Le Matériau « Verre »

Anne Tanguy Anne.Tanguy@insa-lyon.fr

Examen Vendredi 15 Mars 2024 14h-16h

Verres minéraux

Définition Grand Public (pas exacte scientifiquement):

www.larousse.fr, 2023

Quelques jalons historiques

- Obsidienne = Verre naturel
- -5 000 émaillage
- -3 000 1ers objets en verre moulé (Mésopotamie Irak)
- 1^{er} siècle apr. JC, verre soufflé romain (syro-palestinien)
- XVème siècle, verre vénitien, renaissance, gentilhommes verriers
- 1627 verre cristal, XVIIIème siècle, cristal de Bohême puis verre flint
- 1835 fabrication industrielle de miroirs argentés ۰
- 1960 « verre métallique », 1990 « verre métallique massif »
- XXème siècle: fibre optique, verres techniques, téléphone, pare-balle, ...

CLigo

Vase de Portland (verre camée) Ier siècle avant J.-C.

Ancienne maison de Gentilhomme verrier Forêt de la Grésigne (XVIème siècle)

Amphores romaines du 6è sciècle

Vase tulipe

0

Si

Modèle de Zachariasen (1932)

Verres Sodo-Silicates (1-x) $SiO_2 + x Na_2O$

Modèle de Greaves (1985)

Canaux de sodium

Une première classification

Classification basée sur les procédés:

Famille de céramiques	1 ^{ère} étape	2 ^{ème} étape	3 ^{ème} étape		
Céramiques Traditionnelles & Techniques	Poudre	Mise en forme	Traitement T		
Verres	Poudre	Traitement T	Mise en forme		
Bétons / Ciments	Traitement T	Poudre	Mise en forme		

Des ingrédients

Qu'est-ce qui compose un Verre ?

Un verre est un matériau amorphe obtenu par refroidissement à partir de l'état **liquide**. A l'origine, mélange de sable (silice) et de cendres (soude ou oxyde de sodium)

De manière générale, un verre est obtenu par mélange de:

✓ Vitrifiants conférant la structure:

par ex. silice SiO₂ ou GeO₂ et ions intermédiaires Al, Ti, Zr, B, P... formateurs de réseau

- ✓ Fondants permettant de diminuer la viscosité, ainsi que la température de fusion et la température de solidification Tg (température de transition vitreuse): oxydes alcalins / alcalino-terreux K₂O, Na₂O, MgO, CaCO₃, Na₂CO₃ fournissant les modificateurs de réseau mais aussi du CO₂
- ✓ Stabilisants, permettant d'assurer la stabilité du verre fondu et de limiter la cristallisation: oxydes alcalino-terreux Al₂O₃, CaO, MgO, PbO, ZnO, TiO₂, Fe₂O₃,...
- ✓ Affinants, facilitant l'élimination des gaz. Ex. Na₂SO₄

 $2Na_2SO_4 \rightarrow 2Na_2O + O_2 + 2SO_2$ fait grossir les bulles

- ✓ Colorants: oxydes de Fe, Mn (MnO₂ décolorant), Li, Cu...
 ✓ Opalisants: F, P...
- ✓ Verres au Plomb (Cristal) > 24% PbO $n_{optique}$ > 1.545

Exemple 1: Verre ordinaire

Base : silice SiO₂ (70% de la croûte terrestre...) et chaux CaO

Verre ordinaire sodo-calcique	Verre boro-silicaté
70% SiO ₂ + 10% CaO + 15% Na ₂ O	80% SiO ₂ +15% B ₂ O ₃ + 5% Na ₂ O
Vitres, bouteilles	Alimentaire ou chimique : Pyrex®

Na₂O est l'agent fondant (800° au lieu de 1650°) Mais aussi Al₂O₃ (fibres) K₂O et PbO (cristal)...

