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Abstract—Checksum and cyclic redundancy check (CRC) al-
gorithms have historically been studied under the assumption
that the data fed to the algorithms was uniformly distributed.
This paper examines the behavior of checksums and CRC’s over
real data from various UNIX file systems. We show that, when
given real data in small to modest pieces (e.g., 48 bytes), all the
checksum algorithms have skewed distributions. These results
have implications for CRC’s and checksums when applied to
real data. They also can cause a spectacular failure rate for both
the TCP and ones-complement Fletcher checksums when trying
to detect certain types of packet splices. When measured over
several large file systems, the 16 bit TCP checksum performed
about as well as a 10-bit CRC.

We show that for fragmentation-and-reassembly error models,
the checksum contribution of each fragment are, in effect, colored
by the fragment’s offset in the splice. This coloring explains the
performance of Fletcher’s sum on nonuniform data, and shows
that placing checksum fields in a packet trailer is theoretically
no worse than a header checksum field. In practice, TCP trailer
sums outperform even Fletcher header sums.

Index Terms—Codes, internetworking.

I. INTRODUCTION

T HE behavior of checksum and cyclic redundancy check
(CRC) algorithms have historically been studied under

the assumption that the data fed to the algorithms was uni-
formly distributed (see, for instance, the work on Fletcher’s
checksum [2] and the AAL5 CRC [4] and [12]). If one assumes
random data drawn from a uniform distribution one can
show a number of nice error detection properties for various
checksums and CRC’s. But in the real world, communications
data is rarely random. Much of the data is character data, which
has distinct skewing toward certain values (for instance, the
character “e” in English). Binary data has similarly nonrandom
distribution of values, such as a propensity to contain zeros.

This paper reports on experiments with running various
checksums and CRC’s over real data from UNIX file systems.
We show that the highly nonuniform distribution of values
and the strong local correlation in real data causes extremely
irregular distributions of checksum and CRC values. In some
tests, less than 0.1% of the possible checksum values occurred
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over 5% of the time. We particularly examine the effects of
this phenomenon when applied to the Internet checksum used
for IP, TCP, and UDP [1], [9] and compare it to two variations
of Fletcher’s checksum. We also report on an experiment with
placing the standard TCP checksum in a packet trailer. A trailer
checksum noticeably increases the checksum’s effectiveness,
and we prove why this is so.

II. CRC’S VERSUS CHECKSUMS

Before examining the behavior of different algorithms, it is
worth briefly discussing the CRC and checksum algorithms
we used.

CRC’s are based on polynomial arithmetic, base 2. CRC-32
[5] is a 32-bit polynomial with several useful error detection
properties. It will detect all errors that span less than 32
contiguous bits within a packet and all 2-bit errors less than
2048 bits apart. It will also detect all cases where there are an
odd number of errors. For other types of errors, if they occur
in data which has uniformly distributed values, the chance of
not detecting an error is 1 in 2.

The concept of a checksum is less well defined. For the
purposes of data communication, the goal of a checksum
algorithm is to balance the effectiveness at detecting errors
against the cost of computing the check values. Furthermore,
it is expected that a checksum will work in conjunction with
other, stronger, data checks such as a CRC. For example,
MAC layers are expected to use a CRC to check that data
was not corrupted during transmission on the local media,
and checksums are used by higher layers to ensure that data
was not corrupted in intermediate routers or by the sending
or receiving host.

The fact that checksums are typically the secondary level
of protection has often led to suggestions that checksums
are superfluous. Hard won experience, however, has shown
that checksums are necessary. Software errors (such as buffer
mismanagement) and even hardware errors (such as network
adapters with poor DMA hardware that sometimes fail to fully
DMA data) are surprisingly common and checksums have
been very useful in protecting against such errors.

The two most popular checksums are the Internet checksum
used for IP, TCP, and UDP [1], [9], and Fletcher’s checksum
[2]. They represent different balances between performance
cost and error detection.

The TCP checksum is a 16-bit ones-complement sum of
the data. This sum will catch any burst error of 15 bits or less
[8], and all 16-bit burst errors except for those which replace
one 1’s complement zero with another (i.e., 16 adjacent 1
bits replaced by 16 zero bits, or vice-versa). Over uniformly
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distributed data, it is expected to detect other types of errors at
a rate proportional to 1 in 2. The checksum also has a major
limitation: the sum of a set of 16-bit values is the same, regard-
less of the order in which the values appear. The checksum
was chosen by the Internet community in the late 1970’s after
experimentation on the ARPANET suggested the checksum
was good enough and could be implemented efficiently.

Fletcher’s checksum is designed to be a more robust error
detecting code. The checksum keeps two sums. One sumis
a running sum of the data in 8-bit chunks. The other sumis
a running sum of each byte multiplied by its position from the
end of the packet. This multiplication incorporates positional
information into the checksum to protect against movement or
transposition of data within the packet. The two 8-bit sums
are concatenated to generate a 16-bit checksum. Fletcher also
defined a 32-bit version, where 16-bit sums are kept. The
algorithm was defined for both ones and twos-complement
arithmetic. The version used for the TP4 checksum and
in this paper uses 8-bit chunks. When performed in twos-
complement, this 16-bit checksum detects all single bit errors,
a single error of less than 16 bits in length, and all double
bit errors separated by 16 bits or less. Though TP4 uses only
the twos-complement version, we investigated both ones- and
twos-complement Fletcher sums.

Historically, the TCP checksum and Fletcher’s checksum
have been viewed as offering a sharp tradeoff between per-
formance and error detection capabilities. The TCP checksum
requires one or two additions per machine word of data (as-
suming the machine word is a multiple of 16 bits long), while
Fletcher’s sum requires two additions per byte (even if the
computation is done in word-sized chunks) [11]. As a result,
measurements have typically shown the TCP checksum to be
two to four times faster [6], [11]. However, that difference may
be declining on newer processors, where the memory access
time dominates any computational cost.

III. W ORK WITH AAL5

This study began as a study of the error scenarios for packet
splices in asynchronous transfer mode (ATM) adaptation layer
5 (AAL5). The AAL5 work helps motivate the rest of the
paper and so is explained briefly here.

A. What is a Packet Splice?

AAL5 sends packets as a series of ATM cells, with the last
cell specially marked using a bit in the ATM header. Apacket
splice occurs when the right number of cells are dropped
such that pieces of two adjacent packets are combined so that
they appear to represent one AAL5 packet. Fig. 1 illustrates a
splice: two four-cell packets suffer a loss of four cells, such
that the first and third cell of the first packet and the first and
last cells of the second packet are spliced together to look like
a single four-cell packet. It should be noted that ATM does not
allow cells to be re-ordered, thus the number of possible splices
is limited to those that merely drop, and do not reorder, cells.

Several conditions must be met for a splice to be valid. First,
AAL5 stores the length of the packet in the last cell, so the
size of the splice must be consistent with the AAL5 length in
the last cell. Second, because AAL5 specially marks the last

Fig. 1. Example AAL5 splice.

cell of every packet, the last cell of the first packet cannot
be part of the splice. Third, the first 40 bytes of the first cell
must be a valid TCP/IP header (i.e., have a length consistent
with the packet length and certain bits must be set). Unless all
three of these requirements are met, the splice will be easily
detected without confirming the CRC or checksum.

If the three requirements are met, then the splice has to be
detected by either the AAL5 CRC (CRC-32) or the higher
layer protocol’s checksum (such as the TCP or Fletcher’s
checksum).

