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Performance of Checksums and
CRC'’s over Real Data
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Abstract—Checksum and cyclic redundancy check (CRC) al- over 5% of the time. We particularly examine the effects of
gorithms have historically been studied under the assumption this phenomenon when applied to the Internet checksum used
that the data fed to the algorithms was uniformly distributed. for IP, TCP, and UDP [1], [9] and compare it to two variations

This paper examines the behavior of checksums and CRC'’s over , . .
real data from various UNIX file systems. We show that, when of Fletcher's checksum. We also report on an experiment with

given real data in small to modest pieces (e_g_, 48 bytes)’ all theplac|ng the Standard TCP CheCksum na paCket tra"er. Atra”er
checksum algorithms have skewed distributions. These results checksum noticeably increases the checksum’s effectiveness,
have implications for CRC’s and checksums when applied to gnd we prove why this is so.

real data. They also can cause a spectacular failure rate for both

the TCP and ones-complement Fletcher checksums when trying

to detect certain types of packet splices. When measured over II. CRC’s VERSUS CHECKSUMS
several large file systems, the 16 bit TCP checksum performed . . . . I
about as well as a 10-bit CRC. Before examining the behavior of different algorithms, it is

We show that for fragmentation-and-reassembly error models, Worth briefly discussing the CRC and checksum algorithms
the checksum contribution of each fragment are, in effect, colored we used.
by the fragment’s offset in the splice. This coloring explains the ~ CRC's are based on polynomial arithmetic, base 2. CRC-32
performance of Fletcher's sum on nonuniform data, and shows |5 is 5 32-bit polynomial with several useful error detection
that placing checksum fields in a packet trailer is theoretically . -
no worse than a header checksum field. In practice, TCP trailer prop.ertles. lt_ W'”,d?teCt all errors that SF_’a” less than 32
sums outperform even Fletcher header sums. contiguous bits within a packet and all 2-bit errors less than
2048 bits apart. It will also detect all cases where there are an
odd number of errors. For other types of errors, if they occur
in data which has uniformly distributed values, the chance of

I. INTRODUCTION not detecting an error is 1 in®*2

HE behavior of checksum and cyclic redundancy checkThe concept of a check;um_ is less well defined. For the
T (CRC) algorithms have historically been studied und@UrPoses of data communication, the goal of a checksum
the assumption that the data fed to the algorithms was ut’:"go_rlthm is to balance the_z effectiveness at detecting errors
formly distributed (see, for instance, the work on Fletcher@dainst the cost of computing the check values. Furthermore,

checksum [2] and the AAL5 CRC [4] and [12]). If one assumeig is expected that a checksum will work in conjunction with
random data drawn from a uniform distribution one cafth€l. stronger, data checks such as a CRC. For example,

show a number of nice error detection properties for variol4AC layers are expected to use a CRC to check that data
checksums and CRC'’s. But in the real world, communicatiot&S not corrupted during tran_smlssmn on the local media,
data is rarely random. Much of the data is character data, whidfd checksums are u_sed by h_|gher layers to ensure that _data
has distinct skewing toward certain values (for instance, ti{&S not corrupted in intermediate routers or by the sending

character “e” in English). Binary data has similarly nonrandof "€ceiving host. _
distribution of values, such as a propensity to contain zeros. 1N fact that checksums are typically the secondary level

This paper reports on experiments with running variod%f protection has often led to suggestions that checksums

checksums and CRC's over real data from UNIX file system%fe superfluous. Hard won experience, however, has shown

We show that the highly nonuniform distribution of valueéhat checksums are necessary. Software errors (such as buffer

nggsmanagement) and even hardware errors (such as network

and the strong local correlation in real data causes extrem : . :
irregular distributions of checksum and CRC values. In sor@éaPters with poor DMA hardware that sometimes fail to fully

tests, less than 0.1% of the possible checksum values occufpPi® data) are surprisingly common and checksums have
been very useful in protecting against such errors.
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distributed data, it is expected to detect other types of errors at e TRy o

: ) : 1 12 13 14 22 23 24
a rate proportional to 1 in'8. The checksum also has a major ¥ rrwre il e :
limitation: the sum of a set of 16-bit values is the same, regard- @ D % % @ D
less of the order in which the values appear. The checksum L]
was chosen by the Internet community in the late 1970’s after i CellsofFirstPacket  ii Cellsof Sccond Packet :

experimentation on the ARPANET suggested the checksum
was good enough and could be implemented efficiently.

Fletcher's checksum is designed to be a more robust error
detecting code. The checksum keeps two sums. Oneisn
a running sum of the data in 8-bit chunks. The other diis
a running sum of each byte multiplied by its position from the
end of the packet. This multiplication incorporates position%I L E o AALS spli
information into the checksum to protect against movement o SPice.
transposition of data within the packet. The two 8-bit sums
are concatenated to generate a 16-bit checksum. Fletcher &b of every packet, the last cell of the first packet cannot
defined a 32-bit version, where 16-bit sums are kept. The part of the splice. Third, the first 40 bytes of the first cell
a|gorithm was defined for both ones and tWOS_Comp|eme|'ﬁl|_USt be a valid TCP/IP header (i.e., have a |ength consistent
arithmetic. The version used for the TP4 checksum améth the packet length and certain bits must be set). Unless all
in this paper uses 8-bit chunks. When performed in two#iree of these requirements are met, the splice will be easily
complement, this 16-bit checksum detects all single bit errofietected without confirming the CRC or checksum.

a single error of less than 16 bits in length, and all double If the three requirements are met, then the splice has to be
bit errors separated by 16 bits or less. Though TP4 uses ofitected by either the AAL5 CRC (CRC-32) or the higher
the twos-complement version, we investigated both ones- dayer protocol's checksum (such as the TCP or Fletcher's
twos-complement Fletcher sums. checksum).

Historically, the TCP checksum and Fletcher's checksum In 1993, an informal study by B. Marshall and C. Kalmanek
have been Viewed as Offering a Sharp tradeoff between pé“_AT&T Bell Labs simulated file transfers from a UNIX
formance and error detection capabilities. The TCP checksii#isystem (using real data from the filesystem) and examined
requires one or two additions per machine word of data (d§e performance of the AAL5S CRC. They found a surprising
suming the machine word is a multiple of 16 bits long), whil@umber of cases where the packet splice passed the AAL5
Fletcher's sum requires two additions per byte (even if tfeRC, leading them to wonder if the AAL5 CRC was strong
computation is done in word-sized chunks) [11]. As a resuhough. With Marshall's and Kalmanek's assistance, the au-
measurements have typically shown the TCP checksum tothars set out to do a more complete set of tests. Those results
two to four times faster [6], [11]. However, that difference mayere reported in an earlier version of this paper, presented at

be declining on newer processors, where the memory acce¥gCOMM'95 [7]. Some open questions and surprising results
time dominates any computational cost. led us to perform a new and more comprehensive series of

tests to resolve these issues.

. WoRK wiTH AAL5

This study began as a study of the error scenarios for pacEét _ _ _ _
splices in asynchronous transfer mode (ATM) adaptation layerOur test program simulated a file transfer with the file
5 (AAL5). The AAL5 work helps motivate the rest of thetransfer protocol (FTP) of all files on a file system (or selected

Testing Splices

paper and so is explained briefly here. directories of a file system) via TCP/IP using AAL5 over ATM.
) _ All'IP and TCP header fields were filled in as if the file transfer
A. What is a Packet Splice? were being done over the loopback interface (127.0.0.1). For

AALS5 sends packets as a series of ATM cells, with the lastach packet, the TCP sequence number was incremented by
cell specially marked using a bit in the ATM headerpAcket the data length, and the IP ID was incremented by one. The
splice occurs when the right number of cells are droppegrogram then examined all possible splices of two adjacent
such that pieces of two adjacent packets are combined so fh@P segments and checked to see if either the TCP checksum
they appear to represent one AAL5 packet. Fig. 1 illustratesoa AALS CRC failed to detect the splice. The program did not
splice: two four-cell packets suffer a loss of four cells, suatoncern itself with splices whose data exactly matched a valid
that the first and third cell of the first packet and the first anuhcket, nor with those splices that were detected by IP, TCP,
last cells of the second packet are spliced together to look like AALS header/trailer checks.

a single four-cell packet. It should be noted that ATM does not The test program was run over file systems at Storage
allow cells to be re-ordered, thus the number of possible splicBschnologies, the Swedish Institute of Computer Science
is limited to those that merely drop, and do not reorder, celkSICS), and Stanford University. The TCP segment sizes

