

Scientific and technical writing

Content, Structure, Editing, Formatting

A. Platzer, J. Colmars, T. Elguedj

- ▶ Opening
 - ► Motivations for this course
 - ► S&T writing: motivations
 - ➤ Outline
- ► Content & Structure: IMRaD
- ► Editing and formatting
- ▶ Closing

title: "I am a writing god!" - originally published 1/29/2003

Content Form Closing Opening

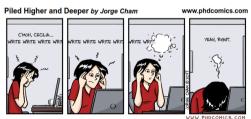
Two-fold objective

Project: two technical supervisors

try and apply the scientific method to an open problem (no evident closed solution, as opposed to problems treated in tutorials)

Scientific Writing: A. Platzer (assistant professor), DOC'INSA

report about your work and findings following scientific writing conventions


▶ 5×2 H lectures + 2H tutorial only \rightarrow introduction, then a reference for the rest of your curriculum

Lecture introduction (1/3)

Motivation

- Report and defense = large part of how you are evaluated in your curriculum
- → Provide you with the tools for efficient and relevant scientific and technical (S&T) writing and presentation

title: "Write write write write write" - originally published 1/18/2017

Lecture introduction (2/3)

Themes

- Content & structure
- ₂ Form

Teaching methods

- Slides / Q&A
- Group exercises

Timetable

 3×2 H lectures:

1st lecture Theme 1

2nd lecture Theme 2 (editing, writing equations)

3rd lecture Theme 2 (images formatting)

Lecture introduction (3/3)

Assessment: PST report

Opening

Assessment grids on Moodle

- points on the technical part
- points on the literature review

Resources after the course?

- Your personal notes
- Moodle page: Rédaction Scientifique (in Génie Mécanique/Divers)
- A new website: https://jcolmars.froggit.page/rs-docs/
- contact me by email, consult assessment grids

ACCUEIL

INSA

BETTE METORAL
CES CONCESS


CREATER METORAL
CREA

Why write?

- To inform, present your findings, leave a record of the work done.
- To convince your audience of the importance of your work, to convey a message
- But also to think! Writing things down forces you to organize your thoughts.

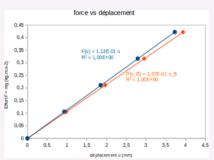
Do not neglect handwriting!

- Handwriting notes
- Mind maps, outline of your document
- Storyboard

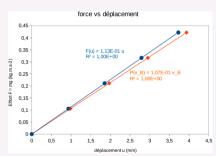
Content Form Closing

0 0000 00

Q&A


Why write "beautifull" documents?

- To conform to customs and standards.
- ► To enjoy! And therefore make people want to read.
- ► To facilitate transmission, to convince of the authenticity of the results.



Q&A

Why write "beautifull" documents?

(a) A graph that appears stolen from somewhere else.

(b) A graph you produced yourself.

Figure 1: Convince with quality figures.

Let us dive in

The course is divided into two main parts, with a common goal : quality!

Content & structure (today)

Content and structure of a S&T document

Form (in december)

Layout/format of your document

- ▶ Opening
- ► Content & Structure: IMRaD
 - ▶ What is IMRaD?
 - ► The different parts
 - ▶ Summary
- ► Editing and formatting
- ▶ Closing

Piled Higher and Deeper by Jorge Cham

www.phdcomics.com

title: "I am a writing god!" - originally published 1/29/2003

Opening Content Form Closing 0 000 0000000000 0000

Content & Structure

2-in-1 recipe

IMRaD: english for...

- 1 Introduction
- 2 Methods
- Resultsand
- 4 Discussion

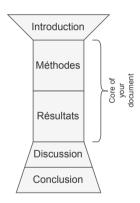


Figure 2: The shape of a S&T document ¹

¹Glasman-Deal, Science Research Writing for Non-Native Speakers of English, London: Hackensack, NJ, 2010.

ening Content Form Closing 0 0●0 0000000000 0000

IMRaD: the only valid scientific outline

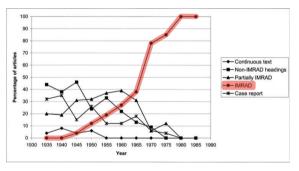


Figure 3: Text organization of published articles in the *British Medical Journal* from 1935 to 1985 (n=341) ²

To adopt for good!

- Organizes your thoughts
- ► Reproduces the scientific approach

²Sollaci & Pereira. The introduction, methods, results, and discussion (IMRAD) structure: a fifty-year survey. *Journal of the medical library association* 92.3 (2004).

GM-3-S1-PST (24/25)

Opening Content Form Closing 0 000 0000000000 0000

In details: IMRaDC

- Title page
- 1 Introduction
- 2 Methods
- 3 Results and
- 4 Discussion
- 5 Conclusion
- 6 Acknowledgments³
- 7 References

- → How?
- → What?
- → And so ?
- → To sum up?
- 7 TO Suill up

³could also appear right before the Introduction.

