Friction & Lubrication n°1l
FRICTION
In this first exercise class we will study the role of friction in simple applications.
Recall: the friction “laws™:
 Friction is proportional to normal load
+ Friction is independent of (apparent) area of contact
 Friction is independent of velocity

» (Friction force opposes the direction of motion)

A) The static friction coefficient u defined as: the (maximum) friction coefficient attained
(just) before movement occurs.
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In that case the friction coefficient p is equal to the ratio of the tangential force Ft and the
normal force Fn: u=Ft/Fn.

B) A second way of measuring the static friction coefficient is by using an inclined surface:

Fn

The gravity force on the mass is decomposed into two components Fn and Ft acting normal
and tangential to the inclined surface. If the maximum angle (before motion) is called a, the
static friction coefficient can be obtained from p=Ft/Fn=tan(a).

C) The mechanism to be studied in this exercise is a screw jack. A load W is supported by the
screw which is free to rotate. The screw is turned using a moment Q (force) times arm (z).

The pitch of the screw is p, the mean radius of the threads r and the thread angle a. Show that:
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The total horizontal force is P. Show that
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Note that all sideways forces cancel.

Show that the problem is equivalent to moving a mass W up an inclined slope with angle a.

This gives P=W tan (o+¢), Where ¢ is the friction angle defined as the maximum angle before
the mass starts to move.

The efficiency of the jack is calculated as the ratio between the useful work done and the
work exerted (over one revolution).

The useful work is W.p (definition of the pitch).

The work exerted is 2nrP.

Hence the efficiency 1 is given by



_ Wp  tan(a)
i 2zrP  tan(a+ @)

The optimum efficiency n(a) (for a given ¢ ) is found by differentiating n with respect to a
and setting the derivative to zero.
Show that one finds

Ay =7l 4—pl2
_tan(z/4—-¢pl2)
Toot = Yan(z 14+ 1 2)

For lubricated contacts, ¢ =10 degrees, compute the optimal angle and the optimal efficiency.
However such large angles have several disadvantages and one prefers smaller angles at
which the mechanism does not turn when the force P is removed. Such mechanisms are called
self-locking or self-sustaining.

Give the angle a for which the system is self locking, and compute its efficiency.
Assuming the height of the nut H, and the tread width Ar, compute the mean tread pressure.

Load carrying surface 2zrAr (per turn)
Number of load carrying turns H/p
Mean pressure = load/surface = Wp/(2arAr H)

Numerical example: car jack

W=1000 kg,
r=1cm
Ar=2.5 mm
p=1cm
H=1cm

Mean pressure = 64 MPa
Max pressure = 130 MPa



FROLUB — TD 2 (analyse dimensionnelle)

On s’intéresse ici a un palier incliné dont la géométrie est décrite sur la figure 1 (on suppose
qu’il est infiniment large dans la direction z), entre les piéces 1 et 2. Ce palier fonctionne en
mode lubrifié (& suivre dans les prochaines séances...) aussi ’espace entre les piéces,
supposées rigides, est rempli d’un liquide lubrifiant de viscosité dynamique m et de masse
volumique p. Enfin, la piéce 1 se déplace par rapport a la piéce 2 a la vitesse U suivant x, et la
charge sur la piece 1 est une force verticale W suivant y et horizontale Fr suivant —x (les
forces sont ici des forces par unité de largeur, donc exprimées en Nm2).

1) On imagine réaliser un essai :

- on fixe un certain nombre de parametres indépendants pour fabriquer ou régler le banc
d’essai  (géométriques, cinématiques, chargement, matériau); ce sont ici les
parameétres d’entrée ;

- on mesure un certain nombre de quantités (géometriques, cinématiques, chargement,
matériau) ; ce sont ici les quantités de sortie.

Proposez ces parametres et quantités dans le tableau 1.
Dans la suite, on suppose qu’on impose dans 1’essai hs et he. Modifiez éventuellement votre
tableau en conséquence...

2) On précise 1’unité SI de la viscosité dynamique : [n] = Pa.s
a) Précisez les unités Sl de tous les parameétres ou quantités mis en jeu.
b) Ecrire les quantités de sortie sous la forme d'une fonction dont vous préciserez les
entrées.

3) On choisit maintenant d’utiliser comme paramétres de base : b, U et p
a) Montrez qu’avec ces paramétres de base, on peut retrouver les 3 unités de base du
systeme SI (m, kg, s).
b) Avec I’analyse dimensionnelle, simplifiez au maximum les lois précédentes.
c) Une autre expression pour la force de frottement est la suivante ; est-elle compatible
avec les précédentes ?
Fr/(pU?b) = g( he/hs , hs/b, n/(pUb) )

4) On a fait des essais avec b =3 cm, Ah =hea hs=0,1 mm, n=0,1Pas, p=800kg.m™?,
en faisant varier U de 1 m/s & 10 m/s et hs de 0,1 mm & 1 mm. Pour chaque valeur de U et h,
on mesure, en autres, Fr.