In 1993, an informal study by B. Marshall and C. Kalmanek
at AT&T Bell Labs simulated file transfers from a UNIX
filesystem (using real data from the filesystem) and examined
the performance of the AAL5 CRC. They found a surprising
number of cases where the packet splice passed the AAL5
CRC, leading them to wonder if the AAL5 CRC was strong
enough. With Marshall’s and Kalmanek’s assistance, the au-
thors set out to do a more complete set of tests. Those results
were reported in an earlier version of this paper, presented at
SIGCOMM’95 [7]. Some open questions and surprising results
led us to perform a new and more comprehensive series of
tests to resolve these issues.

B. Testing Splices

Our test program simulated a file transfer with the file
transfer protocol (FTP) of all files on a file system (or selected
directories of a file system) via TCP/IP using AAL5 over ATM.
All IP and TCP header fields were filled in as if the file transfer
were being done over the loopback interface (127.0.0.1). For
each packet, the TCP sequence number was incremented by
the data length, and the IP ID was incremented by one. The
program then examined all possible splices of two adjacent
TCP segments and checked to see if either the TCP checksum
or AAL5 CRC failed to detect the splice. The program did not
concern itself with splices whose data exactly matched a valid
packet, nor with those splices that were detected by IP, TCP,
or AAL5 header/trailer checks.

The test program was run over file systems at Storage
Technologies, the Swedish Institute of Computer Science
(SICS), and Stanford University. The TCP segment sizes
examined were 256 bytes long, except for runt packets at
the end of files. The first row in Tables I–III counts the total
number of splices inspected. The next row counts how many
invalid splices were detected by simple header checks, and
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TABLE I
CRC AND TCP CHECKSUM RESULTS

(256 BYTE PACKETS ON SYSTEMS AT STORTEK)

so did not need to check the checksum. The row labeled
“identical data” records how many splices resulted in packets
that were identical to one of the original packets, and hence
would not result in corrupted data (the checksum, of course,
was identical). The “Remaining” packets were all incorrect
and depended on the checksum and the CRC to detect the
corruption. All percentages listed are computed as percent
of “remaining splices.” The rows following “remaining” list
the splices missed by the CRC test and the TCP checksum
test. There were no splices missed by both CRC and the TCP
checksum. The data from each site are broken down by file
system. The total number of splices is greater than 2.

TABLE II
CRC AND TCP CHECKSUM RESULTS (256 BYTE PACKETS ON SYSTEMS AT SICS)

We would expect that the CRC of a splice would match
the CRC of the original AAL5 packet at a rate of 1 in 2
(or 0.000 000 023 2% of the time). Similarly, we would expect
that the TCP checksum would fail to catch bad splices at a
rate of 1 in 2 (or 0.001 526% of the time). Observe that for
the CRC, the CRC must match the CRC of the second AAL5
packet, while for TCP, the checksum over the entire splice
must equal zero.

The tables show that for real data, the CRC failure rate is
almost perfectly consistent with the expected failure rate for
random data, and is therefore not the subject of much further
investigation in this paper.1 For TCP, however, the story is

1The difference between our results and those of Marshall and Kalmanek
are the “identical data” entries. Given that the payloads were identical, it is
not a failure if the CRC does not detect these splices as no data-corruption
occurs. Their tests did not distinguish the cases of splices with identical data
from splices with different data but congruent checksums.
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(a) (b) (c)

Fig. 2. Distribution of TCP checksum over blocks ofk cells in smeg.dsg.stanford.edu:/u1 (a) full probability dist. function; (b) pdf: 65 most common
values; and (c) CDF: 65 most common values.

TABLE III
CRC AND TCP CHECKSUM RESULTS

(256 BYTE PACKETS ON SYSTEMS AT STANFORD)

different. Between 0.008% and 0.22% of the bad splices passed
by the header checks passed the checksum. This is between a
factor of 10 and 100 worse than expected, and requires some
explanation.

IV. EXPLAINING THE TCP CHECKSUM FAILURES

Why does the TCP checksum fail to detect so many splices?
The reasons have to do with the distribution of data values
and how data from one packet can be mixed with data from
another packet.

A. Failure Scenarios

We can compute the TCP checksum in pieces and then add
the pieces to get the complete packet sum. So, we can think of
the TCP checksum of a packet broken into ATM cells as being
the sum of the individual checksums of each 48-byte cell.

The usual requirement for a splice to pass the TCP check-
sum is that the checksum of the splice add up to the checksum
of the entire first packet contributing to the splice. Because
the splice contains cells of the first and second packets, this
requirement can also be expressed as a requirement that the
checksum of the cells from the first packet not included in the
splice must equal the checksum from the cells of the second
packet that are included in the splice. If just one cell from
the second packet is included in the splice, this requirement
reduces to the requirement that the checksum of the cell from
the second packet have the same sum as the cell it replaces.

In multicell replacements, the sum of the mixes of cells must
be equal.

B. Distributions of the TCP Checksum

Given random data, a good checksum or CRC should
uniformly scatter the checksum values over the entire check-
sum space. Obviously a checksum algorithm that does not
uniformly distribute checksum values (i.e., has hotspots) will
be more likely to have multiple cells with the same check-
sum. Theorem 6 in Appendix A proves that, over uniformly
distributed data, the TCP checksum algorithm gives a uniform
distribution of checksum values.2 Thus, any hotspots in the
distribution of checksum values are due to nonuniformity of
the data, and are not inherent in the TCP checksum algorithm.

C. The Distribution of Checksum Values over Single Cells

If the distribution of 16-bit words is completely uniform,
the chance of an arbitrary sequence of data in the first
packet having the same checksum as an equal-sized arbitrary
sequence of data in the second packet is , where .
However, the distribution of values over real data is not
uniform.

Fig. 2 shows three plots summarizing the distribution
of checksum values on the filesystem on smeg.dsg.
stanford.edu. The-axis represents different checksum values,
sorted by frequency to better show the distribution. In the PDF
graphs, the -axis is the probability that the given checksum
value occurred. Fig. 2(a) shows the entire PDF, and (b) shows
a blowup of the most frequent 65 values (0.1%) The CDF
[Fig. 2(c)] shows the same 65 values, but here the-value for
a given represents the cumulative probability that any of
the most common values occurred. If the distribution were
uniform then the PDF should simply be a horizontal line at

, and the CDF a straight line with slope .
This data shows that the TCP checksum on real data has

hotspots. In the file system shown in the figure (smeg:/u1), the
top 0.1% of the checksum values occurred 2.5% of the time.
If one examines this distributional data over many filesystems,
one discovers two things. First, that the single most common

2The actual results are stronger: if just one word in the packet is uniformly
distributed over all 216 possible values, then the checksum of the entire packet
is uniformly distributed over all possible values.



STONE et al.: PERFORMANCE OF CHECKSUMS AND CRC’S OVER REAL DATA 533

checksum value (usually zero) occurs between 0.01% and 1%
of the time. Second, that for 48 byte cells the 65 next most
frequently occurring checksum values (0.1% of the checksum
space) account for between 1% and 5% of the checksum values
seen.

D. Checksum Distribution over Larger Blocks of Data

Although for uniformly distributed data values the proba-
bility distribution of the checksum is uniform independent of
the length of the block of data, this is not true for nonuniform
data. In that case, the expected probability distribution of the
checksum may be computed by

where is the probability that the checksum over a block
of length is equal to , and where is taken mod .
The dotted line in Fig. 2 labeled “Predict ” shows the
expected distribution of checksums over blocks 2 cells long,
given the checksum distribution over one cell given by .

