9	2,21	2,45	79,6	88	True
PTFE (Téflon)	2140	2200	10,8	12,4	15	25	0,4	0,552	5,9	6,5	315	339	126	216	250	271	7,07	7,81	145	160	True
Silicium	2300	2350	6,68	11,1	160	180	140	155	900	1120	1420	1430	2	3,2	527	577	3,79	4,18	56,9	62,9	False
Super-alliages basés sur du nickel	7750	8650	22,4	24,7	300	1900	150	245	200	600	1280	1410	9	16	900	1200	7,89	9,2	135	150	True
Titane commercialement pur	4500	4520	37,5	41,2	270	600	100	105	155	165	1670	1680	8,5	9,3	400	450	40	45	610	745	True
Verre de borosilicate	2200	2300	3,04	4,56	22	32	61	64	83,7	92,5	N/A		3,2	4	230	460	1,28	1,42	23,8	26,3	True
Verre de silice	2170	2220	4,56	7,62	45	155	68	74	450	950	N/A		0,55	0,75	897	1400	1,61	1,78	29,9	33	True
Verre sodocalcique	2440	2490	1,03	1,22	30	35	68	72	439	484	N/A		9,1	9,5	170	400	0,7	1	14	17	True
Vitro-céramiques	2400	2900	1,52	9,08	62,5	177	75	95	230	720	N/A		3	7,4	800	1170	1,95	2,16	36,2	40	False
Zinc commercialement pur	7130	7150	1,74	1,91	75	166	90	107	20	50	400	420	23	28	80	110	2,9	3,7	65	72	True
Zircone	5900	6150	13,7	19,8	500	710	200	250	1000	1230	2550	2700	10,5	11	1200	1500	4,3	4,8	80	90	False

7.4. Données coefficient frottement et adhérence

Matériaux	Matériaux	Contact	Coefficient de frottement	Facteur d'adhérence
Acier	Acier	-	0,1	0,2
Acier	Acier	graisse	0,05	0,1
Acier trempé	Acier trempé	huile	0,1 / 0,07	0,11
Acier trempé	Acier trempé	huile sous pression	0,05	0,11
Acier	XC35	eau	0,25	Ī.
XC35	XC35	huile	0,09	-
Acier 16NC6	Acier	eau	0,065	-
Acier cémenté	fonte trempée	-	0,15	-
Acier cémenté	fonte trempée	lubrifié	0,08	-
Acier	fonte	lubrifié	0,08 / 0,05	0,08
Acier	fonte	-	0,1	0,12
Acier Z30C13	Fonte grise alliée	huile	0,23	
Acier 16NC6	AU4G	eau	0,45	_
Acier 16NC6	AU4G	vaseline	0,075	Ī.
Acier trempé	Bronze trempé	-	0,25 /0,15	0,2
Acier trempé	Bronze trempé	lubrifié	0,12	0,2
Acier trempé	Bronze trempé	huile sous pression	0,05	0,11 / 0,12
Acier 16NC6	CuSn12Zn1P	eau/vaseline	0,17	-
Acier inoxydable chromé	Aluminium	-	0,4	-
Acier inoxydable chromé	Aluminium	lubrifié	0,1	-
Acier	Cuivre étamé	-	0,12	-
Acier	Cuivre étamé	lubrifié	0,09	-
Acier	Métal Fritté	-	0,1/0,12	-
Acier	Métal Fritté	lubrifié	0,03/0,06	-
Acier	Ferrodo	F	0,25/0,35	-
Acier	Graphite	lubrifié	0,09	-
Acier graphité	Téflon	F	0,1	-
Acier graphité	Téflon (PTFE)	lubrifié	0,05/0,08	-
Acier	Téflon (PTFE)	ŀ	0,1	0,15
Acier inoxydable	Téflon graphité	eau	0,06	-
Acier	Palier PTFE	F	0,02/0,08	-
Acier	Palier PTFE	lubrifié	0,003! /0,05	-

Acier	Polyéthylène	-	0,3/0,8	
Acier	Nylon	-	0,15	0,2
Acier	Nylon	eau	0,5	-
Acier	Nylon	huile	0,1	0,15
Acier	Acétal	huile	0,2	
Acier	Polyamide 6.6	huile	0,12	
Fonte grise alliée	Fonte GS rectifiée	huile	0,13	
Fonte grise alliée	Fonte blanche	huile	0,11	-
Fonte	Bronze	F	0,21	0,43
Fonte	Caoutchouc	-	0,20	0,80
Fonte polie	Cuir	-	0,10	0,43
Fonte polie	Cuir	gras	0,20	0,43
Fonte polie	Corde neuve	-	0,075	0,79
Bronze	Bronze	-	0,20	0,43
Caoutchouc	Fonte polie	F	0,20	0,80
Caoutchouc	Sol moyen	-	0,65	0,80
Caoutchouc	Sol moyen	humide	0,30	0,80
Caoutchouc	Sol moyen	boueux	0,10	0,80
Caoutchouc	Sol moyen	très mouillé	0,25	0,80
Pneu	Route	-	0,5/0,6	-
Pneu	Route	mouillé	0,3/0,5	-
Pneu	Asphalte à 25km/h	-	0,02/0,03	
Roues en fer	Asphalte bon état	-	0,010	-
Roues en fer	Dalles en pierre	-	0,006	-
Roues en fer	Rail sec	-	0,35	-
Roues en fer	Pavé bois	-	0,018	-
Roues en fer	Pavé pierre	-	0,02	
Roues en fer	Pavé pierre mauvaise état	-	0,033	-
Roues en fer	Route empierré bon état	-	0,023	-
Roues en fer	Route empierré avec poussière	-	0,028	-
Roues en fer	Route empierré défoncée, boue	-	0,035	-
Roues en fer	Chemin terre bon état	-	0,08	-
Roues en fer	Chemin terre mauvais état	-	0,16	-
Roues en fer	sable	-	0,15 /0,30	