Several conditions must be met for a splice to be valid. Firgxamined were 256 bytes long, except for runt packets at
AALS5 stores the length of the packet in the last cell, so thhe end of files. The first row in Tables I-Ill counts the total
size of the splice must be consistent with the AAL5 length inumber of splices inspected. The next row counts how many
the last cell. Second, because AAL5 specially marks the lasvalid splices were detected by simple header checks, and
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TABLE | TABLE 1
CRC AND TCP (HECKsSuM ResuLTs CRCAND TCP GHECKSUM RESULTS (256 BYTE PACKETS ON SYSTEMS AT SICS)
(256 BYTE PACKETS ON SYSTEMS AT STORTEK) system code | % remaining splices
system code ] % remaining splices sics.se Total 3183838883
5105 Total 7186841747 /srcl Caught by Header 1594737950
46411 files Caught by Header 3593444113 48,817 files Identical data 11000914
4856193 pkts | Identical data 17498067 3,520,967 pkts Remaining splices 1578100019
(98-05-04) Remaining splices 3575899567 (11-24-97) CRC | 0.0000000000 0
Missed by CRC | 0.0000000000 [ TCP | 0.0411719151 649734
Missed by TCP | 0.0459554853 1643322 Sicsse Total 3902004306
sil Total 6306945748 /src2 Caught by Header 1450715240
45627 files Caught by Header 3152782063 11,492 files Identical data 12039586
6896637 pkts | Identical data 22324135 3,162,423 pkts Remaining splices 1440149480
(98-05-04) Remaining splices 3131839550 (11-24-97) CRC T 0.0000000000 0
Missed by CRC T 0.0000000319 T TCP | 0.0344980161 496823
Missed by TCP | 0.0610412816 1911715 ics so o 2074080447
s123 Total 4920441461 .
/src3 Caught by Header 6031140841
29444 files Caught by Header 2459789331 7 845 files Identical data 12062020
4372688 pkts | Identical data 50703652 ; . .
L . 13,097,058 pkts Remaining splices 6030877586
(98-05-04) Remaining splices 2409948478
- (12-17-97) CRC | 0.0000000000 0
Missed by CRC0.0000000830 z TCP | 0.0088341538 532777
Missed by TCP | 0.0568444518 1369922 -
325 Total 8743322301 sics.se Total 5025946678
38187 files Caught by Header 4372322214 /srcd Caught by Header 2512845921
9531889 pkts | Identical data 65900443 33,912 files Identical data 22171407
(98-05-04) Remaining splices 4310099644 5,496,043 pkts Remaining splices 2490929350
Missed by CRC | 0.0000000464 Z (12-17-97) CRC T 0.0000000000 0
Missed by TCP | 0.1103037608 4754202 TCP_| 0.01988838017 495416
s27 Total 5012189213 sics.se Total 21107489268
22319 files Caught by Header 2505005350 /issl Caught by Header 10557354562
5461908 pkts Identical data 16574413 204,601 files Identical data 126239615
(98-05-04) Remaining splices 2490609450 23,178,376 pkts Remaining splices 10423895091
Missed by CRC | 0.0000000402 T (12-17-97) CRC [ 0.0000000192 2
Missed by TCP | 0.0439271199 1094053 TCP | 0.2238580377 23334727
5129 Total 57566222385 sics.se Total 6560349785
57299 files Caught by Header 2878637775 /opt. Caught by Header 3286741967
6314509 pkts | Identical data 19999951 141,453 files Identical data 152672075
(98-05-04) Remaining splices 2857984559 7,312,235 pkts Remaining splices 3120935743
Missed by CRC [ 0.0000000350 1 (11-24-97) CRC T 0.0000000320 T
Missed by TCP | 0.0552609704 1579350 0.2% executables | TCP | 0.1703438788 5316323
549 Total . 696462431 sics.se Total 8630623470
17663 files | Caught by Header 2846361632 7solaris Caught by Header 7318348898
6196298 pkts | Identical data 16371605 98 211 files Identical data 92736322
(98-05-04) | Remaining splices 2833729194 9,502,013 pkts | Remaining splices 4219538250
Missed by CRC | 0.0000000000 0 (12-17-97) CRC T 0.0000000873 x5
st51 Total 4584391161 =
16864 files | Caught by Header 37290882985 sics se Total 33661656216
. /cna Caught by Header 16832727499
4990431 pkts | Identical data 14136325 248,611 fil ;
(98-05-04) | Remaining splices 2279371851 11 files Identical data 196026754
Missed by CRC | 0.0000000000 0 36,859,417 pkts Remaining splices 16632901963
: ’ (12-17-97) CRC | 0.0000000180 3
Missed by TCP | 0.0693654262 1581096 Tcr | 0186608 5
5152 Total 8309063498 1866982627 31053339
58132 files Caught by Header 4153260212
9082777 pkts | Identical data 40561081 .
(98.05-04) Remaining splices 4115247205 We would expec_t _that the CRC of a splice would _rT;atch
Missed by CRC | 0.0000000000 0 the CRC of the original AAL5 packet at a rate of 1 if22
Missed by TCP | 0.1726656418 7105618 (or 0.000 000 023 2% of the time). Similarly, we would expect

that the TCP checksum would fail to catch bad splices at a

so did not need to check the checksum. The row labelédfe Of 1in 2¢ (or 0.001526% of the time). Observe that for
“identical data” records how many splices resulted in packdf€ CRC, the CRC must match the CRC of the second AALS
that were identical to one of the original packets, and henB&cket, while for TCP, the checksum over the entire splice

would not result in corrupted data (the checksum, of courdBUSt equal zero. _ _
was identical). The “Remaining” packets were all incorrect The tables show that for real data, the CRC failure rate is

and depended on the checksum and the CRC to detect @ygost perfectly consistent with the expected failure rate for

corruption. All percentages listed are computed as percé@fdom data, and is therefore not the subject of much further
of “remaining splices.” The rows following “remaining” list Nvestigation in this papelr.For TCP, however, the story is

the splices missed by the CRC test and the TCP checksurfrhe difference between our results and those of Marshall and Kalmanek
test. There were no splices missed by both CRC and the Tap the “identical data” entries. Given that the payloads were identical, it is

) . ot a failure if the CRC does not detect these splices as no data-corruption
checksum. The data from each site are broken down by

. ) urs. Their tests did not distinguish the cases of splices with identical data
system. The total number of splices is greater théh 2 from splices with different data but congruent checksums.
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Fig. 2. Distribution of TCP checksum over blocks kfcells in smeg.dsg.stanford.edul (a) full probability dist. function; (b) pdf: 65 most common
values; and (c) CDF: 65 most common values.

TABLE Il In multicell replacements, the sum of the mixes of cells must
CRC aND TCP (HECKksuM REsSULTS be equa|_
(256 BYTE PACKETS ON SYSTEMS AT STANFORD)
system code | % remaining splices . .
o s odn oo e B. Distributions of the TCP Checksum
/ul S Caught by Header 4442709123 Given random data, a good checksum or CRC should
198,352 files Identical data 25715994 ; i .
9,901 213 pkts Remaining splices 4304870540 uniformly scatter _the checksum values over the entire check
(8-20-97) CRC T 0.000000027% T sum space. Obviously a checksum algorithm that does not
TCP_| 0.0707199443 3108050 uniformly distribute checksum values (i.e., has hotspots) will
pompano.stanford edu gotalh I 1;33492954 be more likely to have multiple cells with the same check-
/usr/local aught by Header 005787 ; ; ;
11,468 filos ldentical dats 6024593 sum. Theorem 6 in Appendix A proves t_hat, over unlfor_mly
1,314,390 pkts Remaining splices 592465574 distributed data, the TCP checksum algorithm gives a uniform
(11-26:97) CRC [ 0.0000000000 0 distribution of checksum valuésThus, any hotspots in the
TCP | 0.0269563342 159707

distribution of checksum values are due to nonuniformity of
the data, and are not inherent in the TCP checksum algorithm.

different. Between 0.008% and 0.22% of the bad splices passed o _
by the header checks passed the checksum. This is betweén d he Distribution of Checksum Values over Single Cells
factor of 10 and 100 worse than expected, and requires soméf the distribution of 16-bit words is completely uniform,

explanation. the chance of an arbitrary sequence of data in the first
packet having the same checksum as an equal-sized arbitrary
IV. EXPLAINING THE TCP CHECKSUM EAILURES sequence of data in the second packeyi®, whereM = 216,

] . However, the distribution of values over real data is not
Why does the TCP checksum fail to detect so many splice§gisorm.

The reasons have to do with the distribution of data vaIuesFig. 2 shows three plots summarizing the distribution
and how data from one packet can be mixed with data frof# -hecksum values on the filesysteful on smeg.dsg.

another packet. stanford.edu. The-axis represents different checksum values,
_ . sorted by frequency to better show the distribution. In the PDF
A. Failure Scenarios graphs, they-axis is the probability that the given checksum

We can compute the TCP checksum in pieces and then adue occurred. Fig. 2(a) shows the entire PDF, and (b) shows
the pieces to get the complete packet sum. So, we can thinléoblowup of the most frequent 65 values (0.1%) The CDF
the TCP checksum of a packet broken into ATM cells as beifgig. 2(c)] shows the same 65 values, but hereghelue for
the sum of the individual checksums of each 48-byte cell. @ givenz represents the cumulative probability that any of

The usual requirement for a splice to pass the TCP chedRe most commomn values occurred. If the distribution were
sum is that the checksum of the splice add up to the checksHRiform then the PDF should simply be a horizontal line at
of the entire first packet contributing to the splice. Becaus¢M, and the CDF a straight line with sloggA/.
the splice contains cells of the first and second packets, thisThis data shows that the TCP checksum on real data has
requirement can also be expressed as a requirement thath@pots. In the file system shown in the figure (smegy/the
checksum of the cells from the first packet not included in tHep 0.1% of the checksum values occurred 2.5% of the time.
splice must equal the checksum from the cells of the secoti@ne examines this distributional data over many filesystems,
packet that are included in the splice. If just one cell froine discovers two things. First, that the single most common
the second packet is included in the splice, this requiremeny L . -

. The actual results are stronger: if just one word in the packet is uniformly
reduces to the requirement that the checksum of the cell frcE)@tributed over all ¥ possible values, then the checksum of the entire packet
the second packet have the same sum as the cell it replagesiformly distributed over all possible values.
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checksum value (usually zero) occurs between 0.01% and 1% TABLE IV

of the time. Second, that for 48 byte cells the 65 next most PROBABILITY (AS %) OF CHECKSUM MATCH
frequently occurring checksum values (0.1% of the checksum FOR SUBSTITUTIONS OF LENGTH I CELLS
space) account for between 1% and 5% of the checksum values Length | Uniform Prc(‘;ligg Me(a;sl‘(‘):‘ﬁ
seen.