Exemple 2: Verres Silicates

Verres Silicates

TABLE 1: Commercial	oxide gla	ss compositions.	
---------------------	-----------	------------------	--

Glass family					Oxide. 1	mass %				
(application)	SiO ₂	Na ₂ O	CaO	Al_2O_3	MgO	B_2O_3	BaO	PbO	K ₂ O	ZnO
Vitreous silica										
(Furnace tubes, Si	100									
melting crucibles)										
Soda-lime silicate:										
Window	72.0	14.2	10.0	0.6	2.5		trace		0.6	
Container	74.0	15.3	5.4	1.0	3.7				0.6	
Bulb and tube	73.3	16.0	5.2	1.3	3.5					
Tableware	74.0	18.0	7.5	0.5						
Sodium borosilicate:										
Chemical glassware	81.0	4.5		2.0		12.0				
Waste immobilisation	43-53	6-24	0-14	3-19	0-5.3	8-17	misc.	misc.	misc.	misc.
Lead-alkali silicate:										
Lead "crystal"	59.0	2.0		0.4				25.0	12.0	1.5
Television funnel	54.0	6.0	3.0	2.0	2.0			23.0	8.0	
Aluminosilicate:										
Halogen lamp	57.0	0.01	10.0	16.0	7.0	4.0	6.0		trace	
Fibreglass "E"	52.9		17.4	14.5	4.4	9.2			1.0	
Optical (crown)	68.9	8.8				10.1	2.8		8.4	1.0

Verres Silicates

- refroidissement lent

- trempe (verre très résistant se brisant en petits éclats non coupants : verre de sécurité)

Exemple 3: Verres Chalcogénures

Mélange d'éléments du groupe VI (S,Se,Te) avec groupes IV (Ge, Si) ou V (Sb, As) ou halogénés Grande pureté requise

		-	Cha	lcoge	ènes			1118	IVB	VB	VII		He 2
	-	-	Elén	nents	asso	ociés		8 5	6	N 7	0 8	F	Ne 10
VA	VI	A .	_	VIIIA	_	18		AI 13	51	15	5 16	17	A/ 18
23	24	Mn 25	Fe 26	Co 27	Ni 28	Eu 29	Zn 30	Ga 31	Ge 32	A# 33	5e 34	8+ 35	Kı 36
Nb 41	Mo 42	Ic 43	Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	In 49	5n 50	56	Te 52	53	Xe 54
Ta 73	W 74	Re 75	01	1 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	85	Rn 86
Unp 105	Unh 106	Uns 107	Uno 108	Une 109									
Pr 59	Nd 60	Pm 61	5m 62	Eu 63	6d 64	Tb 65	Dy 66	Ho 67	E1 68	Tm 69	YЪ 70	Lu 71	
Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	8k 97	C1 98	E1 99	Fm 100	Md 101	No 102	103	

Famille	Nom du verre	Composition				
	GLS	70 Ga ₂ S ₃ —30 La ₂ S ₃				
Verres de sulfure	GNS	66 Ga ₂ S ₃ —34 Na ₂ S				
	GGSSb	Ge ₂₀ Ga ₅ Sb ₁₀ S ₆₅				
	2SG	Sb—Se—Ge—Ga				
verres de chaicogenure	TeXAs	Te ₂ Se ₃ IAs ₄				

Optiques Transparentes aux Infra-Rouges

Transformation cristal <-> amorphe facile

Exemple 4: Verres Métalliques

Exemples d'objets en verre métallique:

Articles de sport

Bijouteries

Coques portables

Autres exemples de Verres

Composition	Liaisons	T_f (K)	T_g (K)
SiO ₂	covalentes	1996	1473
GeO_2	covalentes	1386	900
B_2O_3	covalentes	723	521
BeF_2	ioniques	1076	580
$ZnCl_2$	ioniques	591	375
$Au_{80}Si_{20}$	métalliques	636	290
$Pd_{40}Cu_{30}Ni_{10}P_{20}$	métalliques	804	572
Se	polymériques	491	303
polypropylène	polymériques	449	259
polyéthylène	polymériques	483	163
glycérol	Van der Waals	291	178
éthanol	Van der Waals	156	93
eau	Van der Waals	273	140

