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Introduction

Three questions for successful operation and optimisation

◮ Will it work?
◮ Avoid instantaneous failure.

◮ How much does it require to work?
◮ Avoid waste of energy/material/money.

◮ Will it last?
◮ Avoid premature/dangerous failure.



Examples

Figure Sketch of a DGBB, SABB, CRB and TRB cross section.



Will it Work

compute contact pressure (ph)

as the contact area is small (< R)
the geometry can be approximated
by a parabola



Reduced Geometry

=
R

=

R

R
1

R2

Figure Equivalent geometries 1/R = 1/R1 + 1/R2.

H(X) = H0 +
X2

2R
+ · · · (parabolic approximation)

examples: contact types in a car engine

conforming - non-conforming



Non Conforming Contacts

load w is important
contact area b small with respect to R
pressure ph very high
ratio deformation to film δ/h very important

compute h, ph, b and δ



EHL Characteristics

• important piezo-viscous effects
η(ph) >> η0
• important elastic effects
δ >> hc
• contact close to Hertzian conditions
p(x, y) ≃ ph

√

1− (x/a)2 − (y/a)2, h(x, y) ≃ hc



EHL Trends

• increased load: decreased film, pressure more Hertzian
w ր: h ց, p → ph
• decreased speed: decreased film, pressure more Hertzian
u ց: h ց, p → ph
• both effects make the contact more Hertzian
(character of equations becomes more Hertzian)



Equations

Reynolds equation:

∂

∂x
(
ρh3

12η

∂p

∂x
) +

∂

∂y
(
ρh3

12η

∂p

∂y
)

︸ ︷︷ ︸

poiseuille

− ∂(umρh)

∂x
︸ ︷︷ ︸

couette

− ∂(ρh)

∂t
︸ ︷︷ ︸

transient

= 0



Cavitation

Cavitation Condition: p ≥ 0.



Elastic Deformation

h(x, y) = h0+
x2

2Rx
+

y2

2Ry
+

2

πE′

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′) dx′ dy′
√

(x− x′)2 + (y − y′)2



Density Pressure relation
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Figure Relative density ρ/ρ0 as a function of p.

ρ(p) = ρ0
5.9 108 + 1.34 p
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Viscosity Pressure relation

η(p) = η0 exp(α p)

η(p) = η0 exp

[

ln(η0) + 9.67){−1 + (1 +
p

p0
)z}

]
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Force Balance

w =

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′) dx′ dy′



Dimensionless Equations

Reynolds Equation with P = p/ph, X = x/a, Y = y/a and
H = hRx/a

2, based on Hertz and T = um t/a, η̄ = η/η0 and
ρ̄ = ρ/ρ0.

∂

∂X
(ǫ
∂P

∂X
) +

∂

∂Y
(ǫ
∂P

∂Y
)− ∂(ρ̄H)

∂X
− ∂(ρ̄H)

∂T
= 0

Where ǫ = (ρ̄H3)/(η̄λ), and λ = (12η0umR2
x)/(a

3ph).
Film Thickness equation

H(X,Y ) = H0+
X2

2
+
Y 2

2
+

2

π2

∫
+∞

−∞

∫
+∞

−∞

P (X ′, Y ′) dX ′ dY ′

√

(X −X ′)2 + (Y − Y ′)2

Force Balance equation

∫
+∞

−∞

∫
+∞

−∞

P (X ′, Y ′) dX ′ dY ′ =
2π

3



Hertzian Solution

The Hertzian solution is the solution of the dry contact problem
found by H. Hertz (1881). This approximation neglects the film
thickness (h) with respect to the elastic deformation (δ). As a
consequence, the solution accurately predicts the maximum
(Hertzian) pressure (ph), contact area (a and b) (and stresses τ)
and deformation (δ). Obviously, the film thickness prediction is
useless!
The Hertzian prediction becomes more and more accurate
whenever the velocity (u) becomes small or the load (w) becomes
large (h → 0).
Q: what is the influence of the viscosity η0?



Hertzian Parameters
the line contact Hertzian pressure:

p(x/b)

ph
= P (X) =

{√
1−X2, if |X| ≤ 1;

0, otherwise.

ph =
2w1

πb
b =

√

8w1 R

π E′
δ = (

1

4
+

1

2
ln 2)

b2

R
≈ 0.596...

b2

R
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Hertzian Parameters

the circular contact Hertzian pressure:

p(x/a, y/a)

ph
= P (X,Y ) =

{√
1−X2 − Y 2, if X2 + Y 2 ≤ 1;

0, otherwise.

ph =
3w

2πa2
=

E′

π
3

√

3W2

2
a =

3

√

3wRx

2E′
= Rx

3

√

3W2

2

δ =
a2

Rx
= 3

√

9w2

4E′2Rx
= Rx

3

√

9W 2
2

4
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Figure Dimensionless Hertzian contact pressure, dimensionless
deformed and undeformed geometry, for the circular contact case.



Hertzian Parameters

for the elliptical contact parameters: see course notes.