Billes	Plan	ŀ	0,05	-
Galets	Plan	-	0,005	-
Roulements	rail	-	0,003	-
Douilles à billes	Axes	-	0,002	-

8. Ajustements

						Ajuste	ments	เยเล	is - ale	sage n		
						alés	age				observations	
	typ	е	arbre	Н6	H7	Н8	Н9	H10	H11		0500174410110	
		jeu élevé	c11 c10 c9 d10					7-244		cas usuels de mauvais align	longues portées, ements, dilatations	
piéces mobiles	ien	jeu moyen	d9 d8 e9 e8 e7 f8 f7	4						cas usuels po ou glissant av (bon graissag		t
		jeu faible	g6 g5							pour guidage	précis	
		ajusté	h9 h7 h6 h5							assemblage possible		
		très ajusté	js7 js6 js5							à la main	pour centrage et positionnement ne peut pas	pas de détériorarion des pièces
piéces immobiles	jeu incertain	peu serré	k6 k5 m7 m6				A Company of the Comp		i i	assemblage au maillet	transmettre des efforts	au démontag
		serré	p6 r6		11/-12					assemblage à la presse		
	interférence	fort serré	s7 s6 t6 u6 x7				COLUMN TO THE PROPERTY OF THE			assemblage à la presse lourde ou par dilatation (frettage)	pour transmission d'efforts	détérioration des pièces au démontag

Tableau 1 : Ecarts fondamentaux en μ (extrait)

	ARE	RES									ALE	SAGE	S							
		_	-		_						Ecar	t inf (Ei)	Eca	ırt s	upéi	rieur	(Es)		
	Ecai	rts su	ıp. (E	s)	Ecai	rts in	t. (Ei)			F	G	Н	K^1	М		\mathbf{p}_2	Δ		
ф	e	f	g	h	K ³	m	n	р	r	s	Toute	s quali	tés	<8	<8	>8	>7	6	7	8
<3	-14	-6	-2	-0	+0	+2	+4	+6	+10	+14	+6	+2	+0	0	-2	-2	-6	0	0	0
>3	20	-10	-4	-0	+0	+4	+8	+12	+15	+19	+10	+4	+0	-1	-4	-4	-12	3	4	6
> 6	-25	-13	-5	-0	+0	+6	+10	+15	+19	+23	+13	+5	+0	-1	-6	-6	-15	3	6	7
>10	-32	-16	-6	-0	+0	+7	+12	+18	+23	+28	+16	+6	+0	-1	-7	-7	-18	3	7	9
> 18	-40	-20	-7	-0	+0	+8	+15	+22	+28	+35	+20	+7	+0	-2	-8	-8	-22	4	8	12
> 30	-50	-25	-9	-0	+0	+9	+17	+26	+34	+43	+25	+9	+0	-2	-9	-9	-26	5	9	14
> 50	-60	-30	-10	-0	+0	+11	+20	+32	+41	+53	+30	+10	+0	-2	-11	-11	-32	6	11	16
> 65	-00	-50	-10	-0	+0	711	720	732	+43	+59	750	720	70		-11		-02			
>80	-72	-36	-12	-0	+0	+13	+23	+37	+51	+71	+36	+12	+0	-3	-13	-13	-37	7	13	19
> 100	-72	-50	-12	-0	+0	+13	723	+37	+54	+79	750	712	70	-5	-10	-10	-37			\Box
>120									+63	+92								7	15	23
>140	-85	-43	-14	-0	+0	+15	+27	+43	+65	+100	+43	+14	+0	-3	-15	-15	-43			\Box
>160				_					+68	+108						<u> </u>				\Box
>180									+77	+122								9	17	26
>200	-100	-50	-15	-0	+0	+17	+31	+50	+80	+130	+50	+15	+0	-4	-17	-17	-50			\blacksquare
>225									+84	+140						_				\blacksquare
>250	-110	-56	-17	-0	+0	+20	+34	+56	+94	+158	+56	+17	+0	-4	-20	-20	-56	9	20	29
>280		-		_					+98	+170		-				<u> </u>				\square
>315									+108	+190								11	21	32
>355 à 400	-125	-62	-18	-0	+0	+21	+37	+62	+114	+208	+62	+18	+0	-4	-21	-21	-62			

