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Notation

Ad dimensionless deformed amplitude
Ad = [maxT Hc(T ) − minT Hc(T )]/2

Ai dimensionless initial amplitude
Ai = aiR/b2

a radius of Hertzian contact [m]
a = 3

√

(3wRx)/(2E′)
b half width of Hertzian line contact [m]

b =
√

(8w1R)/(πE′)
E′ reduced modulus of elasticity [Pa]

2/E′ = (1 − ν2
1)/E1 + (1 − ν2

2)/E2

G dimensionless materials parameter
G = α E′

h film thickness [m]
H dimensionless film thickness

H = hR/b2 (1d), H = hRx/a2 (2d)
HD dimensionless film thickness (Dowson)

HD = h/R (1d), HD = h/Rx (2d)
HM dimensionless film thickness (Moes)

HM = h/(R
√

U) (1d), HM = h/(Rx

√
U) (2d)

H∗ dimensionless Ertel Grubin film thickness
H∗ = h∗/R (1d)

H̄ dimensionless boundary layer parameter
L dimensionless material parameter

(Moes) L = G(U)0.25

L10 number of million stress cycles 90% of a population will surpass
M1 1d dimensionless load parameter (Moes)

M1 = W1(U)−0.5
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M2 2d dimensionless load parameter (Moes)
M2 = W (U)−0.75

nt number of time steps
nx number of (grid)points in x direction
p pressure [Pa]
ph Hertzian pressure [Pa]

ph =
√

(w1E′)/(2πR) (1d)

ph = 1

π
3
√

(3wE′2)/(2R2
x) (2d)

P dimensionless pressure P = p/ph

∆P dimensionless boundary layer parameter
q reduced pressure [Pa], q = (1 − e−αp)/α
R reduced radius of curvature (1d) [m]

1/R = 1/R1 + 1/R2

R̄ reduced radius of curvature in elliptical contacts (2d) [m]
1/R̄ = 1/Rx + 1/Ry

Rx reduced radius of curvature in x direction (2d) [m]
1/Rx = 1/R1x + 1/R2x

Ry reduced radius of curvature in y direction (2d) [m]
1/Ry = 1/R1y + 1/R2y

S slide to roll ratio
S = u2/um = 2u2/(u1 + u2)

t time [s]
T dimensionless time T = tum/b (1d), T = tum/a (2d)
u1 velocity of lower (smooth) surface [m/s]
u2 velocity of upper surface [m/s]
um mean velocity um = (u1 + u2)/2 [m/s]
U dimensionless speed parameter

U = η0(u1 + u2)/(E
′R)

x, y, z coordinates [m]
X,Y,Z dimensionless coordinates with respect to b (1d) or a (2d)
X̄ dimensionless boundary layer coordinate
z Roelands parameter [−]
w1 1d load per unit length [N/m]
w 2d load [N ]
W1 1d dimensionless load parameter (Dowson)

W1 = w1/(E
′R)

W2 2d dimensionless load parameter (Dowson)
W2 = w/(E′R2

x)
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α pressure viscosity index [Pa−1]
δ approach/deformation [m]
δT maximum approach/deformation [m]
∆T dimensionless time step
∆X dimensionless mesh size
η viscosity [Pa s]
η0 viscosity at ambient pressure [Pa s]
η̄ dimensionless viscosity η̄ = η/η0

∇1 dimensionless wavelength parameter (1d)

∇1 = (λ/b)(M
3/4

1 /L1/2)
∇2 dimensionless wavelength parameter (2d)

∇2 = (λ/a)(M
1/2

2 /L1/6)
ν Poisson ratio [−]
θ ratio of oil film and gap height: filling rate
λ waviness wavelength [m]
ρ density [kg/m3]
ρ0 density at atmospheric pressure [kg/m3]
ρ̄ dimensionless density ρ̄ = ρ/ρ0

σ shear stress [Pa]
σu fatigue limit [Pa]
E ,F elliptical integrals
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Foreword

In ElastoHydrodynamic Lubrication as in many other disciplines, one starts by
studying idealized situations, in which many realistic phenomena are neglected.
Some of these realistic conditions are treated in more advanced courses, as out-
lined in chapter 4. However, in any industrial problem, many of those phenomena
occur simultaneously. This is especially problematic when contact performance is
less than expected, based on an idealized calculation. It is then up to the engineer
to decide which is the most likely candidate responsible for the deterioration of the
performance, and to eliminate that one. Occasionally a second cause will emerge,
limiting the performance increase achieved by the removal of the first one, and the
‘search-and-destroy’ process starts anew. These causes limiting contact performance
can be very different from one case to the other, however, with a thorough under-
standing of the basics of lubrication as described in chapters 2 and 3, an engineer will
find it possible to come up with the right answers. This is because he∗ understands
the fundamental mechanisms of lubrication, and can therefore deduce which one is
not properly working, and then examine why. A current trend is complicating this
process, since lubricated contacts are pushed to the limits of their performance, and
‘advanced tricks’ are used to keep them operating reliably.

The interested reader will find more material in the literature list, if he∗ wants
to study a certain topic in detail.

∗ please read ‘she’ instead of ‘he’ 50% of the time.
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These lecture notes are organised in the following way:
The first chapter introduces the topic of film thickness prediction under EHL

conditions and gives a short overview of past advances in its understanding, and a
brief outlook of future directions.

The second chapter introduces the different equations describing the isothermal
EHL problem: Reynolds, elastic deformation and force balance. Furthermore, due
to the extremely high pressures generated in such a contact, the variation in density
and viscosity have to be added.

This system of three coupled equations, is very difficult to solve, so the third
chapter starts with some simplified solutions, working towards the complete solution
of the two dimensional EHL problem. An other advantage of this gradual approach is
that the reader discovers the global trends before being exposed to the full complexity
of the problem. This chapter also introduces the different dimensionless groups that
describe EHL operating conditions.

The fourth chapter deals with a variety of ‘advanced’ topics and each section
can be used as the basis of a two hour lecture.

The fifth chapter describes a number of techniques that were specifically devel-
oped for EHL. They include specific measurement techniques as well as numerical
techniques.
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Chapter 1

Introduction

This course on ElastoHydrodynamic Lubrication (EHL) is intended as a short intro-
ductory course to complement an introduction to Hydrodynamic Lubrication (HL).
For a first introduction, the sections marked with an asterisk ∗ can be skipped.
These parts can be used as part of a more extensive and advanced course. In some
countries EHL is part of a course on ‘machine elements’, since EHL conditions are
commonly encountered in rolling element bearings, gears, cam-tappets etc.

We start the introduction by giving the basic definition

ElastoHydrodynamic Lubrication (EHL) is a thin film lubrication mode where two
phenomena play an essential role:
•large elastic deformations (generally larger to much larger than the lubricant
film thickness).
•important piezo-viscous effects (the lubricant viscosity in the film is (much)
larger than the atmospheric viscosity).

We will encounter the central role of these two mechanisms throughout this study:
In the second chapter, each of these two mechanisms takes its part in the central
equation: the Reynolds equation.
Towards the end of the third chapter, we study the type of lubrication when only
one of the two mechanisms is dominant.
Throughout chapter four, these two characteristics enable major simplifications of
the Reynolds equations, allowing a profound physical understanding of the phenom-
ena observed.

1
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1.1 Performance

When designing an EHL contact, the designer has to assure the performance of the
future contact. In order to do so, three basic requirements have to be fulfilled in
the order given below. Once these three points are satisfied, the designer will wish
to optimize the contact performance with respect to one or several criteria. Once
again the three following points have to be addressed:

1 Will it work or how to avoid immediate failure.
2 What does it require to work or how to reduce energy dissipation.
3 Will it last or how to ensure the required operating life.

The answer to these three questions will deal with a number of very different aspects
of EHL contacts, as we will see below.

ad 1: Obviously, the first requirement is that the stresses resulting from the
contact do not exceed the limits of the materials in use. This requirement is similar
to dry contacts and can be addressed using Hertz theory. Secondly, ever since EHL
(but also HL) has been applied, conventional wisdom is to keep the two surfaces
completely separated by an oil film. In other words, the oil film generated should
be sufficiently thick to prevent interaction of the surface asperities. Whenever this
condition is satisfied, a big step towards fulfilling the second and third condition is
also made: lubricated friction is generally (much) lower than dry friction and the
complete separation of the asperities will lead to very little or no wear at all.

ad 2: After complete separation of the two surfaces has been achieved, by choos-
ing an appropriate (high viscosity) lubricant, the power losses associated with the
friction in and around the contact are examined. Generally one wishes to reduce this
friction, and thus to use a lower viscosity oil. However, the choice of a low viscosity
oil might conflict with the first point and a compromise has to be found.

ad 3: Finally, when the first two points have been settled, the designer may wish
to study the life of the contact, or its durability: how long will it function, given a
certain set of criteria to be satisfied, with respect to precision, wear, vibration, noise,
friction torque, temperature, etc. This operational life will ultimately be limited by
high cycle fatigue. If the predicted life is regarded as insufficient, the designer can
choose lower loads, or larger contact areas through larger components, components
of higher quality, other materials etc etc.

The first aspect remains the principal one, whenever it is satisfied, it is likely
that the two others will be close to what is desired. Consequently points two and
three may need only some fine tuning, but the major concern is the first point. As
a result, the majority of the work on EHL has been devoted to the study and the
prediction of the lubricant film thickness. Hence the study of the film thickness is
the major topic of this course and it is outlined in the next chapters. In some final
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sections the other two points concerning friction and life will be discussed briefly.

In reality a number of additional conditions are likely to be imposed: the lubri-
cating fluid is prescribed, the outer dimensions of the contact are given, the surface
roughness is imposed etc etc. In such cases a number of subsequent loops through
the three points will be necessary to satisfy all requirements, starting with the most
severe demand, and adding the others one by one. Such design loops are normally
accompanied by tests on prototypes, to check if the contact performs as predicted.

1.2 Past

This section presents a short, and far from complete, review of the major events
in the development of EHL theory. A much more complete overview in given by
Dowson [10]

1881 Publication of the study of the contact between two spherical bodies by
H. Hertz.
1886 Publication of the equation describing the slow fluid flow in narrow gaps, that
now carries his name, by O. Reynolds.
1893 Publication of the exponential viscosity-pressure relation by C. Barus.
1920 Work by Martin and Gümbel on Hydrodynamic Lubrication (HL), failure to
explain the lubrication of gear teeth.
1939/49 Work by Ertel and Grubin: calculation of the film thickness using the
Hertzian deformation and a piezo-viscous inlet analysis.
1951 Petrusevich obtains the first ‘numerical’ solution of the EHL pressure distri-
bution including the pressure spike.
1959/1966 Dowson and Higginson compute many line contact EHL film thicknesses
numerically and give equations for minimum film thickness based on the dimension-
less parameters W1, U and G.
1970s Development of optical interferometry, experimental verification of theoreti-
cal film thickness predictions.
1976 Hamrock and Dowson compute many EHL point contact film thicknesses nu-
merically and give equations for minimum film thickness based on the dimensionless
parameters W2, U and G.
1980s Improvement of experimental (interferometry h ↓ 10 nm) and numerical
(multigrid n ↑ 106 points) techniques and study of non-newtonian properties (fric-
tion).
1990s Transient studies (experimental + numerical), refinements (indents, rough-
ness, debris, grease) and films becoming so thin that they approach molecular levels.
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1.3 Present

EHL plays a silent but important role in everyday life. It occurs where components
contact with large relative velocities, large forces are transmitted and minimal wear
and minimal power loss are required. The most common elements are rolling element
bearings and gears, but also cam and tappets, constant velocity joints, big-end and
small-end bearings etc. If one extends the strict definition to include also the iso-
viscous/elastic lubrication, contacts like the head-magnetic tape contact in a VCR,
seals and the human joints fall into this category.
The main denominator of all these contacts is that they combine high power through-
put with low friction, low wear, long life, and generally small and light envelopes.

1.4 Future

A number of technical but also economical and ecological developments are taking
place these days which require that the EHL components continue to evolve. The
main reasons are a requirement for improved fuel efficiency and stricter pollution
laws. This leads to higher temperatures, smaller contacts and higher loads, and
thus to thinner films. Furthermore, the contacting surfaces should be manufactured
at an ever decreasing cost and operate with an ever increasing reliability. Finally,
these contacts will have to be more and more often lubricated with liquids that are
environmentally friendly.
All these requirements are contradictory and the only possible way to reconcile these
conflicting demands is through an increased understanding of EHL.
A second development is the prediction and optimization of contact performance
under realistic conditions, accounting for the influence of surface roughness, inden-
tations, machining marks, polluted oils, transient loads, varying speeds etc.
A third and very important development is the reduction of the lubricant film thick-
ness to molecularly small levels. The behaviour of the fluid film can no longer be
extrapolated from the bulk (macroscopic) behaviour of the lubricant: the laws of
physics and those of chemistry have to be added to the mechanical laws, in order to
be able to predict contact performance under these conditions.

Exercise What are the two essential phenomena in ElastoHydrodynamic Lubrica-
tion?

Exercise How to ensure the performance of an EHL contact?

Exercise If EHL contacts work reliably today, why is it necessary to continue the
research to ensure reliable operation of tomorrows EHL contacts?



Chapter 2

Basic Equations

In this chapter the basic equations describing the ElastoHydrodynamic Lubrication
are outlined. They include the Reynolds equation describing slow viscous flow in
narrow gaps, the elastic deformation equation, describing the linear elastic defor-
mation of a semi-infinite body subjected to a pressure distribution at the surface.
Furthermore, the material properties such as viscosity and density are not constant
and viscosity pressure and density pressure relations are needed to describe the cor-
rect behaviour. Finally, the Reynolds equation allows negative pressures which are
non-physical: it should be complemented by a cavitation condition, and in order to
have a force equilibrium, a force balance equation is added.

2.1 Equivalent Geometry

In general the geometry of the two bodies in contact is rather complicated: think of
the ball-raceway contact in a bearing, or the contact between two gear teeth. Fur-
thermore, the geometry tends to change with time: think again of the ball-raceway
contact. We will first try to simplify the time dependent geometry, by choosing
a coordinate system which moves with respect to world coordinates, and which is
stationary with respect to the contact. This transformation leads in many cases
to such a stationary geometry. We will see in the next section that the equations
describing the fluid flow, allow such a transformation.
Now we will attempt to simplify the geometry. Because the contact area is very small
compared to the overall dimensions of the bodies, it is possible to approximate the
geometry close to the contact zone by a much simpler one, without introducing
important errors. The geometry is reduced to that of two parabolical bodies, intro-
ducing an error that is normally negligible. Body 1 is approximated by a radius of

5
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curvature R1x in x-direction and a radius of curvature R1y in y-direction. Similarly
body 2 is approximated by the radii of curvature R2x and R2y.

h2(x,y)

R1x

R1y

z

y

x

R2x

R2y

body 1

body 2

h1(x,y)

Figure 2.1 Second order (parabolical) approximation of the geometry around
the contact area.

The coordinate system Oxyz is chosen such that the origin lies on the line connecting
the centers of the 2 bodies. The total gap (in the z-direction) between the two bodies
h(x, y) can now be described up to second order accuracy by:

h(x, y) = h1(x, y) + h2(x, y) = h10 +
x2

2R1x
+

y2

2R1y
+ h20 +

x2

2R2x
+

y2

2R2y

Because the acceleration forces in the fluid can be neglected with respect to the
viscous forces, the pressure distribution p(x, y) generated in the gap, depends only on
the gap height h(x, y), and not on its precise geometry. This is the basic hypothesis
of the Reynolds equation: the thin film approximation (see the next section). Thus
one can introduce the reduced radii of curvature Rx and Ry, such that:

1

Rx
=

1

R1x
+

1

R2x

and
1

Ry
=

1

R1y
+

1

R2y
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introducing h0 = h10 +h20, the total gap height at x = y = 0, the gap height h(x, y)
can be written as:

h(x, y) = h0 +
x2

2Rx
+

y2

2Ry

Figure 2.2 gives the equivalent contact geometry, notice that the second body is
represented by a plane.

Rybody 1

body 2

z

y

xh(x,y)

Rx

Figure 2.2 Equivalent geometry.

In general two types of contact are distinguished: conforming contacts and non-
conforming contacts. In a conforming contact, Figure 2.3, the centres of the two
bodies lie on the same side of the contact plane z = 0: R1x and R2x have opposite
signs. An example of a conforming contact, is the contact in a journal bearing,
between the shaft and the journal. Typical pressures for these contacts are in the
10 MPa range.

R2x

Z

X

R1x

Figure 2.3 Conforming contact.

In a non-conforming contact, Figure 2.4, the centres of the two bodies lie on opposite
sides of the contact plane z = 0: R1x and R2x have the same sign.
Generally the contact area in a non-conforming contact is much smaller than in
a conforming one. Therefore, for a given load, non-conforming contacts will be
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x

R2x

R1x

z

Figure 2.4 Non-conforming contact.

exposed to much higher pressures (load=pressure×area) in the GPa range. Conse-
quently, they will generally deform elastically and fall into the ElastoHydrodynamic
Lubrication regime. Conformal contacts generally fall into the category of Hydro-
dynamic Lubrication. A typical example of a non-conforming contact, is that of the
ball-on-raceway contact in a ball bearing.

Note that the fact that acceleration terms have been neglected, allows the use of
a moving coordinate system, which is stationary with respect to the contact. Obvi-
ously the surface velocities have to be recalculated with respect to this coordinate
system.