a) Pour une valeur fixée de hs, on peut ainsi tracer Fr en fonction de U. Un
expérimentateur avisé propose de tracer Fr/(pU?b) en fonction de z = n/(pUb). Est-ce
judicieux ?

b) Que remarquez-vous a partir des résultats expérimentaux tracés sur la figure 2 pour la
plage de valeurs testées ? Simplifiez en conséquence 1’expression précédente donnant
Fr.

c) Des essais plus délicats a réaliser peuvent étre utilisés : on mesure Fr a he/hs et U
constants, en faisant varier hs. Quel dispositif expérimental permettrait d'obtenir ces
résultats ? Les résultats obtenus ont permis de voir que Fr dépend alors linéairement
de (hs/b)~2. Simplifiez alors encore en conséquence 1’expression précédente donnant
Fr.

d) Enfin, des essais a hs et U fixés, en faisant varier he/hs, permettent de tracer Fr/(pU?b)
en fonction de he/hs sur la figure 3. Comparer a la derniére expression obtenue.



5) Ayant fait ces essais sur une maquette, on souhaite maintenant prévoir ’effort de
frottement Fr pour une solution technologique particuliere, utilisant une autre longueur de
palier, et un autre fluide : b=10cm, n =0,02 Pa.s, p =780 kg.m™3, et en conditions de
fonctionnement telles que hs = 0,05 mm, he = 0,15 mm.
a) Comment peut-on y arriver ? Donnez la valeur de la force de frottement prévue.
b) Pourriez-vous proposer un abaque encore plus judicieux que celui de la figure 3,
permettant de répondre plus facilement & une telle question ?



FROLUB — TD 2 (dimensional analysis)

An inclined slider with its geometry is described by figure 1 (assuming infinite width along z),
is formed by parts 1 and 2. This bearing is fully lubricated (see later classes...) the spacing
between the two parts is filled with a lubricating liquid with a dynamic viscosity denoted n
and a density denoted p. Finally, part 1 moves with respect to part 2 with the velocity U along
X, and load is applied on part 1 through a vertical force W and a horizontal force Fr (the forces
are forces per unit width, i.e. their unit is Nm1).

1) We perform a test such that:
- several independent parameters are fixed for designing or tuning the test rig
(geometry, kinematics, load, material); these are input parameters;
- several quantities are measured (geometry, kinematics, loading, material); these are
output quantities.
Identify these parameters and quantities in table 1.
In the following section, we assume that the test prescribes the values of hs and he. Change
your table accordingly if necessary...

2) We recall the SI unit of dynamic viscosity: [n] = Pa.s
a) Give the Sl units of all parameters and quantities you are using.
b) Detail the output quantities as a function of the input parameters.

3) We now choose as basic parameters: b, U and p
a) Check that these 3 parameters allow you to describe the 3 basic units of SI (m, kg, s).
b) Using a dimensional analysis, simplify as much as possible the previous physical laws.
c) Another expression for the friction force is outlined below; is it consistent with the
previous one?
Fr/(pU?b) = g( he/hs , hs/b , n/(pUb) )

4) Tests are performed with b=3cm, Ah =he @ hs = 0.1 mm, n =0.1Pas,
p =800 kg.m™3, letting U vary from 1 m/s to 10 m/s and hs from 0.1 mm to 1 mm. For each
value of U and hs, one measures Fr.

a) For a fixed value of hs, one can plot Fr as a function of U. A smart experimenter
suggests to plot Fr/(pU?b) as a function of z = n/(pUb). Is this clever?

b) What do you observe concerning the experimental results shown in figure 2 for the
test range? Simplify the equation found previously for Fr.

c) More difficult tests can be performed: one measures Fr while he/hs and U are held
constant, and hs changes. Can you imagine a device allowing these tests? The obtained
results allow one to show that Fr is linearly dependent on (hs/b)~2. Simplify the
previous expression giving Fr accordingly.

d) Finally, tests with fixed hs and U values, while he/hs varies, allow one to plot
Fr/(pU?b) as a function of he/hs ( figure 3). Compare with the last obtained expression.

5) These tests were performed on a test rig, we now wish to predict the friction force Fr in a
particular application, with different dimensions and lubricant: b =10cm, n =0,02 Pa.s,
p = 780 kg.m™3, and with operating conditions such that hs = 0,05 mm, he = 0,15 mm.
a) How can one predict the friction force? Give the predicted value.
b) Can you suggest an even better suited abacus, replacing figure 3, and allowing an
easier way to answer the current question?
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Figure 1. Principe du dispositif expérimental / sketch of the experimental device

entrées / inputs

sorties / outputs

géométrie / geometry

chargement / load
matériau / material

cinématique / kinematics

Tableau 1. Entrées et sorties de I'essai / input and ouput of the test rig
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Figure 2. Evolution de Fr/(pU?b) en fonction de z / evolution of Fr/(pU?b) w.r.t. z (hs = 0,1 mm)
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Figure 3. Evolution de F1/(pU?b) en fonction de a = he/hs / Evolution of Fr/(pU%b) w.r.t. a
(hs=0,1 mm, U =2 m/s)