[→] Why?

Content Form Closing

The different parts: outline

- ► Title page
- ► Introduction
- ▶ Methods
- ▶ Results

Opening

- ▶ Discussion
- ▶ Conclusion
- ► Acknowledgments
- ► References

Content Form Closing 0.00000000000

Title page

Content

short and explicit Title

Authors ordered by amount of "work

done"/contribution

 \sim 200 words which summarize (Abstract)

the objective(s), the methods(s) and major findings(s).

Example⁴

Response of a carbon-black filled SBR under large strain cyclic uniaxial tension

Mathias Brieu a.c. Julie Diani b. Christian Mignot c. Christophe Moriceau c

LML Ecole Centrale de Lille, Bd Paul Langevin, 59650 Wileneuve d'Asca, France PIMM, CNRS Arts et Metiers ParisTech, 151 Rd de l'Hôpital, 75013 Paris, France

Manufacture Econosise des paeumatiques Michelin CERT Ladoux 63040 Chemoar ferrand Propos

ARTICLE INFO

Article history Received 5 February 2010 Received in revised form 18 May 2010 Accepted 1 have 2010 Available online 11 June 2010

Cyclic stress/strain curve

Cyclic softening Stress amplitude Strain-softening ABSTRACT

A carbon-black filled SBR was submitted to various unjuxial tension cyclic tests in order to study its cyclic softening. Stress-softening and stretch creep were monitored during stretch-control tests and ratcheting tests, respectively. The material softening induced by cyclic loadings appeared to depend on the maximum loading applied. The cyclic amplitude or equivalently the cyclic energy did not affect the material softening. The latter experimental result draws our attention since it contrasts with former results of the literature obtained on natural rubbers and butyl rubbers.

© 2010 Elsevier Ltd. All rights reserved

⁴Brieu et al. Response of a carbon-black filled sbr under large strain cyclic uniaxial tension. International Journal of Fatigue 32.12 (2010). URL: https://www.sciencedirect.com/science/article/pii/S0142112310001386.

Content Form Closing 0 000 00000000000 0000

Introduction

Content

- Context and general motivation
 - Establish the importance of your field
 - Provide background facts / information
 - Define the terminology in the title/key words
 - Present the problem area
- State of the art on the problem
 - What is known?
 - What is left to do?

- 3 Objectives of the study
 - Briefly present the objectives of your work (fill the gap in current research, improve a product)
 - Precisely describe the problem you are addressing
 - Present your hypotheses
- 4 Document outline/presentation
 - Briefly tease your methods, main results (without too much spoil!)
 - Give the outline (can do both at the same time)

⁵Each numbered item can correspond to a paragraph.

ng Content Form Closing 0 000 000●00000000 0000

Methods/Methodology

Objectives: precision and exhausivity

The Methodology should contain sufficient detail for readers to replicate the work done and obtain similar results.

Content

- Briefly introduce your methodology
 - Provide an overview of what you used
 - Relate it to the purpose of your work
- Specifically and precisely describe materials & methods
 - Precisely describe the equipments/materials/software programs/tools/theory you used (cf. check-lists)
 - Justify choices made
- 3 Indicate where problems occurred, if necessary

pening Content Form Closing 0 000 0000000000 0000

Results

Objective: convey the message!

All the results, and nothing but the results.

Guidelines

- Raw data, yet formatted
 - graphs, schematics, annotated pictures
 - tables, statistics
- Comment the results with descriptive comments only, not explanatory
- Order the report of results
 - from the simplest/most obvious to the most complicated/complex one
 - from the most general aspects to the most specific ones

Form Closing Content 000000000000

Results

How to comment them?

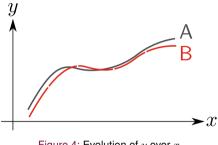


Figure 4: Evolution of y over x

descriptive

not enough "Fig 4 shows the evolution of y as a function of x, for both A and B series."

> "As can be seen in Fig 4, the two curves are very similar/different."

explanatory "In Fig 4, curve A is above B because..."

Why comment them?

Results do not speak for themselves: you need to indicate what there is to see!

ening Content Form Closing 0 000 000000000000 0000

Results

Type of descriptive comments

sequence order and time sequence of what you found

"Crack initiation appears after n loading cycles."

frequency how often your result occur

"Regardless of the initial guess, the algorithm never convergences."

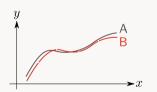
quantity give precise figures for the evolution of a specific quantity

"Process A gives twice the roughness of process B."

correlation⁶ show the relationship between two results/quantities

"The load and the displacement are proportional."

⁶Warning! Correlation and causality are two different things..!