Exercise In a cylindrical roller bearing, is the contact between outer ring and roller
conforming or non-conforming? And the contact between inner ring and roller?
What can one conclude concerning the contact pressures?

Exercise Compute the reduced radii of contact for the Figures 2.3 and 2.4, if R1x =
0.1 m and R2x = 0.09 m. Draw the two reduced geometries to scale.

Exercise Show that the gap between two non-conforming cylinders of radii R1x

and R2x can be described up to second order accuracy by the equation h(x) =
h0 + x2/(2Rx), using a Taylor series development, with h0 = h(x = 0) and 1/Rx =
1/R1x + 1/R2x.

Exercise What are the reduced radii of contact Rx and Ry in a non-conforming
contact between a sphere of radius R and a cylinder of radius R, where the cylinder
axis is aligned with the x-axis.

Exercise What are the surface velocities with respect to the contact point in the
case of a cylinder rolling on a flat plane with velocity u? And what are these
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velocities if the cylinder slides without rotation on the plane, with the same velocity
u?

2.2 Reynolds Equation

The Reynolds equation [35] is derived from the Navier-Stokes equation for a slow
viscous flow. This means that both inertia forces and external forces are neglected
with respect to viscous forces. The second simplification is due to the narrow gap:
the dimensions in the z direction are much smaller than those in both x and y
direction. Using the condition of no-slip at the wall boundary, one obtains the
velocity profile as a function of z. Remember that z is the direction of the height of
the gap h.

u(z) =
1

2η

∂p

∂x
z(z − h) + uh

z

h
+ u0(1 − z

h
)

v(z) =
1

2η

∂p

∂y
z(z − h) + vh

z

h
+ v0(1 − z

h
)

where u and v are the velocity components in x and y direction, whereas uh and
u0 are the x velocity components for z = h and z = 0 respectively. Because of the
no-slip boundary condition, these two velocities are equal to the velocities of the
solid bodies u2 and u1 respectively. The same holds for the y direction with the
velocity component v. Using the continuity equation over a cell of height equal to
the gap height h:

d

dt

∫

V
ρ dV +

∫

S
ρ (unx + v ny) dS = 0

where nx and ny are the x and y components of the normal of the surface element
dS, and choosing the y axis to coincide with the direction where v1 + v2 = 0, one
finds the Reynolds equation:

∂

∂x
(
ρh3

12η

∂p

∂x
) +

∂

∂y
(
ρh3

12η

∂p

∂y
)

︸ ︷︷ ︸

poiseuille

− ∂(umρh)

∂x
︸ ︷︷ ︸

couette

− ∂(ρh)

∂t
︸ ︷︷ ︸

transient

= 0

where um = (u1 + u2)/2 and the third term can be split into two terms to reveal
three different pressure generating mechanisms:
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∂

∂x
(
ρh3

12η

∂p

∂x
) +

∂

∂y
(
ρh3

12η

∂p

∂y
)

︸ ︷︷ ︸

poiseuille

−um
∂(ρh)

∂x
︸ ︷︷ ︸

wedge

− ρh
∂(um)

∂x
︸ ︷︷ ︸

stretch

− ∂(ρh)

∂t
︸ ︷︷ ︸

transient

= 0

the third term describes the classical wedge effect (converging gap) the fourth term
describes the stretch effect (sheet rolling), while the fifth term describes the transient
(buffer) terms. The stretch effect will normally be absent, except in sheet rolling
and wire drawing. The first two terms describe the pressure generated by the last
three terms.
The equation can further be simplified to a stationary equation when:

∂(ρh)

∂t
<< um

∂(ρh)

∂x

Finally we will often use the stationary one dimensional or line contact equation. In
this stationary one dimensional case the Reynolds equation simplifies to:

∂

∂x
(
ρh3

12η

∂p

∂x
) − um

∂(ρh)

∂x
= 0

this equation can be integrated once, introducing the constant h∗ to give:

ρh3

12η

∂p

∂x
= um(ρh − ρ∗h∗)

where the term h∗ represents the film thickness at the position where the pressure
gradient is zero ∂p/∂x = 0: h∗ = h(∂p/∂x = 0), and ρ∗ represents the density
where the pressure gradient is zero ρ∗ = ρ(∂p/∂x = 0). Rearranging the terms, and
neglecting compressibility effects gives:

∂p

∂x
= 12ηum

h − h∗

h3

Exercise Give an example in which each of the three pressure generating terms is
important, and describe the details of this mechanism. What happens if all three
pressure generating terms are zero?

Exercise What is the Reynolds equation describing a non-rotating cylinder of radius
R falling onto a stationary plane with velocity w0. Is it possible to instantaneously
generate the same pressure profile p(x) using the above stationary Reynolds equa-
tion? If so what is the relation between um(x) and w0 at the moment the cylinder
touches the plane? Assume ρ and η to be constant.
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Exercise Assuming very slow transient behaviour of period τ , for which values of
τ can the transient terms in the Reynolds equation be neglected. Assume that a is
a typical contact dimension. Explain how in this case the transient problem can be
solved as a succession of stationary problems.

2.2.1 Cavitation

The pressures obtained by the Reynolds equation in the previous section are gener-
ally positive, however, nothing prevents the pressure from taking on negative values.
An example from Hydrodynamic Lubrication is the Sommerfeld solution, which pre-
dicts positive pressures in the converging gap ∂h/∂x < 0 and negative pressures in
the diverging gap ∂h/∂x > 0. Such negative pressures are not physically relevant,
since a fluid can not sustain significant negative pressures (tension). In such cases,
the fluid will evaporate (boil) and the pressure is limited by the vapor pressure of
the fluid. This process is called cavitation. The vapor pressure is generally small
compared to the pressure generated in an EHL contact. As such, the vapor pressure
can be neglected, and the pressure is limited to zero or positive values. The combi-
nation of the Reynolds equation with the cavitation condition changes the problem
to a complementarity problem: the complete domain ∆ is divided into two distinct
domains ∆1 and ∆2. The Reynolds equation with p > 0 is valid in part of the
calculational domain called ∆1, and the cavitation condition is valid in the rest of
the domain ∆2.

Figure 2.5 Cavitation boundary in a circular EHL contact, ∆1 on the left,
∆2 (cavitated) on the right.

The division of the domain ∆ into the two sub domains is not known in advance,
the division has to be computed during the calculational process. The problem has
become a complementarity problem with a free boundary (the boundary between ∆1



12 CHAPTER 2. BASIC EQUATIONS

and ∆2). In the line contact this boundary is a single point. In the circular contact
problem, it is represented by a line: the exit meniscus represented in Figure 2.5 by
a solid line. This is a film thickness graph in which the gap height is represented
by grey tones, in a way comparable to the experimental interference technique. The
inlet of the contact is situated on the left, the circle represents the Hertzian contact
circle.

2.3 Elastic Deformation Equations

As stated in the introduction, elastic deformation of the two contacting bodies plays
an important role in EHL. The deformations are close to the ones of the dry contact
problem pioneered by Hertz [18]. In this course we will use two hypotheses to
approximate the deformations of the real bodies:
• the deformation is linear elastic, and the two contacting bodies have uniform and
isotropic properties.
• the contact dimensions a are small compared to the size of the bodies (a << Rx),
allowing the approximation of the bodies by two semi-infinite half spaces.
Both hypotheses are generally valid, and the approximations obtained agree very
well with experimental results. In that case the film thickness equation is given by:

h(x, y) = h0 +
x2

2Rx
+

y2

2Ry
+

2

πE′

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′) dx′ dy′
√

(x − x′)2 + (y − y′)2

where
2

E′
=

1 − ν2
1

E1

+
1 − ν2

2

E2

and ν is the Poisson ratio, and E the elastic modulus of the two bodies 1 and 2
respectively. E′ is called the reduced elastic modulus.

In a line contact, p is constant in the y direction and the above equation simplifies
to:

h(x) = h0 +
x2

2R
− 2

πE′

∫
+∞

−∞

p(x′) ln

(
x − x′

x0

)2

dx′

where x0 is a reference distance where the deformation is taken to be zero.
When the contact dimensions are no longer small compared to the dimensions

of the two bodies, or when the elastic properties of the bodies are not uniform etc
etc, the deformations have to be calculated using Finite Element Methods.
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Exercise Compute the elastic deformation in a line contact loaded by a parabolical
pressure distribution between −b < x < b: p(x) = p0(1 − x2/b2), −b < x < b,
p(x) = 0, otherwise. Take x0 = b.

2.3.1 *Line contact problems

The elastic deformation in an infinitely long line contact causes two different prob-
lems, which are due to the assumption that the pressure in the y direction is constant
over an infinitely long line. Consequently, the applied load

∫ ∫
p(x, y) dx dy = ∞.

Let us study the constant x0 first. Its first task is to make sure that the term
(x − x′)/x0 is dimensionless, in order to assure a physically relevant logarithm.
Rewriting the deformation term as

δ(x) = − 2

πE′

∫
+∞

−∞

p(x′) ln
(
x − x′

)2
dx′ +

2

πE′

∫
+∞

−∞

p(x′) ln (x0)
2 dx′

one sees that for values of x0 large compared to the contact area, the deformation in
(and around) the point x = x0 will be very small: since both terms cancel: x0 is the
point where the deformation is arbitrarily “set to zero”. “Arbitrary” because there
is no objective reference length for the line contact. The second problem becomes
apparent for x >> x0 when one computes the deformation, one finds that for large
values of x, that is for large distances from the contact region, the deformation
does not go to zero. Far from the contact the deformation can be approximated by
bringing p(x′) outside the integral: using

∫
+∞

−∞
p(x′) dx′ = w1, where w1 is the load

per unit width. Thus:

δ(x) ≃ −2w1

πE′
ln

(
x

x0

)2

This equation indicates that for large values of x, the deformation integral tends
logarithmically to minus infinity. This is obviously not physical, but is caused by
the infinite applied load, as described above. Neither of the two problems causes a
real difficulty, since they only influence the equation up to a constant. This constant
is easily absorbed in the constant h00, the solid body approach.

2.4 Viscosity/Density-Pressure Relations

For pressure variations of the order of one atmosphere (105 Pa), one can regard
fluids as being incompressible, and having a constant viscosity. In ElastoHydrody-
namically Lubricated contacts, the pressures can reach values of several GPa (1GPa
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= 1 gigapascal = 109 Pa). Under such extreme pressure conditions, the molecules of
a liquid will be packed closer together, thus changing its density. This reduction in
mean distance does induce an increased interaction between the molecules, resulting
in an increase in viscosity. It is thus necessary to describe both density and viscosity
as a function of pressure.

2.4.1 Density-pressure

The simplest density pressure relation is given by the Dowson and Higginson relation
(1966) [9]. It reads:

ρ(p) = ρ0

5.9 108 + 1.34 p

5.9 108 + p

where ρ0 is the atmospheric density and p is given in Pa. Please note the two
asymptotes: for small p (p → 0), ρ = ρ0, for very large p (p → ∞), ρ = 1.34 ρ0.

0.9

1

1.1

1.2

1.3

1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

ρ/ρ0

p [GPa]

Figure 2.5 Relative density ρ/ρ0 as a function of p.

Exercise Check the two asymptotes of the density pressure relation.

2.4.2 Barus viscosity-pressure

The simplest viscosity pressure relationship is an exponential relation, according to
Barus [2]. It reads
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η(p) = η0 exp(α p)

where η0 is the atmospheric viscosity and α is called the pressure viscosity coefficient.
For mineral oils this coefficient varies between 1·10−8 and 2·10−8 Pa−1. For pressures
of 1 GPa an average viscosity increase of exp(15) ≈ 3 · 106 is predicted, which is
enormous.

Exercise Assuming that α = 2 · 10−8 Pa−1, compute the pressure for which the
viscosity is twice its atmospheric value, according to Barus. Then calculate the
pressure for which the viscosity increases by a factor of 1000, then by a factor of
106.

2.4.3 Roelands viscosity-pressure

A slightly more accurate, and also slightly more complicated viscosity pressure re-
lation is the expression derived by Roelands in 1966 [36]:

η(p) = η0 exp[(ln(η0) + 9.67)(−1 + (1 +
p

p0

)z)]

where z is the pressure viscosity index, typically z = 0.6, and p0 = 1.98 108 is a
constant.

0

5
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15

20
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35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ln(η/η0)

p [GPa]

Barus

Roelands

Figure 2.6 Relative viscosity η/η0 as a function of p.

Even though the Roelands equation is more complete and complex than the Barus
equation, it does not completely describe the high pressure behaviour of oil, see
Bair [1].
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2.4.4 *Comparison

If one defines the pressure viscosity coefficient α at atmospheric pressure, one can
establish a relation between the Barus equation and the Roelands equation.

α =

[
1

η

(
∂η

∂p

)]

p=0

one can redefine the Roelands equation:

η(p) = η0 exp[
αp0

z

(

−1 + (1 +
p

p0

)z
)

]

From this one finds that the variables α, p0, η0 and z are dependent:

αp0

z
= ln(η0) + 9.67

Exercise Show that using the definition of α as the slope at zero (ambient) pressure
for both viscosity pressure equations, one obtains indeed that αp0/z = ln(η0)+9.67.

2.4.5 *High pressure Reynolds equation

The Reynolds equation shows two very different types of behaviour over the contact
domain. These will have important consequences for the physical behaviour, which
are reflected in the numerical behaviour of the equation. This change is triggered by
the piezo-viscosity of the lubricant. In order to understand this change let us study
the transient line contact equation:

∂

∂x
(
ρh3

12η

∂p

∂x
) − um

∂(ρh)

∂x
− ∂(ρh)

∂t
= 0

In the inlet the pressure is low, and the viscosity will be close to the ambient value.
The character of the equation is elliptical, dominated by the first term with its
second order derivatives. In the central zone, the pressure can be very high, up to
several GPa’s. Due to the piezoviscous effect, the viscosity becomes enormous, and
the Poiseuille term tends to zero. Because of this the Reynolds equation reduces to:

−um
∂(ρh)

∂x
− ∂(ρh)

∂t
= 0

or in dimensionless terms:

∂(ρ̄H)

∂X
+

∂(ρ̄H)

∂T
= 0
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When neglecting the variations in ρ̄, the equation simplifies even more and becomes

∂H

∂X
+

∂H

∂T
= 0

which is a hyperbolical first order differential equation, describing a propagating
wave. The solution is H(X − T ) is constant, or in dimensional terms: h(x− umt) is
constant. The physical explanation is that in the high pressure zone, the viscosity
increases so much that it inhibits the Poiseuille term: no pressure induced flow is
possible. Thus in the high pressure zone only the Couette term persists. For a
stationary solution this reduction gives:

∂(ρh)

∂x
= 0

Once again neglecting the compressibility, it says that dh/dx = 0, or h(x) is constant.
This can be observed from the numerical solutions given in the next chapter.

In case of a non-smooth surface combined with sliding, a number of surpris-
ing phenomena can be observed, which find their origin in this wave propagation
character of the high pressure zone [14, 30].

Exercise Using the figures 3.9 - 3.14 show that ∂(ρh)/∂x = 0 is indeed found in
the high pressure zone. Comment on the film thickness evolution from 3.9 - 3.14.
Relate this evolution to the evolution in the pressure distribution.

Exercise Show that H(X−T ) = X2−2XT +T 2 is indeed a solution of the reduced
Reynolds equation for high pressures: ∂H/∂X + ∂H/∂T = 0.

2.5 Force Balance

The integral of the pressure distribution obtained from the Reynolds equation should
balance the externally applied load, in order to have an equilibrium of forces. For
the two dimensional problem this condition reads:

w =

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′) dx′ dy′

where w is the applied load in the two dimensional case.
For the line contact case, the force balance equation reads:

w1 =

∫
+∞

−∞

p(x′) dx′
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where w1 is the applied load per unit length in the one dimensional case.

2.5.1 *Transient case

When the load w is no longer constant with time, the entire solution becomes a
transient solution: p(x, y, t) and h(x, y, t). However, when the acceleration terms of
the bodies remain small, one can neglect them, and the previous point contact force
balance equation is trivially extended to:

w(t) =

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′, t) dx′ dy′

On the other hand, when the acceleration increases, a second term including the
mass of the accelerating body (say body 2 with mass m2) has to be incorporated in
this equation:

w(t) + m2ḧ0 =

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′, t) dx′ dy′

Suppose that p = 0, it means that w(t) + m2ḧ0 = 0, or the complete force is used
to accelerate body 2, but in general both terms play a role.

For the line contact case similar extensions are valid, introducing m2/l, the mass of
body two per unit length.

2.6 *Dimensionless Equations

Since the highly loaded EHL pressure distribution and elastic deformation are very
close to the Hertzian dry contact solution, it seems reasonable to introduce dimen-
sionless parameters based on this asymptotic dry contact solution.
Its application has two different advantages, first of all it allows the introduction
of two parameters that determine the contact operating conditions. The second
advantage is that the pressure and film thickness values vary around 1.0, giving a
maximum precision for the numerical calculations.
We will study the dimensionless two dimensional Reynolds equation, based on the
circular Hertzian solution with a the radius of the contact circle and ph the max-
imum Hertzian contact pressure. The relations between ph and a and the contact
geometry, operating conditions and materials parameters, are outlined in the next
chapter. In general capitals are used for dimensionless parameters, with the excep-
tion of R. Dimensionless Greek characters are indicated by a bar over the original
symbol.
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Thus we introduce P = p/ph, X = x/a, Y = y/a and H = hRx/a2, based on
Hertz and T = um t/a, η̄ = η/η0 and ρ̄ = ρ/ρ0.