Friction & Lubrication n°3

VISCOMETERS
Couette flow & Poiseuille Flow

Contents

Introduction

Problem 1: Rotational Viscometer — The Couette flow
Problem 2: Capillary Viscometer — The Poiseuille flow
Appendix: Navier-Stokes equations in cylindrical coordinates

Introduction

Rheological properties of lubricants depend of 3 physical parameters: the pressure, the
temperature and the shear rate imposed to the fluid. The purpose of a viscometer is to create a
controlled flow of the fluid as function of these 3 physical parameters, in order to deduce its
viscosity. There is 3 different families of viscometers:

- empirical viscometers,

- viscometers that require a calibration,

- and absolute viscometers.

The principle of the first viscometers consists in measuring the time necessary for a given
volume of oil to flow through a calibrated hole at a regulated temperature. Different
experimental devices have been used in the past that gave name to empirical viscosity units
such as Engler (°E) in Continental Europe, Redwood (°R) in Great Britain and Saybold
(Second Saybold Universal or SSU) in the USA. Eventually by comparing the time of flow to
that of a reference fluid (often water), one can estimate the real viscosity in Sl units. Because
of their low performances and accuracy, these apparatuses were gradually abandoned.

Viscometers that require a calibration are mostly falling cylinder (or sphere or bullet)
viscometer. The principle consists in measuring the velocity of the falling element by Doppler
effect. These devices are well adapted to perform pressurized experiments up to 600 MPa or
more.

Nowadays most industrial and laboratory tests are made with absolute viscometers. They are
of two types: capillary or rotational. Each of these are considered separately in the coming
sections.



Problem 1 — Rotational Viscometer — The Couette Flow

As shown in Fig. 1 the rotational cylindrical viscometer consists of two concentric cylinders
with a fluid contained between them. The inner (or outer) cylinder is rotating and torque is
measured at the outer (or inner) cylinder. Let

R1  inner cylinder radius,
R2  outer cylinder radius,
L cylinder height,
C radial clearance, C=R2-R1
ol  angular velocity of inner cylinder
®2  angular velocity of outer cylinder
1) From the Navier-Stokes equations in cylindrical coordinates (see appendix), calculate
the velocity and pressure profiles between the two cylinders of common axis (both are
rotating). The following assumptions are used:
a) Viscosity and density can be considered constant.
b) The inertia effect is small.
c) Body forces can be neglected.
d) The fluid flow is stationary
e) Symmetry around 6
f) Infinitely long in z
2) In the case of stationary outer cylinder (0»2=0), calculate the friction torque acting on
both cylinders.
3) Considering that the radial clearance is small in comparison to the cylinder radius
(C<<R1), show that the torque is given by the following equation:
VAR
T:2n-u-L-RZE with V=R -o®
Therefore U= _rc
2n-®-R3-L
4) When R1=40mm, R2=40.1mm, L=100mm, u=10"2Pa.s, »1=100rad/s and ©2=0,
compare the exact solution of question 2) and the approximated solution given in 3).
5) What is the power loss ?






Problem 2 — Capillary Viscometer — The Poiseuille Flow

This type of viscometer (see Fig. 2) is based on measuring the rate at which a fluid flows
through a small-diameter tube. Usually, this takes the form of measuring the time taken to
discharge a given quantity of fluid.

1A

Fig. 2

Part I: Flow in a circular pipe

Consider the flow in a circular pipe as shown in Fig. 3. Cylindrical coordinates will be used
with their origin at the tube center. The fluid velocity is zero at the pipe walls. The pressure at
the left end of the tube is higher than that at the right end and drops gradually along the tube
length. This pressure causes the fluid to flow from left to right.

The following assumptions are imposed:
g) Viscosity and density can be considered constant.
h) The inertia effect is small.
i) Body force terms can be neglected.
j) The fluid flow is stationary
k) dp/dr=dp/d6=0
I) u=v=0 and w=f(r)

Fig. 3

a) Simplify the Navier-Stokes equations.

b) By integrating the third Navier-Stokes equation (along z), determine the velocity
profile in the pipe.

C) Calculate the fluid flow and compare your solution to the Hagen-Poiseuille law given
below:

n-R4%
8-u dz

Hagen-Poiseuille law Q=-

Note that a negative pressure gradient is required to get a positive flow in the z direction.