Discussion

The most important... yet the most difficult section to write

Objective: analyze the results

Try and provide explanations, justifications for your findings.

Example

Explain *why* A and B curves are similar/different.

Guidelines

- Describe the general principles issued from the results
- Do they satisfy assumptions?
- Do they agree or not with literature?
- Explain the discrepancies/limitations. Can they be overcome?

Conclusion

Objective: concision and conviction

Show how you answered the question asked in the Introduction (problem) and summarize your key findings.

Remark

Discussion and Conclusion are sometimes merged into one section.

Content

- 1 Summarize all sections Introduction, Methods, Results and Discussion: "To address problem I, we followed methodology M to obtain key result(s) R, which shows P principle(s), or contradict with C."
- 2 Refine implication of the results
- 3 Suggest future work, perspectives, realistically: indicate what needs to be done in the short, medium and long terms.

Content Form Closing

000 000

Acknowledgments

Objective

Thank people who helped but are not listed as co-authors:

- Financial support,
- Technical support,
- Moral support.

Example

Remerciements. Les auteurs tiennent à remercier le LA-BEX MANUTECH-SISE (ANR-10-LABX-0075) de l'Université de Lyon dans le cadre du programme « Investissements d'Avenir » (ANR-11-IDEX-0007) géré par l'Agence Nationale de Recherche Française (ANR). Les auteurs remercient également (S. Sao-Joao, M. Mondon et G. Blanc de l'École des (Mines de Saint-Étienne pour leurs aides sur la préparation des échantillons) et leur caractérisation microstructurale. Ils tiennent aussi à remercier le CLYM (Centre LYonnais de Microscopie, http://clym.insa-lyon.fr) pour avoir donné accès au FIB/SEM (Zeiss NVision 40) et à N. Blanchard, A. Descamps-Mandine, Th. Douillard, et B. Van De Moortèle pour leur soutien technique. CLYM est soutenu par le CNRS, le Grand Lyon et le Conseil Régional Rhône-Alpes (France).

Content Form Closing 0 000 00000000000 0000

References

Content

A list of all references cited in the text (no reference if no citation!)

Format

For instance with Zotero

→ DocINSA lectures & tutorial

Golden rule

CITE YOUR REFERENCES

Example

Références

- [1] H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu, Acta Mater. 51 (2003) 1871-1881
- [2] M. Korzynski, Int. J. Machine Tools Manuf. 47 (2007) 1956-1964
- [3] M.M. El-Khabeery, M. Fattouh, Int. J. Machine Tools Manuf. 29 (1989) 391-401
- [4] G. Kermouche, Matériaux & Techniques 101 (2013) 308
- [5] K. Lu, J. Lu, Mater. Sci. Eng. A 375-377 (2004) 38-45
- [5] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, Acta Mater. 50 (2002) 4603-4616
- P. Bazarnik, Y. Huang, M. Lewandowska, T.G. Langdon, Mater. Sci. Eng. A 626 (2015) 9-15

 Content
 Form
 Closing
 ○
 ○
 ○
 ○
 ○
 ○

References

Citations appear in (almost) all sections

Introduction Description of context/state of the art:

"This application has been extensively studied in the past few years [1, 3-7]."

Methods Other works that inspired you to elaborate the methodology:

"The model used herein comes from a previous study [1]."

Results Unless very specific cases, no citation here: you report your own results.

Discussion Mapping (dis/agreement) to literature:

"Our findings are similar to those presented in [1], which confirms that.../

which can be explained by..."

Conclusion Some references can appear if your methodology or your results can be

clearly compared to literature standards: "Unlike what the authors in [1]

suggested, our findings show that..."

Content Form Closing

IMRaDC: summary

In a nutshell...

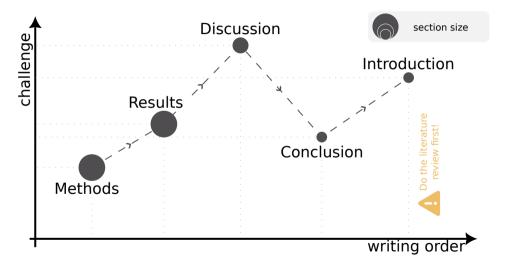
Introduction What was the problem?

Methods How did you address it?

Results What did you obtain?

Discussion Why? What does it demonstrate?

Conclusion What should we learn from it? What else could be done?


😰 OK but... how do I start? 😰

g Content Form Closing 0 000 00000000000 0●00

Writing order vs difficulty

Content & Structure: summary

What do you need? What should you know?

IMRaDC: 2-in-1 formula

You "just" need to fill in the different sections.

3rd year student knows how to...

"Perfectly" write Methods et Results sections

Methods

Rigorously describe

- an experiment, a process
- an analytical or numerical model
- a set of specifications

Results

Compile results to convey a message.

g Content Form Closing 0 000 0000000000 000

Content & Structure: summary

What do you need? What should you know?