0.001526 | 0.02126770 | 0.02126770
0.001526 | 0.00153019 | 0.01494399
0.001526 | 0.00152590 | 0.01348366
0.001526 | 0.00152590 | 0.01416288
0.001526 | 0.00152590 | 0.01108446

D. Checksum Distribution over Larger Blocks of Data
Although for uniformly distributed data values the proba-
bility distribution of the checksum is uniform independent of
the length of the block of data, this is not true for nonuniform
data. In that case, the expected probability distribution of thegpje v computes this probability using the measurements

[ N S

checksum may be computed by of the Stanford file system from Fig. 2. It lists the probability
M that the checksums of two blocks, eaklcells long, drawn

Pyl = Z(Pk,l[j]Pl[i i) from anywhere in the same filesystem, will be equal.
i=0 For each block of lengtht cells, the “uniform” column

where P[] is the probability that the checksum over a blockhows the expected probability given uniform distribution.
of length & is equal to¢, and wherei — j is taken modd/. The “predicted” column shows the probability predicted
The dotted line in Fig. 2 labeled “Prediét = 2" shows the assuming each cell is drawn from the identical, nonuniform
expected distribution of checksums over blocks 2 cells londistribution. (The particular distribution is the one actually
given the checksum distribution over one cell giventby: 1. measured for single cells over the smaf:/file system.)

So, if the nonuniformity is uniform—that is, that every cellThe last column lists the probability actually measured for
of data is drawn from the same probability distribution, andach block size over the entire file system.
that the sum is the sum dhdependentsamples—then we Table IV shows us that the actual measurements do not
would expect the distribution of the sums to conform closelyatch the predictions. There are two issues our initial model
to the dotted line in our graphs. The predicted valueifer 2  ignored.
is already close to uniform for all but the 20 most common First, we have measured the probability distribution over
values, even though = 1 is decidedly nonuniform. Corollary the entire file system for chunks d@f cells, but we know
3 and Theorem 4 in the Appendix show that, regardless of ttieat distribution of data values is heavily dependent on file
original distribution, the distribution should get more uniformype (binary versus character, executable versus GIF, even
as k increases. Shakespeare versus Joyce). Splices come from adjacent pack-

However, our measurements show that the nonuniformigs, which usually come from the same file. Thus, real failure
extends to larger chunks than single words or cells, and thates could be higher than the averaged global distribution
the checksum of one cel correlated with the checksums ofwould suggest.
the neighboring cells. The lines labeléd= 2, k = 3, etc. For example, consider an extreme (and extremely hypothet-
show the measured distribution of checksums over sampleda#l) case in which a file system consists of half binary and
blocks of lengthk cells over real data in our file system. Thehalf textual data. Imagine that 90% of the cell-sized chunks
data does get more uniform (seen most clearly in the CDIgf, binary data had a checksum of00000, and that 90% of
but nowhere as quickly as it should if the cells were roughlyne cell-sized chunks of textual data had a checksum &f 0
independent. We believe the samples should be somewhB00. Considered globally, we would find>0 0000 45% of
representative even of noncontiguous blocks. Once again, the time and Ox 1F00 45% of the time, s®_ p* would be
checksum values are sorted in decreasing order of probabil@pproximately 32% and we would predict about 32% of the
to give a clearer picture of the distribution. Note that even ovpacket splices would incorrectly pass the checksum. However,
the larger block sizes, although the probability of a matdh reality, for any given file the local distribution would find the
decreases slightly, the distribution is still significantly morenost common checksum 90% of the time, and thus the failure
nonuniform than expected. rate would be about 81%. Therefore, the global distribution
. . o of checksums (measured across an entire filesystem) is not
E. Filesystem-Level Nonuniformity is Not the Answer sufficient to accurately predict checksum failure rate: a more

Given the nonuniform distribution, what, then, is the eXocalized distribution of checksums is needed.
pected failure rate of the IP/TCP checksum in detecting splicessecond, if two cells have congruent checksums because
for a given distribution”” of checksum values? As discusseghe data was identical, then replacement of one cell by the
above, it is simply the probability that the checksum over th&her is not a checksum failure—the packet is unaltered and
cells missing from the first packet is equal to the checksufd corruption will occur. To accurately predict meaningful
over the cells present from the second packet. For a giveflecksum failures, then, we need to subtract both congruent
probability distribution P, and assuming that every cell isand equal cells from the probability of a match. In a system

drawn from the same distribution, this probability is with uniformly distributed data the odds of finding two 48
M byte cells with identical data is 1 i*®*, which is so unlikely
P(failure) = ZP[i]Q- as to be utterly neglible. However, in practice it occurs far
=0 more frequently. Our actual measurements show that the



534 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 6, NO. 5, OCTOBER 1998

TABLE V
PrOBABILITY (As %) OF CQHECKSUM MATCH FOR
SUBSTITUTIONS OF LENGTH k CELLS BASED ON LocAL DATA

TABLE VI
CHECKSUM FAILURES ON REAL DATA PROBABILITY (AS %) OF
CHECKSUM CONGRUENCE FORBLOCKS OF LENGTH k& CELLS

Length | Mcasured Local Exclude smeg.dsg.stanford.edu:lul
(k) Global | Congruence Identical k=1 k=2 k=3 k=4
1 0.02126770 | 158305972 | 0.20704272 Predicted 0.021267710.0015302 0.0015259 0.0015259
2 0.01494399 | 1.30267681 | 0.17226800 Measured Global 0.0212677]0.014944( 0.0134837 0.0141629
1 001416288 | 1.15970577 | 0.16316988 Exclude Identical | 0.20704270.1722680 0.1661407 0.1631699
Actual 0.10267970.1581733 0.0907984 0.0568881

sics.se:lopt
- . Predicted 1.1422436 0.0150023 0.0016007 0.0015280
mostcommon reason for checksum congruence is identical  weasured Global | 1.142243¢0.9493377 0.8852389 0.8291802
data—identical splices occur 20 to 40 times more frequently Local Congruence |[10.77666459.672369 9.3490614 9.0170788
than conaruent-but-unequal splices. This result is another ex- Exclude Identical 0.38722160.4732675 0.689793¢ 0.6086173
9 . squal sp R Actual 0.1085216/0.5551069 0.21303420.1183174
ample of nonuniform distribution of the data, but, in this case, e —
a benign one: the undetected error has not corrupted uset data. regicisg 0.0320218 0.001530°10.0015259 0.0015250
_ ) ) Measured Global | 0.0320218 0.018223 0.0163504 0.0169735
F. Localized Nonuniformity of Data Local Congruence | 1.77743891.5562402 1.432622€ 1.4595770
. Exclude Identical | 0.25376530.1938629 0.1418823 0.2196530
Table V shows how the probability changes when we —=m 0.10379890.1143002 0.0499084 0.0283392
restrict the comparisons to only look at local data. The first >
column (identical to the last column in Table IV) displays Predicied 0.0204720/0.0015317 0.0015259 0.0015259
the probability of taking two blocks of data, eaéhcells y;;flugd Global g-‘l)iggél (llg(l)fgfligg ?-gigg?g (1)-(7)21;1*2?](7)2
B o HP. - H ongruence . . . .

long, from anywhere in the entire file-system, and finding that ¢ o denicat | 01004778 0.0995097 0.1345251] 0.1 108649
their IP checksums were congruent to each other. The column Zgga 0.17470490.1339749 0.042919¢ 0.0210642

labeled “locally congruent” shows the same probability if we
limit the search to be within 2 packet lengths (512 bytes). (In
order to increase the sample size for the local comparisons,
we did not restrict ourselves to contiguous blocks). The final
column shows how the probability decreases when we exclude

TABLE VII
CRC AND TCP GHecksum ResuLTs CoMPRESSEDDATA
(256 BvTE PACKETS ON SYSTEMS AT SICS)

A : i : system splices
checksum matches for a pair of blocks that contained identical Tafnersicsse | Towal 1549869756
data, as such a substitution would not result in any data compressed Caught by Header 773945117
corruption. It is still significantly higher than the global rate. /opt Identical data 51902
(Recall, that if the data were uniformly distributed then every 1,679,166 pkts | Remaining splices | 775872737

i . (5-9-95) % of remaining splices missed by

entry in this table should be 0.001526%). If the checksum CRC [ 0.0000000000 0
failures are purely a result of nonuniform distribution, then TCP | 0.0021002156 16295

these sample probabilities should track the measured TCP
checksum failure rates.
Table VI compares this distribution data for several file sy$. Regaining a Uniform Distribution: Compression
tems with the actual rate of checksum failures for comparable-We claim that the TCP checksum’s failure to detect many
length substitutions. Note that there is a minor differencglices is due to the nonuniform distribution of the data being
between the way data was collected to compute the predict®nmed. One obvious way to deal with nonuniform data
values and the measured values. The predicted values [Bdfterns is to compress the data. As an experiment to verify
computed for full 48-byte cells. However, the measured valuggat our diagnosis was correct, we compressed all the files in
include a large number of cells with only 8 bytes of datahe file system at SICS that gave the TCP checksum the most
The reason is that the measured data was collected as patt&ible (/optonfafner.sics.se ) and ran our tests on the
computing possible packet failures for 256-byte packets, aB@mpressed files. (The compression was Lempel-Ziv, and was
with the 40-byte TCP/IP header, a 256-byte packet has only8rformed using the UNIX compress command.) The results
bytes of data in the first and last cells. are shown in Table VII, using the same format as Table I.
However, even allowing for the deficiencies in measurimghe interesting result is that the number of splices that passed
actual failures, what Table VI suggests is that local congruengg: checksum is approximately 0.0021%, which is close to
still does not fully explain the checksum failure rate. Tehe expected rate on uniform data of 0.0015%. This result
fully explain the failure rate, we need a new way to thinks a hundred times improvement over the 0.17% rate before
about checksum data patterns, which is presented belOWCiﬂ’an‘ESSiOI’L So compression clearly helps.
Section V-D.