Part I1: Application to a capillary viscometer (see Fig. 2)

The fluid flows down due to gravity. Thus the pressure gradient in the vertical direction
corresponds to gravity. Note there are no body forces.

a) Simplify the Navier-Stokes equations.
b) By integrating the third Navier-Stokes equation, determine the velocity profile into the
pipe.
c) Calculate the fluid flow
d) By considering that the fluid flow Q= — V/t with V the volume and t the time, show
that the dynamic and kinematic viscosities are given by the following expressions:
L n-R*. p-g-t
Dynamic viscosit =
\'i y n 8.V
. o R*.
Kinematic viscosity v=" g-t
8-V




Appendix — Equations of Navier-Stokes

Cylindrical Coordinates — Incompressible Fluid: divV _1—( u)+ lﬂ+@ =0
ror rop oz
_au ou Vvou 8u v2 op u 2ov
pl —+U—+—+W——— |=pf, —+p AU—— —— —
ot o roe az r or 2 200
N OV VOV oV uv} 10p v 20U
pl —tU—+——+W—+—|=plg———+ YW AV——F —— —
ot or roe oz r 60 (2 200
[ ow OW VOw ow op
+U—+——+W f, ——— +pulAw
Plat " ar oo az} pfz =5, ulAw]

2 2 2
with A=Spely 12 A
or or 00° oz
o 5 B
then p?j—\t/:pF—gradp+pAV
Z A
w
v u
\\\\\\\\\\\\ M 4 V(M)v
\\i u w (er €0 éz)M
i r
0 i OM+6
r 2] (6r,0,82)
0
X

N.B. : Newtonian fluid < ojj = [ p+A05j; + 2uejj

6



Appendix — Equations of Navier-Stokes

Cylindrical Coordinates — Incompressible Fluid: divV _1—( u)+ lﬂ+@ =0
ror rop oz
_au ou Vvou 8u v2 op u 2ov
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then p?j—\t/:pF—gradp+pAV
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w
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r 2] (6r,0,82)
0
X

N.B. : Newtonian fluid < ojj = [ p+A05j; + 2uejj
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Contact Mechanics n°6

HYDRODYNAMIC LUBRICATION:

Parallel-Step Slider Bearing (Lord Rayleigh's Slider Bearing)

_

hl

_

h2

bl

b2

Lord Rayleigh, as long ago as 1918, demonstrated
that a parallel-step geometry produced the optimum
load-carrying capacity when side leakage was
neglected. This bearing has not, however, enjoyed
the same development and applications as the
pivoted-pad slider bearing. Past neglect of this
mathematically preferable configuration has been
due to doubts about the relative merits of this
bearing when side leakage is considered.

Assumptions:

e The side-leakage is neglected (infinite length)

e W is the fluid viscosity

e The lower surface is moving at constant speed U

e Isothermal and isoviscous flow with an
incompressible fluid

Calculate:

1. The simplified form of the Reynolds
equation

The load-carrying capacity per unit length
The fluid flux

4. The friction force/coefficient

W™



Contact Mechanics n°6

HYDRODYNAMIC LUBRICATION:

Pivoted-pad slider bearing

The simplest form of a pivoted-pad bearing provides only for straight-line motion and
consists of a flat surface sliding below a pivoted pad as shown in the figure. If the pad is
assumed to be in equilibrium under a given set of operating conditions, any change in these
conditions, such as a change in load, speed, or viscosity, will alter the pressure distribution
and thus momentarily shift the center of pressure, creating a moment that causes the pad to
change its inclination. A pivoted-pad slider bearing is thus supported at a single point so that
the angle of inclination becomes a variable and has much better stability than a fixed-incline
slider under varying conditions of operation. The location of the shoe's pivot point can be
found from the equilibrium of moments acting on the shoe about the point. For all practical
purposes, only two significant forces may be considered in the moment equation: the resultant
due to film pressure and the reaction force normal to the shoe surface. The force due to
friction is ignored.

Pivoted pads are sometimes used in multiples as pivoted-pad thrust bearings or in journal
bearings. Normally, a pivoted pad will only carry load if the pivot is placed somewhere
between the center of the pad and the outlet edge (b/2<c<b). For bidirectional operation the
pivot is located at the center of the pad at c=b/2.

p=0
- X
he : input film thickness
hs : output film thickness
Hypotheses:
- Continuous flow
- Newtonian fluid = Reynolds equation
- Thin film
- p=cste, pu=cste, permanent regime
Give:

1. The simplified form of the Reynolds equation and subsequent pressure
distribution

2. The load-carrying capacity per unit length and the optimum value of a.

3. The fluid flux

4. The friction force

. . : h
Results will be expressed as a function of parameter a defined as: a = h—e

S



1. Simplified form of the Reynolds equation and subsequent pressure profile

OX OX OX

with h(x)=(hs—he)%+he - h(x)=hs[(1—a)%+a}

By integrating along x

@:%U[h—h}

OX hs

By integrating a second time

@ﬁzmu[h_h*} equivalent to @:GM—Ub{i—h }
oh ox hs oh h.(-a)|hz hs

= pX)=

6uUb { 1 h }

—=—+—+cte
h,d-a)| h 2h2

Boundary conditions:

forx=0,h=he p=0
forx =b, h=hs p=0
o pr o 2hehs and cte=
he +hg h, +h,
= h” :ﬁ and  cteh, =L
h, 1+a 1+a
p()
h, h?2
finaly p(x):6“—Ub SRS ST *
hz(1-a)] h h2z(@+a) (1+a)

with = 1-a)%+a
h b

S

ng: A _p 1-@
dx b

v



2. Calculation of the load-carrying capacity (per length unit)

W = j j p(x).dx.dz — =

2
W  6uUb I{_gﬂs a 1 }d_x

L hz(@-a)’| h hz(+a) (l+a)]dh
2
W_ Gulb? g R B a 1 g
L h:(-a)2?| h h2(+a) (l+a)

W 6uUb® o (a-
L h2(@-1)? {'Og(a) 2(a+1>}

Which value of a ratio gives a maximum load-carrying capacity?

a=2,19.