Using these parameters the dimensionless Reynolds equation reads:

∂

∂X
(

a3ph

12η0R2
x

ρ̄H3

η̄

∂P

∂X
) +

∂

∂Y
(

a3ph

12η0R2
x

ρ̄H3

η̄

∂P

∂Y
)

−um
∂(ρ̄H)

∂X
− ρ̄H

∂(um)

∂X
− um

∂(ρ̄H)

∂T
= 0

Introducing ǫ = (ρ̄H3)/(η̄λ), and λ = (12η0umR2
x)/(a3ph), and assuming um is

constant, we can simplify this equation

∂

∂X
(ǫ

∂P

∂X
) +

∂

∂Y
(ǫ

∂P

∂Y
) − ∂(ρ̄H)

∂X
− ∂(ρ̄H)

∂T
= 0

each individual term is now dimensionless and ǫ can be regarded as a coefficient
which varies over the domain.
The dimensionless film thickness equation including the elastic deformation equation
becomes with these parameters:

H(X,Y ) = H0 +
X2

2
+

Y 2

2
+

2Rxph

πaE′

∫
+∞

−∞

∫
+∞

−∞

P (X ′, Y ′) dX ′ dY ′

√

(X − X ′)2 + (Y − Y ′)2

As can be found from the equations in the section on the Hertzian contact, ph/a =
E′/(πRx), thus:

H(X,Y ) = H0 +
X2

2
+

Y 2

2
+

2

π2

∫
+∞

−∞

∫
+∞

−∞

P (X ′, Y ′) dX ′ dY ′

√

(X − X ′)2 + (Y − Y ′)2

Finally the dimensionless force balance equation becomes:

w

pha2
=

∫
+∞

−∞

∫
+∞

−∞

P (X ′, Y ′) dX ′ dY ′

Using the fact that the Hertzian pressure distribution is a semi-ellipsoid, and that
the lubricated load and the dry contact load are the same, we find with:

w =
2πpha2

3

that:
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∫
+∞

−∞

∫
+∞

−∞

P (X ′, Y ′) dX ′ dY ′ =
2π

3

Exercise Check the derivation of the three dimensionless equations.

2.7 *Discrete HL Problem

In order to derive an efficient discretisation of the EHL problem, it is useful to study
the discretisation of the Reynolds equation alone in a first step. The discrete grid
used will be equidistant in both the X and Y direction. This equation is studied in
its stationary form: ∂H/∂T = 0.

∂

∂X
(ǫ

∂P

∂X
) +

∂

∂Y
(ǫ

∂P

∂Y
) − ∂(ρ̄H)

∂X
= 0

where the coefficient ǫ varies over the domain, but does not depend on the pressure:
the iso-viscous rigid assumption. The most compact discretisation is obtained by
first discretising the outer differential ∂/∂X using a short central discretisation:

(
∂

∂X
(ǫ

∂P

∂X
)

)

i,j

..
=

(ǫ ∂P
∂X )i+1/2,j − (ǫ ∂P

∂X )i−1/2,j

∆X

where i represents the grid index in the X direction and j the grid index in the Y
direction. In other words: X = X0 + i∆X and Y = Y0 + j∆Y .

In a second step the inner derivative is developed, using a short central discretisation:

(

ǫ
∂P

∂X

)

i+1/2,j

..
=

ǫi+1/2,j(Pi+1,j − Pi,j)

∆X

A combination of these two steps gives:

(
∂

∂X
(ǫ

∂P

∂X
)

)

i,j

..
=

ǫi+1/2,jPi+1,j − (ǫi+1/2,j + ǫi−1/2,j)Pi,j + ǫi−1/2,jPi−1,j

∆X2

the same discretisation is applied in the Y direction:

(
∂

∂Y
(ǫ

∂P

∂Y
)

)

i,j

..
=

ǫi,j+1/2Pi,j+1 − (ǫi,j+1/2 + ǫi,j−1/2)Pi,j + ǫi,j−1/2Pi,j−1

∆Y 2
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taking ∆X and ∆Y to be identical, and using the short central discretisation for
the ∂(ρ̄H)/∂X term as well, one obtains a second order accurate, short central
discretisation of the Reynolds equation:

ǫi+1/2,jPi+1,j + ǫi,j+1/2Pi,j+1

∆X2
−

(ǫi+1/2,j + ǫi−1/2,j + ǫi,j+1/2 + ǫi,j−1/2)Pi,j

∆X2

ǫi−1/2,jPi−1,j + ǫi,j−1/2Pi,j−1

∆X2
−

ρ̄i+1/2,jHi+1/2,j − ρ̄i−1/2,jHi−1/2,j

∆X
= 0

Exercise What are the advantages of using intermediate points such as ǫi+1/2,j and
what are the disadvantages?

2.8 *Discrete EHL Problem

In the EHL problem, the fluid flow is governed by the discrete Reynolds equation
outlined in the previous section. However, the parameter ǫ depends on the pressure
p. As a result, the coefficients in the intermediate points i+1/2, j etc. cannot be com-
puted easily, since they depend on the elastic deformation integrals. Consequently,
they are approximated in the following way:

ǫi+1/2,j =
ǫi+1,j + ǫi,j

2

For stability reasons the central derivative of ρ̄H is often replaced by a first order
backwards (upstream) derivative:

(
∂ρ̄H

∂X

)

i,j

.
=

ρ̄i,jHi,j − ρ̄i−1j

∆X

Or by a second order backwards derivative, if one does not want to diminish the
order of approximation:

(
∂ρ̄H

∂X

)

i,j

..
=

3ρ̄i,jHi,j − 4ρ̄i−1,jHi−1,j + ρ̄i−2,jHi−2,j

2∆X

The elastic deformation equation is discretized as:

δi,j =
∑

k

∑

l

Ki,k,j,l Pk,l

where the kernel of the elastic deformations Ki,k,j,l is given by:
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Ki,k,j,l =
2

π2
[|Xp| ln(Yp/Xp +

√

1 + Y 2
p /X2

p ) − |Xp| ln(Ym/Xp +
√

1 + Y 2
m/X2

p )

+|Xm| ln(Ym/Xm +
√

1 + Y 2
m/X2

m) − |Xm| ln(Yp/Xm +
√

1 + Y 2
p /X2

m)

+|Yp| ln(Xp/Yp +
√

1 + X2
p/Y 2

p ) − |Yp| ln(Xm/Yp +
√

1 + X2
m/Y 2

p )

+|Ym| ln(Xm/Ym +
√

1 + X2
m/Y 2

m) − |Ym| ln(Xp/Ym +
√

1 + X2
p/Y 2

m)]

where: Xp = Xi − Xk + ∆X/2, Xm = Xi − Xk − ∆X/2, Yp = Yj − Yl + ∆Y/2, and
Ym = Yj − Yl − ∆Y/2.

the force balance equation becomes:

∑

i

∑

j

Pi,j∆X2 − 2π

3
= 0

The line contact problem is discretized in exactly the same manner.

2.9 *Starved Formulation

In previous sections the Reynolds equation has been described for the situation
where the gap between the two bodies is completely filled with oil, and thus pres-
sure generation takes place from the inlet of the contact onwards. A more general
description of the lubrication problem accounts for gaps which are only partially
filled with lubricant. This is the most common situation, in which insufficient oil
is available, and the pressure build up is delayed, until the oil film does completely
fill the gap. This representation is also more physical since it allows a description
accounting for the amount of oil available on the two surfaces, in front of the contact.
In order to describe this situation correctly an additional parameter θ representing
the degree at which the gap is filled with oil is introduced. This parameter is defined
as θ(x, y) is the ratio of the oil film thickness hoil(x, y) and the gap height h(x, y).
Notice that in the previous sections the two parameters were identical, and that for
a completely filled gap θ = 1. For the when case the gap is completely empty (no
oil), θ = 0.

The new Reynolds equation incorporating the θ parameter becomes a comple-
mentarity equation: either θ < 1 and P = 0, or θ = 1 and P > 0. The boundary
between these two zones is a free boundary and is not known in advance. It has to
be established while calculating the solution.
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Note that the cavitation boundary treated in an earlier section, is straightforwardly
translated in terms of θ, for the cavitation zone θ < 1 and P = 0 applies. This
extended stationary Reynolds equation reads:

∂

∂X
(ǫ

∂P

∂X
) +

∂

∂Y
(ǫ

∂P

∂Y
) − ∂(ρ̄θH)

∂X
= 0

In this complementarity representation of the Reynolds equation, it is important to
identify the physical meaning of these three terms. The Reynolds equation remains
a flow continuity equation. The first two terms including the derivatives of the
pressure describe the pressure induced Poiseuille flow. In the zone where the film is
incomplete θ < 1, this term is absent, since the pressure P is zero. In the complete
film zone, the Poiseuille term is the same as before. The term including the derivative
of the film thickness, is identical to the term in the previous sections in the zone of
complete film, since θ = 1. However, in the zone with a partial film, the mass flow
continuity equation, now includes the derivative with respect to θ. In this zone, the
Couette term is thus modified and accounts for partially filled gaps. Thus the mass
flow continuity is satisfied in both zones.

Exercise Give the reduced forms of the Reynolds equation in the zone θ < 1 and
θ = 1?
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2.10 *Discrete Starved Problem

Starting from the discrete equation for the HL problem and choosing ∆X = ∆Y :

ǫi+1/2,jPi+1,j + ǫi,j+1/2Pi,j+1

∆X2
−

(ǫi+1/2,j + ǫi−1/2,j + ǫi,j+1/2 + ǫi,j−1/2)Pi,j

∆X2
+

ǫi−1/2,jPi−1,j + ǫi,j−1/2Pi,j−1

∆X2
−

ρ̄i+1/2,jHi+1/2,j − ρ̄i−1/2,jHi−1/2,j

∆X
= 0

the starved discrete problem is a trivial extension of the fully flooded problem:

ǫi+1/2,jPi+1,j + ǫi,j+1/2Pi,j+1

∆X2
−

(ǫi+1/2,j + ǫi−1/2,j + ǫi,j+1/2 + ǫi,j−1/2)Pi,j

∆X2
+

ǫi−1/2,jPi−1,j + ǫi,j−1/2Pi,j−1

∆X2
−

ρ̄i+1/2,jθi+1/2,jHi+1/2,j − ρ̄i−1/2,jθi−1/2,jHi−1/2,j

∆X
= 0

Notice that this discretisation uses a so called staggered grid: the filling ratio θ and
the film thickness H are defined in intermediate points: (i + 1/2, j) or (i, j + 1/2).
The Reynolds equation and the pressure P are defined in the central points (i, j).
The discretized Reynolds equation in the point (i, j) can be interpreted as a flow
Φ continuity equation over a square with sides ∆X and ∆Y , centered around the
point (i, j):

∂Φ

∂X
+

∂Φ

∂Y
= 0

discretising in the point (i, j) and again assuming ∆X = ∆Y one finds:

Φi+1/2,j − Φi−1/2,j + Φi,j+1/2 − Φi,j−1/2

∆X
= 0

where the flow terms are:

Φi+1/2,j = −ǫi+1/2,j
Pi+1,j − Pi,j

∆X
+ θi+1/2,jHi+1/2,j

Φi−1/2,j = −ǫi−1/2,j
Pi,j − Pi−1,j

∆X
+ θi−1/2,jHi−1/2,j

Φi,j+1/2 = −ǫi,j+1/2

Pi,j+1 − Pi,j

∆X

Φi,j−1/2 = −ǫi,j−1/2

Pi,j − Pi,j−1

∆X



2.10. *DISCRETE STARVED PROBLEM 25

Where the flow Φ has a positive sign in the direction of the increasing i and j (X
and Y ).

Exercise Derive the Reynolds equation from the mass flow continuity equation over
a rectangle, comments with respect to the discrete equation?
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Chapter 3

Solutions

This chapter gives an overview of the analytical and numerical solutions that ap-
proximate the pressure distribution and the film thickness in an EHL contact, with
increasing sophistication.
• The dry contact solution neglects the film thickness, but gives a good approxima-
tion of the pressure distribution (1d and 2d).
• The Ertel-Grubin approach predicts an accurate central film thickness using an
inlet analysis and a Hertzian geometry (1d).
• The Dowson and Higginson solutions are numerical line contact solutions, curve
fitted to give relations predicting central and minimum film thickness as a function
of the dimensionless parameters W1, U and G.
• The Hamrock and Dowson solutions are numerical point contact solutions, curve
fitted to give relations predicting central and minimum film thickness as a function
of the dimensionless parameters W2, U and G.
• The 1d Moes and Venner solutions are accurate numerical line contact solutions,
curve fitted to give relations predicting central and minimum film thickness as a
function of the dimensionless parameters M1, and L. These parameters allow a
graphical representation of the EHL analysis, with analytical asymptotes describing
the physical limiting solutions bounding the P.E. regime.
• The 2d Moes and Venner solutions are accurate numerical point contact solutions,
curve fitted to give relations predicting central and minimum film thickness as a
function of the dimensionless parameters M2, and L. This representation allows
the addition to the EHL analysis of other analytical asymptotes and a graphical
representation.
Many other curve fitted film thickness solutions exist in the literature. Unfortu-
nately, none of them clearly describe where the equation is valid. In order to reduce
confusion to a minimum, the first (and most widely used) relations are given, to-

27
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gether with the most general and precise equations available at the moment.

3.1 Dry Contact

As was indicated in the definition of EHL in the introduction, the elastic deforma-
tion in an EHL contact is generally much larger than the lubricant film thickness.
Since the pressure necessary for the elastic deformation is linearly proportional to
the deformation δ, neglecting this small lubricant film thickness hardly alters the
pressure distribution.
The dry contact approximation becomes even better for the limits of high load and
low speeds, since h/δ → 0. Thus for w → ∞ and/or um → 0, the dry contact
pressure distribution accurately approximates the lubricated one.

3.1.1 Line contact

If the reduced radii of curvature of the contacting bodies are very different in x and
y direction for instance Rx << Ry, one can neglect the curvature in the y direction
and approximate the problem by an infinitely long line contact problem, depending
only on the coordinate x. The reduced radius of curvature in the x direction will be
denoted R. The deformed geometry is given by:

h(x) = h0 +
x2

2R
− 2

πE′

∫
+∞

−∞

p(x′) ln

(
x − x′

x0

)2

dx′

where h0 is the rigid body displacement, or the undeformed minimum film thickness
(which can be negative). E′ is the reduced elastic modulus, defined by:

2

E′
=

1 − ν2
1

E1

+
1 − ν2

2

E2

NB, please note that a second definition E of the reduced elastic modulus is used

in the literature, which simplifies the dimensionless deformation integral even more:

π/E = (1 − ν2
1 )/E1 + (1 − ν2

2)/E2.

In this work we will use the definition of E′ since it is used in the dimensionless
numbers, introduced later in this chapter.

Because the two bodies are in contact, for x ∈ [−b,+b] or X = x/b ∈ [−1,+1],
the gap height H(X) = h(x/b)R/b2 = 0 for X ∈ [−1,+1]. The analysis by Hertz,
Boussinesq, Cerutti shows that a semi-elliptical pressure distribution gives the re-
quired deformation, see Johnson [23]:
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p(x) =

{

ph

√

1 − (x/b)2, if |x| ≤ b;
0, otherwise.

or using dimensionless variables P = p/ph and X = x/b:

P (X) =

{√
1 − X2, if |X| ≤ 1;

0, otherwise.

The dimensionless pressure distribution, and the dimensionless gap height are plot-
ted in Figure 3.1, together with the undeformed geometry, with the same rigid body
displacement (h0).
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Figure 3.1 Dimensionless Hertzian contact pressure, dimensionless deformed
and undeformed geometry, for the line contact case.

It is now possible to compute relations between:

b the half-width of the contact
ph the maximum pressure
w1 the load per unit width
R the (reduced) radius of contact
E′ the reduced elastic modulus.

Starting with the force balance equation, and remembering that the surface of half
an ellipse is π/2 times the product of the two semi-axes, one finds:
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w1 =

∫
+∞

−∞

p(x′) dx′ =

∫
+b

−b
ph

√

1 − (x′/b)2 dx′ =
πphb

2

or

ph =
2w1

πb

The contact half-width b is proportional to the square root of the contact radius R
and to the square root of the load per unit length w1, and inversely proportional to
square root of the reduced elastic modulus E′. One obtains:

b =

√

8w1 R

π E′

Finally the maximum deformation δ is found in the centre of the contact for x = 0,
it is:

δ = δ(x = 0) = (
1

4
+

1

2
ln 2)

b2

R
≈ 0.596 . . .

b2

R
≈ 1.52

w1

E′

when x0 is chosen as b.

NB: δ is also the approach of the centres of the two bodies under load, when the
two bodies were just contacting at zero load.

Exercise Express the Hertzian pressure ph in terms of w1, E′ and R only. In order
to double the pressure, ph, how much should the load w1 change, how much the
contact radius R, and how much the reduced Elastic modulus E′?

Exercise Compute δ for a contact with b = 0.001 m and R = 0.05 m. If the reduced
elastic modulus E′ = 2 · 1011 Pa what is the load per unit length w1, what is ph?

Exercise Figure 3.1 shows the deformed and the undeformed geometry for a line
contact. From the difference the maximum deformation can be estimated as 0.6.
Deduce which dimensionless film thickness relation has been used to obtain H.