IMRaDC: 2-in-1 formula

You "just" need to fill in the different sections.

→ text, page layout

3rd year student knows how to...

"Perfectly" write Methods et Results sections

Methods

Rigorously describe

- an experiment, a process
- an analytical or numerical model
- a set of specifications

Results

Compile results to convey a message.

→ pictures/schematics

→ equations/(code)

→ tables

→ figures/tables

- ▶ Opening
- ► Content & Structure: IMRaD
- ► Editing and formatting
 - ► Formatting documents
 - ▶ Equations
 - ► Images

▶ Closing

Piled Higher and Deeper by Jorge Cham

www.phdcomics.com

title: "I am a writing god!" - originally published 1/29/2003

Formatting documents

Wikipedia definition: page layout

Page layout [...] is the graphic arrangement of information content in a given space (sheet of paper, comic strip, web page, etc.).

It follows the work of collecting and composing the content [...] and often precedes the work of printing [...].

It aims to represent the content (text, images, animations, etc.) in a hierarchical and harmonious way (balance of zones, colors and spaces, contrasts), in order to facilitate a multi-level reading experience, with a constant concern for ergonomics.

Translated from French with DeepL.com (free version)

Content

- ► Formatting documents
 - ▶ Plain text and markup
 - ► Editing software
 - ▶ Page layout
 - ▶ Structure
 - ▶ Readability
 - ▶ Non-text elements
 - ► Sharing
- ▶ Equations
- ▶ Images

(Partial) timeline of modern editing

- **1967**: computer fonts
- **1973**: personal computers
- 1980: beginning of computer-aided publishing
- **1980**: font design software
- 1983: LaTeX launch
- 1983: MS Word launch
- 1990: World Wide Web (HTML language)
- 1992: PDF. standardized as ISO in 2008
- 1998 : Google is founded
- 2001: Wikipedia is founded
- **2004**: Markdown language
- **2010**: Google Webfonts (fonts database)
- 2022 : ChatGPT

Plain text

Wikipedia definition: plain text

In computing, plain text is a loose term for data (e.g. file contents) that represent only characters of readable material [...].

Plain text is different from formatted text, where style information is included; from **structured text**, where structural parts of the document such as paragraphs, sections, and the like are identified; and from binary files [...].

Plain text without markup

Remark

When we code, we write plain text...

00000000000000

Plain text

Advantages

accessibility, portability, sustainability

What You See Is What You Mean (WYSIWYM)

When we exchange text, what matters is the meaning (the content described by the words). We exchange characters using computers.

Characters encoding

- ASCII encodes numbers from 0 to 9, 26 Latin alphabet letters (lower and upper case), a few mathematical symbols and punctuation.
- UTF-8 extension is used by over 95% of web pages.

Content vs. layout

- Content: plain text, words
- ► **Layout**: graphical representation of the message, formatted and structured, with style and other objects (images, tables, equations, etc.)
- → How can we encode page layout?

Markup languages

Markup languages use tags to create formatted text by defining elements.

HTMI

Tags are used to delimit the start and end of elements in the markup.

- tags <h1></h1> delimits a level 1 header
- tags delimits a paragraph

Markdown

Lightweight markup language which uses symbols to define elements

- hash symbol # indicates header level (# header 1, ## header 2, etc.)
- dash symbol indicates a list item

LAT⊨X

Elements are defined by commands and environments

- environment \begin{document}... \end{document} delimit the beginning and the end of the document
- command \section defines a new section (level 1 header).

Markup language and styles

Page layout encoding

- each piece of text is attributed a role: paragraphs, section headers, title, etc.
 - → graphical homogeneity, rigorous and repeatable
- this is done through tags or any markup equivalent
- editing software interprets the tags to attribute a **style** and a **position** to each piece of text

Example: HTML and CSS

CSS language turn HTML tags into styles (font size, color, etc.).

Office software

What You See Is What You Get (WYSIWYG ≠ WYSIWYM)

In an office software (word processor such as Microsoft Word, Mac Pages or LibreOffice Writer), **text appears formatted** as you type.

What happens?

- Applying a style in Word is like putting markup tags with your mouse instead of using code
- ▶ Word does actually use tags, but it is hidden from you: try and unzip a .docx file...

Summary

Rule: how to write formatted text

Whether you are typing plain text in WYSIWYM markup languages or using WYSIWYG word processors:

think "tags"

think structuring

Office software

Microsoft Office

- ► Word (reports, articles, etc.)
- ► Excel (graphs, data analysis)
- Power Point (presentation, posters, and some many other things...)

LibreOffice (open source and free)

Compatible with Microsoft Office (in principle). The other way around is not sure...

Alternatives: WPS Office (30 \$), Collabora, OnlyOffice, Open365, etc.).