Cependant, en général **la composition ne suffit pas** à distinguer les matériaux

Des procédés de Fabrication

Verre

1) Choix des Matières Premières

Permettant un mélange et un refroidissement efficaces – Tous types de liaisons

- 2) **Fusion** puis Transition Vitreuse
- 3) Mise en forme après chauffage
- 4) Finition

Essais de Classification des Verres

Classification des verres en fonction de la composition

- ✓ Verres d'oxydes (à base de SiO₂, B_2O_3 , P_2O_5 , GeO₂, As_2O_3 , Sb_2O_3 , TeO₂, ...)
- ✓ Verres de chalcogénures (S, Se, Te + Ge, Si + Sb, As + ...)
- ✓ Verres de chlorures (ZnCl₂, CdCl₂-BaCl₂-NaCl, BiCl₃-KCl, ...)
- ✓ Verres de fluorures (BeF2, 53ZrF₄-20BaF₂-4LaF₃-3AlF₃- 20NaF, ...)
- ✓ Verres Métalliques (métal/métalloïde Pd₈₀Si₂₀, Ni₈₀P₂₀, Cu₅₀Zr₅₀, Fe₄₀Ni₄₀P₁₄B₆, ...)

✓ ...

Classification des verres en fonction du comportement à la Transition Vitreuse

Classification des verres d'optique

Classification Internationale: basée sur la norme militaire MIL-G-174B pour normaliser la dénomination des verres d'optique à partir de leurs propriétés (code à 6 chiffres)

Femille du	Indice de réfraction n d	n d'Abbe V d	Nombre d'Abbe	Nombre	le Nombre	de Nombre	Nombre	Codification			Cod	lifications d	es principau	x producte	urs		
verre			internationale MIL-G-174-B	Schott	Pilkington	Ноуа	Ohara	Sumita	Corning	CDGM	Nikon- Hikari	Potapenko					
Crown borosilicate	1 5168	64.17	517-642	BK7	BSC517642	BSC7	S-BSL7	K-BK7	B16-64	D/H-K9L	J-BK7	K8 (516-610)					
Baryum crown	1.5688	56.05	569-561	BaK4	MBC569561	BAC4	S-BAL14	-	B69-56	H-BaK7	J-BAK4	BF6 (569-494)					
Crown dense	1.6204	60.32	620-603	SK16	DBC620603	BACD16	S-BSM16	K-SK16	C20-60	H-ZK9 A	J-SK16	TK20 (622-567)					
Lanthane flint	1.7439	44.85	744-448	LaF2	LAF744447	LaF2	S-LAM2	K-LaF2	D44-45	H-LaF3	J-LAF2	CTK19 (744-504)					
Flint dense	1.7847	25.76	785-258	SF11	DEDF785258	FD11	S-TIH11	K-SFLD11	D85-26	ZF51	J-SF11	TF12 (785-256)					

Indice de réfraction $n_d = c_{vide}$ (lumière) / $c_{matériau}$

Nombre d'Abbe vd = (n(589,3 nm) - 1) / (n(486,1 nm) - n(656,3 nm))

Synthèse et Mise en Forme des Verres

- ✓ Choix des Matières premières : vitrifiants, fondants, stabilisants, affinants, ...
- ✓ Chauffage et Mélange dans un four
- ✓ Mise en Forme en une ou plusieurs étapes à partir du liquide surfondu
- ✓ **Refroidissement** (selon la méthode $1K/s < dT/dt < 10^6 K/s$)
- ✓ **Finition**: recuits, ponçage, thermoformage, découpe ...

Microstructure d'un Verre

Cinétique de cristallisation **Diagramme TTT** (Transformation-Temps-Température)

Cas d'une vitro-céramique: 2 étapes: Nucléation d'un crystallite, puis croissance

Zr_{52.5}Cu₂₇Al₁₀Ni₈Ti_{2.5}

Т /К

Mesures de Capacité Calorifique Isobarique

Mesures de Calorimétrie Différentielle

FIGURE 2: Determination of glass transition temperature T_g based on differential temperature analysis (DTA), below the T_g the material is glassy whereas above the T_e the material is liquid (after [32]).