3.1.2 Circular contact

If the reduced radii of curvature of the contacting bodies are identical in x and
y direction Rx = Ry, the contact area is a circle of radius a, and the deformed
geometry is given by, see Johnson [23]:
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h(x, y) = h0 +
x2

2Rx
+

y2

2Rx
+

2

πE′

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′) dx′ dy′
√

(x − x′)2 + (y − y′)2

Contact occurs for x2 + y2 < a2 so h(x, y) = 0 for x2 + y2 < a2. A semi-elliptical
pressure distribution gives the required deformation:

p(x, y) =

{

ph

√

1 − (x/a)2 − (y/a)2, if x2 + y2 ≤ a2;
0, otherwise.

or using the dimensionless variables P = p/ph, X = x/a and Y = y/a:

P (X,Y ) =

{√
1 − X2 − Y 2, if X2 + Y 2 ≤ 1;

0, otherwise.

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

P
,H

R

P
H_def

H_und

Figure 3.2 Dimensionless Hertzian contact pressure, dimensionless deformed
and undeformed geometry, for the circular contact case.

It is now possible to compute relations between:
a the radius of the contact area
ph the maximum pressure
w the load
Rx the (reduced) radius of contact
E′ the reduced elastic modulus.

from the force balance equation we find that:
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w =

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′) dx′ dy′

which is the volume of a semi-ellipsoid with axes ph, a and a, thus:

w =
2πa2ph

3
or ph =

3w

2πa2

the radius of the contact area a is found to be:

a =
3

√

3wRx

2E′

the maximum deformation is obtained in x = y = 0 is

δ = δ(x = 0, y = 0) =
a2

Rx
= 3

√

9w2

4E′2Rx

Once again the approach of the centres of the two bodies is given by this value of δ.

Exercise Express the Hertzian pressure ph in terms of w, E′ and Rx only. In order
to double the pressure, ph, how much should the load w change, how much the
contact radius Rx, and how much the reduced Elastic modulus E′?

Exercise Compute δ for a contact with a = 0.001 m and Rx = 0.05 m. If the
reduced elastic modulus E′ = 2 · 1011 Pa, what is the load w, what is the value of
ph?

Exercise Figure 3.2 shows the deformed and the undeformed geometry for a circular
contact. From the difference the maximum deformation can be estimated as 1.
Deduce which dimensionless film thickness relation has been used for H.

3.1.3 Elliptical contact

If the reduced radii of curvature have similar but not identical values, the contact
area cannot be approximated by a line contact, nor is it a circular area. In that
case the contact area is elliptical, and the deformed geometry is given by a similar
equation as in the previous section:
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h(x, y) = h0 +
x2

2Rx
+

y2

2Ry
+

2

πE′

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′) dx′ dy′
√

(x − x′)2 + (y − y′)2

Introducing the elliptical integrals E and F , see Hamrock and Brewe [16]:

E =

∫
+π/2

0

[

1 − (1 − 1

k2
) sin2 φ

]1/2

dφ

F =

∫
+π/2

0

[

1 − (1 − 1

k2
) sin2 φ

]
−1/2

dφ

one can define the semi-axes of the contact ellipse by:

b =
3

√

6k2EwR̄

πE′

a =
b

k
=

3

√

6EwR̄

πkE′

where k is the ratio of the contact semi-axes: k = b/a, and 1/R̄ = 1/Rx + 1/Ry.
The maximum deformation δ(x = 0, y = 0) = δ is given by:

δ(x = 0, y = 0) = δ = F 3

√

9

2ER̄

(
w

πkE′

)2

the pressure distribution p(x, y) is given by:

p(x, y) =

{

ph

√

1 − (x/a)2 − (y/b)2, if (x/a)2 + (y/b)2 ≤ 1;
0, otherwise.

where the maximum Hertzian pressure ph is given by:

ph =
3w

2πab

Approximate solutions for the elliptical integrals are given in [16]:

k ≃ β2/π
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E ≃ 1 +
s

β

F ≃ π

2
+ s ln β

with β = Ry/Rx and s = π/2 − 1

Exercise Check that for the case of a circular contact k = 1, the equations for a, b
and δ reduce to the ones found in the previous section.

Exercise Compute a, b, ph and δ for a contact with Rx = 0.005 m, Ry = 0.05 m,
E′ = 2 · 1011 Pa and w = 104 N?

3.2 *Adhesive contacts

The contact problem including adhesion was addressed by Johnson, Kendall and
Roberts [22]. In order to understand the phenomenon of adhesion it is important to
understand the origin of attraction and repulsion between two neighbouring atoms.
The following equation describes the relation between force f and distance r:

f(r) =
A

rm
− B

rn
and n > m

Figure 3.3 depicts this relation. Please note that at distance r0 the net force
is zero and attraction and repulsion cancel. Generalising this type of behaviour to
perfectly smooth and clean surfaces, one can define the surface energy 2γ as the
work necessary to separate two surfaces starting at the equilibrium point r0 up to
r = ∞.

Figure 3.3 Force between atoms as a function of distance (positive is repul-
sion) [22].
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Figure 3.4 shows the contact radius predicted by the JKR theory versus measured
points. Note the good correlation between theoretical prediction and experimental
result and the big difference with the Hertzian contact for small loads.

Figure 3.4 Variation of the contact radius with load [22].

3.3 Ertel Grubin

The approximation of the central film thickness of Ertel [11] and Grubin [12] is valid
for a stationary line contact, with an incompressible fluid. It is obtained through an
inlet analysis, using a displaced Hertzian geometry, and the Barus viscosity-pressure
relation η(p) = η0 exp(αp).
The Reynolds equation

∂

∂x
(

h3

12η

∂p

∂x
) − um

∂h

∂x
= 0

is simplified using the reduced pressure q:

q =
1

α
(1 − e−αp)

the derivative of the reduced pressure with respect to x is:

∂q

∂x
=

1

α
αe−αp ∂p

∂x
= e−αp ∂p

∂x
=

η0

η

∂p

∂x
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substitution in the above Reynolds equation gives:

∂

∂x
(h3 ∂q

∂x
) = 6η0(u1 + u2)

∂h

∂x

integrating once gives:

h3 ∂q

∂x
= 6η0(u1 + u2)(h − h∗) with h∗ = h|∂q/∂x=0

with the boundary conditions:
p(x → −∞) = 0 : q(x → −∞) = 0
p(x = xs) = 0 : q(x = xs) = 0
∂p/∂x(x = xs) = 0 : ∂q/∂x(x = xs) = 0
p → 0 : q → p → 0
p → ∞ : q → 1/α

rearranging the terms gives:

∂q

∂x
= 6η0(u1 + u2)

h − h∗

h3

some numerical values are given in table 3.1, using α = 2.0 · 10−8.

p [Pa] q [Pa]
1.0 · 104 0.9999 · 104

1.0 · 105 0.999 · 105

1.0 · 106 0.990 · 106

1.0 · 107 0.906 · 107

1.0 · 108 0.432 · 108

2.0 · 108 0.491 · 108

5.0 · 108 0.49998 · 108

1.0 · 109 0.5 · 108

Table 3.1 Reduced pressure q as a function of the pressure p for α = 2.0 ·10−8.

Exercise Check the two asymptotes of q for p → 0 and for p → ∞?

3.3.1 Hypotheses

The hypotheses used in deriving the Ertel Grubin film thickness equation are:
• The contact geometry is that of a Hertzian contact hh(x) with a translation h∗,
where h∗ is the thickness of the oil film: h(x) = h∗ + hh(x). It reads:
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hh(x) = −(
b2

R
)(

1

4
+

1

2
ln 2) +

x2

2R
− 2ph

πE′

∫
+b

−b

√

1 − (x′/b)2 ln

(
x − x′

x0

)2

dx′

• The reduced pressure q reaches the value 1/α for x = −b: q(x = −b) = 1/α.
These two hypotheses are very accurate for the slow speed highly loaded conditions,
where the Hertzian assumption is accurate: δ >> h. In other words for w1 → ∞
and/or (u1 + u2) → 0.

3.3.2 Results

Substituting the second hypothesis in the reduced and integrated Reynolds equation
one finds, through a second integration from −∞ to −b:

q(−b) =
1

α
= 6η0(u1 + u2)

∫
−b

−∞

h − h∗

h3
dx

and using the displaced Hertzian geometry one finds that:

∫
−b

−∞

hh(x)

(hh(x) + h∗)3
dx =

1

6αη0(u1 + u2)

Since hh(x) is a function of w1, E′ and R, this equation gives h∗ as a function of w1,
u1 + u2, η0, α, E′ and R.
The Hertzian geometry is approximated by:

hh(x) =
2
√

2b(−x − b)3/2

3R
for −∞ < x < −b

NB: note that hh(x = −b) = 0.
Integration gives the following relation:

h∗

R
= 1.31

(
(αE′)η0(u1 + u2)

E′R

)3/4 (
w1

E′R

)
−1/8

where h∗ is an approximation of the central or mean film thickness. h∗ is very
sensitive to changes in viscosity η0 and speed (u1 + u2), whereas the film thickness
is hardly affected by variations in the load per unit length w1. The parameters α
and E′ can only be varied very little, at least when using steel bodies and mineral
oils.

Exercise Compute h∗ for R = 0.01 m, η0 = 0.1 Pas, α = 2 · 10−8 Pa−1, u1 + u2 = 1
m/s, E′ = 2 · 1011 Pa, w1 = 104 kg/m.
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Exercise* Calculate the integral to find h∗ using Mathematica/Maple and by hand.
In both cases the integral should be simplified (introduce dimensionless variables,
shift the origin etc).

3.4 Dimensionless Groups

The film thickness obtained by the Ertel Grubin analysis in the previous section is a
function of seven parameters: h∗ = f(η0, α,R,E′, u1, u2, w1), which makes it difficult
to understand its behaviour. In order to simplify the study of h∗, it is possible to
introduce a relation between four dimensionless parameters [9], which can already
be seen from the way the previous equation is written.

W1 =
w1

E′R

U =
η0(u1 + u2)

E′R

G = αE′

H∗ = h∗/R

where W1 is called the load parameter, U is called the speed parameter, G is called
the materials parameter and H is the dimensionless film thickness parameter.

NB: a second definition of U using the mean surface velocity is also commonly used

in the literature: U = η0(u1 +u2)/(2E
′Rx), the coefficients of the equations change,

so be careful. In this work we use the first definition with the sum velocity.

Using these four parameters the Ertel Grubin equation can be rewritten as:

H∗ = 1.31 (GU)3/4(W1)
−1/8

NB, the index 1 in W1 is used to distinguish the dimensionless load parameter in
the one and two dimensional case, see later sections.
Common values for steel-steel contacts lubricated with a mineral oil are: W1 =
10−7 − 10−5, U = 10−12 − 10−10, G ≃ 4000.

Exercise Compute h∗ for R = 0.01 m, η0 = 0.1 Pas, α = 2 · 10−8 Pa−1, u1 + u2 = 1
m/s, E′ = 2 · 1011 Pa, w1 = 104 kg/m, using the parameters W1, U and G. Same
question using Figure 3.3.

Exercise Using Figure 3.3 find h∗ for R = 0.01 m, η0 = 0.1 Pas, α = 2 · 10−8 Pa−1,
u1 + u2 = 1 m/s, E′ = 2 · 1011 Pa, w1 = 104 kg/m.
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Figure 3.3 Dimensionless film thickness H∗ as a function of W1 and U for
G=4000.

Exercise How much does the film thickness h change if the atmospheric viscosity
η0 is doubled? How much if the speed u1 + u2 is doubled? How much if the load
per unit length w1 is doubled? How much if the reduced elasticity E′ is doubled
(careful)? How much if the reduced contact radius R is doubled (careful)?

Exercise The aim of this exercise is to keep the film thickness constant. How much
does one have to change the speed u1 + u2 when the viscosity η0 is halved? How
much does the load have to change when the viscosity is doubled?

Exercise Express the Hertzian contact half width b in terms of W1 and R.

3.5 Dowson Higginson

The numerical line contact results of Dowson and Higginson, were published in
the 1960’s, [9] and form the basis of film thickness equations derived by curve-
fitting of the numerical results. The general shape of the pressure and film thickness
distributions are given in Figure 3.4. Three distinct zones can be identified:
• the inlet, x < −b, p(x) << ph, h(x) >> hc, is the zone where the pressure is built
up due to the converging gap.
• the high pressure zone, −b < x < b, p(x) ≃ ph, h(x) ≃ hc, is the zone where the
film thickness is nearly parallel, and the pressure close to the dry contact pressure.
• the outlet, x > b, p(x) << ph, h(x) >> hc, is the zone where the gap increases
and the pressure drops rapidly and cavitation occurs.

The Reynolds equation has a very different character in these three zones, and
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Figure 3.4 Dimensionless pressure P (X) and film thickness H(X) distribu-
tion.

Dowson and Higginson used different solution techniques in these different zones.
These techniques are outlined in a later section.

On the boundary between the high pressure zone and the outlet a pressure spike
appears, which is accompanied by a local film thickness reduction. The film thickness
reaches a global minimum hm. The deformations in the inlet and outlet region are
relatively small, in the high pressure zone, on the contrary, they are important.

3.5.1 Numerical results: varying U

This section presents a series of pressure and film thickness results for increasing
contact speed. All other parameters, including load, are kept constant.

Note that for increasing speed, the film thickness increases, and the pressure distri-
bution and the film thickness distribution become less Hertzian. Increasing speed
produces a similar effect as decreasing load (see next section). This is an indication
that the parameter set W1, U and G can be reduced to a two parameter set such as
the one proposed by Moes with: M1 = W1/

√
U and L = G 4

√
U .

Exercise What is the dimensionless film thickness H(X = 0) in the Figures 3.5 to
3.7? What is the relative evolution of h(x = 0)? Compare the evolution with the
one predicted by Ertel-Grubin?
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Figure 3.5 Dimensionless pressure and film thickness distribution W1 = 1.53 ·
10−4, U = 5.89 · 10−11, G = 4000.
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Figure 3.6 Dimensionless pressure and film thickness distribution W1 = 1.53 ·
10−4, U = 2.36 · 10−10, G = 4000.
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Figure 3.7 Dimensionless pressure and film thickness distribution W1 = 1.53 ·
10−4, U = 9.42 · 10−10, G = 4000.
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Figure 3.8 Pressure and film thickness distributions from figures 3.5 to 3.7,
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3.5.2 Numerical results: varying W1

This section presents a series of pressure and film thickness results for increasing
contact load. All other parameters, including speed, are kept constant.
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Figure 3.9 Dimensionless pressure and film thickness distribution W1 = 1.53 ·
10−5, U = 5.89 · 10−11, G = 4000.

From these figures it can be observed that with increasing load the pressures in
the inlet region become of less importance (relatively). The film thickness in the
high pressure zone becomes more and more parallel, and the pressure spike moves
towards the exit of the high pressure zone. With increasing load a reduction in the
central and minimum film thickness takes place as well.
NB1: please note the changing scale on the film thickness axis H = hR/b2 in the
figures.

NB2: please note that when the load per unit length w1 increases, the contact width
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Figure 3.10 Dimensionless pressure and film thickness distribution W1 =
3.84 · 10−5, U = 5.89 · 10−11, G = 4000.
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Figure 3.11 Dimensionless pressure and film thickness distribution W1 =
7.67 · 10−5, U = 5.89 · 10−11, G = 4000.
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3.84 · 10−4, U = 5.89 · 10−11, G = 4000.
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b and the maximum Hertzian pressure ph also increase. In the dimensionless graphs
presented in this section, this change does not appear, due to the use of dimensionless
pressure P = p/ph and dimensionless coordinate X = x/b. The evolution of the
dimensional pressure and film thickness is shown in figure 3.15
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Figure 3.15 Pressure and film thickness distributions from figures 3.9 to 3.14
(arbitrary units).

NB3: please note how for increasing load the pressure and the film thickness distri-
bution tend to the Hertzian distributions.

Exercise What is the dimensionless central film thickness H(X = 0) in the Figures
3.9 to 3.14? What is the relative evolution of h(x = 0), careful?

Exercise What is the dimensionless central pressure P (X = 0) in the Figures 3.9
to 3.14? What is the relative evolution of p(x = 0)?

Exercise Compare the answers on h(x = 0) and p(x = 0) from the two previous
exercises with the Figure 3.15.

3.5.3 Film thickness equation

Dowson and Higginson have computed a large number of minimum film thickness
values, for different sets of operating conditions. They then curve fitted these results
to obtain a film thickness equation. In order to reduce the number of parameters,
they used the dimensionless parameters introduced in a previous section:

W1 =
w1

E′R

U =
η0(u1 + u2)

E′R
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G = αE′

HD
m = hm/R

where hm is the minimum film thickness. They obtained the following equation as
a best curve fit of their results:

HD
m = 0.985G0.6U0.7W−0.13

1

a comparison of the powers found by Dowson and Higginson with those of the Ertel
Grubin formula

H∗ = 1.31 (GU)3/4(W1)
−1/8

gives:

E.G. D.H.

G 0.75 0.60
U 0.75 0.70
W1 −0.125 −0.13

Table 3.2 Comparison of the powers obtained in the Ertel Grubin and the
Dowson Higginson film thickness equations.

One sees that all powers are comparable, thus both equations will predict similar
film thickness values and similar trends. However, when comparing these results
one has to keep in mind that both equations approximate different properties: H∗

is a kind of mean or averaged film thickness, while HD
m represents a minimum film

thickness.
Even though the numerical techniques have vastly improved over the last four
decades, the Dowson and Higginson equation has only undergone slight modifica-
tions. It remains a reference equation for film thickness in EHL line contacts.