Online and collaborative office software

What you use...

- Reports (labs or projects)
- Lecture notes
- Community work

What you could use instead...

Firstname Surname:

- ▶ ID: fsurname@insa-lyon.fr
- pwd:

Markdown

- Plain text files with *.md extension
- Interpreted by an appropriate reader
- ► Easily convertible to *.html or *.pdf

Local installation

T

Typora

Collaborative and online

Markolla: INSA HedgeDoc server

Markdown

```
# Titre 1

Curabitur ante ante, efficitur eu arcu ut, egestas vehicula mi. Maecenas suscipit condimentum consectetur. Nulla vel dolor dui. Quisque gravida dictum ipsum, in luctus nulla tincidunt id. Vivamus sodales ipsum in volutpat imperdiet.

1 iste 1
1 ilste 2

## Sous-titre 1.1
```

Titre 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse a leo porttitor, luctus nibh sed, interdum nulla. Curabitur ante ante, efficitur eu arcu ut, egestas vehicula mil. Maecenas suscipit condimentum consectetur. Nulla vel dolor dui. Quisque gravida dictum ipsum, in luctus nulla tincidunt id. Vivamus sodales insum in volutpat imperdiet.

- liste 1
- liste 2

Sous-titre 1.1

A reference for Scientific Writing

MTEX

LATEX is a language (not a software).

- Free, large user community,
- Focus on the content (WYSIWYM)
- Compilation of the code renders page layout according to built-in (or personalized) styles

Previous slide LATEX code

```
\frametitle{\LaTeX}
\framesubtitle{A reference for Scientific Writing}
\begin{block}{\LaTeX}
    \LaTeX{} is a language (not a software).
    \begin{itemize}
        \item \alert{Free}, large user community,
        \item Focus on the content (WYSIWYM)
        \item Compilation of the code renders page layout according to built-in (or pe
    \end{itemize}
\end{block}
```


Opening Content

A reference for Scientific Writing

Requirements

That are multiple solutions to "make LATEX". You need

- A text editor
- A link to LATEX code compiler programs

Local installation

- LATEX distribution: MikTex (Windows or MacOS). TexLive (Linux, MacOS)
- All-in-one editor: TexMaker

Overleaf

Online and collaborative

no installation. great tutorials

Suggested cover/title page

In order of appearance:

- complete title of the project
- as subtitle:
 - course label
 - type of report (lab, internship, project)
- your name
- name of the company
- name of your supervisors (in the company or in at school)
- the date of writing

and somewhere, if you like, unaltered, high-quality logos

Standard page

Use headers and footers.

For instance

- header
 - (short) title
 - authors
- footer
 - page number
 - (logos)

Difficulty

Word & co *

**

Document structure

Rule

Split your text into sections/sub-sections/etc.

- Explicit section names (par ex. IMReDC)
- Number all sections levels
- Attribute a style to each section

Difficulty

Word & co $\star(\star)$

LAT⊨X

Document structure

Rule

Split your text into paragraphs

- e.g. 1 paragraph/item of IMRAD "contents"
- 1 paragraph \neq 1 sentence
- 1 paragraph has a beginning and an end: must develop an idea

Difficulty

Word & co -

LAT⊨X

Emphasize relevant information

Emensis itaque difficultatibus multis et nive obrutis callibus plurimis ubi prope Rauracum ventum est ad supercilia fluminis Rheni, resistente multitudine Alamanna pontem suspendere navium conpage Romani vi nimia vetabantur ritu grandinis undique convolantibus telis, et cum id inpossibile videretur, imperator cogitationibus magnis attonitus, quid ambigebat.

Visually prioritise information

- using lists
- using text blocks (with parcimony)

Alios autem dicere aiunt multo etiam inhumanius (quem locum breviter paulo ante perstrinxi) praesidii adiumentique causa, non benevolentiae neque caritatis, amicitias esse expetendas; itaque, ut quisque minimum firmitatis haberet minimumque virium, ita amicitias appetere maxime.

To Justify or not to Justify Text?

Justified text

Justified text fills the whole column width on paper. Spaces between words are then not regular. Text appears uniform, more formal (e.g. newspaper columns, novels).

Left aligned

Left aligned text is freer. It suits well for short lines because justifying would stretch space between words, making it harder to read for people with disabilities.

Non-text elements

Rule

Every non-text element (figure, schematic, table, piece of code, equations) must be given

- A caption (except equation)
- A number

and must be referred to and commented in the text.

Difficulty

Word & co **

LATEX

*

Non-text elements

Example

Think about using tables, especially for synthesizing short numerical results

Quantity	Notation	Value	Unit	Reference
Young's modulus	E	$72,3 \pm 0,4$	GPa	voir courbe
Poisson's ratio	ν	$0,\!28\pm0,\!01$		$voir\ courbe\ \dots$

Table 1: Aluminum properties from an uniaxial tensile test.

