

Leverage the sensors embedded of the board

Project Dashboard

IIS2MDCTR			
Magnétomètre			
x (mGauss)	y (mGauss)	z (mGauss)	
0	0	0	

ISM330DHX			
Accéléromètre			
x (mG)	y (mG)	z (mG)	
0	0	0	
Gyromètre			
x (mdps)	y (mdps)	z (mdps)	
0	0	0	

ltitude	
	0.00 m

Project Setup

- Download, unzip and import the base project on Moodle
- Download, unzip and open the dashboard with Chrome or Edge

Project Setup

main.c file is configured to call project_main() function in project.c

```
/* USER CODE BEGIN Includes */
#include "project.h"
/* USER CODE END Includes */
[...]
int main(void)
 /* USER CODE BEGIN 2 */
  project_main();
  /* USER CODE END 2 */
[...]
```

Build and test that everything is working using the web application.

Project Instructions

- All of your code must be located in project.c
 - Except for interrupt calls from stm32u5xx_it.c
- The .ioc file can be modified in CubeMX freely
- In project.c, an example of acquiring and sending sensor values is shown
- Don't use HAL_UART_Transmit directly, but rather the functions from protocol.h

Primary objectives from lower to higher priority:

- Temperature and humidity from HTS221 must be sent at 1 Hertz to UART
- Pressure and temperature from LPS22HH must be sent at 10 Hertz to UART
- Magnetometer axes from IIS2MDCTR must be sent at 20 Hz to UART
- Accelerometer and gyroscope axes from ISM330DHCX must be sent at 100 Hertz to UART

Secondary objectives:

- A press on the USER button start a calibration procedure:
 - A message is sent to UART
 - After one second, gyroscope axes are sampled during 5 seconds at 100 Hertz and averaged to get offset
 - A new message is sent to UART with averaged values
 - Red LED is on during all this procedure
- Implement a model to calculate altitude from LPS22HH sensor using default pressure at sea level

Tertiary objectives:

- Calibrate magnetometer to send normalized values for x and y axes
 - Normalized values are comprised between -1 and +1
 - Calibration must be made far from electromagnetic sources and metal objects
- Filter magnetometer values using a higher sampling rate to remove noise

Examples of low pass filters

Low pass filter implementation

```
Simple average filter (FIR filter)
/* Define size of the average window */
#define N 15
/* Function taking new sample and returning updated average */
float moving average filter(float sample) {
  static float buffer[N] = {0};
  static int index = 0;
  static float average = 0;
  average -= buffer[index]; // substract oldest sample from average
  buffer[index] = sample / N; // store sample in buffer
  average += buffer[index]; // add sample to average
  index ++;
  if (index >= N) index = 0;
  return average;
```


Low pass filter implementation

```
Exponential filter (IIR filter)

/* Define weight of new sample */
#define alpha 0.2f
/* Function taking new sample and returning updated average */
float exponential_filter(float sample) {
    static float average = 0;
    average = ((1.0 - alpha) * average) + (alpha * sample);
    return average;
}
```