So, if the nonuniformity is uniform—that is, that every cell
of data is drawn from the same probability distribution, and
that the sum is the sum ofindependentsamples—then we
would expect the distribution of the sums to conform closely
to the dotted line in our graphs. The predicted value for
is already close to uniform for all but the 20 most common
values, even though is decidedly nonuniform. Corollary
3 and Theorem 4 in the Appendix show that, regardless of the
original distribution, the distribution should get more uniform
as increases.

However, our measurements show that the nonuniformity
extends to larger chunks than single words or cells, and that
the checksum of one cellis correlated with the checksums of
the neighboring cells. The lines labeled , , etc.
show the measured distribution of checksums over samples of
blocks of length cells over real data in our file system. The
data does get more uniform (seen most clearly in the CDF),
but nowhere as quickly as it should if the cells were roughly
independent. We believe the samples should be somewhat
representative even of noncontiguous blocks. Once again, the
checksum values are sorted in decreasing order of probability,
to give a clearer picture of the distribution. Note that even over
the larger block sizes, although the probability of a match
decreases slightly, the distribution is still significantly more
nonuniform than expected.

E. Filesystem-Level Nonuniformity is Not the Answer

Given the nonuniform distribution, what, then, is the ex-
pected failure rate of the IP/TCP checksum in detecting splices
for a given distribution of checksum values? As discussed
above, it is simply the probability that the checksum over the
cells missing from the first packet is equal to the checksum
over the cells present from the second packet. For a given
probability distribution , and assuming that every cell is
drawn from the same distribution, this probability is

TABLE IV
PROBABILITY (AS %) OF CHECKSUM MATCH

FOR SUBSTITUTIONS OF LENGTH k CELLS

Table IV computes this probability using the measurements
of the Stanford file system from Fig. 2. It lists the probability
that the checksums of two blocks, eachcells long, drawn
from anywhere in the same filesystem, will be equal.
For each block of length cells, the “uniform” column
shows the expected probability given uniform distribution.
The “predicted” column shows the probability predicted
assuming each cell is drawn from the identical, nonuniform
distribution. (The particular distribution is the one actually
measured for single cells over the smeg:/u1 file system.)
The last column lists the probability actually measured for
each block size over the entire file system.

Table IV shows us that the actual measurements do not
match the predictions. There are two issues our initial model
ignored.

First, we have measured the probability distribution over
the entire file system for chunks of cells, but we know
that distribution of data values is heavily dependent on file
type (binary versus character, executable versus GIF, even
Shakespeare versus Joyce). Splices come from adjacent pack-
ets, which usually come from the same file. Thus, real failure
rates could be higher than the averaged global distribution
would suggest.

For example, consider an extreme (and extremely hypothet-
ical) case in which a file system consists of half binary and
half textual data. Imagine that 90% of the cell-sized chunks
of binary data had a checksum of 00000, and that 90% of
the cell-sized chunks of textual data had a checksum of 0
1F00. Considered globally, we would find 0 0000 45% of
the time and 0 1F00 45% of the time, so would be
approximately 32% and we would predict about 32% of the
packet splices would incorrectly pass the checksum. However,
in reality, for any given file the local distribution would find the
most common checksum 90% of the time, and thus the failure
rate would be about 81%. Therefore, the global distribution
of checksums (measured across an entire filesystem) is not
sufficient to accurately predict checksum failure rate: a more
localized distribution of checksums is needed.

Second, if two cells have congruent checksums because
the data was identical, then replacement of one cell by the
other is not a checksum failure—the packet is unaltered and
no corruption will occur. To accurately predict meaningful
checksum failures, then, we need to subtract both congruent
and equal cells from the probability of a match. In a system
with uniformly distributed data the odds of finding two 48
byte cells with identical data is 1 in 2 , which is so unlikely
as to be utterly neglible. However, in practice it occurs far
more frequently. Our actual measurements show that the
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TABLE V
PROBABILITY (AS %) OF CHECKSUM MATCH FOR

SUBSTITUTIONS OF LENGTH k CELLS BASED ON LOCAL DATA

most common reason for checksum congruence is identical
data—identical splices occur 20 to 40 times more frequently
than congruent-but-unequal splices. This result is another ex-
ample of nonuniform distribution of the data, but, in this case,
a benign one: the undetected error has not corrupted user data.3

F. Localized Nonuniformity of Data

Table V shows how the probability changes when we
restrict the comparisons to only look at local data. The first
column (identical to the last column in Table IV) displays
the probability of taking two blocks of data, each cells
long, from anywhere in the entire file-system, and finding that
their IP checksums were congruent to each other. The column
labeled “locally congruent” shows the same probability if we
limit the search to be within 2 packet lengths (512 bytes). (In
order to increase the sample size for the local comparisons,
we did not restrict ourselves to contiguous blocks). The final
column shows how the probability decreases when we exclude
checksum matches for a pair of blocks that contained identical
data, as such a substitution would not result in any data
corruption. It is still significantly higher than the global rate.
(Recall, that if the data were uniformly distributed then every
entry in this table should be 0.001 526%). If the checksum
failures are purely a result of nonuniform distribution, then
these sample probabilities should track the measured TCP
checksum failure rates.

Table VI compares this distribution data for several file sys-
tems with the actual rate of checksum failures for comparable-
length substitutions. Note that there is a minor difference
between the way data was collected to compute the predicted
values and the measured values. The predicted values are
computed for full 48-byte cells. However, the measured values
include a large number of cells with only 8 bytes of data.
The reason is that the measured data was collected as part of
computing possible packet failures for 256-byte packets, and
with the 40-byte TCP/IP header, a 256-byte packet has only 8
bytes of data in the first and last cells.

However, even allowing for the deficiencies in measuring
actual failures, what Table VI suggests is that local congruence
still does not fully explain the checksum failure rate. To
fully explain the failure rate, we need a new way to think
about checksum data patterns, which is presented below in
Section V-D.

V. REDUCING CHECKSUM FAILURES

In this section, we look at various ways to reduce the
checksum failure rates.

3But the lost packet must still be recovered; see Section V-D.

TABLE VI
CHECKSUM FAILURES ON REAL DATA PROBABILITY (AS %) OF

CHECKSUM CONGRUENCE FORBLOCKS OF LENGTH k CELLS

TABLE VII
CRC AND TCP CHECKSUM RESULTS, COMPRESSEDDATA

(256 BYTE PACKETS ON SYSTEMS AT SICS)

A. Regaining a Uniform Distribution: Compression

We claim that the TCP checksum’s failure to detect many
splices is due to the nonuniform distribution of the data being
summed. One obvious way to deal with nonuniform data
patterns is to compress the data. As an experiment to verify
that our diagnosis was correct, we compressed all the files in
the file system at SICS that gave the TCP checksum the most
trouble (/opt on fafner.sics.se ) and ran our tests on the
compressed files. (The compression was Lempel–Ziv, and was
performed using the UNIX compress command.) The results
are shown in Table VII, using the same format as Table I.
The interesting result is that the number of splices that passed
the checksum is approximately 0.0021%, which is close to
the expected rate on uniform data of 0.0015%. This result
is a hundred times improvement over the 0.17% rate before
compression. So compression clearly helps.