In Table 1, results are listed with a precise number of significant digits (related to the precision of the measure) and with an error interval.

00000000000000000000000000000

Final draft

Before sharing: proofread! Check spelling and grammar (yourself or ask someoneelse).

3 Commands:

- Share your document in PDF *.pdf
- Give an explicit, unambiguous filename
- Avoid accent or space in the filename

Exemple:

JDoe GM-3-PST report.pdf

Please, avoid any of:

- rapport projet 1.docx
- présentation.pptx
- projet version finale v2.odp

Equations

Key-part of scientific writing for engineers

It is a crucial part of scientific documents...

Yet, in students reports they come in many forms!

- Equations within the text,
- (Ugly) screenshots,
- Random size symbols,
- etc.

Writing equations, a basic skill?

Any engineer should be able to perfectly write equations with (and without) a computer.

de poisson à partir du coefficient directeur de la droite via la relation : $\epsilon_T = -
u imes \epsilon_L$ Il est également possible de déterminer le module de Young grâce à la formule suivante :

$$\sigma L = E \times \mathcal{E} L$$

Figure 5: From 3 GM report

La charge maximale applicable est :

$$F_{\text{max elastique acier}} = Rel_{acier} \times S$$

$$F_{\text{max elastique acier}} = 200 * 24.33 * 2.96 = 14403 l$$

Figure 6: From another 3 GM report

Equations layout and variables description

Example

Heat transfer equation reads:

$$\rho c_p \frac{\partial \theta}{\partial t} = -\text{div}\left(\vec{q}\right) + r \quad , \tag{1}$$

where ρ is the material's density, c_p the specific heat, θ the temperature, \vec{q} the flux vector, and r the heat source.

When the problem is stationary, equation (1) simplifies to:

$$-\operatorname{div}(\vec{q}) + r = 0 \quad .$$

→ Maths is just another language, it should flow with the rest.

with LATEX

LATEX rendering of an equation:

$$\rho c_p \frac{\partial \theta}{\partial t} = -\operatorname{div}\left(\vec{q}\right) + r$$

Obtain from the following code:

\rho c_p \frac{\partial\theta}{\partial t} = -\div(\vec{q}) + r

You make think

What is this? How can you read/type this?

Microsoft Office equation editor (the least worst)

- Keyboard shortcut: alt+=
- Lot of functions accessible with code (similar to $\triangle T_{=}X$
- Easy to write text, equations, text again.

$$\rho c_p \frac{\partial \theta}{\partial t} = -div(\vec{q}) + r$$

LibreOffice Writer

Insert/Object/Formula

- built-in equation editor (Writer/Impress)
- ▶ specific syntax⁷
- online documentation

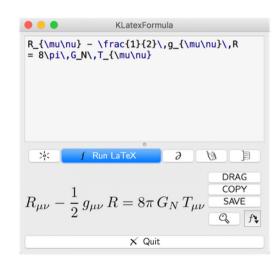
$$\rho c_p \frac{\partial \theta}{\partial t} = -\nabla \cdot q + s$$

TexMaths extension

- use LATEX syntax
- equations are rendered as (editable) images

$$\rho c_p \frac{\partial \theta}{\partial t} = -\text{div}\left(\vec{q}\right) + r$$

⁷Hard to understand and use, never managed to write the divergence operator correctly.


Opening Content

Cross-platform solution

Form

KLatexFormula

- Test your LATEX syntax quickly
- Copy/Save/Drag your equation to multiple output formats

example in Typora

Markdown uses LATEX syntax for equations.

HTML

Opening Content

What about web pages?

Example: Wikipedia

Obtention de l'équation [modifier | modifier le code]

Article détaillé : Équation de conservation.

On peut définir une loi de conservation pour une variable extensive ϕ entraînée à la vitesse ${\bf V}$ et comportant un terme de production volumique S par :

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \mathbf{V}) = S$$

```
1 on peut définir une loi de conservation pour une <a href="/wiki/Extensivit%C3%A9_et_intensivit%C3%A9_(physique)"
    title="Extensivité et intensivité (physique)">variable extensive</a> <span class="mwe-math-element"><span class="mwe-math
```

html

Summary

Equations are written with your keyboard, forget your mouse!