3. Calculation of the fluid flux

_1op h-y B
u —Z—Ha—xy(y—h)+UT Q, __Uu.dy.dz

Q, _i@{—m}rUh

L 2uox| 6 | 2




4. Calculation of the friction force

ou _ 1o h—y 10p U
“ay = 20 ox —y(y-h)+ . Tyy 2ax(y ) M
F 1 6p dx
F= ([, .dxdz —=J' 2y —h)—pu— | %X dh
e L)o@ h}dh

F uUb 1 h"] 1
L 3= - |2y—h)-= |dn
3 H _( y—h) h}

on the lower surface (y=0):
Flower _  1UD —3i—£ h-L|gh = HUP {—4 @+3h*j@}
L  hy1-a) h2 h3| h he(1—a) h h?
Fower - _WUD_|_ i s 3 {—1} __Hub 4|na+3ﬁ(i—i)
L hy@l-a) hl.| hs(l-a) he +hg L hy hq

N I:Iower: uUb ( Alna+ Ga 1)
L hs(a-1 a+1l

on the upper surface (y=h):
I:upper: puUb 3i—h—* h—i dh = puUb 5 _3n J‘dh
L hs(1—a) h2 K3 h hs(1—a)
I:upper uUb h « 1 hs uUb 2h.h 1 1
= 2[Inh]h2—3h [——} = —2lna-3-=—"—¢&s | = __ =
L hy(1-a) h e hy(1-a) he +hg (he hy

N I:upper: uub (2| _6a 1}
L hs(a-1) a+l

Check the equilibrium equation of the quantity of fluid entrapped between the upper and
lower surfaces.



Contact Mechanics n°5

Circular Hydrostatic Thrust Bearing

Hypotheses :

- continuum mechanics
- Newtonian fluid O Reynolds Equation
- thin film

p=cst, p=cst, h=cst, stationary problem
Lubricant is supplied through 4 recesses of an angular size of ©/4 (pump pressure: ps)

One supposes that the pressure p is independent of the angle 6, and the atmospheric
pressure is set to zero

z

A
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\—} P <

Pal " / \
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pF0 / \
. | \
! I }
| |
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R, R, R3 Ry

> r \\"'-...,_h__‘ ____,///
Pressure distribution calculation (Reynolds)
0
— =0 O r)y=
o ( ) p(r)
three distinct zones p(®)
A
Ry <r<R; p(r) =p,
Pal+
Ry <r<R3 p(r) =p,
r
I | | I —>

R3<r<Ry4 p(r) =p, R Ry Ry R4




Calculation of the load carrying capacity

W = [[p(r)xdo.dr

2n| R,

W= _([ 1{[ P. xdr + T .xdr + IT o xdr |.dO

R, Ry

W“W-Pal-{ - +{ 1+ _ | l

o | RI-RI)  (R3-R})

* [4{%%,) (%)

remark (simplified calculation: linear approximation of the pressure)

W= %.[R} +R}=R2—R?+R,R, —RR,]
nb: @’-b° = (a-b)(a’*+ab+b>)
Question: what happens to the full’ result of W when R, tends to R, and Rs tends to Ry ?
what happens to the “simplified’ result when R tends to Ry and Rj tends to R4 ?
explain physically.
Question: what happens if a load W is applied while ps~0?

What happens if one now increases ps until lift-off?
What if ps is again decreased until 0?

Calculation of the frictional moment
T = V= a T, =

C = [[r7,,rd0dr

2nR, 2nR, 2nR,

C= _[ Ir.rze.rde.dr +% _[ J.r.rze.rde.dr + I J'r.rze.rde.dr

0R, 0R, OR,




The moment generated by the recesses is neglected as the value of h is very large. Its
contribution cannot be neglected in between recesses.

' 4 4
‘C:ugﬁ[Rz —&+&—Rf:|

2 2

Mass flux calculation

Mass flux: Q= QR4 —QRl =QR3 —QR2

Q, - with r% = for Ri<r<R,
and r@= for Ry<r<Ry
or
np,,h?
=" *
o

Determination of the recess pressure as a function of ps and h
The lubricant supplied to the recesses first passes through a hydraulic resistance. Only the

pump pressure is imposed. Thus the recess pressure depends on the fluid flux through the
mechanism.