B. Alternative Checksums: Fletcher

It is not always possible or desirable to compress the data.
Another obvious question to ask is whether, without data com-
pression, another checksum algorithm would perform better
than TCP’s. An obvious candidate checksum is Fletcher’s
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TABLE VIII
FLETCHER’S CHECKSUM RESULTS (256 BYTE PACKETS ON SYSTEMS)

checksum [13].4 With our error model, where cells are dropped
but no random data is inserted, we might expect the positional

term to improve error detection.
As with TCP, we can compute and analyze Fletcher’s

checksum over individual cells rather than entire packets.
Recall that the term of the Fletcher checksum is computed
by multiplying each byte by its offset from the end of the
packet. We can also compute a local Fletcher checksum over
one cell as , and . To compute the contribution of an
individual cell to the total Fletcher sum for the packet, we add

to and add to , where
and is the offset of the end of the cell from the end of the
packet. It should be noted that since all the shifts of data are
by a multiple of the cell size (48 bytes), the contribution of
the term for each cell to detect motion is limited to 1 from,
at most, values (85 and 16 for 1 and 2’s
complement, respectively). Both 85 and 16 are considerably
smaller than (255 or 256, respectively).

Table VIII shows the actual results for both 1’s complement
( 255) and 2’s complement ( 256) Fletcher’s check-
sum over several filesystems. The results of the TCP checksum
on those filesystems is included for comparison.

We see that Fletcher’s, in general, out-performs the TCP
checksum, and in some cases comes within a factor of 2 to
a 1 in 2 miss rate. This performance is curious given our
results so far. First, Corollary 8 in the Appendix shows that,
for uniformly distributed data and replacements larger than
single words, Fletcher should not be any stronger than IP/TCP.
Second, two empirical measures show that both TCP and
Fletcher have a similar nonuniform distribution over individual
cells. When looking at plots of checksums over 48-byte cells
(Fig. 3), the Fletcher’s checksum looks to have a nonuniform
curve similar to that of TCP. And when we look at the
probability of the checksum that two randomly chosen cells5

in the file system match each other, we find a probability of
0.016% for Fletcher 255, 0.013% for Fletcher 256, and 0.011%
for IP/TCP.

4Unlike [13], our Fletcher’s results perform a sum-to-zero inversion on the
transmitted checksum. See Section VI-C.

5This calculation includes all cells, including the short cell at the end of
each packet, so the number does not match the “Measured Global” fork = 1,
given earlier.

Fig. 3. PDF of TCP checksum, F255, and F256 over 48 byte cells in
smeg.dsg.stanford.edu:/ul . Most common 256 values.

Why then does Fletcher perform better than the TCP check-
sum? The most obvious effect is that the positional dependence
of Fletcher’s checksum effectively increases the number of
cells changed in a splice. The vast majority of splices which
pass IP and TCP header checks include the header cell from
the first packet, and therefore the checksum field from the
first packet. Each cell from the first packet not included
in the splice movesall the subsequent cells from the first
packet closer to the start of the splice—thus increasing the

’s component of their contribution to the field of the
splice’s checksum, when compared to their contribution
to the first packet’s checksum. And even if the inserted cells
from the second packet are identical to the dropped cells, their

’s for the dropped cells isdifferent than the ’s of the
inserted cells, as they appear later in the splice than in the first
packet. The positionality of Fletcher’s checksum means that
the effective size of the splice is not just the total number of
cells replaced, but includes any intervening, “reshuffled” cells
from the first packet which lie between the first drop and the
last replacement. (Note that this result has no effect on splices
that join a prefix of the first packet to a suffix of the second.)

The cause of the performance difference is subtle. Recall
that the condition for checksum failure is that the sum of the
8-bit ’s be congruent and that the sum of the ’s
also be congruent. The condition on the’s is identical
to the condition for IP checksums. Since the data cells are
drawn from the same highly localized nonuniform distribution,
their 8-bit terms have a fairly good chance of being
congruent—at least 256 times more than the standard 16-
bit TCP sum. But for the term, each of the terms
for individual cells are multiplied by . This multiplication
permutes the entire distribution. Thus, a given highly probable

drawn from one is unlikely to be drawn from , the
distribution of terms for a nearby cell drawn from the same
distribution. In effect, the contribution of each cell to the
term of its packet iscoloredby its offset from the end of the
packet (think of coloring the cells by their number). This
coloring, and the nonuniformity, combine to make undetected
splices less likely. It is well known (we provide a proof
in Lemma 9) that the probability of drawing two identical
values from a nonuniform distribution is always higher than
the probability of drawing two values that differ by any fixed
amount. (This issue is discussed further in the Appendix).
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Fig. 4. Header checksum fate.

Since the data is nonuniform, some terms are more likely than
others. The coloring effect of the term means that the overall

sums of a splice are less likely to be congruent to the original
checksum than if the data was uniformly distributed.

The end result is that the standard TCP checksum fails if
two observations drawn from the same distribution are equal,
while Fletcher fails if two observations drawn from the same
distribution differ by a particular amount (where the exact
amount varies from splice to splice). Thus, nonuniformity of
the data actually strengthens thefield of the checksum.

Ones complement Fletcher, however, has a weakness that
sometimes offsets its probabilistic advantage: since bytes con-
taining either 255 or 0 are considered identical by the check-
sum, certain common pathological cases cause total failure
of Fletcher-255. This problem is discussed in more detail in
Section V-E.

C. Trailer Checksums: Making Nonuniformity Work for Us

Fletcher-256 succeeds in detecting more splices than TCP
by taking advantage of the nonuniformity of the data distri-
butions, but it still has drawbacks. It is more expensive to
compute, and the nonuniformity can only strengthen 8 bits
of the checksum. It turns out that we can use a similar trick
to exploit nonuniformity for the standard Internet checksum,
with no computational cost. Further, we can strengthen the
entire 16-bit sum, giving us (for some distributions) 16-bit
checksums that are even stronger than 1 in 2.

The key observation is that with header checksums, the
packet header and the packet checksum are located in the same
cell of a packet. Thus, either both the header and the checksum
covering it are present in a given splice, or neither are. The
IP header check and syntactic TCP header checks ensure that
almost all splices which are actually checksummed include the
header from the first packet. The resulting splices will have the
first packet’s TCP header, including TCP sequence number,
ACK field, and checksum. As long as the replacement cells
in the splice have the same overall checksum as the original
packets, the TCP checksum will not detect the splice. Fig. 4
shows one such splice diagrammatically. If the TCP checksum
was at the end of the TCP packet, instead of in the header,
the TCP checksum value would not share fate with the TCP
pseudo-header which it covers. Fig. 5 shows the same splice as
Fig. 4, but with the TCP checksum located in a packet trailer
instead of the packet header. Here, the resulting splice has the

Fig. 5. Trailer checksum fate.

TCP header from the first packet and the checksum from the
second packet. (It also has the header from the second packet,
but only half the splices will do so.)

The data cells are, as with Fletcher’s sum, all drawn from
the same localized nonuniform distribution and are more likely
than 1 in 2 to have congruent sums. But compare the
two headers. The only field that changes between adjacent
TCP packets in a given flow is the TCP sequence number.
The difference between the checksums of the header cells of
adjacent packets in a single flow is therefore strongly clustered
around the size of the payload. In other words there are
actually three different distributions of cells in a packet pair:
the payload data, the first header, and the second header. If we
separate the checksum value away from the header that it sums
and put it in a trailer, we can ensure that there are always three
different colors in any given splice—even for splices that only
make color-preserving substitutions (e.g., data cell for data
cell). Again by Lemma 9, this higher degree of coloring leads
to a higher probability of detecting a splice than the standard
header checksum, as we show below by case analysis.6

What is the probability of a trailer checksum failing? It
is simply that the checksum of the cells inserted from the
first packet equal the checksum of the cells dropped from
the second packet. (Note that we take the second packet—the
source of the trailer sum—as the original, and counting cells
from the first packet as insertions.)