B. Alternative Checksums: Fletcher
V. REDUCING CHECKSUM FAILURES ) ) )
It is not always possible or desirable to compress the data.

In this section, we look at various ways to reduce thgnaiher obvious question to ask is whether, without data com-
checksum failure rates. pression, another checksum algorithm would perform better

3But the lost packet must still be recovered; see Section V-D. than TCP’s. An obvious candidate checksum is Fletcher’'s
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TABLE VIl 0.1 T T T T T
FLETCHER'S CHECKSUM RESULTS (256 BYTE PACKETS ON SYSTEMS)
Missed 0.01
System by %o splices
sics.se TCP | 0.1703438788 | 5316323 B
Jopt F255 | 0.0044358811 138441 0.001 g 1
F256 | 0.0091286724 284900
smeg stanford.edu TCP | 0.0707199443 | 3108050
/ul F255 | 0.0862324604 | 3789805 0.0001
F256 | 0.0046759739 205503
pompano stanford.edu TCP | 0.0269563342 159707 1e-05 + 4
/usr/local F255 | 0.0022121117 13106
F256 | 0.0029058228 17216
sics.se TCP | 0.0411719151 649734 1e-06 L L L 1 L
/srcl F255 | 0.0067998225 | 107308 0 50 100 150 200 250
— FTzég 8832:;33?2 432‘33 Fig. 3. PDF of TCP checksum, F255, and F256 over 48 byte cells in
i 255 | 00023053857 33201 smeg.dsg.stanford.edul . Most common 256 values.
F256 | 0.0039193848 56445

Why then does Fletcher perform better than the TCP check-

heck 131 With del wh I d um? The most obvious effect is that the positional dependence
checksum [13].With our error model, where cells are droppe f Fletcher's checksum effectively increases the number of

but no random data is inserted, we might expect the posmor&%lns changed in a splice. The vast majority of splices which

B;erm tt?] |rTngIrDove error detectlor:. d | Fletch pass IP and TCP header checks include the header cell from
S Wi » W€ can compute and analyzeé FlelCherge o packet, and therefore the checksum field from the

Ehecmsrhmt ?rg t|nd|V|dfu$: C;"SE ;athelz thlfm entire patheE'st packet. Each cell from the first packet not included
ecall tha €rm Ot the Fletcher checksum IS Compute, ,q splice movesll the subsequent cells from the first

by rllwutltls\llylng ea;:h byte b){ its IoffsletFTr?n;] thehe”i Of the,1cket closer to the start of the splice—thus increasing the
packet. We can aiso compute a local Flelcher checksum o irs component of their contribution to th& field of the

one celli as A;, and B;. To compute the contribution of an lice’s checksum, when compared to théir contribution

individual cell to the total Fletcher sum for the packet, we a(f(fthe first packet's checksum. And even if the inserted cells

Ai 10 Apacker and addR; 10 Bpacker, WhereR; = (B;+ AiL) 00 the second packet are identical to the dropped cells, their
and L is the offset of the end of the cell from the end of theLfs for the dropped cells iglifferent than the L;’s of the

EaCkEt' Iltt_s?oul;jtﬁe noltled_ that A;ml;:et all trtf Sh'ftst %f ?_ata 4 éSerted cells, as they appear later in the splice than in the first
y a multiple of the cell size ( ytes), the contribution o acket. The positionality of Fletcher's checksum means that

trleB t(ir]r&fcg g%cr;\;ego d?teCt r‘g(;tlondls 1I|én;ted 1t0 1dfr2':nthe effective size of the splice is not just the total number of
at most, M/ (M, 48) values (85 an or L and 2Sqq| replaced, but includes any intervening, “reshuffled” cells

complement, respectively). Both 85 and 16 are considerably ., i first packet which lie between the first drop and the
smaller thanM (255 or 256, respectively). 'St P wien W ! P

last replacement. (Note that this result has no effect on splices
Table VIl shows the actual results for both 1's compleme P ( P

(mod 255) and 2's complementx(od 256) Fletcher's check- rfﬁat join a prefix of the first packet to a suffix of the second.)

: The cause of the performance difference is subtle. Recall
sum over several filesystems. The results of the TCP checksmgt the condition for checksum failure is that the sum of the
on those filesystems is included for comparison.

. -bit A;’s be congruent and that the sum of {18, + 4, L;)’s
We see that Fletcher’s, in general, out-performs the TC 9 e + )

heck qi ithi fact f 2 Iso be congruent. The condition on thEs is identical
chec 5“2?’ and In some cases comes within a factor of 2,06 condition for IP checksums. Since the data cells are
a 1 in 2% miss rate. This performance is curious given o

Yrawn from the same highly localized nonuniform distribution,

results so far. First, Corollary 8 in the Appendix shows thaltheir 8-bit 4; terms have a fairly good chance of being
for uniformly distributed data and replacements larger th ngruent—f;t least 256 times more than the standard 16-

ngle gvo;ds, Fletc_hgrslhould hot be ?]ny sttrr?ntg(;r ttuar_}éPP/T it TCP sum. But for theB term, each of theR; terms
econd, two empirical measures snow that bo individual cells are multiplied byZ;. This multiplication

Fletcher have a similar nonuniform distribution over |nd|V|duaﬁgermutes the entire distribution. Thus, a given highly probable

cells. When looking at plots of checksums over 48-byte cellS yrawn from oneR; is unlikely to be drawn fromg;, the

(Fig. 3), the Fletcher's checksum looks to have a nor]ur"formstribution of R terms for a nearby cell drawn from the same

curve similar to that of TCP. And when we look at thedistribution. In effect, the contribution of each cell to thhe

probability of the checksum that two randomly chosen Eell§?rm of its packet izolored by its offset from the end of the

in the file system match each other, we find a probability ; - ‘ -
0.016% for Fletcher 255, 0.013% for Fletcher 256, and 0'011%8;3;?;9“225 torf ecggogbnn%fé?riif; "iotr’%'bgﬂfig Tﬁ?ktéeﬂ)adzfaed

for IP/TCP. splices less likely. It is well known (we provide a proof

4Unlike [13], our Fletcher’s results perform a sum-to-zero inversion on thg Lemma 9) that the probability of drawing two identical
transmitted checksum. See Section VI-C. values from a nonuniform distribution is always higher than
This calculation includes all cells, including the short cell at the end cﬂ] babili fd . | hat differ b fixed

each packet, so the number does not match the “Measured Globai™fot, e probability of drawing two values that difrer by any fixe

given earlier. amount. (This issue is discussed further in the Appendix).
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Fig. 4. Header checksum fate. Fig. 5. Trailer checksum fate.

Since the data is nonuniform, some terms are more likely thAP header from the first packet and the checksum from the
others. The coloring effect of the term means that the overallsecond packet. (It also has the header from the second packet,
B sums of a splice are less likely to be congruent to the originauit only half the splices will do so.)
checksum than if the data was uniformly distributed. The data cells are, as with Fletcher's sum, all drawn from
The end result is that the standard TCP checksum failstlfe same localized nonuniform distribution and are more likely
two observations drawn from the same distribution are equéian 1 in 2° to have congruent sums. But compare the
while Fletcher fails if two observations drawn from the sam&vo headers. The only field that changes between adjacent
distribution differ by a particular amount (where the exackCP packets in a given flow is the TCP sequence number.
amount varies from splice to splice). Thus, nonuniformity ofhe difference between the checksums of the header cells of
the data actually strengthens thefield of the checksum. adjacent packets in a single flow is therefore strongly clustered
Ones complement Fletcher, however, has a weakness #@und the size of the payload. In other words there are
sometimes offsets its probabilistic advantage: since bytes c@gtually three different distributions of cells in a packet pair:
taining either 255 or 0 are considered identical by the chedke payload data, the first header, and the second header. If we
sum, certain common pathological cases cause total failg@parate the checksum value away from the header that it sums

of Fletcher-255. This problem is discussed in more detail #gnd putitin a trailer, we can ensure that there are always three
Section V-E. different colors in any given splice—even for splices that only

make color-preserving substitutions (e.g., data cell for data
C. Trailer Checksums: Making Nonuniformity Work for Us cell). Again by Lemma 9, this higher degree of coloring leads

