

13.&14. Disassembly

Disassembly Steps

Product Analysis

- Determine the value of the product after disassembly
- The value includes: possibility of reuse of the product/components, risks of disassembly, service life after disassembly, etc.

Assembly Analysis

- The assembly plan is essential for disassembly
- The analysis will determine: the tools needed, the time and skills needed, knowledge of the components to maximize value, etc.

Analysis of product/component usage and condition

- Determine the value of each component/sub-component after disassembly
- Operating status after disassembly
- Which channel for maximizing the value of the component/sub-component
- → Need to properly manage disassembly operations to maximize value recovered

Selective disassembly sequencing problem

- Objective :
 - Finding the best sequences to disassemble a product and obtain the desired components
 - Minimize the cost of operations
- Constraints
 - · Respect precedences between disassembly operations
- Case study: disassembling a torch

Kim, H. W., Park, C., & Lee, D. H. (2018). Selective disassembly sequencing with random operation times in parallel disassembly environment. International Journal of Production Research, 56(24), 7243-7257.

Selective disassembly sequencing problem

- Exercises :
 - Exercise 8 : Find the sequences that minimize the cost in the deterministic case
 - Exercise 9: As the disassembly times are random (depending on the operator), find the best sequences in a
 desired time
- Exercise based on the study of Kim et al. (2018), but simplified (Exercice 8.xlsx available on Moodle).

Graph of precedences, between operations

For our exercise, the desired components are obtained by operations 7 and 9.

Kim, H. W., Park, C., & Lee, D. H. (2018). Selective disassembly sequencing with random operation times in parallel disassembly environment. International Journal of Production Research, 56(24), 7243-7257.

Mathematical model

```
N set of nodes in the extended process graph, i,j, k \mid in N
A set of arcs in the extended process graph, (i,j) \in A
T set of target components, t \in T
OR set of choice nodes
or_{ij} representation of OR, i.e. or_{ij} = 1 and or_{ik} = 1 iff you can do j XOR k after i, but not j and k together disassembly cost for operation j immediately after performing operation i, i.e. sum of the corresponding sequence-dependent set-up and operation costs that satisfies the triangular inequality, i.e. c_{ij} \le c_{ik} + c_{kj} for all k \ne i, j
PR_{ii} =1 if disassembly operation j must be done immediately after disassembly operation i, and 0 otherwise
```

Decision variables

- x_{ij} = 1 if disassembly operation j is performed immediately after operation i, and 0 otherwise y_i = 1 if disassembly operation i is performed, and 0 otherwise
 - Kim, H. W., Park, C., & Lee, D. H. (2018). Selective disassembly sequencing with random operation times in parallel disassembly environment. International Journal of Production Research, 56(24), 7243-7257.

Mathematical model

?

: disassembly operation

• : X

: XOR (choice node)

0

: AND (separation node)

: a OR b required by c

Minimize Total Cost: $Minimise z = \sum_{(i,j) \in A} c_{ij} x_{ij}$

Subject to:

1. Retention of the incoming flow: $\sum_{i \in N} x_{ij} \ge y_j$

 $\forall j \in N \setminus \{\text{Source}\}\$

2. Retention of outgoing flow:

$$\sum_{j \in N} x_{ij} \le M. y_i$$

 $\forall i \in N$

3. Target Operations:

$$y_i \ge 1$$

$$\forall j \in T = \{7,9\}$$

4. Loop Prohibited:

$$x_{ii} = 0$$

$$\forall i \in N$$

5. Relationship of precedence :

$$\sum_{i \in N} PR_{ij}. x_{ij} \ge y_j \quad \forall j \in N \setminus \{\text{Source}\}\$$

6. XC

XOR on choice nodes : $\sum_{i} or_{ij}. y_{j} \le 1$

 $\forall i \in OR = \{\text{Source,2}\}\$

7. E

Binary variables: $x_{ij} \in \{0,1\}, y_j \in \{0,1\} \ \forall (i,j) \in \mathbb{N}^2$

Kim, H. W., Park, C., & Lee, D. H. (2018). Selective disassembly sequencing with random operation times in parallel disassembly environment. International Journal of Production Research, 56(24), 7243-7257