Exercise Compute hm for R = 0.01 m, η0 = 0.1 Pas, u1 + u2 = 1 m/s, α = 2 · 10−8

Pa−1, E′ = 2 · 1011 Pa, w1 = 104 kg/m. Compare with the Ertel Grubin value,
comments?

3.5.4 *Pressure spike

In the previous section two distinct phenomena have been observed in the EHL film
thickness and pressure distributions. First of all a local film thickness reduction
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is obtained at the end of the high pressure zone (near X = 1). Just before this
restriction a local second pressure maximum: the pressure spike, is observed.
The local film thickness reduction can be explained by studying the Reynolds equa-
tion. In this region the Couette flow and the Poiseuille flow act in the same direction.
Because the pressure gradient is very large and because the viscosity is close to its
ambient value, the flow would be too large. To maintain flow continuity, a local film
thickness reduction is required.
In order to understand the pressure spike it is necessary to study the elastic deforma-
tion equation. This equation shows that a pressure distribution with a logarithmic
singularity (the spike) is required to produce a nearly constant film thickness fol-
lowed by a sudden restriction [13]. Physically, this abrupt film thickness reduction
is required to ensure mass flow continuity, when the reduction in pressure causes the
viscosity to decrease very rapidly, and increases the flow. For a compressible fluid
the logarithmic singularity is softened, and the maximum peak pressure remains
finite.

3.5.5 *Numerical technique

The solution method of Dowson and Higginson for the EHL line contact problem
consists of solving the Reynolds equation and the film thickness equation one after
the other, and iterating between the two solutions until convergence is obtained.
Then the third equation of force balance is adjusted, and one returns to the first
two. This is repeated until all equations have converged to within a certain accuracy.
The way the Reynolds and film thickness equation are solved however, is different
in the high pressure zone and in the low pressure zone.

In the low pressure zones a so called direct method is applied: given an initial
film thickness profile h(x), the Reynolds equation is solved for the pressure distri-
bution p(x). Then this new pressure distribution is used to compute the new elastic
deformations, thus resulting in a new film thickness distribution etc. etc, until con-
vergence.

In the high pressure zones a so called inverse method is applied: given an ini-
tial pressure profile p(x), the Reynolds equation and the film thickness equation
are solved to give two film thickness profiles: h(x). These two are compared and
the pressure distribution is altered to reduce the difference between the two film
thickness profiles. This process is repeated until convergence.

The two pressure distributions in the inlet and the high pressure zone are
matched in such a way that a continuous pressure and film thickness profile occurs
over the entire domain of calculation. In an outer loop, the force balance equation
is adjusted to obtain the required load.



48 CHAPTER 3. SOLUTIONS

The reason why the inverse method is introduced in the solution process, is that
the straightforward direct method fails to converge in the high load zone, whenever
the applied load becomes important. The reason for this divergence has only been
discovered recently, and will be outlined in a later section.

3.6 Moes Venner, 1d

There exist other sets of dimensionless parameters, the best known set of two param-
eters are named after Moes, and are called M1 and L. Moes himself prefers to call
them the Delft parameters, since they were originally developed at the University
of Delft. This set has the advantage of being even smaller, and it allows a graphical
representation which includes other (non-EHL) solutions, which act as asymptotic
solutions to the EHL solution. In this section the line contact parameters are pre-
sented. The parameters M1 and L are formed by regrouping the parameters W1, U
and G. One has to be careful when using these parameters since the minimum film
thickness parameter HM

m incorporates the speed parameter U .

M1 =
W1√

U

L = G
4
√

U

HM
m =

hm

R
√

U

HM
m = 1.56L0.55M−0.125

1

NB: be careful not to mix up HD
m = hm/R and HM

m = hm/(R
√

U)!

Exercise What are the advantages of the set M1, L over the set W1, U,G? What
are its disadvantages?

Exercise What is the order of magnitude of HD
m and of HM

m ? Use typical values
given before for oil/steel contacts.

Exercise Compute hm for R = 0.01 m, η0 = 0.1 Pas, u1 + u2 = 1 m/s, α = 2 · 10−8

Pa−1, E′ = 2 · 1011 Pa, w1 = 104 kg/m. Compare with the Dowson and Higginson
value and the Ertel Grubin value, comments?

Exercise Express the Ertel Grubin formula in terms of Hmin, M1 and L.
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3.6.1 Comparison

In this section the powers of the three film thickness formulae are compared. The
Ertel Grubin equation can be expressed in terms of M1 and L, see the last exercise
of the previous section. The Dowson and Higginson equation cannot be expressed in
terms of M1 and L, consequently the Moes Venner equation is expressed in terms of
W1, U and G, and the three equations are compared. In terms of these parameters
this equation reads:

HD
m = 1.56G0.55U0.7W−0.125

1

NB: HD
m = hm/R whereas HM

m = hm/(R
√

U)!

E.G. D.H. M.V.

G 0.75 0.60 0.55
U 0.75 0.70 0.70
W1 −0.125 −0.13 −0.125

Table 3.3 Comparison of the powers obtained in the Ertel Grubin, Dowson
Higginson and Moes Venner film thickness equations.

Exercise Check the expression of the Moes Venner formula in terms of HD
m , W1, U

and G.

3.6.2 Graphical representation

Using the Moes dimensionless parameters two additional asymptotes can be rep-
resented. These are the rigid isoviscous asymptote, when no elastic deformations
occur, and the viscosity is constant and equal to the ambient pressure value η0. The
parameter L is zero since α = 0 (isoviscous assumption).

HM
m =

2.45

M1

A second asymptote is called the elastic isoviscous asymptote. The elastic deforma-
tions can no longer be neglected, but the viscosity remains at its ambient pressure
value η0, in other words α remains zero.

HM
m =

2.05
5
√

M1
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The following figure represents these three asymptotes together with numerical film
thickness values computed by Venner [37].
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Figure 3.16 Moes-Venner film thickness prediction together with the three
asymptotes, the piezo viscous-elastic asymptote given for L = 10.

This Figure shows that the three asymptotes describe the film thickness behaviour
accurately in a wide range of operating conditions.

NB Note that the Ertel Grubin formula, presented in section 3.3.2 and 3.4, the
Dowson and Higginson formula presented in section 3.5.3, and the Moes-Venner
equation from this section are only valid under Piezoviscous Elastic conditions,
which can be approximated by the Moes parameters: M1 > 5, L > 2.5.

Exercise Which of the three regimes is the appropriate regime for M1 = 1, L = 0?
and for M1 = 100, L = 0? and for M1 = 100, L = 10? and for M1 = 10, L = 1
(careful)? Compute for each of the cases the film thickness HM

m .

Exercise Draw the EHL domain in Figure 3.3, where the Ertel Grubin formula is
valid. Use M1 > 5 and L > 2.5 as criteria. What happens if one uses the EG
equation beyond these limits?
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3.7 *I.R. Friction

In this section the friction is calculated in the Isoviscous Rigid regime. The friction
force Ft is equal to the mean shear stress times the contact area. The shear stress is
approximated by the Couette term in a pure sliding situation: u1 = u, u2 = 0. The
shear stress is equal to η0∂u(z)/∂z)|z=0 (for the lower surface). Using the Couette
approximation one writes the shear rate as

∂u(z)

∂z
=

u

h

Thus one needs to compute the dimensional film thickness and we take the minimum
film thickness hm obtained in the previous section. The dimensionless film thickness
for the Isoviscous Rigid regime is given by:

HM
m =

2.45

M1

Using the definition of HM
m and M1 one obtains:

hm

R
√

U
= 2.45

√
U

W1

Using the definition of U and W1 one finds:

hm = 2.45
Rη0uE′R

E′Rw1

= 2.45
Rη0u

w1

Assuming that the friction force Ft is proportional to the area A times the shear
stress and that the area is proportional to R (remember this is area per unit length!)
one finds:

Ft ∝ Aη0

u

hm
∝ Ruη0w1

η0Ru
∝ w1

As a result the friction force Ft per unit length is proportional to the load per
unit length. Consequently, the friction coefficient f = Ft/w1 is constant, that is
independent of load, speed and viscosity!

Exercise Calculate the dimension of the term η0u/w1. What is the consequence for
the minimum film thickness hm?

Exercise Explain why the film thickness hm is independent of E′ in the I.R. regime.
What about the dependence on α?

Exercise Show that for the I.E. regime hm ∝ η0.4
0 and hm ∝ w0.2

1 . Show that
as a consequence the friction coefficient f ∝ w−0.8

1 . Derive the complete equation
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showing the dependence of Ft with respect to all parameters η0, R, w1 and E′. Show
through a dimensional analysis that indeed [Ft] = N/m.

3.8 Hamrock Dowson

In the mid seventies, Hamrock and Dowson [15] published a series of four papers,
describing the film thickness in circular (Rx = Ry) and elliptical (Rx 6= Ry) EHL
contacts. Their film thickness equation was based on numerous numerical calcula-
tions of the film thickness for different sets of operating conditions. In order to reduce
the number of parameters they extended the Dowson and Higginson dimensionless
parameters to the circular contact case:

W2 =
w

E′R2
x

U =
η0(u1 + u2)

E′Rx

G = αE′

HD
c = hc/Rx

notice that the index 2 in W2 corresponds to the two dimensional case, and the load
is divided by the square of the reduced radius. All these results were curve fitted to
obtain the following equations:

HD
c = 1.69G0.53U0.67W−0.067

2 (1 − 0.61 exp(−0.73k))

HD
m = 2.27G0.49U0.68W−0.073

2 (1 − exp(−0.68k))

where k = 1.03(Ry/Rx)0.64.

These equations have been derived for the condition that k ≥ 1, they are not valid
when Ry < Rx.

Exercise Compare the exponents of U and W2 in HD
c and HD

m . What do you con-
clude. Will the difference between HD

m and HD
c increase or decrease with increasing

values of W2 and U?
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3.9 Moes Venner 2d

Once again it is possible to simplify the film thickness relation, and to eliminate
one parameter. The best known set of two parameters are named after Moes, and
are called M2 and L. It is an extension of the one dimensional set. This choice
allows a graphical representation which includes other (non-EHL) solutions, which
act as asymptotic solutions to the EHL solution. In this section the circular contact
parameters are presented.

M2 =
W2

U3/4

L = G
4
√

U

HM
c =

hc

Rx

√
U

Using these parameters it is possible to express the isoviscous-rigid asymptote, it
reads:

HM
c = 47.3M−2

2

whereas the isoviscous-elastic asymptote reads:

HM
c = 1.96M

−1/9

2

The Figure 3.17 shows the two asymptotes together with the full EHL solution. It
shows once again the regions where each of the solutions is valid. This solution was
obtained using the following (rather complex) formula.

HM
c =

[{

(1.70 t M
−1/9

2 L3/4)r + (1.96M
−1/9

2 )r
}s/r

+ (47.3M−2
2 )s

]1/s

where r = exp{1 − 6/(L + 8)}
s = 12 − 10 exp(−M−2

2 )

t = 1 − exp(−0.9M
1/6

2 /L1/6)

NB1 No piezo-viscous elastic asymptote can easily be extracted from this equation,
it has to be used as a whole.
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Figure 3.17 Moes-Venner film thickness prediction together with two of the
three asymptotes.

NB2 Note that the Hamrock and Dowson formula presented in section 3.7 is only
valid under EHL conditions, which can be approximated by the Moes parameters:
M2 > 10, L > 2.5.

Exercise Which of the three regimes is the appropriate regime for M2 = 3, L = 0?
and for M2 = 100, L = 0? and for M2 = 100, L = 10? and for M2 = 10, L = 1
(careful)? Compute for each of the cases the film thickness HM

c .

Exercise Calculate the film thickness assuming Rx = Ry = 30 mm, w = 90 kg,
η0 = 10−4 Pa s, α = 10−9 Pa−1, u1 + u2 = 60 m/s, E′ = 21011 Pa, careful, which
regime?

Exercise Derive the dimensional film thickness equation in the I.R. regime. Com-
ment on the absence of E′. Check the dimension.

Exercise Derive the dimensional film thickness equation in the I.E. regime. Com-
ment on the absence of α. Check the dimension.

Exercise Calculate the film thickness HD
c and HM

c for W2 = 10−5, U = 10−11

and G = 4000. Compare the two values and list another advantage of the Moes
parameter set.
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3.9.1 Film thickness graphs

When studying the point contact problem, one finds that the film thickness in the
central zone is roughly constant, as in the line contact case. This constant central
zone is surrounded by a horse shoe shaped zone of minimum film thickness. The
opening of the horse shoe is in the inlet region. The smallest film thickness is
normally found away from the centre line of the contact, in the side lobe region. The
precise shape of the film thickness distribution evolves with the operating conditions
as is shown by the following graph.

Figure 3.18 Interferometric pictures showing the film thickness distribution
by P.M.E. Cann.

3.9.2 *Central and minimum film thickness

In the line contact section, only one equation for the central (Ertel Grubin) or min-
imum film thickness was given, in the line contact case, the central and minimum
film thickness are connected through the flow continuity equation, because the same
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flux has to pass the central and the minimum film thickness.
In a circular or an elliptical contact, this is no longer true, the minimum film thick-
ness occurs in the side lobes, and no continuity equation connects the two. As a
consequence, the minimum film thickness and the central film thickness vary in an
independent way. In general, one can say that for increasing loads, the minimum
film thickness has the tendency to decrease faster than the central film thickness.



Chapter 4

*Advanced Topics

In this chapter an overview of more recent developments is given. Due to its very
nature, there is not yet a scientific consensus on some of these topics.

4.1 Friction

Friction in thin films is generally simple to predict under normal atmospheric condi-
tions. Whenever slip is important, the fluid flow in the contact can be approximated
by a Couette shear flow. The shear stress obtained in such a contact is simply the
product of the fluid viscosity η0 and the shear rate ∂u/∂z. The shear stress is simple
to measure in standard laboratory equipment such as a concentric viscometer.

In EHL contacts, however, the viscosity depends on the pressure and can be
very high. Furthermore, because of the small film thicknesses, and the large velocity
differences between the two surfaces, the shear stresses can be enormous. This results
in general in two different phenomena: thermal dissipation and rheological effects.
Due to the thermal dissipation, the temperature in the contact will increase, thereby
changing the fluid properties such as the density and the viscosity. Rheological
effects cause the shear stress - shear rate relation to deviate from the Newtonian law
used above. Finally, when the film thicknesses in EHL contacts are approximating
molecular values, such thin fluid films can show behaviour that deviates from that
of the bulk fluid.

The extreme conditions inside an EHL contact make a direct and detailed study
of these effects difficult or impossible. As a result, the majority of the studies have
resulted from average traction measurements, without a detailed study of what really
happens inside an EHL contact under sliding conditions. Such average measures are

57
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used in traction curves, where the friction coefficient in a contact is plotted against
the sliding speed (u2 − u1)/(u2 + u1).

Three different regimes can be observed:
a linear regime, where the friction increases linearly with the slip.
a nonlinear regime, where the friction increases less than linearly with the slip.
a thermal regime where the friction coefficient decreases with increasing slip.
These three regimes can be observed in Figure 4.1. It should be noted that a general
friction curve consists of all these three regimes.

(u1-u2)/(u1+u2)

NN.T.

NN.I.N.I.f

Figure 4.1 Friction coefficient as a function of the sliding speed, for three
different regimes: Newtonian Isothermal, Non-Newtonian Isothermal, Non-
Newtonian Thermal.

4.2 Rheology

Whenever the shear stress - shear rate behaviour deviates from the linear behaviour
called Newtonian, one calls this behaviour non-Newtonian. General rheological be-
haviour can show both an increase as well as a decrease in the effective viscosity.
Another possibility is that the film shows other than pure viscous behaviour such
as elastic or plastic behaviour or time dependent behaviour. In general the be-
haviour of the fluid film in an EHL contact, is a combination of these individual
ones: visco-elastic, visco-plastic etc. Such behaviour reflects phenomena taking
place on a molecular scale: fluid molecules might align in a shear flow, resulting in
a shear stress that is lower than that predicted by the Newtonian laws. The first
fluid layers adhering to the boundary may impose on the film a character different
from the bulk character. Due to the high pressures, the fluid molecules are pressed
together, and start to interact in a way which resembles that of solids. In this last
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case, the fluid is called solidified (glassy-state) and for numerous fluids this solidi-
fication pressure has been studied as a function of temperature, see Jacobson and
Vinet [20]. An overview of this rheological behaviour with a tribological background
is given by Jacobson [21].