Fletcher-256 succeeds in detecting more splices than Tt9Pa higher probability of detecting a splice than the standard
by taking advantage of the nonuniformity of the data distrheader checksum, as we show below by case andlysis.
butions, but it still has drawbacks. It is more expensive to What is the probability of a trailer checksum failing? It
compute, and the nonuniformity can only strengthen 8 bits Simply that the checksum of the cells inserted from the
of the checksum. It turns out that we can use a similar tridist packet equal the checksum of the cells dropped from
to exploit nonuniformity for the standard Internet checksunthe second packet. (Note that we take the second packet—the
with no computational cost. Further, we can strengthen tReurce of the trailer sum—as the original, and counting cells
entire 16-bit sum, giving us (for some distributions) 16-biffom the first packet as insertions.)
checksums that are even stronger than 1% 2 The inserted cells from the first packet almost always

The key observation is that with header checksums, ticlude a header cell. The inserted cells from the first packet
packet header and the packet checksum are located in the sfH& have a sum drawn from a distribution that consists of one
cell of a packet. Thus, either both the header and the checks@der cell and: data cells. If the second header is dropped,
covering it are present in a given splice, or neither are. THaen we again havé data cells and 1 header cell. However,
IP header check and syntactic TCP header checks ensure #hdtalf of the splices the dropped cells are all data cells, in
almost all splices which are actually checksummed include thdich case their sum consists iof- 1 data cells. The resulting
header from the first packet. The resulting splices will have tigobability will be lower than the probability of an exact match
first packet's TCP header, including TCP sequence numbBgtween two checksums drawn from the same distribution (as
ACK field, and checksum. As long as the replacement cef§own in Lemma 9). The failure probability appears to be
in the splice have the same overall checksum as the origifi@fluced by at most a factor of two. _
packets, the TCP checksum will not detect the splice. Fig. 4/n the remaining half of the splices, the second header is
shows one such splice diagrammatically. If the TCP checksfi€ of the cells dropped. Here the distribution of checksums
was at the end of the TCP packet, instead of in the head%fr,the header cell of the second packet does not match the
the TCP checksum value would not share fate with the TCPOur study of trailer checksums was originally motivated by noticing that
pseudo-header which it covers. Fig. 5 shows the same splicéhﬁ / .L5 trailer chgcksums avoided_this fate-sha_iring, and cpnjecturing that
Fig. 4, but with the TCP checksum located in a packet tl,a”exp oiting the predictable header differences with TCP trailer checksums

! ) ' tould improve performance. Trailers performed surprisingly well, leading
instead of the packet header. Here, the resulting splice has i@ the preceding reanalysis of the Fletcher checksum results.
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TABLE IX The piece that was missing from our model was the cell-
TRAILER CHECKSUM RESULTS (256 BYTE PACKETS ON SYSTEMS) coloring. The sample probabilities in our model were com-
Filesystem TCP Misses | Trailer Misses puted using only pure data cells, and thus missed the header
ggf;’;‘/‘opt 8:(1)%332 8:%532 effect. In our actual splice simulation, some substitutions of
smeg.stanford.edu: /ul 0.070720 0.001735 k cells replace a data cell with a header cell. The failure rate
pompana.stanford: /usr / 1ocal 0.026956 0.001604 for the substitutions with headers should be 1 1, 2vhich
e ot | ommel s ignorabe

What is the probability that a substitution of length
replaced a data cell with a header cell? This is easy to

S ) compute. All £ cells dropped from the first packet will
distribution of the first header cell. There are two causes fgg data cells. There arg.®,) possible choices of: cell

this result. First, we treat the first header as a header but {h€ertions from the second packet (recall that we must insert
second as data, which means we checksum the IP headefhaftrailing cell of the second packet in the splice). Of these,
the second cell, but not of the first. Second, the header ggjy (kil) do not contain the header cell of the second
mostly constant between packets except for an increase in fagket. Therefore, to predict the actual failure rate éfcell
IP ID field and the TCP sequence number. (Note that in thigipstitution from our “exclude identical” samples, we must
scenario there is no checksum in the header: the field is Igfyyce the sample probability by a factor @)]:il)/(kfl)
zero; though a practical trailer implementation might perhagsich equalg7 — k) /6. Our sample probabilities now closely
choose to swap the checksum value and the last two bytesypfich the actual measured failure probabilities, and we are
the packet.) reasonably confident that we have explained the behavior we
How much lower will the probability of failure be? Wehayve observed. Further, the improved performance due to
conducted an experiment to measure the effectiveness of trailgfler checksums in our packet-splice model seems to be real.
checksums. We changed the simulator to model a protocol, the past, protocol designers have proposed trailer check-
identical to TCP, except that the TCP header checksum is lgfims for various engineering reasons. As far as we know,
zero, and the checksum value is appended to the end of {hg argument about improved checksum behavior was not ad-
TCP data. The results are shown in Table IX. The failure rajgnced. we conclude that protocol designers should reconsider
of trailer checksums were significantly better than thoseaﬁfacing checksums in packet trailers rather than headers, as has
TCP and Fletcher. We note that the failure rate was actuafigen standard practice in Internet protocols to date.
below 2716 for significant fractions of some file systems. In Trailer checksums suffer one apparent drawback. They may
most cases we noted a failure rate 20-50 times lower than {f{necessarily reject splices that are identical to an original
header checksums. o _ ~packet. Consider the scenario where a burst of cell loss splices
We can further test the distribution-coloring analysis bye front of one packet onto the tail of the following packet,

making predictions _about th_e standard .header TCP checksy.in Fig. 4. If the payload of the splice is identical to the
The number of splices which do not include the header gfyi0ad of the original packet, then the header checksum
the first packet are negligible, so there are only two cas&giould match (since the header of the splice is the header
the first header cell followed by all-data cells, and the headgf e first packet), and the packet is accepted. But with trailer
from the first packet followed by a mix of data cells andecksums, (as in Fig. 5, when the payload is identical to the
the header from the second packet. In the latter case, {hgr packet the checksum cannot match: it was computed with
splice has replaced a data cell with the header. cell from tﬂ?e sequence number of the second packet, not the first. So if
second packet, and thus should be much less likely to maigl contents are identical the checksums will match only if the
than the first case. When we went back and examined fgerence between the inserted and dropped cells is congruent
data, this prediction was correct. Although roughly half of, the difference in sequence number (the payload) between
_the splices surviving the header check have the second hegggro packets. By Lemma 9, this is very unlikely. Thus the
included, only 1 in 2° of those passed the_ TCP CheCksu”_éplice will be rejected even when the contents is correct. The
The. Tcp hgader checksum was 100-200 times more ?ﬁec%\fﬁresponding case (header of the second packet, payload of
against splices that contamgd the second header. This reﬁ‘rgtfirst) never comes up, since our error model requires cells
both supports our explanation of the good performance @f remain ordered. In summary, trailer checksums have a very

trailer TCP checksums, and further confirms the utility of 04,4 chance of detecting a splice even if the resulting packet
distribution-coloring analysis of checksums. is a “good” packet.

) ) Table X demonstrates this effect on the filesystem /ul

D. Adding Cell-Coloring to our Model at smeg.dsg.stanford.edithe number of identical splices

We are now ready to return to the discrepancies between oejected by trailer checksums is larger than the number of
“exclude identical” probabilities in Table VI of Section IV-Fbad splices they detect that the TCP checksum missed.
and the actual measured failure rate. Recall that our sampl@he two numbers, however, are not comparable. TCP
probabilities predicted total failure rates very accurately fonissed checksums represent undetected data corruption.
small k£ (the number of cells in a block), but by the tinke Spurious rejection by the trailer checksum represents (at
increased to 4, the model over-predicted the measured failuvesmst) a possible performance penalty, it does not cause
by a factor of 3 or 4. any data corruption.
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TABLE X as themod-255 sum. Pathological data patterns for mod-256
HEADER VERSUS TRAILER CHECKSUM FAILURE RATES do occur, but less frequently. One case we have isolated is hex-
False Positive/Negative | header trailer encoded PostScript bitmaps which contain identical segments
Fails checksum, data identical 0] 25348910 of horizontal lines (e.g., bitmaps containing solid blocks of
Passes checksum, data changed | 3,108,050 76,270 color, or bitmaps containing parallel lines. Font definitions
Fails checksum, data identical | 0.0% 0.57% appear to be a particularly common case). Many common
Passecs checksum, data changed | 0.07% 0.002%

bitmaps appear to have a width;, that is a power of two.
Thus, each ASCII-encoded binary line commonly consists of

Comparing missed splices, the trailer checksum misses 183Ny FFS and a small number of other two byte values
than 3% as often as the standard sum, but at the cost(8- “F77) that repeat precisely + 1 apart (The exira byte

reporting checksum failure on splices that accidentally resultgdue to an ASCII newline.) Though not immediately obvious
in a valid packet. on inspection, these just happen to combine in such a way that

However, a splice in a real network always means that %€ contribution of 48-byte cells allows splices. We observed a
least one packet has been lost, even if the splice is identiginilar effect in BinHex-encoded Macintosh documents stored
to one of the original packets. So a TCP retransmission wil Our Unix filesystem: very similar lines of 64 bytes followed

be necessary regardless. Thus the incremental performaf¥ean ASCIl newline.

impact of triggering retransmission one packet earlier when Though the overall rate of TCP sum failures is higher than
an identical splice is discarded is not clear. the other sums, and appears to be noisier, we have also isolated

_ . _ a few pathological cases for the standard Internet checksum.
E. Locality of Failure: Pathological Data Patterns One example is Unix gmon.out profiling data. These files