- Syntax is (almost) the same everywhere: LATEX is a reference
- Rendering may differ depending on software (and styles)

Reference: video tutorial (MS Office)

de poisson à partir du coefficient directeur de la droite via la relation : $\epsilon_T = -\nu \times \epsilon_L$ Il est également possible de déterminer le module de Young grâce à la formule suivante :

$$\sigma L = E \times \mathcal{E} L$$

Exercice

- Lister tout ce qui ne va pas
- ▶ Réécrire cette équation proprement dans l'éditeur de votre choix.

de poisson à partir du coefficient directeur de la droite via la relation : $\epsilon_T = u imes \epsilon_L$ Il est également possible de déterminer le module de Young grâce à la formule suivante :

$$\sigma L = E \times \mathcal{E} L$$

Corrigé

[...] le coefficient de Poisson ν à partir de la définition suivante :

$$\varepsilon_T = -\nu \, \varepsilon_L$$

avec ε_T et ε_L les déformations transversale et longitudinale respectivement. Le module d'Young E est ensuite calculé grâce à la relation de comportement :

$$\sigma_L = E \, \varepsilon_L$$

où σ_L represente la contrainte longitudinale.

La charge maximale applicable est :

$$F_{\text{max elastique acier}} = Rel_{acier} \times S$$

$$F_{\text{max elastique acier}} = 200 * 24.33 * 2.96 = 14403 l$$

Exercice

- Lister tout ce qui ne va pas
- ▶ Réécrire cette équation proprement dans l'éditeur de votre choix.

Remise en forme

Corrigé

La charge maximale F_{\max}^a pour l'acier est reliée à la limite élastique R_e^a déterminée sur la figure ...:

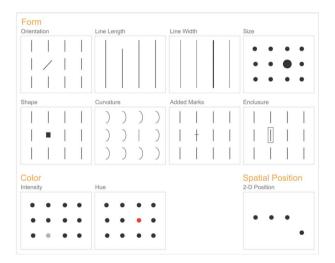
$$F_{\max}^a = R_e^a S \quad ,$$

où S est la section initiale de l'éprouvette. L'application numérique donne :

$$F_{\text{max}}^a = 200,00 \times 24,33 \times 2,96 = 14403,00 \,\text{N}$$
.

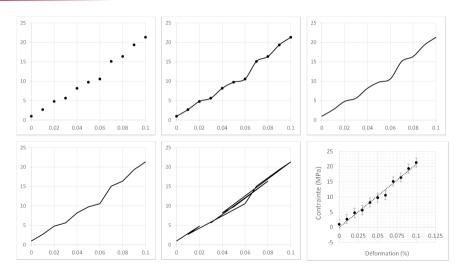
Outline

- ► Formatting documents
- ▶ Equations
- ▶ Images
 - ► Introduction
 - ► Rules for graphs
 - ► Image theory
 - ► Exercise


Your habits

How do you produce images (graphs, sketches)? Which software do you use?

Where do they end up? Which type of document?



Pre-attentive attributes of visual perception

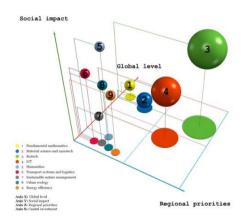
Formatting a graph

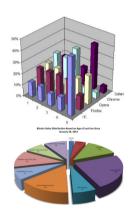
GM-3-S1-PST (24/25)

Platzer/Colmars/Elgu

Scientific and technical writing

Key elements


Rules for graphs


- Axes
 - Explicit label (+ maths notation) of the plotted quantity
 - Unit of the plotted quantity
- Legend if several curves
- ► (Title)

3D graphs...

... are forbidden (and horrible)!

From http://livingglikview.com/the-9-worst-data-visualizations-ever-created/

Other useful tip and rule

Data visualisation

The type of graph/chart directly influences the message you convey! Find inspiration here: The Data Visualisation Catalogue But avoid pie charts, please.

Rule: Comment the graph

Even a perfectly crafted graph does not speak for itself!

- Provide a legend and a number to reference it in the text
- Add a descriptive comment (cf. IMRaD/Results part)

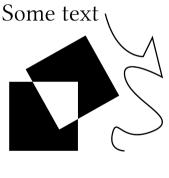
Raster/bitmap = pixels map

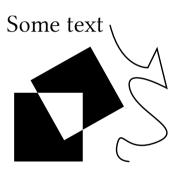
"In computer graphics and digital photography, a raster graphic represents a two-dimensional picture as a rectangular matrix or grid of pixels[...]. A raster image is technically characterized by the width and height of the image in pixels and by the number of bits per pixel." (Wikipedia)

Its resolution is given by the number of pixels by length unit (DPI, PPI) and a color is associated to each pixel.

File formats: DMP, GIF, TIFF, PNG, JPEG.

Vector graphics = geometric shapes


"Vector graphics are a form of **computer graphics** in which visual images are **created** directly from geometric shapes defined on a Cartesian plane, such as points, lines, curves and polygons. [...] The parameters of objects are stored and can be later modified. This means that moving, scaling, rotating, filling, etc. does not degrade the quality of a drawing." (Wikipedia)


When resizing, or zooming in the object, the rendered image is always smooth.

File formats: SVG, EPS, PDF, (EMF), Al.