Mesures de Calorimétrie Différentielle

Analyse Enthalpique Différentielle (DSC) vs. Analyse Thermo-mécanique (TMA)

Mesures de Viscosité

FIGURE 4: Viscosity of amorphous silicates and important technological points in glass manufacture industry (after [49]).

Mesures de Viscosité

Relaxation lentes, avec plusieurs temps de relaxation:

PHYSICAL REVIEW E

VOLUME 61, NUMBER 6

JUNE 2000

Cooperativity and spatial correlations near the glass transition: Computer simulation results for hard spheres and disks

B. Doliwa* and A. Heuer

FIG. 1. One-particle, two-time quantities for the 3d packing fractions $\varphi_{3d} = 50\%$, 53%, 56%, 57.3%, and 58%, from left to right. The system sizes are $N \approx 1000$. (a) The mean squared displacement $\langle r^2(t) \rangle$ and (b) the incoherent scattering function $F_2(\mathbf{k}_{\max}, t)$.

1/

FIG. 1. Atomic mean squared displacement evaluated at ten different temperatures (297, 324, 346, 396, 415, 436, 472, 509, 599, and 684 K). Inset: same quantity at the highest temperature studied but with time starting from 1 fs to show the ballistic region clearly.

Dynamique Locale des atomes

Déplacements dans l'état Liquide Surfondu à T~Tg Déplacement Non-Affines (x10³) dans le Solide amorphe Température de Transition Vitreuse et **Facilité à former un verre** (Glass Forming Ability GFA)

Température de Transition Vitreuse et **Facilité à former un verre** (Glass Forming Ability GFA)

1970's Indicateurs: températures caractéristiques

Région de liquide surfondu $\Delta T_x = T_x - T_g$ T_x cristallisation, T_g transition vitreuse

Autres indicateurs envisagés: $T_{rg}=T_g/T_L$ (liquidus) 0.66< T_{rg} <0.69 $\gamma=T_x/(T_g+T_L)$ $\alpha=T_x/T_L$ $\phi=T_{rg}.(\Delta T_x/T_g)^{0.143}$ $\delta=T_x/(T_L-T_g)$ $\beta=T_x.T_g/(T_L-T_x)^2...$

 ΔT_x élevé permet d'obtenir un verre avec un **taux de refroidissement** plus bas Diagrammes de Phase et **Facilité à former un verre** (Glass Forming Ability GFA)

Diagrammes de Phase et **Facilité à former un verre** (Glass Forming Ability GFA)

L'état Amorphe serait favorisé par la **frustration cinétique** et un point **Eutectique** profond

Microstructure d'un Verre

Modèle Structural de Zachariasen (1932)

Microstructure d'un Verre

Simulation de Dynamique Moléculaire Verre Sodo-silicate $(1-x)SiO_2 + xNa_2O$

(a) $\rho_{Na} = 16.25 \text{ atom/nm}^3$.

(b) $\rho_{Na} = 18.25 \text{ atom/nm}^3$.

(c) Histogram.

Définition d'un Verre

Un verre est un solide résultant du piégeage d'un liquide dans un état solide non cristallin.

Un verre possède une **température de transition vitreuse**.