4.3 Additives

So far we have only discussed the base oil viscosity of the lubricant (and its density
to a lesser extent), but additives are generally added to all commercial oils to im-
prove certain characteristics of the lubricant. In this section we will rapidly discuss
a number of different additives and their use.
VI improvers: the Viscosity Index is a measure of the variation of viscosity with
temperature. In order to build up a sufficiently thick film, oils with a high viscosity
are to be preferred. However, these high viscosity oils lead to high viscous losses due
to churning (oil bath). Consequently, a compromise between losses and film thick-
ness has to be found. Now the operating temperatures, for instance in cars (summer
& winter) can vary significantly, and perturb this balance. Thus VI improvers are
used to reduce the viscosity variation with temperature. VI improvers are generally
high molecular weight polymers.
EP (Extreme Pressure) additives: mathematically smooth surfaces are easily sepa-
rated by an oil film, however, engineering surfaces are generally rough and especially
during running-in, metal to metal contact can occur. The local conditions when
metal to metal contact occurs can be extreme, and the protective oxide layer can be
damaged. Under these extreme conditions, the EP additives will react quickly with
the surfaces, creating low friction protective films. They are organic compounds
with a reactive non-metal as S or Cl which reacts with hot metal surfaces.
Anti-Wear additives are S or P containing organic compounds, reducing wear by
forming a protective layer, (ZDDP).
Anti-oxidants: lubricating oils are generally very stable against oxidation at ambi-
ent temperature, but the operating temperature in an internal combustion engine is
substantially higher. However, even under those conditions, a good chemical stabil-
ity of the lubricant is required. Anti-oxidants are used to limit the chemical aging
of the oil. The metal surfaces, present in the system, (or the wear particles) can act
as oxidation catalysts.
Dispersant additives: diesel engines produce relatively high amounts of carbon rich
particles (soot), that accumulate in the lubricants. The high soot concentration can
diminish lubricant performance. Consequently dispersant additives are used to keep
the soot particles in suspension.
Other additives that are found in lubricants include pour point additives, anti-foam
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additives, corrosion inhibitors, etc, etc.
It should be kept in mind that whereas the base oil ages during operation, some
of the additives are actually consumed. After a certain period, the concentration
of this additive will become too low and lubricant performance will degrade very
rapidly.

4.4 Thermal Effects

When studying thermal effects, one has to distinguish between the effect on the film
thickness and the effect on the friction. Shear heating in an EHL contact has little
influence on the film thickness once the fluid has entered the high pressure zone.
Due to the high pressures and the very high viscosity, the Poiseuille term in the
Reynolds equation will be close to zero. Hence the fluid will have no other choice
than to continue its path through the contact. Thus film thickness variations are
excluded because of flow continuity. Whenever the thermal effects inside the high
pressure zone start to influence the inlet zone, through conduction for instance, a
serious reduction in film thickness can arise. In high speed applications, the ther-
mal generation in the inlet itself can become important and induce a film thickness
reduction. As the film thickness in the high pressure zone is determined in the inlet
zone, a temperature increase in the inlet, which results in a viscosity decrease, will
lead to a reduction in the film thickness. This smaller film thickness might in its
turn give rise to a larger thermal production, due to a higher shear rate, or due to
asperity interaction. This will then reduce the film thickness even more, etc, until
rapid failure occurs (scuffing).

If the thermal dissipation in the high pressure zone gives rise to a local tem-
perature increase confined to the high pressure zone only, the film thickness will
remain unaffected, but due to a local viscosity decrease, the total shear stress may
be reduced considerably. As a result the overall traction, as measured in a traction
curve can decrease with increasing slip. The contact operates in the thermal regime
of the traction curve. From these observations it is important to retain the following
conclusion: the film thickness is governed by the conditions in the inlet, the shear
stress, or traction, is governed by the conditions in the high pressure region. In a
nutshell this observation explains the success of film thickness predictions, and the
difficulties of the traction prediction. The low pressure lubricant behaviour is much
easier to study and much better understood than the high pressure behaviour.
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4.5 Fatigue Life

Whenever the fluid film completely separates the two surfaces, the stresses endured
by the two surfaces will be made up of the normal pressure distribution cycle, to-
gether with a shear stress component. Even in the absence of any other stress
contribution, these stress cycles will lead to a deterioration of the surfaces (spalling)
after many cycles (high cycle fatigue). For a given contact load and material pa-
rameters, this represents the ultimate number of stress cycles a contact can endure
(expressed in the number of cycles). This endurance life is inversely proportional
to the load. A classical relation for bearings is given by the Lundberg-Palmgren
equation. However, this life is submitted to statistical variations. Consequently, one
speaks of L10 the ‘L − ten’ life or the number of stress cycles 90% of a population
of identical bearings, submitted to an identical load and under identical lubricating
conditions will surpass. The life of every individual bearing in a test is normally
plotted on a logarithmic scale in a Weibull plot, which allows the determination of
L10

Figure 4.2 Weibull plot: individual life in a test.

The Lundberg-Palmgren relation [31, 32] assumes a Hertzian pressure and stress
distribution, it reads:

1

L10

= A
σc

zh

Where A is a constant depending on the material, σ is the maximum shear stress,
and z is the depth at which the maximum shear stress occurs. The exponents c and
h have been established empirically for different types of bearings: c ≃ 10, h ≃ 2.
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Factors that reduce the life with respect to these ideal conditions are: local
stress raisers such as indentations and surface roughness (non-smoothness of the
surfaces) or contaminants (small foreign particles present in the oil). Obviously,
the quality of the steel, and its capacity to resist to these stress cycles without
the formation of micro cracks which grow to form macro cracks and then spalls,
is an essential factor in this L10 life. The steel quality determines the value of
the constant A and A′. Since the Lundberg-Palmgren equation can only account
for a Hertzian pressure distribution, the previous equation was extended into an
integral formulation by Ioannides and Harris [19]. Furthermore, a fatigue limit σu

was introduced. Whenever the stresses remain below this fatigue limit, no material
damage occurs, and the predicted life is infinite.

1

L10

= A′

∫

V

(σ − σu)c

zh
dv

where the volume V is taken to be the volume where the shear stress exceeds the
fatigue limit σu.
This equation permits the study of the influence of roughness, and indentations
stemming from contaminant particles, in terms of life. If the surface roughness is
accounted for explicitly, the term zh can be omitted.

Bearing manufacturers give the L10 life of their products as a function of the
load, the lubrication type and level, the cleanliness of the lubricant, etc, etc.

4.6 Contamination

The previous sections have demonstrated that real surfaces are not mathematically
smooth, and that the roughness can significantly influence contact performance.
In this section we will show that lubricants are never perfectly clean and that the
contaminant particles present in the oil can seriously diminish contact performance
(mainly precision, noise and life).

On a macroscopic level new lubricants are reasonably free from particles, how-
ever, one has to keep in mind that lubricant film thicknesses in EHL contacts, have
heights that are of the order of less than one micrometer. Consequently, particles
that are say of the order of ten micrometers can do serious damage to the contacting
surfaces, by plastically deforming them whilst passing through the contact. Thus
one needs to study the cleanliness level of oils at this scale. An ISO standard is in
use giving the number of particles, in a logarithmic way, exceeding the size of 15, 5
and 2 micrometers.

The type of contaminant particle will also largely influence the type and amount
of damage inflicted on the bearing. Four particle types are distinguished:



4.7. TRANSIENT EFFECTS 63

• Soft ductile particles: such as PVC or copper particles leave relatively small and
shallow indents when they are overrolled. They cause only minor damage to the
raceway without affecting the performance of the contact.

• Hard ductile particles: such as steel or M50 particles leave relatively large and
deep indents when they are overrolled. These indentations can act as stress raisers
that increase the risk of surface initiated spalling. When the indents are relatively
large and deep, the operating life of the bearing can be greatly reduced.

• Hard brittle particles: such as SiO2 (sand) and glass, fracture very early in the
inlet, creating large amounts of small fragments. These fragments can cause very
rapid wear, when the number of particles is high. This wear can lead to loss of
precision of the components, resulting in a loss of performance.

• Hard tough particles: such as ceramic particles B6C, SiC and diamond, fracture
very late in the contact, creating large defects with steep edges and fragments are
also embedded into the surface. A complicated damage mechanism occurs with ei-
ther spalling or wear damage.

Of course, the damage inflicted depends both on the amount of particles, their
size and their type (hardness).

A very different type of contamination is formed by water. A very small amount
of water in a classical lubricant (such as oil) can reduce the lubricant performance
dramatically. The effect is widely recognized, but remains for the moment largely
unexplained.

4.7 Transient Effects

In real life all processes are transient in nature, consequently the stationary Reynolds
equation, neglecting the ∂(ρh)/∂t term, is always an approximation of reality. When
the changes are very slow, the stationary equation can correctly approximate the
transient results, in a quasi static way. A simple criterion says that as long as the
speed variation during the contact passage is small, the lubrication regime is quasi-
stationary. Defining a as the contact acceleration, u the entrainment velocity and b
the contact half-width this relation becomes a/u ≪ u/(2b).

However, when the variations are too important, or too fast, true transient
behaviour occurs, requiring the solution of the transient Reynolds equation. The
transient process can be generated in several different ways: transient load w(t),
transient speed u(t), transient geometry h(t). The last case occurs for instance in
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Figure 4.3 Picture of disk raceway tested with M50 particles ( magnification
40x), picture by F.Ville.

Figure 4.4 Picture of disk raceway tested with ACFTD (sand) (magnification
40x), picture by F.Ville.

Figure 4.5 Picture of disk raceway tested with B6C particles (magnification
40x), picture by F.Ville.
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the cam tappet contact, where the contact radius varies throughout the rotation of
the cam. An example showing the pressure distribution and film thickness in such
a cam-tappet contact is given in Figure 4.6.
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Figure 4.6 Pressure and film thickness distribution for a rotating cam, note
the variation of the radius of curvature (undeformed geometry) (S. Messé).

Another example of a transient geometry occurs when roughness is present on the
surfaces. Since the surfaces move through the contact, a varying gap height will
result from it, as is explained in the next section. Generally, several variables will
change in time: load, speed, temperature, etc, and the user has to make a choice to
study a certain aspect that he suspects to be dominant.

4.8 Approximating Transient Effects

Full numerical predictions of the film thickness in transient EHL contacts are rather
time consuming. As an example: the film thickness calculations of the cam-tappet
contact presented in the previous section required many hours of calculation [34].
Such times are acceptable in a research environment, but in a development environ-
ment many different geometries need to be calculated, and a calculation time of the
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order of a second is required. Aiming for such short times requires a major simpli-
fication of the Reynolds equation. In Section 2.4.5 it was shown that the Reynolds
equation reduces in the high pressure zone to a propagation equation:

∂(ρh)

∂x
+

∂(ρh)

∂t
= 0

Assuming that the film thickness h(x) was defined by the velocity u when the point
passed the inlet, one can compute the film thickness profiles, see Messé [33]. As an
example the film thickness profile for a linear accelerating contact is computed:

ue(t) = at t ≥ 0

The film profile at t = σ will be computed with ue(σ) = u0 = aσ, or σ = u0/a

x(σ) = −b +

∫ σ

t
ue(t

′) dt′ t ≥ 0

where t is the time the particular fluid element now at position x(σ) entered the
contact. This yields:

x(σ) = −b +
a(σ2 − t2)

2
t ≥ 0

Using X = x/b, τ = 2b/u0 and σ = u0/a one obtains:

στ(X + 1) = σ2 − t2

Taking the positive root for t one finds

t =
√

σ2 − στ(X + 1)

Consequently:

ue(t) = at = a
√

σ2 − στ(X + 1)

The classical film thickness equation predicts that

h(ue) = k1u
0.7
e

defining h0 = k1u
0.7
0 = k1(aσ)0.7 and H(X) = h(x/b)/h0 we find

H(X,σ) =

(
at

aσ

)0.7

= (1 − τ

σ
(X + 1))0.35

Thus H(X = −1, σ) = 1, and the film has obtained a positive value H(X,σ) > 0 for
−1 ≤ X ≤ σ/τ − 1. If σ/τ > 2 the film thickness is positive in the entire ‘contact
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zone’. Please note that calculated film thickness values outside the domain −1 ≤
X ≤ 1 are physically meaningless. Furthermore, the predictions around |X| = 1 are
not very accurate as viscous effects are important (due to lower pressures) see Figure
4.7.
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/h
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Analytical approximation
Full numerical solution

Figure 4.7 Comparison full numerical model and transport approximation,
decelerating contact (a < 0).

However, away from the contact edges, the film thickness prediction is rather accu-
rate. Finally, for more complicated velocity variations ue(t), the film thickness can
best be computed through numerical integration of ue(t).

4.9 Roughness

As explained above, whenever the surfaces are rough, the Reynolds equation becomes
a transient equation. As was outlined in the introduction, the roughness to film
thickness ratio, can be used to predict contact performance. However, it was found
numerically and experimentally that sub contact size features deform inside the EHL
contact. Hence their amplitude is less (sometimes much less) than when measured
under atmospheric conditions. Experimental evidence of the deformation of a ridge
in an EHL contact was published by Kaneta [24, 25].

In this paper it is also shown that for a given set of operating conditions (M,L
or W,U,G), the deformation depends on the amount of slip in the contact. The
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Figure 4.8 Comparison of experimental and numerical results of a transverse
ridge under pure rolling, experimental results by M. Kaneta.

experimental results have been compared to numerical ones, and excellent agreement
between the two was found [28], see Figure 4.8.

For low load situations the deformations of the roughness features will obviously
be small, in high load cases they might be large, but in general, the deformation
depends on the operating conditions. In order to study this deformation, the de-
formation of waviness in an EHL contact was studied first [30]. This study shows
that for a line contact the deformation of waviness can be described by a single
parameter:

Ad

Ai
=

1

1 + 0.125∇1 + 0.04∇2
1

where Ad is the amplitude of the deformed waviness, Ai is the amplitude of the

initial waviness and ∇1 = (λ/b)(M
3/4

1 /L1/2) where λ is the waviness wavelength, b
is the half width of the Hertzian contact, and M1 and L are the dimensionless Moes
parameters.

When sliding occurs (u1 6= u2) the equation of the amplitude reduction can be
generated, including the slide to roll ratio [29].
For a point contact a similar parameter and a similar equation have been found.
However, in this case the problem becomes more complicated, since the wavelength
in x and y direction both play a role.
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Figure 4.9 Relative amplitude as a function of ∇1, under pure rolling.

4.10 Lubricated Wear

Wear forms a vast research area, on which very much work is being done. For an
initiation and an overview the reader is referred to Williams [42]. In this section we
will discuss two wear types. The first type of wear is termed running in. It concerns
the operation of new machine components. The initial surface topography (rough-
ness) will normally be too rough to avoid contact and asperity-asperity interaction
will take place. Generally this type of interaction is very mild, the asperities will
quickly wear away and contact stops. In the case of run in surfaces a complete fluid
film is once again established and the wear rate will remain very low for the rest
of the component life. In order to enable successful running in, it is generally re-
commended to use rather mild operating conditions for the first hours of operation.
A second and very dramatic type of lubricated wear is called scuffing. If the op-
erating conditions (load, slip, temperature) are continuously increased, a point is
reached above which the contact will fail catastrophically. First indications are in-
creased noise and vibration levels followed by a thermal runaway. When analyzing
the contacting surfaces afterwards, material transfer from one surface to the other is
obvious, together with the destruction of the original surface finish. Local lubricant
failure has led to such dramatic conditions that local welding has taken place. In
general after scuffing has happened, the intended function of the machine element
is completely lost.
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4.11 Starved Lubrication

Until now the lubricant film thickness has been calculated assuming that sufficient
oil was present in the inlet, to allow this film to be built up. Whenever insufficient
oil is available, the generated oil film thickness will be less than for the fully flooded
case, see Figure 4.10.
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Figure 4.10 Numerical calculations of the transverse film thickness H(X =
0, Y ) as a function of Hoil.

In a study by Chevalier et al. [6] it was shown that it is advantageous to express
the problem in terms of amount of lubricant present on the surfaces, in front of the
contact Hoil. Furthermore, the film thickness was made dimensionless by dividing
it by the fully flooded central film thickness Hcff .
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Figure 4.11 Numerical calculations of the central film thickness Hc as a func-
tion of Hoil for various sets of operating conditions, and a circular contact.
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Figure 4.10 and the following equation give the film thickness ratio R = Hc/Hcff , as
a function of the dimensionless amount of oil available on the surfaces r = Hoil/Hcff .

R =
r

γ
√

1 + rγ

The value of γ for EHL contacts lies between 2 and 5. In this equation and in
the figure, two asymptotes are important: r → 0 and r → ∞ which give R → r
and R → 1 respectively. Of these two, the asymptote for thin films is the most
interesting, since it shows that for very thin oil films, the EHL film thickness is the
same as the film in front of the contact. In other words: the contact becomes very
efficient in building up an oil film when very little oil is available in the inlet. Thus
for r → 0, Hc → Hoil (neglecting the compressibility effects).

NB1: In such severely starved cases the complex film thickness equations of chapter
3 can be replaced by the trivial equation hc = hoil. However, predicting or measuring
hoil in a realistic application is far from trivial, see Figure 4.12.

NB2: The relation for severely starved contacts hc = hoil neglects the lubricant
compressibility. As the maximum compressibility is of the order of 30%, the relation
still gives a fair approximation. A much better approximation is given by ρ(ph)hc =
ρ0hoil!
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Figure 4.12 Comparison of experimental and numerical results (heavily
starved), experimental results by P.M.E. Cann.

Exercise Derive the solution of the starved 1d EHL problem, i.e. obtain hc(hoil) for
the line contact problem. NB consider flow continuity.
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4.12 Grease Lubrication

A very common example of starved lubrication is given by a grease lubricated con-
tact. One could even say that a fully flooded contact is the exception to the rule,
since the majority of the contacts are grease lubricated.

A grease consists of a base oil mixed with a thickener agent, in such a way that
a semi-solid material is obtained, which has a shear strength. The material behaves
in an elastic way if the shear stress applied remains below this limit. Greases are
applied generally because of this quality: one can put it in/around a contact, and
it will stay in place, without requiring retainer (oil bath) or lubrication system
(including pump, tank, etc.). Furthermore, the bulk grease can act as an efficient
seal, which hinders dirt and dust to contaminate and thus to damage the contact
zone.