Equality of the mass flux in the capillaries Q. and the flux from all recesses Q¢ gives:

4 Qc= Qf
4 - —_—
For one capillary Q.= mR* (P; ~Pu) - Kec (@, —Pa)
3
Otherwise: Q, =K, puh

B




4Qc-Q O 4Ke(p, —pa) = 0 (P, —Pa)=

P

The film thickness h depends directly on the recess pressure, thus on the load (stiffness).

Stiffness of the thrust bearing (A = _aa_vhv)

A,:_awz_aXX/ apal W:Kwpal 0 A=— wapal
6h  Jp, ¢oh oh
— 0P = Ps = h? =3Q&L. h
ch [ } P,
Op, _3p
— = h O _ al _ S g
(ps pal) ah h
LS {1__}
h

Optimisation of the thrust bearing

Optimisation of the stiffness.
K -1

For a given value of h there exists an optimal ratio f§ = Pa _ {1 + —Q—h3} .

P

LS 2

h .[3[1 - [3] The stiffness is maximal for B = 0,5

Optimisation of the dissipated power P.

P=Q¢ps+C.0

For a given value of h an optimal viscosity p exists.




P=KQp_\'pal—+KCoa)2%
oP ;
a— = KQp.vpal KCo IIIIIIIIII
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For the optimal viscosity one finds : Q;p, =Cwo=h \/Kstpa,KCOQﬂ

For a given viscosity an optimal film thickness value h exists.

h3 7
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For the optimal film thickness one finds:  Q;p, =3.Co= J KstPm( C;m j W/H

One concludes that the power dissipated can not be optimised simultaneously with respect to
the viscosity and the film thickness. Consequently, a compromise has to be found between
these two optimisations.




Contact Mechanics n°7

HYDRODYNAMIC LUBRICATION:

Journal bearings — Analytical solutions

Contents:

1. Introduction

2. Boundary conditions

3. Infinitely wide-journal-bearing
4. Short-width-journal bearing

1. Introduction

Journal bearings are used to support shafts and to carry radial loads with minimum power loss
and minimum wear. The journal bearing can be represented by a plain cylindrical sleeve
wrapped around the shaft (journal), but the bearings can adopt a variety of forms. The
lubricant is supplied at some convenient point in the bearing through a hole or a groove. If the
bearing extends around the full 360° of the journal, it is described as a "full journal bearing".
If the angle of wrap is less than 360°, the term "partial journal bearing" is used.

Journal bearings rely on shaft motion to generate the load-supporting pressures in the
lubricant film. The geometry of the journal bearing is shown in figure 1. The shaft does not
normally run concentric with the bearing. The displacement of the shaft center relative to the
bearing center is known as the 'eccentricity’. The shaft's eccentric position within the bearing
clearance is influenced by the load that is carries. The amount of eccentricity adjusts itself
until the load is balanced by the pressure generated in the converging lubricating film. The
line drawn through the shaft center and the bearing center is called the "line of centers".

z

Figure 1: Hydrodynamic journal bearing geometry

The pressure generated and therefore the load-carrying capacity of the bearing depend on the
shaft eccentricity, the angular velocity, the effective viscosity of the lubricant, and the bearing
dimensions and clerance.

The load and the angular velocity are usually specified and the minimum shaft diameter is
often predetermined. To complete the design, it will be necessary to calculate the bearing
dimensions and cleararice and to choose a suitable lubricant if this is not already specified.




After an important discussion on the boundary conditions that can be used, two approximate
journal bearing solutions will be given: (1) for an infinite-width journal bearing (side leakage
neglected) and (2) for a short-width-journal bearing.

2. Boundary conditions

Conditions de Sommerfeld

pd

Conditions de Gumbel

A .
-

Conditions de Reynolds

région active ] region inactive

Fig. 2 : Répartition de pression pour les différentes
conditions aux limites




3. Infinitely wide-journal-bearing solution

1.
2.

Show that the lubricant film thickness h(0)=C(1+¢.cos0)

Give the simplified form of the Reynolds equation in the case where
2.1 the reference frame is attached to the bearing

2.2 the reference frame is attached to the shaft

4. Short-width-journal bearing theory

S v E W

Determine the pressure profile

The load-carrying capacity W and the attitude angle ®.
The side-leakage fluid flow

The friction torque

6.1 Acting on the shaft

6.2 Acting on bearing

6.3 Check the equilibrium of the bearing




EHL-questions 2010-11
Exercise What are the two essential phenomena in ElastoHydrodynamic Lubrication?
Exercise How to ensure the performance of an EHL contact?

Exercise If EHL contacts work reliably today, why is it necessary to continue the research
to ensure reliable operation of tomorrows EHL contacts?

Exercise In a cylindrical roller bearing, is the contact between outer ring and roller
conforming or non-conforming? And the contact between inner ring and roller? What
can one conclude concerning the contact pressures?

Exercise Compute the reduced radii of contact for the Figures 2.3 and 2.4, if Ry, = 0.1
m and Ry, = 0.09 m. Draw the two reduced geometries to scale.

Exercise Show that the gap between two non-conforming cylinders of radii R, and Ry,
can be described up to second order accuracy by the equation h(x) = ho+2%/(2R,), using
a Taylor series development, with hg = h(z = 0) and 1/R, = 1/Ry, + 1/ Ra,.