Nonuniformity in the distribution of checksums come®ften consist mostly of zero entries, with a scattering of a
from two causes: nonuniformity of the underlying data, angmall number of nonzero entries. The nonzero values are
weakness of a given checksum algorithm for certain patterien identical. Packetizing this data results in a very small
of data. That files on a computer system are highly structuredmber of checksums. A very large number of splices pass the
is no surprise. We did not expect, however, to discover secksum, resulting in what appears to be scrambled files. A
many examples of files that were particularly vulnerable ggcond example is the PostScript bitmap data file mentioned
splice-errors. above, which showed pathological behavior for the Internet

Though the Fletcher checksums consistently show a lowgitecksum as well.
rate of failure than the standard Internet checksum, they alsdOur central point is that the existence of pathological
show a very high degree of locality. Sampling the checlpatterns for a given sum is not just theoretical; these patterns
sum statistics incrementally during each whole-filesystem r@gcur surprisingly frequently in real filesystem data.
showed sharp spikes in the rate of undetected splices, at the
level of individual directories or even files. Manual exami-
nation of these files shows that, for each of the checksum VI. CONJECTURES

algorithms, real data contains pathological data patterns which the course of our research, we investigated several
cause extremely localized rates of high failure. plausible conjectures that might have explained the TCP

The most dramatic case is the mod-255 Fletcher Sughecksum failures. We briefly describe several of these blind-
This sum has two zeros, 0 and 255. Both these valugfeys.

contribute zero to the cell checksum. Thus, Fletcher mod-255
is susceptible to splice failure on long runs of mixed 0 and
255 bytes. The most dramatic example of this effect is ode The Role of Zero Data
directory from the Stanford filesystem containing several 8-bit The frequency of the zero checksum led us to study the
.pbm graphs of Internet-backbone RTT measurements. effects of zeroed data on the checksum. It is no surprise that
These graphs were plotted as black-and-white, and thus edftdre are a lot of zeros in filesystem data (the UNIX filesystem
byte is either 0 or 255. On these data, combinatorially, 1 hms long been optimized such that completely zero blocks did
2 of all permutations are caught by header checks and 1 im@ need to be saved on disk). However, knowing that arbi-
of the remainder include a header cell. None of the remainiigrily long zero blocks do not change the IP checksum (zero
25% of all possible permutations are caught by the mod-2&5the additive identity), we wondered whether this property
fletcher. This one directory of files caused so many Fletchgignificantly affected the failure rate independent of the simple
mod-255 failures that on this filesystem, mod-255 Fletchéict of their high frequency. In other words: Is there something
performs worse than the IP/TCP checksum. special about zero? If we replaced all the zeros in the file-
Similarly, spectacular mod-255 failures occurred in thsystem with different values, would the failure rate change?
Stanford filesystem with a file from a popular PC word An approximate first answer is that no, zero is not special
processor. This file contained runs of approximately 200 altecause it is the additive identity. If we add one to every word
zero bytes, followed by a similar number of all-one bytesn the file system then the sum of every cell would increase by
between each section of a document. 24 (48 bytes divided by 2). Similarly, it is easy to demonstrate
Fletcher'smod-256 sum behaves slightly differently. It haghat the distribution of the sum of any number of cells will
only one zero, and is not subject to the same dramatic failuwrentain the same set of values and frequencies, although their
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mapping will be permuted. So the rate of checksum failu@. Inverted Checksums

would be unchanget. . . Under the TCP and IP specification, the inverse of the
Itis, however, true that if any single value shows up @hecksum is placed in the packet header. This implies that the
disproportionate amount of the time then the failure rate Willyecsum of a valid segment will be zero. In [7] we cautioned
increase. However, the reason that zero in particular is §ciementors against this approach, since for mostly—zero
common is that several totally independent formats all happggcyets the header cell, too, would be zero. This still is reason-
to choose zero as a common element. Further, it is likely thgfje aqvice for packet formats as it reduces the frequency of
this will continue to be the case. Fortunately, although zefQq congruent cells. However, it is not relevant to TCP and IP
checksums do show up very frequently, it is often the resyp.ase of the overlap of the headers we noted above. To test
of cells consisting entirely of zeros. A substitution of one al is conjecture, we ran our tests with a modified version of the
zero cell for another causes no harm. The problem, therefofgsp checksum that did not invert the checksum before storing
is the frequency of nonzero cells whose checksum is zero,ijfinio the packet. The results with the noninverted checksum
proximity to all-zero cells or to each other. were almost identical to the results with an inverted checksum.

B. Zero Congruent IP/TCP Header Cells D. Corrections to SIGCOMM 95 Version

The TCP checksum is computed over a pseudo-header thaks noted in Section VI-B the data in our earlier paper [7]
covers all but eight bytes from the IP header. The TCGR not accurate. Completely filling in the IP header reduces
checksum is then inverted before it is stored in the headg{e gverall rate of errors by a factor of from 200 to 1000. In
Inverting the checksum causes the computed checksumagfition, the Fletcher checksum code was mis-implemented as
an error-free TCP datagram, (including the TCP header agdnixture ofmod-255 andmod-256 arithmetic, which led to
checksum), to be zero. the Fletcher splice failure rate being higher than the standard

A full IP header also contains an inverted ones-complemefgp checksum. We retract that result; it was an artifact of
checksum, which means that the sum of the IP header is &l§@ puggy Fletcher implementation. That bug was also the
zero. Since all but eight bytes from the IP header are also ce¥ptivation for our current investigation of bothod-255 and
ered by the TCP checksum, the checksum over the combingdq.256 Fletcher sums. The artificially high Fletcher failure
TCP/IP header is not zero, but rather the checksum of thges also inspired the original work on trailer checksums.
overlap: containing the IP source and destination addressesype previous results also suffered from a number of other

the length, and the TCP protocol ID. minor bugs, whose effect was insignificant compared to the

Our earlier results [7] were based on simulations that left thg, problems above. They are detailed in the Appendix.
eight nonoverlapping bytes, including the IP header checksum,

set to zero. The result is to cause the combined TCP/IP
header to checksum to zero. Consider, therefore, two packets _ _
consisting of data that is all zero. The TCP/IP header will The results of the previous sections lead to a number of
have a checksum of zero. The data is zero, so the checkd{ifresting observations. _
of the first cell will only be the sum of the header. When the First, a nonuniform distribution of data makes failure of
checksum is inverted and stored into the header, we are i€ TCP checksum far more likely than one would naively
with a nonzero cell with a checksum of zero. In our earli€gXPect. The undetected splice _rate in our data for _the 16-bit
work, these cells were a major source of nonzero cells withT&P checksum over real data is comparable to uniform data
checksum of zero. What is worse, these cell show up precis¥fifh & 10-bit checksum.
in the case when all the cells around it are zero cells (or at leas©€c0nd, checksum distributions on modest amounts of real
zero-congruent). Thus replacement was common and a mzﬂéPa are substantially different from the distributions one
source of splice failures. Filling in the IP header reduced tigeuld anticipate for uniformly distributed data. This skewed
error rate by three orders of magnitude. distribution doesresult in significantly higher failure rates of
We had conjectured that filling in the IP header would ndf€ TCP checksum. In particular, if a router or host has a
have much of an effect, because the length, IP addresd4fering problem that causes adjacent packets to be merged,
and protocol type do not change between packets during i€ TCP checksum might fail 0.1% of the time rather than
file transfer, and so the checksums of the header cell remHi§ 0-0015% of the time that purely random data distribution
constant. However, even a constant, nonzero, value is sufficigfquld suggest. _ _
to distinguish between header cells and zero filled data cellsWhile these scenarios may seem worrisome, there are three
This simulator deficiency also led us to give undue empha®li§ces of good news.

to the role of zero-congruent data (as mentioned above). ~ First, it is important to keep in mind that these error
scenarios are all quite rare. This work was initially motivated

7Zerois_ special, as we showed in the section on pathological cases, but Bfg studying extremely uncommon AALS5 error scenarios—an
because it is the additive identity and does not affect the checksum. Zerg del derived f ATM cell d licing tw ket
specialness comes from the fact that it is represented by bett0000 and €rror moael aerivea from cell drop splicing two packets

0 x FFFF. In reality, adding 1 to every word in the file systemuldchange into one. In practice, such cell loss can occur due to either

the distribution of checksums, and might reduce the probability of the m%ngesuon or Corruptlon However dropplng ATM cells in-
probable value. Cells containing ¥ FFFF’'s would be shifted by less than '

24. Whether this would increase or decrease the most probable value depgﬁgendently of each O_ther is now known to C?‘use QOOdet
on the distribution of values in each filesystem. problems [10]. ATM switch vendors are addressing this prob-