Nota:

- Pour les cases grisées, l'écart est la somme de la case et du delta.
 La qualité Js (alésage) et js (arbre) répartit l'écart limite à +/- IT/2
 ¹ Les écarts valent 0 pour les qualités > 8
 ² La colonne serait grisée pour les qualités < 8
 ³ Sauf pour qualités 4 à 7

Tableau 2 : Qualités normalisées des ajustements

Qualité→ ↓Diamètre	6	7	8	9	10	11	12	13	14	15	16
<3	6	10	14	25	40	60	100	140	250	400	600
>3 à 6	8	12	18	30	48	75	120	180	300	480	750
> 6 à 10	9	15	22	36	58	90	150	220	360	580	900
>10 à 18	11	18	27	43	70	110	185	270	430	700	1100
> 18 à 30	13	21	33	52	84	130	210	330	520	840	1300
> 30 à 50	16	25	39	62	100	160	250	390	620	1000	1600
> 50 à 80	19	30	46	74	120	190	300	460	740	1200	1900
> 80 à 120	22	35	54	87	140	220	350	540	870	1400	2200
>120 à 180	25	40	63	100	160	250	400	630	1000	1600	2500
>180 à 250	29	46	72	115	185	290	460	720	1150	1850	2900
>250 à 315	32	52	81	130	210	320	520	810	1300	2100	3200
>315 à 400	36	57	89	140	230	360	570	890	1400	2300	3600

Exemple: Φ60 M6s6:

111 Alésage Φ60 M6:

1.1.1.1.1. l'écart supérieur vaut -11 +6 =-5 ;

1.1.1.1.2. I'écart inférieur sera -5-19 =-24

121 Arbre Ф60 s6:

1.1.1.1.3. l'écart inférieur vaut +53µ;

1.1.1.1.4. l'écart supérieur vaut 53 + 19 =72 μ

Les cotes valent :

Alésage ϕ 60 $^{-0.005}_{-0.024}$ Axe ϕ 60 $^{+0.072}_{+0.053}$

9. **Bibliographie**

9.1. Les bases

	Dessin technique	Technologie (matériaux, exemples de système)	Catalogue d'éléments de construction (vis, roulement)	Calcul d'éléments de machine	Fabrication (usinage, moulage)	Mécanique (statique, cinématique, dynamique)	RDM
Guide des sciences et technologie industrielles Jean Louis Fanchon AFNOR NATHAN	Principe généraux, cotation, ajustements	Caractéristiqu es matériaux	Vis, goupille, clavette, roulement	Durée de vie roulement, formule engrenage			
Guide de mécanique Sciences et technologie industrielle Jean Louis Fanchon NATHAN						Cours et exercice	Généralité, traction, cisaillement, torsion, flexion, flambage
Des fonctions aux solutions Technologie de construction Tome 1 : lier – Guider JP Grellety, CH Langlade, J. Tinel		Présentation de solutions constructive : encastrement, guidage, étanchéité			Présentation générale de différents procédés		

FOUCHER			
Des fonctions aux solutions			
Technologie de construction	Présentation		
Tome 2 : Transformer – Transmettre	de solutions : transformatio		
F. Dardy, JP Grellety, CH Langlade, C.	n de		
Muret, J. Tinel	mouvements		
FOUCHER			

9.2. Pour approfondir

	Dessin technique	Catalogue d'éléments de construction (vis, roulement)	Calcul éléments de machine	Fabrication (usinage, moulage)	Mécanique (statique, cinématique, dynamique)	RDM
Guide de l'usinage G. Paquet DELAGRAVE				Usinage conventionnel, Brochage, Forgeage, Formage, Moulage		
Memotech Productique Conception et dessin C. Barlier, R. Bourgeois EDUCALIVRE - CASTEILLA	Règles générales, ajustement, cotation fonctionnelle, cotation ISO	Eléments de manœuvre et de machines, arrêt en translation et rotation Roulements, bagues, rotules, étanchéité	Oui, notamment pour les bagues, les roulements, rondelles Belleville			

Système mécaniques Théorie et dimensionnement Aublin, Boncompain, Boulaton, Caron DUNOD		OUI, c'est l'approfondissement du cours de 3 GMC			OUI en liaison avec le dimensionnement de système
Guide du calcul en mécanique D. Spenlé, R. Gourhant HACHETTE TECHNIQUE				Modélisation, cinématique, Statique, dynamique, renseignements divers	Généralité, traction, cisaillement, torsion, flexion, flambage Des Formulaires!
Précis de construction Mécanique AFNOR - NATHAN	Tome 1 : Projet-études, composant Tome 2 : projet-méthodes, production Tome 3 : projets-calculs, dimension	Avec ces 3 tomes on couvre la plupart des domaines de la conception : à connaître et à utiliser D'autres précis existent développant des domaines particuliers Précis de fonderie, Précis de métallurgie, Précis matière plastique, Précis méthodes d'usinage			

9.3. Pour l'Eco Conception

Quel futur pour les métaux ? Philippe Bihouix

Global Change and the Earth System 2004 W.Steffen