Exercise What are the reduced radii of contact R, and R, in a non-conforming contact
between a sphere of radius R and a cylinder of radius R, where the cylinder axis is aligned
with the z-axis.

Exercise What are the surface velocities with respect to the contact point in the case
of a cylinder rolling on a flat plane with velocity ©? And what are these velocities if the
cylinder slides without rotation on the plane, with the same velocity «?

Exercise Give an example in which each of the three pressure generating terms is im-
portant, and describe the details of this mechanism. What happens if all three pressure
generating terms are zero?

Exercise What is the Reynolds equation describing a non-rotating cylinder of radius R
falling onto a stationary plane with velocity wq. Is it possible to instantaneously generate
the same pressure profile p(x) using the above stationary Reynolds equation? If so what
is the relation between wu,,(x) and wy at the moment the cylinder touches the plane?
Assume p and 7 to be constant.

Exercise Assuming very slow transient behaviour of period 7, for which values of 7 can
the transient terms in the Reynolds equation be neglected. Assume that a is a typical
contact dimension. Explain how in this case the transient problem can be solved as a
succession of stationary problems.

Exercise Compute the elastic deformation in a line contact loaded by a parabolical
pressure distribution between —b < x < b: p(z) = po(1 — 22/b%), —b < x < b, p(x) = 0,
otherwise. Take zq = b.

Exercise Check the two asymptotes of the density pressure relation.



Exercise Assuming that a = 2- 1078 Pa™!, compute the pressure for which the viscosity

is twice its atmospheric value, according to Barus. Then calculate the pressure for which
the viscosity increases by a factor of 1000, then by a factor of 10°.

Exercise Show that using the definition of « as the slope at zero (ambient) pressure for
both viscosity pressure equations, one obtains indeed that apg/z = In(ng) + 9.67.

Exercise Using the figures 3.9 - 3.14 show that d(ph)/0x = 0 is indeed found in the
high pressure zone. Comment on the film thickness evolution from 3.9 - 3.14. Relate this
evolution to the evolution in the pressure distribution.

Exercise Show that H(X — T) = X? — 2XT + T? is indeed a solution of the reduced
Reynolds equation for high pressures: 0H/0X + 0H /0T = 0.

Exercise Check the derivation of the three dimensionless equations.
Exercise Give the reduced forms of the Reynolds equation in the zone § < 1 and § = 17

Exercise Derive the Reynolds equation from the mass flow continuity equation over a
rectangle, comments with respect to the discrete equation?

Exercise Express the Hertzian pressure p;, in terms of w;, ' and R only. In order to
double the pressure, p,, how much should the load w; change, how much the contact
radius R, and how much the reduced Elastic modulus E’?

Exercise Compute 0 for a contact with b = 0.001 m and R = 0.05 m. If the reduced
elastic modulus E’ = 2 - 10'! Pa what is the load per unit length w;, what is p,?

Exercise Figure 3.1 shows the deformed and the undeformed geometry for a line contact.
From the difference the maximum deformation can be estimated as 0.6. Deduce which
dimensionless film thickness relation has been used to obtain H.

Exercise Express the Hertzian pressure p;, in terms of w, E' and R, only. In order to
double the pressure, py, how much should the load w change, how much the contact radius
R,, and how much the reduced Elastic modulus E’?

Exercise Compute § for a contact with ¢ = 0.001 m and R, = 0.05 m. If the reduced
elastic modulus E’ = 2 - 10'! Pa, what is the load w, what is the value of pj?

Exercise Figure 3.2 shows the deformed and the undeformed geometry for a circular
contact. From the difference the maximum deformation can be estimated as 1. Deduce
which dimensionless film thickness relation has been used for H.

Exercise Check that for the case of a circular contact £ = 1, the equations for a, b and
0 reduce to the ones found in the previous section.

Exercise Compute a, b, p, and  for a contact with R, = 0.005 m, R, = 0.05 m,
E' =2-10" Pa and w = 10* N?

Exercise Check the two asymptotes of ¢ for p — 0 and for p — oo?



Exercise Compute h* for R = 0.01 m, g = 0.1 Pas, a = 2-107% Pa™!, u; + up = 1 m/s,
E' = 2-10" Pa, w; = 10* kg/m, using the parameters Wi, U and G. Same question
using Figure 3.3.

Exercise Using Figure 3.3 find A* for R = 0.01 m, 1y = 0.1 Pas, a = 2-107% Pa~!,
up +uy =1 m/s, E' =210 Pa, w, = 10* kg/m.

Exercise How much does the film thickness h change if the atmospheric viscosity 7y is
doubled? How much if the speed u; +us is doubled? How much if the load per unit length
wy is doubled? How much if the reduced elasticity E’ is doubled (careful)? How much if
the reduced contact radius R is doubled (careful)?