Grease lubrication works by a slow release of base oil from the grease matrix,
a release that can be increased by a temperature increase. However, due to its
structure, once the grease is removed from the contact track, it will not flow back
into the track. Consequently, the contact will operate with very little lubricant
available: it operates under starved conditions. During the first few overrollings
the contact is lubricated with a thick grease film, and during these overrollings, a
deposited layer is sometimes observed. Such a layer can later on play a protective
role, separating the surfaces, whenever the film thickness has become to small.

The fact that the film thickness is governed by track replenishment and not
by classical fully flooded parameters as speed and viscosity, leads to surprising be-
haviour, in which the film thickness in the starved regime decreases with increasing
speed and with increasing viscosity, see Cann et al. [5] and Damiens et al. [8].

4.13 Hydrodynamic Impact Analysis

The problem of a cylinder impacting a lubricated plane (or sphere in two dimensions)
is an interesting problem for more than one reason. In this section the dimensionless
equations that describe this problem will be studied. Assuming no entrainment
velocity u = 0, the Reynolds equation reduces to:

∂

∂x
(
ρh3

12η

∂p

∂x
) − ∂(ρh)

∂t
= 0

Deciding that the Hertzian parameters are the most appropriate, we introduce
P = p/ph, X = x/b, and H = hR/b2, based on Hertz and T = t/t0, η̄ = η/η0

and ρ̄ = ρ/ρ0.
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Using these parameters the dimensionless Reynolds equation reads:

ρ0b
6ph

12η0R3b2

∂

∂X
(
ρ̄H3

η̄

∂P

∂X
) − ρ0b

2

t0R

∂(ρ̄H)

∂T
= 0

Introducing t0 = (12η0R
2)/(phb2) results in:

∂

∂X
(
ρ̄H3

η̄

∂P

∂X
) − ∂(ρ̄H)

∂T
= 0

each individual term is now dimensionless and it seems as if no single parameter
would influence the dimensionless cylinder falling down. This is incorrect as the
parameter αph is hidden in η̄. As such the result depends on the product αph.

In order to solve the Reynolds equation, the film thickness as a function of the
pressure distribution p(x) is required:

h(x) = h0 +
x2

2R
− 2

πE′

∫
+∞

−∞

p(x′) ln

(
x − x′

x0

)2

dx′

using the same parameters this equation can be written in a dimensionless way as:

H(X) = H0 +
X2

2
− 1

2π

∫
+∞

−∞

P (X ′) ln

(
X − X ′

X0

)2

dX ′

the force balance equation determining H0 is replaced by the kinematic equations
describing the problem:

∂v

∂t
=

∑
p∆x − w

i

∂h0

∂t
= v

where i is the inertia of the cylinder (per meter), v is the vertical velocity of the
cylinder and h0 is the position of the cylinder.
Starting with the last equation it can be made dimensionless introducing V = v/v0

:

b2

Rt0

∂H0

∂T
= v0V

defining v0 = b2/(Rt0) results in the equation:

∂H0

∂T
= V
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now using this on the first equation and remembering that w = πphb/2 gives:

v0

t0

∂V

∂T
=

phb

i0

∑
P∆X − π/2

I

using i = i0I, i0 = phbt0/v0 can be defined, yielding maximum simplification:

∂V

∂T
=

∑
P∆X − π/2

I

as can be observed from these four dimensionless equations only two parameters
influence the dimensionless solution ᾱ = αph and I.
N.B.: note that ᾱ is a dimensionless parameter.

4.14 Hertzian Impact Analysis

The following study is a Hertzian impact analysis of a cylinder falling onto a lubri-
cated plane using a modification of the analysis given by Johnson [23]. Assume its
initial velocity is v0. From the Hertzian problem analysis (Section 3.1.1) we know
that the deformation in x = 0 called δ is given by:

δ ≈ 0.596
b2

R
≈ 1.52

w1

E′

since

b =

√

8w1R

πE′

as the force per unit length w1 decelerates the cylinder of mass per unit length i

w1 = i
∂v

∂t
= i

∂2δ

∂t2
= − E′

1.52
δ

thus

∂2δ

∂t2
= − E′

1.52i
δ

integrating once, introduces the initial velocity v0, and gives (the same result can
be found using the characteristic equation)

v2
0 − (

∂δ

∂t
)2 =

E′

1.52i
δ2

the maximum deformation δ∗ occurs when ∂δ/∂t = 0 thus
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δ∗ =

√

1.52i

E′
v0

from δ∗ we can compute w∗

1 the maximum load, p∗h the maximum Hertzian pressure
and b∗ the maximum half-width. Using these parameters we can derive a dimen-
sionless Reynolds equation.

∂

∂x
(
ρh3

12η

∂p

∂x
) − ∂(ρh)

∂t
= 0

we introduce P = p/p∗h, X = x/b∗, H = hR/b∗2, T = t/t∗, η̄ = η/η0 and ρ̄ = ρ/ρ0.

Using these parameters the dimensionless Reynolds equation reads:

ρ0b
∗6p∗h

12η0R3b∗2

∂

∂X
(
ρ̄H3

η̄

∂P

∂X
) − ρ0b

∗2

t∗R

∂(ρ̄H)

∂T
= 0

Introducing t∗ = δ∗/v0 results in:

∂

∂X
(
ρ̄H3

λ∗η̄

∂P

∂X
) − ∂(ρ̄H)

∂T
= 0

with λ∗ = (12η0R
2)/(b∗2p∗ht∗).

In order to solve the Reynolds equation, the film thickness as a function of the
pressure distribution p(x) is required:

h(x) = h0 +
x2

2R
− 2

πE′

∫
+∞

−∞

p(x′) ln

(
x − x′

x0

)2

dx′

using the same variables this equation can be written in a dimensionless way as:

H(X) = H0 +
X2

2
− 1

2π

∫
+∞

−∞

P (X ′) ln

(
X − X ′

X0

)2

dX ′

the force balance equation determining H0 is replaced by the kinematic equations
describing the problem:

∂v

∂t
=

∑
p∆x

i

and

∂h0

∂t
= v(t)
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where i is the inertia of the cylinder (per meter), v is the vertical velocity of the
cylinder and h0 is the position of the cylinder.
Starting with the last equation it can be made dimensionless introducing V = v/v∗

:

b∗2

Rt∗
∂H0

∂T
= v∗V

defining v∗ = b∗2/(Rt∗) results in the equation:

∂H0

∂T
= V

introducing the dimensionless velocity V = v/v∗ in the first equation gives:

v∗

t∗
∂V

∂T
=

p∗hb∗

i∗

∑
P∆X

I

using i = i∗I, i∗ = p∗hb∗t∗/v∗ can be defined, yielding maximum simplification:

∂V

∂T
=

∑
P∆X

I

Not all the variables introduced previously are independent. It can easily be shown
(see exercise) that for instance I = i/i∗ = 2.633 . . . and V0 = v0/v

∗ = 0.596 . . ..

An example of the evolution of the maximum pressure and the minimum film
thickness with time is given in Figure 4.13. This figure shows that the ‘contact time’
lasts from T = 3 to little over T = 6 and is indeed of order 2 as predicted by t∗

and Pm is of order 1, so the Hertzian approximation is valid. During this period
important pressures and elastic deformations occur, and the minimum film thickness
is small compared to the elastic deformation (O(1)).

There remains a last aspect to this problem which is not yet analysed: the velocities
at which the fluid is expulsed.

For this an extension of the previous analysis is needed. Consider a descending
body over a length ∆x. The amount of liquid displaced is ∆q.

∆q(x, t) =
∂h(x, t)

∂t
∆x

or written in a differential form:

∂q(x, t)

∂x
=

∂h(x, t)

∂t

to obtain q(x, t) one integrates:
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Figure 4.13 Evolution of maximum pressure and minimum film thickness
with time.

q(x, t) =

∫ x

0

∂h(x′, t)

∂t
dx′

assuming a plug-flow one obtains the following relation between fluid velocity u and
fluid displaced q:

u(x, t) =
q(x, t)

h(x, t)

if one assumes a triangular flow profile u is multiplied by 2, for a parabolic profile
it is multiplied by 1.5.
Combining the two equations one obtains:

u(x, t) =
1

h(x, t)

∫ x

0

∂h(x′, t)

∂t
dx′

The dimensionless velocity U(X,T ) is introduced, using u = u∗U .
Using the previous equation one finds for u∗:

u∗U(X,T ) =
1

(b∗2/R)H(X,T )

∫ X

0

(b∗2/R) ∂H(X ′, T )

∂(t∗T )
d(b∗X ′)

=
b∗

t∗
1

H(X,T )

∫ X

0

∂H(X ′, T )

∂T
dX ′

As a consequence, the reference velocity u∗ is chosen as u∗ = b∗/t∗ yielding:
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U(X,T ) =
1

H(X,T )

∫ X

0

∂H(X ′, T )

∂T
dX ′

In Figure 4.14 the evolution of the maximum velocity Um as a function of time T is
given, as well as the location Xm where the maximum velocity is taken on.
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Figure 4.14 Evolution of maximum velocity and its position with time.

During the first three time units the maximum velocity Um(T ) increases as 1/
√

Tc − T ,
where Tc is the time the two (undeformed) bodies would touch. From T = 4 on-
wards the elastic deformation becomes important, limiting the descent of the body
and the reduction of the gap height H, see Figure 4.14, and thus limiting Um. As
the cylinder starts to rebound (T > 5), the maximum velocity rapidly tends to zero,
as zero pressure (cavitation) spreads over the domain.

Exercise Show that the maximum velocity Um(T ) = maxX U(X,T ) during the
initial period when deformations can be neglected is of the form 1/

√
1 − aT . Use

the parabolic geometry and a constant vertical velocity.

Exercise Using the previous exercise compute the position Xm(T ) of maximum
velocity Um.

Exercise From a certain point in time the analysis obtained in the previous exercise
is no longer valid for two reasons, which? Correlate the different events in Figures
4.12 and 4.13.

Exercise Show that V0 = v0/v
∗ = (1 + 2 ln(2))/4 = 0.596 . . . and I = i/i∗ =

(2π)/(1 + 2 ln(2)) = 2.633 . . ..
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4.15 Boundary layers

When closely studying the EHL pressure distribution from figure 3.8, it can be
observed that the size of the inlet pressure sweep domain decreases with increasing
load parameter M . This inlet zone separates two distinct zones. The first zone is
the inlet where pressures are low, the deformation small and the flow iso-viscous.
The second zone is the high pressure Hertzian zone, the deformation is important
and the flow Couette dominated because of the piezo-viscosity. When analysing the
film thickness profiles, it can also be concluded that the transition zone from inlet
to Hertz zone, diminishes with increasing M value.

For medium to high M values, this transition zone becomes significantly smaller
than the Hertzian zone and as such can be regarded as a boundary layer [41]. The
remaining question is then if a set of local coordinates exists that allows a local
description of this boundary layer. The analysis will first focus on the inlet boundary
layer around r = −1.
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Figure 4.15 Pressure difference ∆P as a function of r for φ = 0, 5, 10, 15, 20
and 45 degrees. M = 1000, L = 10.

Figure 4.15 shows the pressure difference distribution P (r)−Ph(r). The dimen-
sionless coordinate r is defined as r = sign(X)

√
X2 + Y 2, which allows a study of

the inlet as well as the outlet zone. The physical reason that r is used, is that the
pressure (and film thickness distribution) is largely independent of the angle φ with
the X-axis.

It can be observed that, apart from 45 degrees, all pressure difference profiles
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are superimposed, proving the radial symmetry.

The second striking feature is the discontinuity in the pressure difference, how-
ever, as this is the difference between the EHL pressure (continuous) and the Hertz
pressure (discontinuous in r = −1) the resulting discontinuity makes sense. Be-
cause the origin of the discontinuity stems from the Hertz pressure, it will always
be located at r = −1. As such the inlet boundary layer will be studied relative to
r = −1.

The pressure difference is positive in the inlet (which is logical, when one thinks
about it) and negative in the Hertz zone. Overall, the integral of the pressure
difference is positive.

One can now study the width of the inlet layer and the maximum pressure,
as a function of the operating conditions M . This gives rise to the following inlet
boundary layer parameters:

X̄ = −1 + (X + 1)
2
√

M (4.1)

∆P = ∆P
3
√

M (4.2)

H̄ = H
16
√

M (4.3)

-0.5

0

0.5

1

1.5

-10 -8 -6 -4 -2 0 2 4 6 8

∆̄
P

X̄

Figure 4.16 Pressure difference ∆P as a function of local coordinate X for
M = 200, 500 . . . 10000 and 20000 and L = 10.
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Figure 4.16 shows the pressure difference in the inlet boundary layer as a function
of the new coordinates, for a wide range of M values. As can be seen all curves are
superimposed.

A similar study on the film thickness shows that H̄(X̄) gives superimposed curves
for various M values. It means that the inlet boundary layer is self-similar when
using the boundary layer parameters X̄, ∆P iand barH.

We can now study the outlet boundary layer around r = 1. Figure 4.17 shows
the pressure difference around r = 1. One can observe that the pressure difference
is qualitatively similar to the one in the inlet boundary layer. A positive difference
and a spike is followed by a rounded negative zone.

Contrary to the inlet zone, the overall pressure difference integral is negative
(force balance requires this!). Furthermore, the discontinuity is not located at r = 1,
but before. As such the discontinuity generates a discontinuity in the pressure
distribution: the pressure spike. A second (minor) discontinuity occurs for r = 1,
canceling the Hertzian discontinuity and satisfying flow balance in the outlet.
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Figure 4.17 Pressure difference ∆P as a function of r for M = 1000, L = 10
and φ = 0, 5, 10, 15, 20 and 45 degrees.

The maximum pressure difference and the width of the outlet layer, show identi-
cal trends with respect to M , up to a multiplicative constant. However, the position
of the discontinuity changes as a function of M , making the definition of the X̄
parameter in the outlet more difficult.

Overall one can conclude that inlet and outlet are indeed boundary layers, that
they are self-similar and are gouverned by the same three local dimensionless pa-
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rameters X̄, H̄ and ∆P . Finally, the inlet and outlet boundary layers show a
qualitatively very similar behaviour in ∆P and H.

Exercise Give a detailed explanation why the pressure difference in the inlet and
in the exit boundary layers have integrals of opposing signs.

Exercise∗ Infer how the pressure difference in inlet and outlet will shape the film
thickness difference in these two zones. Make a link with the actual film geometry
in these two zones.

Exercise∗∗ Explain why the main pressure discontinuity occurs for r < 1.

Exercise Explain why a minor main pressure discontinuity occurs at r = 1.

Exercise∗∗ Explain why the pressure difference is positive and then i negative in
inlet and outlet, and NOT +− in inlet and −+ in outlet.



Chapter 5

*Basic Techniques

This chapter regroups some of the basic techniques frequently used when dealing
with lubrication. They combine experimental and numerical techniques which were
developed to deal with some of the specific problems encountered in Elasto Hydro-
dynamic Lubrication.

5.1 Interferometry

The experimental technique of interferometry has contributed a lot to the detailed
understanding of the way an EHL contact works. It allows the precise and detailed
measurement of the film thickness in an EHL contact. As such it merits a brief
description. We will first outline how the basic interferometric technique works,
then we will discuss its resolution, and finally a recent improvement of the technique
which allows the precise measurement of very thin film thicknesses.

The classical interferometric technique measures the film thickness between a
metal surface (normally a steel ball) and a semi-transparent one (generally a glass
disk with a semi-transparent coating). Light which is shined through the disk has
two different path lengths: one beam will be transmitted by the coating and reflected
on the steel ball, another beam will be reflected by the semi-transparent coating.
The different distance traveled by the two beams 2h will result in a phase difference
of the two beams. Whenever this phase difference is (2k + 1)π negative interference
will occur, the two beams will ’cancel’, resulting in a dark spot. Whenever the
phase difference is a multiple of 2π, positive interference occurs, and a bright spot
appears. The film thickness distribution is represented by an intensity distribution.
When one knows the wavelength of the light used, this interference distribution can
be translated back into a height map (film thickness map), using some calibration

83
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procedures, and incorporating the phase shift at the interfaces.

chromium
h

steel ball

white light

layer

glass disc

Figure 5.1 Principle of optical interferometry.

Figure 5.2 Interferometry pictures of a fully flooded and a classically starved
contact by P.M.E. Cann.

This means that the classical interferometric technique can measure film thick-
nesses up to half a wavelength. Using a spacer layer (offset) and more precise ways
to determine the exact maximum of the combined beam, film thicknesses down to
several nanometers can be measured.

5.2 Disc Machines

In order to measure traction in EHL contacts, two disc and four disc machines have
been developed [7]. The simplest machine is the two disc machine, sketched in Fig-
ure 5.3. It is composed of two crowned discs, independently driven by two motors
and loaded together by a dead-weight. One of the motors is suspended (in air bear-
ings) so that it is free to rotate. This motor is then connected by an arm to a load
cell, and the rotational speeds of both motors are accurately measured. The two
discs are generally supported by two sets of roller bearings.
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By varying the rotational speed of both motors, while keeping the sum speed con-
stant, a traction curve is measured, for the load imposed, and the lubricant used.

U1
WW

oil

U2

Figure 5.3 Principle of two disc machine.