The inserted cells from the first packet almost always
include a header cell. The inserted cells from the first packet
thus have a sum drawn from a distribution that consists of one
header cell and data cells. If the second header is dropped,
then we again have data cells and 1 header cell. However,
in half of the splices the dropped cells are all data cells, in
which case their sum consists of data cells. The resulting
probability will be lower than the probability of an exact match
between two checksums drawn from the same distribution (as
shown in Lemma 9). The failure probability appears to be
reduced by at most a factor of two.

In the remaining half of the splices, the second header is
one of the cells dropped. Here the distribution of checksums
of the header cell of the second packet does not match the

6Our study of trailer checksums was originally motivated by noticing that
the AAL5 trailer checksums avoided this fate-sharing, and conjecturing that
exploiting the predictable header differences with TCP trailer checksums
would improve performance. Trailers performed surprisingly well, leading
us to the preceding reanalysis of the Fletcher checksum results.
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TABLE IX
TRAILER CHECKSUM RESULTS (256 BYTE PACKETS ON SYSTEMS)

distribution of the first header cell. There are two causes for
this result. First, we treat the first header as a header but the
second as data, which means we checksum the IP header of
the second cell, but not of the first. Second, the header is
mostly constant between packets except for an increase in the
IP ID field and the TCP sequence number. (Note that in this
scenario there is no checksum in the header: the field is left
zero; though a practical trailer implementation might perhaps
choose to swap the checksum value and the last two bytes of
the packet.)

How much lower will the probability of failure be? We
conducted an experiment to measure the effectiveness of trailer
checksums. We changed the simulator to model a protocol
identical to TCP, except that the TCP header checksum is left
zero, and the checksum value is appended to the end of the
TCP data. The results are shown in Table IX. The failure rate
of trailer checksums were significantly better than those of
TCP and Fletcher. We note that the failure rate was actually
below for significant fractions of some file systems. In
most cases we noted a failure rate 20–50 times lower than for
header checksums.

We can further test the distribution-coloring analysis by
making predictions about the standard header TCP checksum.
The number of splices which do not include the header of
the first packet are negligible, so there are only two cases:
the first header cell followed by all-data cells, and the header
from the first packet followed by a mix of data cells and
the header from the second packet. In the latter case, the
splice has replaced a data cell with the header cell from the
second packet, and thus should be much less likely to match
than the first case. When we went back and examined the
data, this prediction was correct. Although roughly half of
the splices surviving the header check have the second header
included, only 1 in 2 of those passed the TCP checksum.
The TCP header checksum was 100–200 times more effective
against splices that contained the second header. This result
both supports our explanation of the good performance of
trailer TCP checksums, and further confirms the utility of our
distribution-coloring analysis of checksums.

D. Adding Cell-Coloring to our Model

We are now ready to return to the discrepancies between our
“exclude identical” probabilities in Table VI of Section IV-F
and the actual measured failure rate. Recall that our sample
probabilities predicted total failure rates very accurately for
small (the number of cells in a block), but by the time
increased to 4, the model over-predicted the measured failures
by a factor of 3 or 4.

The piece that was missing from our model was the cell-
coloring. The sample probabilities in our model were com-
puted using only pure data cells, and thus missed the header
effect. In our actual splice simulation, some substitutions of

cells replace a data cell with a header cell. The failure rate
for the substitutions with headers should be 1 in 2, which
is ignorable.

What is the probability that a substitution of length
replaced a data cell with a header cell? This is easy to
compute. All cells dropped from the first packet will
be data cells. There are possible choices of cell
insertions from the second packet (recall that we must insert
the trailing cell of the second packet in the splice). Of these,
only do not contain the header cell of the second
packet. Therefore, to predict the actual failure rate of a-cell
substitution from our “exclude identical” samples, we must
reduce the sample probability by a factor of
which equals . Our sample probabilities now closely
match the actual measured failure probabilities, and we are
reasonably confident that we have explained the behavior we
have observed. Further, the improved performance due to
trailer checksums in our packet-splice model seems to be real.

In the past, protocol designers have proposed trailer check-
sums for various engineering reasons. As far as we know,
the argument about improved checksum behavior was not ad-
vanced. We conclude that protocol designers should reconsider
placing checksums in packet trailers rather than headers, as has
been standard practice in Internet protocols to date.

Trailer checksums suffer one apparent drawback. They may
unnecessarily reject splices that are identical to an original
packet. Consider the scenario where a burst of cell loss splices
the front of one packet onto the tail of the following packet,
as in Fig. 4. If the payload of the splice is identical to the
payload of the original packet, then the header checksum
should match (since the header of the splice is the header
of the first packet), and the packet is accepted. But with trailer
checksums, (as in Fig. 5, when the payload is identical to the
first packet the checksum cannot match: it was computed with
the sequence number of the second packet, not the first. So if
the contents are identical the checksums will match only if the
difference between the inserted and dropped cells is congruent
to the difference in sequence number (the payload) between
the two packets. By Lemma 9, this is very unlikely. Thus the
splice will be rejected even when the contents is correct. The
corresponding case (header of the second packet, payload of
the first) never comes up, since our error model requires cells
to remain ordered. In summary, trailer checksums have a very
good chance of detecting a splice even if the resulting packet
is a “good” packet.

Table X demonstrates this effect on the filesystem /u1
at smeg.dsg.stanford.edu.The number of identical splices
rejected by trailer checksums is larger than the number of
bad splices they detect that the TCP checksum missed.

The two numbers, however, are not comparable. TCP
missed checksums represent undetected data corruption.
Spurious rejection by the trailer checksum represents (at
worst) a possible performance penalty, it does not cause
any data corruption.
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TABLE X
HEADER VERSUS TRAILER CHECKSUM FAILURE RATES

Comparing missed splices, the trailer checksum misses less
than 3% as often as the standard sum, but at the cost of
reporting checksum failure on splices that accidentally resulted
in a valid packet.

However, a splice in a real network always means that at
least one packet has been lost, even if the splice is identical
to one of the original packets. So a TCP retransmission will
be necessary regardless. Thus the incremental performance
impact of triggering retransmission one packet earlier when
an identical splice is discarded is not clear.

E. Locality of Failure: Pathological Data Patterns

Nonuniformity in the distribution of checksums comes
from two causes: nonuniformity of the underlying data, and
weakness of a given checksum algorithm for certain patterns
of data. That files on a computer system are highly structured
is no surprise. We did not expect, however, to discover so
many examples of files that were particularly vulnerable to
splice-errors.

Though the Fletcher checksums consistently show a lower
rate of failure than the standard Internet checksum, they also
show a very high degree of locality. Sampling the check-
sum statistics incrementally during each whole-filesystem run
showed sharp spikes in the rate of undetected splices, at the
level of individual directories or even files. Manual exami-
nation of these files shows that, for each of the checksum
algorithms, real data contains pathological data patterns which
cause extremely localized rates of high failure.

The most dramatic case is the mod-255 Fletcher sum.
This sum has two zeros, 0 and 255. Both these values
contribute zero to the cell checksum. Thus, Fletcher mod-255
is susceptible to splice failure on long runs of mixed 0 and
255 bytes. The most dramatic example of this effect is one
directory from the Stanford filesystem containing several 8-bit
.pbm graphs of Internet-backbone RTT measurements.

These graphs were plotted as black-and-white, and thus each
byte is either 0 or 255. On these data, combinatorially, 1 in
2 of all permutations are caught by header checks and 1 in 2
of the remainder include a header cell. None of the remaining
25% of all possible permutations are caught by the mod-255
fletcher. This one directory of files caused so many Fletcher
mod-255 failures that on this filesystem, mod-255 Fletcher
performs worse than the IP/TCP checksum.