Verre Plat

Verre Plat

FORMATION DU VERRE LAMINE

Verre Flotté (« Float ») - 1959

Arrivée de matière brute

Verre Creux

Verre Technique

Etirage à la Vapeur

Fibrage Mécanique

Double Creuset

Verre Cellulaire

Verres Métalliques

Trempe sur roue:

Metallic Glass

of ribbons

Splat quenching

Ejection gas

> Solidification nvection and conduction cooling at 106° C/s)

> > 0.001 in (0.025 mm)

thick

0 250 in

(6.4 mm)

wide

Product (Foil)

Heating

Melt flow

0.16 hg/s

60 mph

Figure 3-63 (a) A jet of molten metal is solidified rapidly when it strikes a liquid-cooled rotating drum. (b) This striking photo shows a melt-spinning device at the National Institute of Standards and Technology. Glowing metal, melted by coils at top right, hits a whirling wheel and files off as rapidly solidified ribbon. Time photography produced multiple images. (Photo courtesy of NIST)

 $dT/dt = 10^{6}$ °C/s

dT/dt $\approx 10^{\circ}$ C/s

Différentes formes peuvent être obtenues en fonction des moules. Des échantillons jusqu'à 12 mm ont été obtenus pour l'alliage vitreloy 4

Glass Forming Ability (règles empiriques):

- 3 types d'atomes différents au moins
- différence de taille de au moins 15% entre les atomes
- enthalpie de mélange entre certaines espèces doit être négative.

Mise en forme par Formage Thermo-Plastique:

Details of test structures replicated into bulk metallic glass (alloy: $Zr_{52.5}Cu_{17.9}Ni_{14.6}Al_{10}Ti_5$).

a) silicon mold and **b)** its replication in bulk metallic glass with **c)** a detail. Pins of 10 μ m in diameter and 20 μ m height are completely replicated. A protective coating of 1 μ m SiO2 is still present on the metallic glass after removal of the Si wafer by etching. **d)** and **e)** show rims with **f)** a detail of 1 μ m spaced rims. The mold did not melt and connect the rims, but the silicon mold between the rims is still present due to a decreased etch rate in narrow channels.

Structuration des Verres Silicates par Laser Ultra-rapide:

50000 pulses ,130 fs 10 µm/s

Structuration des Verres Silicates par Laser Ultra-rapide:

Y. Shimotsuma et al. (2011)

Structuration des Verres Silicates par Laser Ultra-rapide:

The specific case of **Silica** Glasses: **Single shot** laser ablation

Micro-explosions in regime II, ultra-short laser pulses Single pulse >0.3µJ/pulse, 750 nm, focused by 65-N.A. microscope objective

Strong sensitivity of damage to the pulse duration, and imprint dimensions

Structuration des Verres Silicates par Laser Ultra-rapide:

The specific case of **Silica** Glasses: Single-shot Femtosecond **Bessel** Laser Beams

Propriétés Mécaniques
Réponse Elasto-Visco-Plastique

Plasticité: les Verres Métalliques sont Durs

Mécanique de la Rupture: les Verres métalliques ont une ténacité variable

Mécanique de la Rupture: Verres Métalliques vs. Céramiques

Rappels: Elasticité

Les 3 équations du mouvement ont **9 inconnues** σ, \underline{u}

Il est donc nécessaire d'y ajouter des équations de comportement

Exemples de Lois de comportement Linéaires en Visco-Elasticité Classique

PMMH beads, E. Kolb (2006)

Forte Hétérogénéité de la réponse à l'échelle du désordre

Exemple d'une assemblée désordonnée d'atomes:

Imaging Atomic Rearrangements in Two-Dimensional Silica Glass: Watching Silica's Dance Science (October 2013)

Pinshane Y. Huang,¹ Simon Kurasch,²* Jonathan S. Alden,¹* Ashivni Shekhawat,³ Alexander A. Alemi,³ Paul L. McEuen,^{3,4} James P. Sethna,³ Ute Kaiser,² David A. Muller^{1,4}†

Plusieurs échelles caractéristiques:

Imaging Atomic Rearrangements in Two-Dimensional Silica Glass: Watching Silica's Dance

Pinshane Y. Huang,¹ Simon Kurasch,² Jonathan S. Alden,¹ Ashivni Shekhawat,³ Alexander A. Alemi,³ Paul L. McEuen,^{3,4} James P. Sethna,³ Ute Kaiser,² David A. Muller^{1,4}†

Huang et al. Science (October 2013)