VII. OBSERVATIONS AND RECOMMENDATIONS
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lem by employing Early Packet Discard, which discards all Proof. For any givenz, the probability that the value
cells in a packet and eliminates the chance of a splice. Cétawn fromP + R = z is given by S[z] = ", P[i{|R[z —4].
loss due to corruption is often estimated at 1 irf D0 less. Assumez is the most probable element ¢f Without loss
The ATM CRC will fail to detect a splice approximately at eof generality, assume that PMaX) < PMax(R). S[z] =
rate of 1 in 22. Therefore, the chance of the TCP checksul; P[i|R[z — 4] < Pmax(P) ", R[x — 4] < Pmax(P) (since
being called upon to detect a splice is much less than 1Ej R[j] = 1). Equality would only hold ifP were uniformly
10-%-2732 or less than one chance in 10 distributed and ifR[j] # 0 = Pz — j] # 0. O
Second, the packet splice model is, in some sense, a worsttemma 2: If Vi, (P[:] = 0) = (R[z — i = 0), then
case error model because the substitutions tend to be simifalin(P + R) > max(PMin(P), PMin(R)).
to the data that they replace. This is possibly also true of Proof: Consider the previous proof. Given the nonzero
buffer-management errors, or errors in fragment reassemiatgndition on R[j], we are guaranteed that every valuefin
However, in the alternative error models where data is replacappears, and sp ; R[j] = 1, thusS[z| = >, P[i]R[z —i] =
by garbage, while the nonuniformity of the data may stiPmin(P)> . Rlx —¢] > Pmin(P). O
reduce the effectiveness of checksums, it will only reduce it to This is unremarkable for unbounded discrete distributions.
the extent that the distribution of the replacement data match&s the maximum, as the number of possible values grows, the
the distribution of the original data. Here, the frequency gfrobability of any single value must decrease. The conditions
long runs of 0's or 1's in the payload may make us slightlgn the min require thatP| > |R|, and that|S| = |P|, so
more vulnerable to hardware errors that produce similar runsibfis also unsurprising that the minimum doesn’t decrease.
data. However, hardware failure that produces random bits &tewever, for bounded distributions, e.g., distributions over the
unlikely to produce runs of data that look a lot like Englislintegersmod M, this leads to the following more interesting

prose. results.
Third, and finally, remedies exist to improve the ability of Corollary 3: Consider a probability distributio®” over the
checksums to work on nonuniform data. integersmod M. The distribution of the summod M, of j

+ Compressing data clearly improves the performance igtegers drawn fromP gets “more uniform” asj increases,
checksums. Since compression also typically reduces fifethe sense that the minimum probability of any number gets
transfer times and saves disk space, there's a strdagger and the max probability gets smaller. U
motivation for FTP archives to compress their files. Computation: If we have a random variable which can take

¢ In the future, in the absence of Compression, protoc@n M values, with a known distribution of values, then the
designers should consider avoiding the practice of placifgobability (P;[s = &]) of the sums of j values drawn from
checksums in a protocol header, but instead append théts distribution is equal td: is
as a trailer to the data being checksummed. "

« In general, the checksums are rarely placed in a situation , . p .
where it is the primary method of failure detection. (We Z(P]_l[s = (k= d)mod Mx Pils = ]). @
are aware of one exception to this rule. The TCP check-
sum is the primary method of error detection over SLIP O
and compressed SLIP links. That's probably not wise.) Corollary 3 shows that each time we add another number

What this work simply shows is that checksums are dA the sum modM and look at the probability distribution,
even less effective error detection method than first thought¢ increasé’Min(F) and decreasBMax(P). We can prove
because real data often has interesting distributions, and th@gether useful result: for large enough PMin(F) and

distributions increase the likelihood of checksum failure. PMax(P) both approach /M and the distribution approaches
uniform.

If P has some zero probability values, then some values in
the sum ofP might also have zero probability, unless the gcd

This paper contains assertions which depend upon ste®é and the entries occurring with nonzero probability is 1.
ments that are easily proven, yet not immediately obvioushe following theorem applies even if a sum of a distribution
For those interested in the formal justification of some of tH&nly hasM’ values with nonzero probability in the following

statements, we present more detail in this appendix. sense: all nonzero values will tend to be equal to/”.
Theorem 4 (Central Limit Theorem)The sumnod M, of

A. Distributions of Checksums a large number of independent observations from any distri-
We use the notatio + R to denote the distribution which bution P tends to have a uniform distribution.

arises by applyingany commutative, total functiont with a Proof: We will show that for any givere > 0, there is

unique inverse on a pair of values drawn from distributiorsomej such that PMaiP;) < 1/M + e. SincePMax(F;)

P and R respectively. (In all of our cases, we are interestdd nonincreasing ag grows, we know this also holds for all

in the usual arithmetic addition operator.) Call PNIBX the % > j. Use the notatiomax; to meanPMax(F;), andmin;

probability of the most likely value in the discrete distributionto meanPMin(F;), when the meaning is clear.

P. (We define PMigP) similarly.) And define P[¢] is the Assume there is a distributiod}, wheremax; > 1/M + ¢

probability of selecting; from P. for all values ofj. We can compute a strict upper bound
Lemma 1: PMax(P + R) < minPMax(P), PMax(R)).  for max,;; based onmax;. The largest possible value of

=0

APPENDIX
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max;j+1 Will arise when the most probable terms frofy Thus, the probability thalS = « for any givenz will be
match the most probable terms frofi; (cf. exercise in precisely 1M, so the probabilities are all equal and the
concrete mathematics [3], at the bottom of page 38). Assumlistribution is uniform. O
the probability for thed — 1 most common values i®; are Theorem 6: Given uniformly distributed data and the sub-
all max;, and there is 1 value whose probability4s1/A/. stitution model above, the IP checksum of the modified packet
For P, there is at least one value with probabiliaxy, one is uniformly distributed over all possible values.
with probability ming, and A — 2 values whose probability Proof: We assume that errors are replacements drawn
sums tol — maxg — ming. from the uniform distribution. Then (assuming replacements
1 larger than a single 16-bit word) every word within the re-
max; 41 < maxomax; + (1 — maxg — ming)max; + minOM placed chunk will be uniformly distributegsiod M. Therefore,
1 by Lemma 5, the IP checksum will be uniformly distributed
M) under the assumed substitutions, since it is the sum of uni-
formly distributed words. That is, the checksum will only
fail to detect errors (by the replacement string contributing
an identical sum to the checksum as the original string) with
a probability of 1 out of 2°—1. O

max;y; <max; — ming X <1naxj —
max;1 <1max; — ming X ¢

but after addingj = max/(minge) times, max; would be

less than 0, given our assumption thaix, is always greater L . o
than1/M + ¢. So, our assumption must be false. Theorem 7: Given uniformly distributed data and the sub-

Thus, for any distribution? and for anye, there is some stitution model above, the Fletcher checksum of the modified

number; of additions, such thaPMax(P;) < 1/M + ¢, S0 packet is yniformly distributeq over all possi_ble values.

the distribution of P; tends to the uniform distribution as Proof: The same reasoning can be applied to the Fletcher
checksum over a chunk of data of siZé. The Fletcher

gets larger. O . ae-

checksum consists of two sums. The first is the sum, mod

M, of all the bytes in the chunk. The second is the sum mod

M of each byte weighted by its offset, from the end of the

- _ _ chunk. Call these two sums, respectivelyl and K2. The

~Most existing evaluations of competing checksum alg@ontribution of this chunk (assuming it ¢ from the end

rithms have assumed that single bit errors were common.oftthe packet) to the Fletcher checksum of the entire packet

is now frequently true that there are in the data-link layer {g straightforward K 1 is added, mod\/, to the modA sum

protect the integrity of cells on the wire, and ECC to corregjf the rest of the packefc x K1+ K?2 is added, modV/,

memory errors while packets sit in buffers on routers. Thug) the weighted sum of the rest of the packetKlf for each

the errors that the TCP checksum must protect against aredh@ink is uniformly distributed, then so will' K1. If eachK 2

longer single or double bit errors (which will be detected qg yniformly distributed, then so Wilp (Lo x K1+ K2),

corrected by other means), but rather substitution of |0ng§hce by Lemma 5, we 0n|y need one uniform|y distributed

runs of “good” data by (possibly different length) runs oferm (andk2 is, althoughLe x K1 might not be).

“other” data. How do the IP checksum and Fletcher compareThat k1 is uniformly distributed follows directly from the

under this substitution model? lemma. K2 is only slightly more complicated. As long as the

This section discusses what their expected behavior woWRynks are large enough so that the there is a Bytsth offset
be under substitution errors if the data were, in fact, uniformly, from the end of the chunk, such tha is relatively prime
distributed? . _ to M (i.e.,gcd(Lg, M) == 1), thenB’s contribution toK 2 is

If we assume all packets are equally likely, then if we loolniformly distributed among alM values, and therefordy 2
at any unit smaller than the size of the substitution, we c@elf is also uniformly distributed. SincBo = 1 is relatively
assume that an error consists of replacements drawn unlforrﬁmne to M, as long as the chunk is at lealog, M bits
from all strings. ] . long, we can apply Lemma 5.