Exercise The aim of this exercise is to keep the film thickness constant. How much does
one have to change the speed u; 4+ us when the viscosity 7y is halved? How much does
the load have to change when the viscosity is doubled?

Exercise Express the Hertzian contact half width b in terms of W, and R.

Exercise What is the dimensionless film thickness H (X = 0) in the Figures 3.5 to 3.77
What is the relative evolution of h(z = 0)7 Compare the evolution with the one predicted
by Ertel-Grubin?

Exercise What is the dimensionless central film thickness H(X = 0) in the Figures 3.9
to 3.147 What is the relative evolution of h(x = 0), careful?

Exercise What is the dimensionless central pressure P(X = 0) in the Figures 3.9 to 3.147
What is the relative evolution of p(z = 0)7

Exercise Compare the answers on h(x = 0) and p(z = 0) from the two previous exercises
with the Figure 3.15.

Exercise Compute h,, for R = 0.01 m, iy = 0.1 Pas, u; +uy = 1 m/s, a = 2-107% Pa™1,
E' =210 Pa, w; = 10* kg/m. Compare with the Ertel Grubin value, comments?

Exercise What are the advantages of the set My, L over the set Wi, U, G? What are its
disadvantages?

Exercise What is the order of magnitude of HY and of H? Use typical values given
before for oil/steel contacts.

Exercise Compute h,, for R = 0.01 m, 9 = 0.1 Pas, u; +uy = 1 m/s, a = 2-107% Pa™ 1,
E’ = 2-10" Pa, w; = 10* kg/m. Compare with the Dowson and Higginson value and the
Ertel Grubin value, comments?

Exercise Express the Ertel Grubin formula in terms of H,,;,, M; and L.

Exercise Check the expression of the Moes Venner formula in terms of H? W, U and

G.

Exercise Which of the three regimes is the appropriate regime for M; =1, L = 07 and
for My = 100, L = 0?7 and for M; = 100, L = 10?7 and for M; = 10, L = 1 (careful)?
Compute for each of the cases the film thickness H.



Exercise Draw the EHL domain in Figure 3.3, where the Ertel Grubin formula is valid.
Use M; > 5 and L > 2.5 as criteria. What happens if one uses the EG equation beyond
these limits?

Exercise Calculate the dimension of the term nou/w;. What is the consequence for the
minimum film thickness h,,”

Exercise Explain why the film thickness h,, is independent of E’ in the I.R. regime.
What about the dependence on o7

Exercise Show that for the L.E. regime h,, o« nJ* and h,, o« w%% Show that as a
consequence the friction coefficient f oc w;%®. Derive the complete equation showing

the dependence of I} with respect to all parameters 79, R, wy and E’. Show through a
dimensional analysis that indeed [F;] = N/m.

Exercise Compare the exponents of U and Wy in H” and HY. What do you conclude.
Will the difference between HY and HP increase or decrease with increasing values of W
and U?

Exercise Which of the three regimes is the appropriate regime for My = 3, L = 07 and
for My = 100, L = 0?7 and for My = 100, L = 10?7 and for M, = 10, L = 1 (careful)?
Compute for each of the cases the film thickness HM.

Exercise Calculate the film thickness assuming R, = R, = 30 mm, w = 90 kg, oy = 10~
Pas, a=10"2 Pa~!, u; +u2 = 60 m/s, £’ = 210" Pa, careful, which regime?

Exercise Derive the dimensional film thickness equation in the I.R. regime. Comment
on the absence of E’. Check the dimension.

Exercise Derive the dimensional film thickness equation in the LLE. regime. Comment
on the absence of a. Check the dimension.

Exercise Calculate the film thickness H” and HM for Wy, = 1075, U = 107! and
G = 4000. Compare the two values and list another advantage of the Moes parameter
set.



Reynolds equation in cylindrical coordinates:

d ( prh® dp 4 d [ ph’ dp _ rd(Ph(ur1+ur2))+d(ph(u91+u92))+dph
dr\ 127 dr ) d@\12rnp dé 2dr 2d6 dt

Velocity profile

1 dp h—z 4
uiz)=——(z-h)z+u,——+u,—
(2) 2Mlx( JZHU =+,

Barus equation
1(p) =n,e“" (Barus)

Vogel equation
b

n(T) =n,€™ (Vogel)

Hertz:

ph=(2w1)/(nb), ph=(3w)/(2ma?)

b=((8w1R)/( nE*))?, a=((3WR)/(2E*))*®, 6=a%/R
2/E’=(1-v1)/E1+(1-v2)/E2

Lubricated:

DH parameters Wi=w1/(E’R), U=nou/(E’R), G=0E’, H=h/R
HD parameters Wo=w/(E’R?), U=nou/(E’R), G=0E’, H=h/R
MV parameters Mi=W1/\'U, L=GUY4, H=h/(R\U)

MV parameters Mo=W/U¥*, L=GU*, H=h/(R\U)

EG: H'=1.31 (UG)** w8

IR: H=2.45/M1, H=47.55/M7?

IE: H=2.05/M1*®> H=1.96/M,"°
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