Example

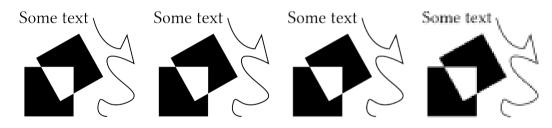

(a) Raster (b) Vector

Figure 7: Vector vs. raster graphics, generated with Inkscape.

Raster graphics resolution

Example

(a) Raster (200 PPI)

(b) Raster (100 PPI)

(c) Raster (50 PPI)

(d) Raster (20 PPI)

Figure 8: Different raster graphics resolution (PPI: point per inches).

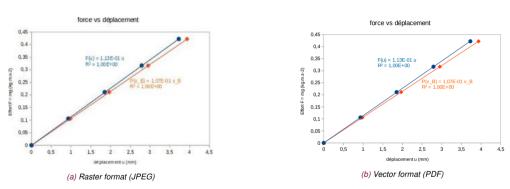


Figure 9: When you create a graph/chart, it is a vector graphics object, do not degrade its quality later on!

0000000000000

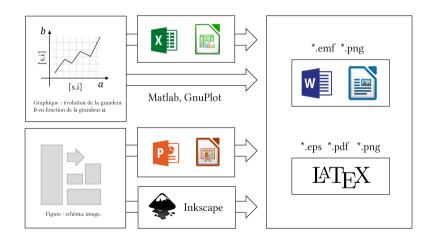

Raster graphics are very useful!

Figure 10: Photo of a biaxial tensile machine [LaMCoS].

From graphics editing to their integration in a document.

*.emf: Enhanced Meta File, magic format of Windows, handling both raster and vector graphics.

Summary

Keep in mind

- ▶ Raster / vector formats → use them appropriately
- Graphics language (visualization)
- Always comment your figures

Export: do it right

Exercise 1

From the graph to final PDF document (MS Office)

- download Excel sheet global-energy-substitution.xlsx from Moodle
 - > Génie Mécanique / Divers / Rédaction Scientifique / Lecture slides and exercises / Editing and formatting exercise (EN) / global-energy-substitution.xlsx
- modify the format if you like/want (colors, fonts, etc.)
- add axes labels (and a title)
- copy/paste the graph in a **PowerPoint** slideshow
- save the graph as different file formats (PNG, EMF, SVG, PDF)
- insert the graph in a Word document
- add a legend
- add a proper reference in the text (figure comment)

Other solutions: LibreOffice, LaTeX, etc.

Exercise 2

Opening Content

Drawing challenge

Use PowerPoint or Inkscape to draw

- Experimental setups
 - tensile test specimen
 - camera
- theoretical curve
 - which ever theoretical curve y = f(x) you like
 - add explanations on the graph (domain, remarkable elements, etc.)
- free drawing
 - INSA's rhino
 - ...

- ▶ Opening
- ► Content & Structure: IMRaD
- ► Editing and formatting
- ▶ Closing

Piled Higher and Deeper by Jorge Cham

www.phdcomics.com

title: "I am a writing god!" - originally published 1/29/2003

What about oral presentations?

Refer to the dedicated lecture on the Moodle page (FR)

> Génie Mécanique / Divers / Rédaction Scientifique / Présentation orale

What about posters?

You will present your work in a **poster** session, on February 7. The poster must have A1 format. Use the template provided on the Moodle page

00000

> Génie Mécanique / Divers / Rédaction Scientifique / Templates /

Advice

- Make choices: not everything will fit on the poster
- ▶ Everything else applies: IMRaD structure, nice editing and formatting.

Take home messages

- IMRaD for structure and content
- Markup tags and styles to format text
- ► Formatting equations and figures (never take a screenshot again!)

For the future

You must practice!

- (Almost) Everything is on Moodle or the Website
- ask for help, feedback, and review

Crédits

Ce cours est grandement inspiré

du cours donné en PST depuis ggs années, fait par Julien Colmars, Auriane Platzer et Thomas Elguedi (INSA Lyon - GM)

00000

- du cours "Rédaction d'un rapport/Présentation scientifique et technique" donné par Erwan Verron (Centrale Nantes)
- ▶ du cours "How to write and publish your paper" de G. Hess-Fernandez (École des Docteurs, Bretagne Loire), lui-même basé sur le livre de Glasman et Deal⁸

Nous remercions également D. Tumbajoy-Spinel et ses collègues⁹ d'avoir fourni un si bon exemple d'article en français respectant IMRaD.

⁹ Tumbajoy-Spinel, D. et al. Identification des propriétés mécaniques des surfaces tribologiquement transformées (tts) à partir des essais de nano-indentation et micro-compression de piliers. Matériaux & Techniques 103.3 (2015). url: https://doi.org/10.1051/mattech/2015020.

⁸Glasman-Deal. Science Research Writing for Non-Native Speakers of English. London; Hackensack, NJ, 2010.