Modules d'Elasticité Locaux

Exemple d'un verre modèle de Lennard-Jones:

Coarse	Linear Elasticity				
Graining	l'		ľ		F
Length ω	0	5	10	15	²⁰ C
Hooke's law	NO	YES	YES	YES	YES
Homogeneity $\frac{\langle \bar{c} \rangle (W) - 2\mu}{2\mu} < 10\%$ $\frac{\Delta C}{\langle \bar{c} \rangle} < 10\%$	NO	NO NO	YES	YES YES	YES YES
leatropy	NO	NO	NO	NO	VEC
isotropy <u>- 10%</u> 2 <u>س</u> < 10%	NU	NO	NO	NO	YES

Isotropic

Elasticity

M. Tsamados et al. (2009)

Exemple d'un verre sodo-silicate:

G. Molnar et al. (2016)

Les Verres Métalliques sont des matériaux très durs

Plasticité

Mais ils peuvent être ductiles à petite échelle

Micro-pilier en verre de silice pure SiO₂

Sensibilité à la composition et au chargement

Visco-Plasticité

Sensibilité à la composition et au chargement

T.M. Gross et al. (2008, 2009)

Composition

Soda-lime glass

100 µm

а

(a) 60% SiO_2 20% Al_2O_3 20% CaO; (b) 80% SiO_2 10% Al_2O_3 10% CaO; (c) 100% SiO_2

Quasi-static indentation (0.2 mm/mn, 69N)

Strain Rate

Impact velocity (410 mm/s, 562N)

Applied Load

Bulk Metallic Glass

V. Keryvin et al. (2008)

Visco-Plasticité

Plasticité

Réarrangement T1 dans un verre de silice 2D

Fig. 1. Elastic and plastic deformation in ring exchange. (A) Cartoon models of the 2D silica structure. (B to E) TEM images showing a ring rearrangement that transforms a 5-7-5-7 duster into a 6-6-6-6 cluster. The dark spots are Si-O-Si columns that correspond with the top and side views in (A). Images have been smoothed and Fourier-filtered to remove the graphene lattice background [see figs. S2 and S3 and (17)]. (F) A trajectory map of the atomic sites. Color (red to yellow) indicates time of motion. (G) Larger view of the region from (A), and (H) corresponding first-to-last frame displacement map. The arrows have been enlarged $\times 2$ to increase visibility; color indicates size of displacement, from 0 (dark blue) to ≥ 1.3 Å (red). The region between the bond rearrangement and the edge of the sheet exhibits strong local rotation. Scale bars: 1 nm. See also movies S1 and S2.

Huang et al. Science (october 2013)

Plasticité

Dépendance en la **Composition** et la **Pression** dans (1-x) SiO₂ + x Na₂O

Comportement Général de l'écoulement Plastique dans un matériau amorphe

Localisation de la déformation (bandes de cisaillement)

La permanence des bandes de cisaillement n'est pas un mécanisme universel

 $d\epsilon/dt=10^9 s^{-1}$

A. Tanguy (2021)

Vibrations du réseau (Modes Propres) dans les Materiaux Amorphes

Exemple du Silicium Amorphe

$$m_{i} \cdot \frac{\partial^{2} u_{\alpha}}{\partial t^{2}} \left(\underline{r}_{i}, t\right) = -\frac{\partial E_{total}}{\partial r_{i\alpha}} \approx -\sum_{j} \sqrt{m_{i}m_{j}} M_{ij}^{\alpha\beta} \cdot u_{\beta} \left(\underline{r}_{j}, t\right) + f_{\alpha} \left(\underline{r}_{i}\right) \quad \text{with } M_{ij}^{\alpha\beta} \equiv \frac{1}{\sqrt{m_{i}m_{j}}} \frac{\partial^{2} E_{total}}{\partial r_{i\alpha} \partial r_{j\beta}}$$
$$\underline{U} \left(\underline{r}_{i}, t\right) \equiv \underline{r}_{i}(t) - \underline{r}_{i}^{0} = \underline{U}_{i} / \sqrt{m_{i}} \cdot e^{i\omega t} \text{ Dynamical Matrix: Eigenvectors } \underline{U}, \text{ eigenvalues } \omega^{2}$$