Lemma 5: The sumS mod M of N numbers, will be e must also show thak2 is independent of1, else
uniformly distributed among all/ values assuming there is at( k1 - 2} will not be uniformly distributed. Suppose the last
distributedmod M o uniform distribution of the dataB; and B, are both indepen-

_ Proof: AssumeS — U mod M has an arbitrarily skewed gent and uniformly distributed3, doesnot affect K2 since it
distribution. PMax(U) = 1/M, and PMm(U) = 1/M. By s multiplied by0. As we show the uniform distribution dt2
Lemmas 1 and 2]/M > PMax(5) > PMin(S) = 1/M. py varyingB; (as we did in the lemma above), for eaBh we

81t is worth noting that one point of the preceding paper is that data valu&&n choos_canyvalue fquO to allow K1 to take on all values
are not distributed uniformly andare correlated with nearby values, andequally, without affecting'2. So, for each valu¢K that K2
that, therefore, errors, under the substitution model, are also not distribuppqght take on K1 is independent and uniformly distribut&d.
uniformly and checksums do not perform as well as expected. This work onO | licati . ith the Fletch heck
uniformly distributed data is still interesting on three counts. First, statements ne last comp |c§\t|on arises W't. the (?tC er checksum.
in the main body of the paper depend on results presented here. Secontijkie IP, Fletcher defines the values inserted into the checksum
provides us with a benchmark against which to measure the actual measyjgfq to be thenegationof the checksum of the rest of the
error rate (i.e., what is due to the substitution model and what is do to k hat th k ith Fletch hi .
nonuniform data). Third, encryption and compression are both becoming mbi@c et, so that the packet sumg)tith Fletc Pjr this requires
common and both tend to produce uniformly distributed data. the two bytes of the checksum to be the solution to a system of

B. Distributions of Some Checksums over
Uniformly Distributed Data
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simultaneous equations. We must show that thesespreaific distinguishd, the difference between the header cells, since the
bytes are independent, since we can no longer magicdiigader cells are drawn from a very different distribution than

choose offsets 0 and 1. the data cells, and further, the distribution of the difference
Assume the Fletcher checksuf¥'l, I'2}, is stored in of two consecutive header cells is strongly clustered around
adjacent bytes with offsetd; and Lo = L; — 1 from d = 256. Thus, we have Theorem 10.
the end of the packel) = F1+ F2 4+ K1 mod M, and Theorem 10:Under our error model of splicing, a trailer
0=K2+4+ F1x L+ F2x(L; —1)mod M: checksum will always be at least as powerful as a header
checksum.

Fl=M-KI1-F2 Proof: For any given splice we have substitutgdells.
0=K2+(M—-K1-F2)L; + F2(L, — 1) Equation (1) gives us the probability distribution of the sum
0=K2—-—IL1K1—F2L,+ F2L, — F2 of j cells. The probability that the header checksum fails is
0=K2— [ K1—F2 the probability that two samples drawn fro# are equal.

As discussed above, for trailer checksums there is a fixed

F2=K2- LK1 d, usually 256 in our simulation, computable by looking at

Fl=M—-K1-K2+L,K1 the 2 header cells. The probability that the trailer fails is the
=M+ KI1(L; —1)— K2. probability that two samples fron®; differ by d. Lemma 9
shows that the former is more likely than the latter, thus header

Since K2 is uniformly distributedmod M, so are both/'2
and F1. Since F1 = F2 — K1 mod M, then F1 is still
uniformly distributed even if we hold2 fixed (since we can
vary K2 internal to £'2). Therefore,F'1 is independent of
2. O

Note that L, K1 will not, in general, be uniformly dis-
tributed mod, since we can’'t assume thgtd(L,, M) =
1 (in fact, in our example,L; was always equal to 260.
ged (260, 255) = 5 and ged (260, 256) = 4).

As a curiosity, further note that £, — L; were not relatively
prime toM, thenF'1 and 2 would not have been independent RETRACTIONS FROM THESIGCOMM’'95 PAPER

or uniformly d|str|t_)uted. (In fact, the equations would not have An earlier version of this paper appeared in SIGCOMM'95
always had solutions). . . ] .
P . o [7]. The central point of that paper still holds: nonuniform
Corollary 8: Given uniformly distributed data, and the sub=,.” . '~ . :
stitution model described above, IP and Fletcher checksudlgtrIbUtlon of data results n the 1P checksum'bemg weaker
are equivalently powerful. an expected. Several conject_ures expr_essed in [7] have been
resolved and were addressed in the main body of this paper.
However, several minor points and computational details
were not correct and we retract them.
The body of the paper claims that under our splice error First, we expressed surprise (as well we should have) that
model, trailer checksums are stronger than header checksumesFletcher checksum performersethan the IP checksum.
for nonuniformly distributed data and, no worse for uniformlyperformance tuning of the Fletcher checksum code used in that
distributed data. Here we prove that claim. paper resulted in an incorrect implementation. The Fletcher
Lemma 9: Consider drawing 2 samples, and X;, from  code also used a mixture afod256 andmod255 arithmetic
any discrete distribution. The probability thaf, = X; is and was not computing an accurate Fletcher checksum for
greater than or equal to the probability th8) = (X1 +d) either mod255 or mod256 Fletcher.
mod M for any givend. The numbers reported for the Fletcher checksum in that
Proof: To see this, note that the probability of the formepaper were, therefore, not accurate. The corrected numbers
(identical match) is simply~ . P[i]%. The probability of the reported in this version of the paper show the expected
latter (@ greater than the first) iifio P[i]P[i + d], where result—Fletcher’s detects more splices than TCP. However,
i+ d is taken mod/. Double both sums and rearrange termshe bugs in [7] and its anomalously poor results motivated us
Since (P[i]? + P[i + d)*) = 2P[i]P[i + d], the former sum is to investigate bothnod255 andmod256 Fletcher, uncovering
greater than the latter sum. O the pathological cases fanod255 Fletcher reported here.
Consider our error model: we substityteells from the first  The SIGCOMM’95 paper reports numbers where the IP
packet withj other cells from the second packet. We keep tHeeader fields not covered by the TCP checksum were left as
header cell of the first packet and we keep the trailer cell aéro.
the second packet. For a header checksum to fail, the sunThough covered in the body of this paper, it is important
s1 and s, of each collection ofj cell partial checksums mustto emphasize it again here: filling in the header significantly
be equal. For a trailer checksum to fail, the sumof the ;5 reduced the number of matches for zero-congruent cells, and
cells missing from the first packet must dess than the,, therefore reduced the total number of misses (by three orders
assuming that the checksum of the header cell of packet lofsmagnitude in some cases). By zero-filling in the IP header
d less than the checksum of the header cell of packet 2. \g[7] we over-stated the significance of splices including zero-

checksums are weaker than trailer checksums. O

Note, that in fact, this depends only on the property that
the probability of the checksums over the header cells of two
adjacent packets be congruent is lower than the probability
that two data cells from the same packet be congruent. For
computing the actual probability of trailer checksum failure it
is useful to be able to model as a constant 256, but this is
not required for the proof.

C. Header Checksums Versus Trailer Checksums
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congruent cells and focused too closely on misses involving] D. Greene and B. Lyles, “Reliability of adaptation layers,”Rrotocols
zero-filled or zero-congruent cells. for High-Speed Networks Ill, Proc. IFIP 6.1/6.4 Worksh&p,Pehrson,

S | additi b lativel . b in the si | P. Gunningberg, and S. Pink, Eds., 1992.
everal additional, but relatively minor bugs in the simulatofis; 3| “Hammond, Jret al., “Development of a transmission error model

compromised the accuracy of the numbers of all checksum and an error control model,” Tech. Rep., Georgia Inst. of Technol., May
; ; 1975, prepared for Rome Air Development Center.
algquthms in [7] (but only to a small factor). [6] A. Nakassis, “Fletcher’s error detection algorithm: How to implement
First, we used the AALS5 length from th? second packet, * it efficiently and how to avoid the most common pitfall<Comput.
rather than the apparent IP length from the first cell, for check-] gorgmur_\d ReV'JVOIHlsh no. 5, gpj 6%—88, og. 1f988.  check
: ; ; ; ; . Partridge, J. Hughes, and J. Stone, “Performance of checksums
sum computation. This miscomputed checksums by mcludlrﬁ and CRC's over real data.” iRroc. SIGCOMM95.0l. 25, no. 4, of
data from the |aSt Ce” beyond the end Of the IP payload n Computer Communication ReviewBoston‘ MA, 1996’ pp. 68-76.
the checksum. [8] W.W. Plummer, “TCP checksum function design,” Internet Engineering
. . Note 45, BBN, 1978 (reprinted in [1]).

SeC‘?”d’ Fhls S_ame error aro;e when te;tmg Wh‘?ther pac.k%;is J. Postel, “Transmission control protocol,” Internet Request for Com-
were “identical” in payload. This resulted in counting certain  ments RFC 793, vol. 3, Sept. 1981. '
splices as checksum failures, when in fact they were simghp! A. Romanow and S. Floyd, “Dynamics of TCP traffic over ATM
. P . .. . y dp}p networks,”|IEEE J. Select. Areas Communmql. 13, pp. 633-641, May
identical to the original packet, or where the first packet was 1gg5.

a prefix of the splice. [11] K. Sklower, “Improving the efficiency of the OSI checksum calculation,”
; ; _ Comput. Commun. Rewol. 19, no. 5, pp. 44-55, Oct. 1989.

Third, We miscomputed the checksum for short pac‘le] Z. Wang and J. Crowcroft, “SEAL detects cell misorderin¢dEEE
ets—that is, packets where the apparent IP header length Network Mag.vol. 6, pp. 8-19, July 1992.
made the entire TCP packet fit into the first cell and th@3] J. Zweig and C. Partridge, “TCP alternate checksum options,” Internet
AALS trailer in the second cell. It is well known that a TCP ~ Request For Comments RFC 1143, Feb. 1990.
packet with any user data fills at least two ATM cells. But for
packets with 1 to 8 bytes of TCP payload, the entire IP/TCP
datagram fits in only one cell and the second cell contains orh-
an AALS trailer. Knowing that TCP data packets always tak
two cells, the simulation in [7] erroneously added a partii
checksum for the second cell.

These erroneous calculations did not change the larg
picture of TCP checksum performance, but did require us
recompute all data for this version of the paper.

Finally, our code and raw data are available via em
request to the authors.
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