Similarly, spectacular mod-255 failures occurred in the
Stanford filesystem with a file from a popular PC word
processor. This file contained runs of approximately 200 all-
zero bytes, followed by a similar number of all-one bytes,
between each section of a document.

Fletcher’s -256 sum behaves slightly differently. It has
only one zero, and is not subject to the same dramatic failure

as the -255 sum. Pathological data patterns for mod-256
do occur, but less frequently. One case we have isolated is hex-
encoded PostScript bitmaps which contain identical segments
of horizontal lines (e.g., bitmaps containing solid blocks of
color, or bitmaps containing parallel lines. Font definitions
appear to be a particularly common case). Many common
bitmaps appear to have a width, , that is a power of two.
Thus, each ASCII-encoded binary line commonly consists of
many “FF’s,” and a small number of other two byte values
(e.g., “F7”) that repeat precisely apart (The extra byte
is due to an ASCII newline.) Though not immediately obvious
on inspection, these just happen to combine in such a way that
the contribution of 48-byte cells allows splices. We observed a
similar effect in BinHex-encoded Macintosh documents stored
on our Unix filesystem: very similar lines of 64 bytes followed
by an ASCII newline.

Though the overall rate of TCP sum failures is higher than
the other sums, and appears to be noisier, we have also isolated
a few pathological cases for the standard Internet checksum.
One example is Unix gmon.out profiling data. These files
often consist mostly of zero entries, with a scattering of a
small number of nonzero entries. The nonzero values are
often identical. Packetizing this data results in a very small
number of checksums. A very large number of splices pass the
checksum, resulting in what appears to be scrambled files. A
second example is the PostScript bitmap data file mentioned
above, which showed pathological behavior for the Internet
checksum as well.

Our central point is that the existence of pathological
patterns for a given sum is not just theoretical; these patterns
occur surprisingly frequently in real filesystem data.

VI. CONJECTURES

In the course of our research, we investigated several
plausible conjectures that might have explained the TCP
checksum failures. We briefly describe several of these blind-
alleys.

A. The Role of Zero Data

The frequency of the zero checksum led us to study the
effects of zeroed data on the checksum. It is no surprise that
there are a lot of zeros in filesystem data (the UNIX filesystem
has long been optimized such that completely zero blocks did
not need to be saved on disk). However, knowing that arbi-
trarily long zero blocks do not change the IP checksum (zero
is the additive identity), we wondered whether this property
significantly affected the failure rate independent of the simple
fact of their high frequency. In other words: Is there something
special about zero? If we replaced all the zeros in the file-
system with different values, would the failure rate change?

An approximate first answer is that no, zero is not special
because it is the additive identity. If we add one to every word
in the file system then the sum of every cell would increase by
24 (48 bytes divided by 2). Similarly, it is easy to demonstrate
that the distribution of the sum of any number of cells will
contain the same set of values and frequencies, although their
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mapping will be permuted. So the rate of checksum failure
would be unchanged.7

It is, however, true that if any single value shows up a
disproportionate amount of the time then the failure rate will
increase. However, the reason that zero in particular is so
common is that several totally independent formats all happen
to choose zero as a common element. Further, it is likely that
this will continue to be the case. Fortunately, although zero
checksums do show up very frequently, it is often the result
of cells consisting entirely of zeros. A substitution of one all-
zero cell for another causes no harm. The problem, therefore,
is the frequency of nonzero cells whose checksum is zero, in
proximity to all-zero cells or to each other.

B. Zero Congruent IP/TCP Header Cells

The TCP checksum is computed over a pseudo-header that
covers all but eight bytes from the IP header. The TCP
checksum is then inverted before it is stored in the header.
Inverting the checksum causes the computed checksum of
an error-free TCP datagram, (including the TCP header and
checksum), to be zero.

A full IP header also contains an inverted ones-complement
checksum, which means that the sum of the IP header is also
zero. Since all but eight bytes from the IP header are also cov-
ered by the TCP checksum, the checksum over the combined
TCP/IP header is not zero, but rather the checksum of the
overlap: containing the IP source and destination addresses,
the length, and the TCP protocol ID.

Our earlier results [7] were based on simulations that left the
eight nonoverlapping bytes, including the IP header checksum,
set to zero. The result is to cause the combined TCP/IP
header to checksum to zero. Consider, therefore, two packets
consisting of data that is all zero. The TCP/IP header will
have a checksum of zero. The data is zero, so the checksum
of the first cell will only be the sum of the header. When the
checksum is inverted and stored into the header, we are left
with a nonzero cell with a checksum of zero. In our earlier
work, these cells were a major source of nonzero cells with a
checksum of zero. What is worse, these cell show up precisely
in the case when all the cells around it are zero cells (or at least
zero-congruent). Thus replacement was common and a major
source of splice failures. Filling in the IP header reduced the
error rate by three orders of magnitude.

We had conjectured that filling in the IP header would not
have much of an effect, because the length, IP addresses,
and protocol type do not change between packets during the
file transfer, and so the checksums of the header cell remain
constant. However, even a constant, nonzero, value is sufficient
to distinguish between header cells and zero filled data cells.
This simulator deficiency also led us to give undue emphasis
to the role of zero-congruent data (as mentioned above).

7Zero is special, as we showed in the section on pathological cases, but not
because it is the additive identity and does not affect the checksum. Zero’s
specialness comes from the fact that it is represented by both 0� 0000 and
0� FFFF. In reality, adding 1 to every word in the file systemwould change
the distribution of checksums, and might reduce the probability of the most
probable value. Cells containing 0� FFFF’s would be shifted by less than
24. Whether this would increase or decrease the most probable value depends
on the distribution of values in each filesystem.

C. Inverted Checksums

Under the TCP and IP specification, the inverse of the
checksum is placed in the packet header. This implies that the
checksum of a valid segment will be zero. In [7] we cautioned
implementors against this approach, since for mostly—zero
packets the header cell, too, would be zero. This still is reason-
able advice for packet formats as it reduces the frequency of
zero congruent cells. However, it is not relevant to TCP and IP
because of the overlap of the headers we noted above. To test
this conjecture, we ran our tests with a modified version of the
TCP checksum that did not invert the checksum before storing
it into the packet. The results with the noninverted checksum
were almost identical to the results with an inverted checksum.

D. Corrections to SIGCOMM’95 Version

As noted in Section VI-B the data in our earlier paper [7]
is not accurate. Completely filling in the IP header reduces
the overall rate of errors by a factor of from 200 to 1000. In
addition, the Fletcher checksum code was mis-implemented as
a mixture of -255 and -256 arithmetic, which led to
the Fletcher splice failure rate being higher than the standard
TCP checksum. We retract that result; it was an artifact of
the buggy Fletcher implementation. That bug was also the
motivation for our current investigation of both -255 and

-256 Fletcher sums. The artificially high Fletcher failure
rates also inspired the original work on trailer checksums.

The previous results also suffered from a number of other
minor bugs, whose effect was insignificant compared to the
two problems above. They are detailed in the Appendix.

VII. OBSERVATIONS AND RECOMMENDATIONS

The results of the previous sections lead to a number of
interesting observations.

First, a nonuniform distribution of data makes failure of
the TCP checksum far more likely than one would naively
expect. The undetected splice rate in our data for the 16-bit
TCP checksum over real data is comparable to uniform data
with a 10-bit checksum.

Second, checksum distributions on modest amounts of real
data are substantially different from the distributions one
would anticipate for uniformly distributed data. This skewed
distribution doesresult in significantly higher failure rates of
the TCP checksum. In particular, if a router or host has a
buffering problem that causes adjacent packets to be merged,
the TCP checksum might fail 0.1% of the time rather than
the 0.0015% of the time that purely random data distribution
would suggest.