Ertel Grubin Analysis

The Ertel-Grubin analysis assumes that the lubricated geometry is
equal to the Hertzian (dry contact geometry) plus a constant shift.
It also assumes that the pressure reaches ∞ at x = −b:
(p(x → −b) = ∞). In dimensionless parameters:
(P (X → −1) = ∞). Finally it uses the reduced pressure q.

q =
1

α
(1− e−αp)

Thus

q(X → −1) =
1

α

Which gives
∂q

∂x
= 6η0(u1 + u2)

h− h∗

h3



Ertel Grubin Analysis

Integrating between x = −∞ and x = −b using the Hertzian (dry)
film thickness hh(x) gives the Ertel Grubin result.
The EG predictions become more and more accurate for higher
loads w and lower speeds u, why?



Ertel Grubin results

h∗

R
= 1.31

(
(αE′)η0(u1 + u2)

E′R

)3/4 ( w1

E′R

)
−1/8

Introducing the dimensionless groups: H∗ = h∗/R,
W1 = w1/(E

′R), U = η0(u1 + u2)/(E
′R), G = αE′.

one obtains:
H∗ = 1.31 (GU)3/4(W1)

−1/8



Ertel Grubin graph
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Figure Dimensionless film thickness H∗ as a function of W1 and U
for G=4000.



Numerical Results

Since the 1960-1970, computers have become sufficiently powerful
to solve the complete system of equations: Reynolds equation, film
thickness equation and force balance equation. The first solutions
were the 1d line contact solutions, whereas in the late 1970’s the
first point contact solutions were calculated. Using todays’
computers one can calculate transient EHL solutions of a surface
indentation passing through the contact.



Numerical Results, varying U
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Figure Dimensionless pressure and film thickness distribution
W1 = 1.53 · 10−4, U = 5.89, 23.6, 94.2 · 10−11, G = 4000.
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Numerical Results, varying W1
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Figure Dimensionless pressure and film thickness distribution
W1 = 1.53, 7.67, 38.4 · 10−5, U = 5.89 · 10−11, G = 4000.



Numerical Results, varying W1
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Figure Dimensional pressure and film thickness distribution
W1 = 1.53, 3.84, 7.67, 15.3, 38.4, 76.7 · 10−5,

U = 5.89 · 10−11, G = 4000.



Dowson Higginson 1d

Hm = 0.97G0.6U0.7W−0.13
1

where hm is the minimum film thickness and Hm = hm/R
a comparison of the powers found by Dowson and Higginson with
those of the Ertel Grubin formula

H∗ = 1.31 (GU)3/4(W1)
−1/8
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Critical comments

◮ The original problem (Reynolds+geometry+force balance) is a
two parameter problem: α and λ.

◮ The DH solution is a three parameter solution: W , U and G.
Furthermore, the DH parameters are NOT O(1)!

◮ The more recent Moes-Venner solution is a two parameter
solution: M , and L. Furthermore, the Moes parameters M , L
and H ARE O(1)!



Moes Venner 1d

Hmin = 1.56L0.55M−0.125
1

Hmin = hm/(R
√
U)

M1 = W1/
√
U

L = G 4
√
U

1
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Figure Moes-Venner 1d film thickness prediction.



Comparison of powers

E.G. D.H. M.V.

G 0.75 0.60 0.55

U 0.75 0.70 0.7

W1 −0.125 −0.13 −0.125
Table Comparison of the powers obtained in the Ertel Grubin,
Dowson Higginson and Moes Venner film thickness equations.



Hamrock Dowson 2d

Hc = 1.69G0.53U0.67W−0.067
2

(1− 0.61 exp(−0.73k))

Hm = 2.27G0.49U0.68W−0.073
2

(1− exp(−0.68k))

with Hc = hc/Rx, W2 = w/(E′R2
x), U = η0(u1 + u2)/(E

′Rx),
G = αE.



Moes Venner 2d

using Hcen = hc/(Rx

√
U), M2 = W2/U

3/4, L = G 4
√
U .
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Figure Moes-Venner 2d film thickness prediction.



Moes Venner 1d - equations

iso-viscous rigid: Hm = 2.45M−1

1

iso-viscous elastic: Hm = 2.05M
−1/5
1

piezo-viscous elastic: Hm = 1.56M
−1/8
1

L0.55



Moes Venner 2d - equations

iso-viscous rigid: Hc = 47.3M−2
2

iso-elastic: Hc = 1.96M
−1/9
2



Boundary layer analysis
The inlet zone can be considered as a boundary layer between a
low pressure (Poiseuille) zone and a high pressure (Couette) zone.
Let us study the pressure distribution in the inlet
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Figure Dimensionless pressure distribution M = 100, L = 10.
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It is clear that coordinate transformations in X and in P are
necessary to be able to collapse the inlet pressure distribution onto
a single curve:

dP = dP
3
√
M (1)

X = −1 + (X + 1)
2
√
M (2)

for completeness

H = H
16
√
M (3)
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