Vibrations du réseau (Modes Propres) dans les Materiaux Amorphes

Exemple de la Silice Amorphe

$$m_{i} \cdot \frac{\partial^{2} u_{\alpha}}{\partial t^{2}} \left(\underline{r}_{i}, t\right) = -\frac{\partial E_{total}}{\partial r_{i\alpha}} \approx -\sum_{j} \sqrt{m_{i}m_{j}} M_{ij}^{\alpha\beta} \cdot u_{\beta} \left(\underline{r}_{j}, t\right) + f_{\alpha} \left(\underline{r}_{i}\right) \quad \text{with } M_{ij}^{\alpha\beta} \equiv \frac{1}{\sqrt{m_{i}m_{j}}} \frac{\partial^{2} E_{total}}{\partial r_{i\alpha} \partial r_{j\beta}}$$
$$\underline{U} \left(\underline{r}_{i}, t\right) \equiv \underline{r}_{i}(t) - \underline{r}_{i}^{0} = \underline{U}_{i} / \sqrt{m_{i}} \cdot e^{i\omega t} \text{ Dynamical Matrix: Eigenvectors } \underline{U}, \text{ eigenvalues } \omega^{2}$$

Harmonic approximation of energy

Plane Waves

P.B. Allen and

J.L. Feldman (1999)

Diffusons

Locons

A.Tanguy et al. (2002) B. Mantisi et al. (2012) N. Shcheblanov et al. (2015)

Vibrations du réseau (Modes Propres) dans les Materiaux Amorphes

Exemple d'un Gel Colloïdal mou

O. Dauchot et al. (2010)

Atténuation Acoustique Apparente dans les Matériaux Amorphes

Dynamique de Paquet d'Onde et Atténuation Acoustique dans a-Si:

Dynamique de Paquet d'Onde et Atténuation Acoustique dans a-Si:

Wave Packet excitation

Dynamique de Paquet d'Onde et Atténuation Acoustique dans a-Si:

Y. Beltukov et al. (2018)

Rappel

Libre Parcours Moyen dans le régime Ballistique

Libre Parcours Moyen dans le régime Ballistique

The **Mean-Free Path** of **Wave-Packets** in the Propagons regime is identical to that given by **acoustic attenuation** from the **Dynamical Structure Factor**

Libre Parcours Moyen dans le régime Ballistique

Experimental Measurements

Different **frequency** dependences of the dissipative term $\Gamma(\omega)$

Libre Parcours Moyen dans le régime Ballistique

Experimental Results

Molecular Dynamics Simulations

Vibrations

Modélisation Effective de l'Attenuation Acoustique dans les Verres

Sound attenuation = Inverse Attenuation Time:

$$\Gamma = \frac{1}{\tau} \propto \omega^2; \omega^4; \omega^2$$

Effective modelling: two parallel processes

<u>3 parameters:</u>

$$\alpha = \frac{\mu_2}{\mu_1}, \tau_1 = \frac{\eta_1}{\mu_1}, \tau_2 = \frac{\eta_2}{\mu_2}$$
 with $\alpha(T)$ /
H. Luo, et al (2021)

Vibrations

Rappel

Diffusivité dans le régime Diffusif

Vibrations

Diffusivité des excitations Acoustiques dans les Verres

Bibliographie:

Le verre: science et technologie J. Barton, C. Guillemet, EDP sciences ed. (2005)

Elasto-plastic behavior of amorphous materials: a brief review A. Tanguy, CRAS (2021) <u>https://doi.org/10.5802/crphys.49</u>

Vibrations and Heat Transfer in Glasses: The Role Played by Disorder A. Tanguy, CRAS (2023) <u>https://doi.org/10.5802/crphys.162</u>

TABLEAU PÉRIODIQUE DES ÉLÉMENTS