While these scenarios may seem worrisome, there are three
pieces of good news.

First, it is important to keep in mind that these error
scenarios are all quite rare. This work was initially motivated
by studying extremely uncommon AAL5 error scenarios—an
error model derived from ATM cell drop splicing two packets
into one. In practice, such cell loss can occur due to either
congestion or corruption. However, dropping ATM cells in-
dependently of each other is now known to cause goodput
problems [10]. ATM switch vendors are addressing this prob-
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lem by employing Early Packet Discard, which discards all
cells in a packet and eliminates the chance of a splice. Cell
loss due to corruption is often estimated at 1 in 10or less.
The ATM CRC will fail to detect a splice approximately at a
rate of 1 in 2 . Therefore, the chance of the TCP checksum
being called upon to detect a splice is much less than 1 in
10 2 or less than one chance in 10.

Second, the packet splice model is, in some sense, a worst-
case error model because the substitutions tend to be similar
to the data that they replace. This is possibly also true of
buffer-management errors, or errors in fragment reassembly.
However, in the alternative error models where data is replaced
by garbage, while the nonuniformity of the data may still
reduce the effectiveness of checksums, it will only reduce it to
the extent that the distribution of the replacement data matches
the distribution of the original data. Here, the frequency of
long runs of 0’s or 1’s in the payload may make us slightly
more vulnerable to hardware errors that produce similar runs of
data. However, hardware failure that produces random bits are
unlikely to produce runs of data that look a lot like English
prose.

Third, and finally, remedies exist to improve the ability of
checksums to work on nonuniform data.

• Compressing data clearly improves the performance of
checksums. Since compression also typically reduces file
transfer times and saves disk space, there’s a strong
motivation for FTP archives to compress their files.

• In the future, in the absence of compression, protocol
designers should consider avoiding the practice of placing
checksums in a protocol header, but instead append them
as a trailer to the data being checksummed.

• In general, the checksums are rarely placed in a situation
where it is the primary method of failure detection. (We
are aware of one exception to this rule. The TCP check-
sum is the primary method of error detection over SLIP
and compressed SLIP links. That’s probably not wise.)

What this work simply shows is that checksums are an
even less effective error detection method than first thought,
because real data often has interesting distributions, and those
distributions increase the likelihood of checksum failure.

APPENDIX

This paper contains assertions which depend upon state-
ments that are easily proven, yet not immediately obvious.
For those interested in the formal justification of some of the
statements, we present more detail in this appendix.

A. Distributions of Checksums

We use the notation to denote the distribution which
arises by applyingany commutative, total function with a
unique inverse on a pair of values drawn from distributions

and respectively. (In all of our cases, we are interested
in the usual arithmetic addition operator.) Call PMax the
probability of the most likely value in the discrete distribution,

. (We define PMin similarly.) And define is the
probability of selecting from .

Lemma 1: .

Proof: For any given , the probability that the value
drawn from is given by .
Assume is the most probable element of. Without loss
of generality, assume that PMax .

(since
). Equality would only hold if were uniformly

distributed and if .
Lemma 2: If , then

.
Proof: Consider the previous proof. Given the nonzero

condition on , we are guaranteed that every value in
appears, and so , thus
Pmin Pmin

This is unremarkable for unbounded discrete distributions.
For the maximum, as the number of possible values grows, the
probability of any single value must decrease. The conditions
on the min require that , and that , so
it is also unsurprising that the minimum doesn’t decrease.
However, for bounded distributions, e.g., distributions over the
integers , this leads to the following more interesting
results.

Corollary 3: Consider a probability distribution over the
integers . The distribution of the sum, , of
integers drawn from gets “more uniform” as increases,
in the sense that the minimum probability of any number gets
larger and the max probability gets smaller.

Computation: If we have a random variable which can take
on values, with a known distribution of values, then the
probability ( ) of the sum of values drawn from
this distribution is equal to is

(1)

Corollary 3 shows that each time we add another number
to the sum mod and look at the probability distribution,
we increase and decrease . We can prove
another useful result: for large enough, and

both approach and the distribution approaches
uniform.

If has some zero probability values, then some values in
the sum of might also have zero probability, unless the gcd
of and the entries occurring with nonzero probability is 1.
The following theorem applies even if a sum of a distribution
only has values with nonzero probability in the following
sense: all nonzero values will tend to be equal to .

Theorem 4 (Central Limit Theorem):The sum, , of
a large number of independent observations from any distri-
bution tends to have a uniform distribution.

Proof: We will show that for any given , there is
some such that PMax . Since
is nonincreasing as grows, we know this also holds for all

. Use the notation to mean , and
to mean , when the meaning is clear.

Assume there is a distribution,, where
for all values of . We can compute a strict upper bound
for based on . The largest possible value of
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will arise when the most probable terms from
match the most probable terms from (cf. exercise in
concrete mathematics [3], at the bottom of page 38). Assume
the probability for the most common values in are
all , and there is 1 value whose probability is .
For , there is at least one value with probability , one
with probability , and values whose probability
sums to .

but after adding times, would be
less than 0, given our assumption that is always greater
than . So, our assumption must be false.

Thus, for any distribution and for any , there is some
number of additions, such that , so
the distribution of tends to the uniform distribution as
gets larger.

B. Distributions of Some Checksums over
Uniformly Distributed Data

Most existing evaluations of competing checksum algo-
rithms have assumed that single bit errors were common. It
is now frequently true that there are in the data-link layer to
protect the integrity of cells on the wire, and ECC to correct
memory errors while packets sit in buffers on routers. Thus,
the errors that the TCP checksum must protect against are no
longer single or double bit errors (which will be detected or
corrected by other means), but rather substitution of longer
runs of “good” data by (possibly different length) runs of
“other” data. How do the IP checksum and Fletcher compare
under this substitution model?

This section discusses what their expected behavior would
be under substitution errors if the data were, in fact, uniformly
distributed.8

If we assume all packets are equally likely, then if we look
at any unit smaller than the size of the substitution, we can
assume that an error consists of replacements drawn uniformly
from all strings.

Lemma 5: The sum of numbers, will be
uniformly distributed among all values assuming there is at
least one term, , in the sum which takes on values uniformly
distributed

Proof: Assume has an arbitrarily skewed
distribution. , and . By
Lemmas 1 and 2, .

8It is worth noting that one point of the preceding paper is that data values
are not distributed uniformly andare correlated with nearby values, and
that, therefore, errors, under the substitution model, are also not distributed
uniformly and checksums do not perform as well as expected. This work on
uniformly distributed data is still interesting on three counts. First, statements
in the main body of the paper depend on results presented here. Second, it
provides us with a benchmark against which to measure the actual measured
error rate (i.e., what is due to the substitution model and what is do to
nonuniform data). Third, encryption and compression are both becoming more
common and both tend to produce uniformly distributed data.

Thus, the probability that for any given will be
precisely 1/ , so the probabilities are all equal and the
distribution is uniform.

Theorem 6: Given uniformly distributed data and the sub-
stitution model above, the IP checksum of the modified packet
is uniformly distributed over all possible values.

Proof: We assume that errors are replacements drawn
from the uniform distribution. Then (assuming replacements
larger than a single 16-bit word) every word within the re-
placed chunk will be uniformly distributed . Therefore,
by Lemma 5, the IP checksum will be uniformly distributed
under the assumed substitutions, since it is the sum of uni-
formly distributed words. That is, the checksum will only
fail to detect errors (by the replacement string contributing
an identical sum to the checksum as the original string) with
a probability of 1 out of 2 1.