The main disadvantage of the 2 disc machine resides in the roller bearing pair sup-
porting the discs. This disadvantage can be overcome using specially designed test
rigs. The friction force measured will consist of the friction force in the disc-disc
contact, and the friction force in the bearings. In general this additional force is
small, but around pure rolling it tends to dominate the measurements.
For very small sliding speeds the four disc machine was conceived, which has no
bearing set supporting the central disc. A sketch of this machine is given in Fig-
ure 5.4.

W

U2

U1 U1

U1

Figure 5.4 Principle of four disc machine.

The central disc is the disc on the motor suspended in air bearings. This disc is
only supported by the three identical discs surrounding it. These three surrounding
discs are driven by a single motor through a gear set. The upper disc is loaded.
By changing the sliding speed, the frictional moment on the central disc can now
be measured accurately around the pure rolling point. Because of the unsupported
central disc the load, speed and slip range of the four disc machine is generally
smaller than that of the two disc machine.
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5.3 Rolling Element Bearings

Rolling element bearings (REB) allow a degree of rotational freedom to a shaft,
with small frictional losses, capable of transmitting large loads, at a reasonable cost
and within a small envelope. For an in depth analysis the reader is referred to
Harris [17]. Different types of REB’s exist, each with its special characteristics and
applications.
A REB consists generally of four different components: the inner ring, the outer
ring, the rolling element set and the cage, see Figure 5.5.

Figure 5.5 Figure showing the different bearing components.

The inner ring is generally mounted on a shaft using thermal expansion. The
outer ring is connected to the environment using some kind of housing. The rolling
elements are either spheres, cylinders, cones, or barrel-shaped. Ordinary bearings
have a dozen rolling elements. However, some special bearings have many more
rolling elements. These rolling elements enable the shaft to rotate with respect to
the environment. They are generally manufactured with great precision, and have
extremely smooth operating surfaces. They run against parts of the inner ring and
the outer ring, which have a specially shaped and finished surface.
Inner and outer ring and rolling element set are normally made from hardened steel
(52100). For special bearing applications other steels are used and sometimes even
ceramic components. The cage serves as a separator of the rolling elements, and
is generally made of steel, brass or plastic. Rolling element bearings are generally
lubricated with oil or grease.

First we will discuss the most common types of REB’s and their applications,



5.3. ROLLING ELEMENT BEARINGS 87

then we will address the question of how to choose a bearing of the correct size. It
should be noted that most bearing types exist as well as thrust bearings.

5.3.1 Bearing types

Deep Groove Ball Bearings (DGBB) have spherical rolling elements (balls) rolling in
deep grooves of the inner and outer ring. These deep grooves create a large contact
area between ball and ring, and thus allow the bearing to support important radial
loads, and moderate axial loads. Furthermore, these bearing are suitable for high
speed applications, they generate low friction and little noise. However, they cannot
support important moment loading or misalignment.
A cross section through inner ring, ball and outer ring is shown in Figure 5.6.

Figure 5.6 Sketch of a DGBB, half cross section.

Self Aligning Ball Bearings (SABB) are a modified type of DGBB’s with two
parallel rows of balls running in deep grooves in the inner ring against a spherical
outer ring. This configuration reduces the load carrying capacity of the bearing, but
allows it to adjust itself to angular misalignment.

Figure 5.7 Sketch of a SABB cross section.

Angular Contact Ball Bearings (ACBB) have spherical rolling elements (balls)
rolling in deep grooves in the inner ring and the outer ring. The grooves are posi-
tioned at a certain angle, which allows the bearing to transmit forces in the radial
and the axial direction. Used in pairs (back-to-back) they can also support moment
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loading.

Figure 5.8 Sketch of an ACBB cross section.

Cylindrical Roller Bearings (CRB) have cylindrical rolling elements (cylinders)
rolling on a cylindrical inner and outer ring. The large contact area results in a
bearing which can take up very high radial loads. When flanges are used on the
inner and outer ring, the bearing can also support moderate axial loads. Without
flanges the CRB can accommodate small axial displacement. These bearings can
operate under high speed conditions.
Needle Roller Bearings (NRB) have very thin cylindrical rolling elements (needles),
and therefore they give most of the CRB performance in a very small (low) envelope.
Sometimes the inner ring is absent and the needles roll directly on the shaft, to save
space.

Figure 5.8 Sketch of a CRB cross section.

Tapered Roller Bearings (TRB) have conical rolling elements rolling on conical
inner and outer rings. The large contact area results in a bearing which can transmit
very high radial and tangential loads. These bearings can operate under relatively
high speed conditions, and are capable of taking up moment loads.

Spherical Roller Bearings (SRB) have barrel shaped rolling elements rolling on
spherical parts of the inner and outer ring. The large contact area results in a
bearing which can transmit very high radial and moderate tangential loads. This
bearing can take up angular misalignment, just as the SABB.
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Figure 5.9 Sketch of a TRB.

Figure 5.10 Sketch of a SRB.

5.3.2 Bearing rating

The size of a bearing for a certain application is determined by two different pa-
rameters: the static load rating C0 and the dynamic load rating C. The static load
rating C0 is used to indicate the maximum load for very slowly rotating applications,
or for shock load applications.
The dynamic load rating C is an indicator of the fatigue life of the bearing. Since
the fatigue life is subject to statistical variations, the L10 life is introduced as the
number of million revolutions 90% of a population of bearings will survive, under
the same operating conditions. The other 10% of the population will have failed at
this point.
The L10 life is given by:

L10 =

(
C

P

)p

Where L10 is the given in million revolutions, C is the dynamic load rating in [N],
P is the applied load in [N] and p = 3 for ball bearings and p = 10/3 for roller
bearings. The values of C and C0 are given by each bearing manufacturer for each
type/size bearing. More advanced equations to calculate the fatigue life are used
by many manufacturers. These include amongst others information on lubrication
conditions, lubricant contamination levels etc.

Exercise An ACBB front wheel bearing in a passenger car has an average load
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of P = 4000N . Compute the required C of the bearing such that the L10 life is
superior to 100.000 km, assume that 1 revolution is equivalent to 1 m. In reality
will one choose a bearing with smaller or larger C? Why?

5.4 Numerical Techniques

The stable and precise numerical solutions of the line and the point contact EHL
problem have been made possible by three different application of Multilevel (Multi-
grid) techniques. These techniques have been pioneered by Prof. A. Brandt.
•1 Application of MultiLevel (multigrid) techniques to the solution of the Reynolds
equation.
•2 Application of MultiLevel Multi Integration to the calculation of the elastic de-
formation equation.
•3 Detailed understanding of the different characteristics of the Reynolds equation
in the inlet and high pressure zone.

ad 1: When solving the Reynolds equation using an iterative technique like Gauss
Seidel relaxation, one encounters generally two problems. The first problem con-
cerns the convergence speed, and is addressed in this point. The second problem
concerns stability and is addressed in the third point.
For the low load EHL problem as well as for Hydrodynamic Lubrication, the Reynolds
equation resembles an elliptical equation in p with varying coefficients. The film ge-
ometry is close to that given by the rigid geometry, i.e. the elastic deformations are
small. Thus the coupling of the Reynolds equation through the elastic deformation
is nearly absent, which causes the Gauss Seidel relaxation to be stable. However, the
number of iterations (relaxation sweeps) needed to obtain convergence, is large, and
increases when the number of points increases. This is a general problem, and the
application of multigrid techniques [3] results in a solution in less than 10 relaxation
sweeps, leading to a reduction in computing times of several orders of magnitude.
In order to achieve this, multigrid uses coarser grids, to accelerate the convergence
on the finest grid. These coarser grids are also used to obtain an accurate initial
solution on a finer grid as a starting solution. Multigrid techniques also allow the
solution of the force balance in the same time as the Reynolds equation is obtained,
with little or no additional work required. Finally Multigrid techniques allow an
estimation of the discretisation error in the solution, through the comparison of
solutions on different grids.

ad 2: The elastic deformation integrals are very time consuming to solve. When
the discrete grid consists of n points, the calculation of the integral in a single point
requires O(n) operations. Computing the integrals in all n thus requires O(n2) op-
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erations. Since we are interested in accurate and detailed solution, we want n to
be very large, hence the time required by the calculation of these integrals becomes
very large.
This problem was remedied by the application of multilevel multi-integration tech-
niques [4]. Using this technique, one exploits the smoothness properties of the
deformation kernel in order to perform part of the integrals on a coarser grid. This
technique results in a reduction of the computing time from O(n2) to O(n ln(n)),
without the loss of accuracy.
ad 3: As was already indicated in the first point, the low load EHL problem has
elliptical character in p. Even the high load EHL problem conserves this character in
its inlet (low pressure) zone. In the high pressure zone, the viscosity rises enormously,
and the Reynolds equation changes to the equation ∂(ρh)/∂x = 0. This is an integral
equation in p, and its correct solution is not trivial. Applying a simple Gauss Seidel
relaxation scheme results in stability problems, as the integral character accumulates
all the changes of a point by point relaxation. To solve this problem, a distributed
relaxation scheme was introduced, in which the value of p in different points is
changed simultaneously (dipole). The combination of these two relaxation schemes
in the inlet and in the high pressure zone, leads to an efficient and very robust
solution method, see Venner [37, 40].
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Appendix A

Hertzian parameters

A.1 Line Contact

The dimensionless equations are the same as those used in Section 3.1.1. The im-
portant parameters are repeated:

b half-width of the contact area
x coordinate, (infinitely long in y direction)
ph the maximum pressure
R the (reduced) radius of contact

p(x) =

{

ph

√

1 − (x/b)2, if |x| ≤ b;
0, otherwise.

the deformation δ as a function of the coordinate x is given by:

δ(x) =







b2/(2R) (x/b)2, if |x| ≤ b;

b2/(2R)
[

(x/b)2 + ln
(

|x/b| +
√

(x/b)2 − 1
)

−|x/b|
√

(x/b)2 − 1
]

otherwise.

in terms of the dimensionless deformation ∆ = δR/b2 and the dimensionless coor-
dinate X = x/b this gives:

∆(X) =

{
(X2/2, if |X| ≤ 1;
[

X2 + ln
(

|X| +
√

X2 − 1
)

− |X|
√

X2 − 1
]

/2 otherwise.
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-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

X

∆

Figure A1.1 Dimensionless one dimensional contact deformation ∆ as a func-
tion of X = x/b.

Note1: the deformation is determined up to a constant, hence the arbitrarily positive
and negative values. In general the boundary conditions determine this constant.

Note2: the deformation tends to infinity for X → ∞, this is physically coherent as
the (line) load acts over an infinite length, and the integral is therefore infinite.

A.2 Point Contact

The dimensionless equations are the same as those used in Section 3.1.2. The im-
portant parameters are repeated:

a the radius of the contact area
r the radius r =

√

x2 + y2, as the problem depends only on r
ph the maximum pressure
Rx the (reduced) radius of contact

p(r) =

{

ph

√

1 − (r/a)2, if r ≤ a;
0, otherwise.
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the deformation δ as a function of the radius r is given by ([23] pg. 61):

δ(r) =

{
(2a2 − r2)/(2Rx), if r ≤ a;
[

(2a2 − r2) arcsin(a/r) + a
√

r2 − a2

]

/(πRx), otherwise.

the dimensionless deformation ∆ = δRx/a2 as a function of the dimensionless radius
ρ = r/a is given by:

∆(ρ) =

{
(2 − ρ2)/2, if ρ ≤ 1;
[

(2 − ρ2) arcsin(1/ρ) +
√

ρ2 − 1
]

/π, otherwise.
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Figure A1.2 Dimensionless two dimensional contact deformation ∆ as a func-
tion of ρ = r/a .
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Appendix B

Reynolds Equation

Two different forms of the Reynolds equation are generally used in the literature.
The equation given in the course notes (polycope Mecanique des Contacts 1, pg. 56)
reads:

∂

∂x
(
ρh3

η

∂p

∂x
) +

∂

∂z
(
ρh3

η

∂p

∂z
) = 6ρ(u1 − u2)

∂h

∂x
+ 6ρ(w1 − w2)

∂h

∂z

+6h
∂

∂x
{ρ(u1 + u2)} + 6h

∂

∂z
{ρ(w1 + w2)} + 12ρv2 + 12h

∂ρ

∂t

This equation can be simplified since the three velocity components u, v and w are
dependent. A material point on surface 2 remains always a point on surface 2! One
can describe the surface S in its general form as an equation linking space and time:
S(x, y, z, t) = y − h(x, z, t) = 0. As a point on the surface remains on the surface
the total derivative of S with respect to time should be zero:

DS

Dt
= 0

or using the chain-rule:

DS

Dt
=

∂y

∂t
− ∂h

∂x

∂x

∂t
− ∂h

∂z

∂z

∂t
− ∂h

∂t
= 0

or:

v − u
∂h

∂x
− w

∂h

∂z
− ∂h

∂t
= 0

or:
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v = u
∂h

∂x
+ w

∂h

∂z
+

∂h

∂t

for surface 2 the above equation, this becomes:

v2 = u2

∂h

∂x
+ w2

∂h

∂z
+

∂h

∂t

substitution in the above equation gives:

∂

∂x
(
ρh3

η

∂p

∂x
) +

∂

∂z
(
ρh3

η

∂p

∂z
) = 6ρ(u1 − u2)

∂h

∂x
+ 6ρ(w1 − w2)

∂h

∂z
+ 6h

∂

∂x
{ρ(u1 + u2)}

+6h
∂

∂z
{ρ(w1 + w2)} + 12ρu2

∂h

∂x
+ 12ρw2

∂h

∂z
+ 12ρ

∂h

∂t
+ 12h

∂ρ

∂t

simplifying:

∂

∂x
(
ρh3

η

∂p

∂x
) +

∂

∂z
(
ρh3

η

∂p

∂z
) = 6ρ(u1 + u2)

∂h

∂x
+ 6ρ(w1 + w2)

∂h

∂z

+6h
∂

∂x
{ρ(u1 + u2)} + 6h

∂

∂z
{ρ(w1 + w2)} + 12

∂

∂t
(ρh)

finally this gives:

∂

∂x
(
ρh3

η

∂p

∂x
) +

∂

∂z
(
ρh3

η

∂p

∂z
) = 6

∂

∂x
{ρh(u1 + u2)} + 6

∂

∂z
{ρh(w1 + w2)} + 12

∂

∂t
(ρh)

in the EHL course notes the coordinates x and y are used instead of x and z, hence,
interchanging the z direction and the y direction

∂

∂x
(
ρh3

η

∂p

∂x
) +

∂

∂y
(
ρh3

η

∂p

∂y
) = 6

∂

∂x
{ρh(u1 + u2)} + 6

∂

∂y
{ρh(v1 + v2)} + 12

∂

∂t
(ρh)

When one now aligns the coordinate axis x with the direction of the main velocity,
the velocity term v becomes zero, and the relation simplifies to

∂

∂x
(
ρh3

η

∂p

∂x
) +

∂

∂y
(
ρh3

η

∂p

∂y
) = 6

∂

∂x
{ρh(u1 + u2)} + 12

∂

∂t
(ρh)

This last alignment is possible whenever the velocities are linear, this means that
the transformation is not possible in case of spin.
This last form is the Reynolds equation used in the current set of course notes and
in the majority of the lubrication handbooks and publications.



Appendix C

Rigid Circular Punch

For certain problems, a reference different from Hertz might be useful. One alter-
native is the rigid circular punch, as described by K. L. Johnson [23].

The relation between the different parameters follows from the elastic deforma-
tion equation, using the punch dimensions p0 = p(x = 0, y = 0), h0 the punch
depth and a the punch radius. One defines the following dimensionless parameters:
X = x/a, Y = y/a, H = h/h0 and P = p/p0:
The punch (height) equation reads

h(x, y) =

{
−h0, if x2 + y2 ≤ a2;
∞, otherwise.

The punch pressure equation reads

p(x, y) =

{

a p0/
√

a2 − x2 − y2, if x2 + y2 ≤ a2;
0, otherwise.

Please note that the a term in the numerator cancels and that the pressure has
indeed a dimension of N/m2.
The maximum deformation is known from [23] to be

h0 = 2π
p0a

E′

The punch generates an elastic deformation given by:

h(x, y) = −h0 +
2

πE′

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′) dx′ dy′
√

(x − x′)2 + (y − y′)2

The dimensionless elastic deformation equation is given by:

H(X,Y ) = −1 +
2

πE′
p0a

E′

2πp0a

∫
+∞

−∞

∫
+∞

−∞

P (X ′, Y ′) dX ′ dY ′

√

(X − X ′)2 + (Y − Y ′)2
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Results in:

H(X,Y ) = −1 +
1

π2

∫
+∞

−∞

∫
+∞

−∞

P (X ′, Y ′) dX ′ dY ′

√

(X − X ′)2 + (Y − Y ′)2

The load equation w is made dimensionless in the same way:

w =

∫
+∞

−∞

∫
+∞

−∞

p(x′, y′) dx′ dy′

w = p0 a2

∫
+∞

−∞

∫
+∞

−∞

P (X ′, Y ′) dX ′ dY ′

Defining W = w/(p0 a2) results in:

W = 2π

Please notice that compared to the Hertz equations some factors change in the
deformation equation and in the force balance equation.

exercise An elastic punch of 1 cm radius is pressed 1 µm into the same material
(E=2200 GPa). What is the central pressure p0? What is the load w?

exercise* A (rigid) punch of 1 cm radius is pressed 1 µm into the above material
(E=2200 GPa). What is the central pressure p0? What is the load w?
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