Theorem 7: Given uniformly distributed data and the sub-
stitution model above, the Fletcher checksum of the modified
packet is uniformly distributed over all possible values.

Proof: The same reasoning can be applied to the Fletcher
checksum over a chunk of data of size. The Fletcher
checksum consists of two sums. The first is the sum, mod

, of all the bytes in the chunk. The second is the sum mod
of each byte weighted by its offset,, from the end of the

chunk. Call these two sums, respectively, and . The
contribution of this chunk (assuming it is from the end
of the packet) to the Fletcher checksum of the entire packet
is straightforward. is added, mod , to the mod sum
of the rest of the packet. is added, mod ,
to the weighted sum of the rest of the packet. If for each
chunk is uniformly distributed, then so will . If each
is uniformly distributed, then so will ,
since by Lemma 5, we only need one uniformly distributed
term (and is, although might not be).

That is uniformly distributed follows directly from the
lemma. is only slightly more complicated. As long as the
chunks are large enough so that the there is a bytewith offset

from the end of the chunk, such that is relatively prime
to (i.e., , then ’s contribution to is
uniformly distributed among all values, and therefore,
itself is also uniformly distributed. Since is relatively
prime to , as long as the chunk is at least bits
long, we can apply Lemma 5.

We must also show that is independent of , else
will not be uniformly distributed. Suppose the last

2 bytes of the chunk are and . Under the assumption of
uniform distribution of the data, and are both indepen-
dent and uniformly distributed. doesnot affect since it
is multiplied by . As we show the uniform distribution of
by varying (as we did in the lemma above), for each we
can chooseanyvalue for to allow to take on all values
equally, without affecting . So, for each value{K that
might take on, is independent and uniformly distributed.

One last complication arises with the Fletcher checksum.
Like IP, Fletcher defines the values inserted into the checksum
field to be thenegationof the checksum of the rest of the
packet, so that the packet sums to. With Fletcher this requires
the two bytes of the checksum to be the solution to a system of
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simultaneous equations. We must show that these twospecific
bytes are independent, since we can no longer magically
choose offsets 0 and 1.

Assume the Fletcher checksum , is stored in
adjacent bytes with offsets and from
the end of the packet. , and

:

Since is uniformly distributed , so are both
and . Since , then is still
uniformly distributed even if we hold fixed (since we can
vary internal to ). Therefore, is independent of

.
Note that will not, in general, be uniformly dis-

tributed mod , since we can’t assume that
(in fact, in our example, was always equal to 260.

and ).
As a curiosity, further note that if were not relatively

prime to , then and would not have been independent
or uniformly distributed. (In fact, the equations would not have
always had solutions).

Corollary 8: Given uniformly distributed data, and the sub-
stitution model described above, IP and Fletcher checksums
are equivalently powerful.

C. Header Checksums Versus Trailer Checksums

The body of the paper claims that under our splice error
model, trailer checksums are stronger than header checksums
for nonuniformly distributed data and, no worse for uniformly
distributed data. Here we prove that claim.

Lemma 9: Consider drawing 2 samples, and , from
any discrete distribution. The probability that is
greater than or equal to the probability that
mod for any given .

Proof: To see this, note that the probability of the former
(identical match) is simply . The probability of the
latter ( greater than the first) is , where

is taken mod . Double both sums and rearrange terms.
Since , the former sum is
greater than the latter sum.

Consider our error model: we substitutecells from the first
packet with other cells from the second packet. We keep the
header cell of the first packet and we keep the trailer cell of
the second packet. For a header checksum to fail, the sum

and of each collection of cell partial checksums must
be equal. For a trailer checksum to fail, the sumof the
cells missing from the first packet must beless than the ,
assuming that the checksum of the header cell of packet 1 is

less than the checksum of the header cell of packet 2. We

distinguish , the difference between the header cells, since the
header cells are drawn from a very different distribution than
the data cells, and further, the distribution of the difference
of two consecutive header cells is strongly clustered around

. Thus, we have Theorem 10.
Theorem 10:Under our error model of splicing, a trailer

checksum will always be at least as powerful as a header
checksum.

Proof: For any given splice we have substitutedcells.
Equation (1) gives us the probability distribution of the sum
of cells. The probability that the header checksum fails is
the probability that two samples drawn from are equal.
As discussed above, for trailer checksums there is a fixed

, usually 256 in our simulation, computable by looking at
the 2 header cells. The probability that the trailer fails is the
probability that two samples from differ by . Lemma 9
shows that the former is more likely than the latter, thus header
checksums are weaker than trailer checksums.

Note, that in fact, this depends only on the property that
the probability of the checksums over the header cells of two
adjacent packets be congruent is lower than the probability
that two data cells from the same packet be congruent. For
computing the actual probability of trailer checksum failure it
is useful to be able to model as a constant 256, but this is
not required for the proof.

RETRACTIONS FROM THESIGCOMM’95 PAPER

An earlier version of this paper appeared in SIGCOMM’95
[7]. The central point of that paper still holds: nonuniform
distribution of data results in the IP checksum being weaker
than expected. Several conjectures expressed in [7] have been
resolved and were addressed in the main body of this paper.

However, several minor points and computational details
were not correct and we retract them.

First, we expressed surprise (as well we should have) that
the Fletcher checksum performedworsethan the IP checksum.
Performance tuning of the Fletcher checksum code used in that
paper resulted in an incorrect implementation. The Fletcher
code also used a mixture of 256 and 255 arithmetic
and was not computing an accurate Fletcher checksum for
either 255 or 256 Fletcher.

The numbers reported for the Fletcher checksum in that
paper were, therefore, not accurate. The corrected numbers
reported in this version of the paper show the expected
result—Fletcher’s detects more splices than TCP. However,
the bugs in [7] and its anomalously poor results motivated us
to investigate both 255 and 256 Fletcher, uncovering
the pathological cases for 255 Fletcher reported here.

The SIGCOMM’95 paper reports numbers where the IP
header fields not covered by the TCP checksum were left as
zero.

Though covered in the body of this paper, it is important
to emphasize it again here: filling in the header significantly
reduced the number of matches for zero-congruent cells, and
therefore reduced the total number of misses (by three orders
of magnitude in some cases). By zero-filling in the IP header
in [7] we over-stated the significance of splices including zero-
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congruent cells and focused too closely on misses involving
zero-filled or zero-congruent cells.

Several additional, but relatively minor bugs in the simulator
compromised the accuracy of the numbers of all checksum
algorithms in [7] (but only to a small factor).

First, we used the AAL5 length from the second packet,
rather than the apparent IP length from the first cell, for check-
sum computation. This miscomputed checksums by including
data from the last cell beyond the end of the IP payload in
the checksum.

Second, this same error arose when testing whether packets
were “identical” in payload. This resulted in counting certain
splices as checksum failures, when in fact they were simply
identical to the original packet, or where the first packet was
a prefix of the splice.

Third, we miscomputed the checksum for short pack-
ets—that is, packets where the apparent IP header length
made the entire TCP packet fit into the first cell and the
AAL5 trailer in the second cell. It is well known that a TCP
packet with any user data fills at least two ATM cells. But for
packets with 1 to 8 bytes of TCP payload, the entire IP/TCP
datagram fits in only one cell and the second cell contains only
an AAL5 trailer. Knowing that TCP data packets always take
two cells, the simulation in [7] erroneously added a partial
checksum for the second cell.

These erroneous calculations did not change the larger
picture of TCP checksum performance, but did require us to
recompute all data for this version of the paper.

Finally, our code and raw data are available via email
request to the authors.
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