

Enjeux Environnementaux et Sociétaux du Numérique Introduction

L. Morel, Département Informatique, INSA Lyon.

2024

Présentation du cours

Objectifs du cours

- Conserver une approche ancrée dans les savoirs scientifiques et techniques
- à partir de ces savoirs, problématiser les enjeux environnementaux et sociaux, en élargissant progressivement la vision:
 - Ingénieur
 - Monde Économique / l'Entreprise
 - Société
 - Imaginaires
- ⇒ montrer aux ingénieurs que leurs objets propres impliquent par eux-mêmes des prises de positionet engagent des problèmes sociétaux complexes.
 - Faire naitre chez le/la futur.e ingénieur.e la conscience que la technologie est autant une solution qu'un problème.

Plan du module

4IF -	4IF - S2			
S6	06/02/2024	CM1	Pensée Algorithmique	CS
S6	06/02/2024	CM2	Perspectives matérielles	F2D
S8	21/02/2024	CM3	Limites Planetaires - Prospective	MPE & LM
S8	19/02/2024	CM4	Brevets, licences, RGPD	FB
S10	04/03/2024	CM5	Santé	CS
S12	19/03/2024	CM6	Genre	CAD & CS
S??		TD(4h)	World3	CS
S11		TD(4h)	Dark Patterns	AB
S12		TD(4h)	Vie Privée	AB
S14		TD(4h)	Prospective	MPE & LM

Impacts du Numérique

Question : Qu'avez-vous retenu de cette fresque ?

Impacts du Numérique - Sources

Ce cours est très largement inspiré des sources suivantes

- le cours Sylvain Bouveret à l'ENSIMAG1.
- Situer le Numérique, de Gauthier Roussilhe².
- La Fresque du Numérique³.
- Le document "Empreinte environnementale du numérique mondial", par Frédéric Bordage de GreenIT⁴

7/40

EESN L. Morel - 2024

¹https://recherche.noiraudes.net/ecoinfo/numres/

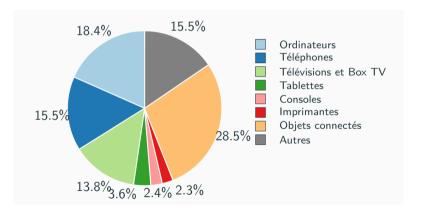
²https://gauthierroussilhe.com/ressources/situer-le-numerique

³https://www.fresquedunumerique.org/

⁴https://www.greenit.fr/empreinte-environnementale-du-numerique-mondial/

Le numérique mondial

Chiffres-clefs pour le monde ⁵ :


Total: 34 milliards d'équipements, 4.1 milliards d'utilisateurs.

	Smartphones	3,5 milliards
Terminaux	Autres Téléphones	3,8 milliards
Terriiriaux	dispositifs d'affichage	3,1 milliards
	objets connectés	19 milliards
	box DSL/fibre	1 milliard
Réseaux	Antennes relais	10 millions
	autres équip. actifs	200 millions
Datacentres	serveurs	67 millions de serveurs

⁵Bordage, GreenIT, 2019

Le numérique en France - équipements

Chiffres-clés pour la France⁶
631 millions d'équipement, 58 millions d'utilisateurs
11 appareils / utilisateur

⁶Bordage, Montenay et Vergeynst, 2021.

EESN L. Morel - 2024 9/40

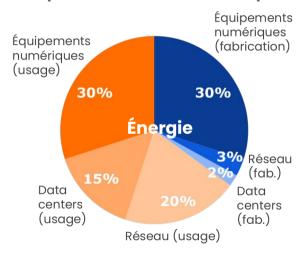
Le numérique en France - usages

Quelques chiffres⁷

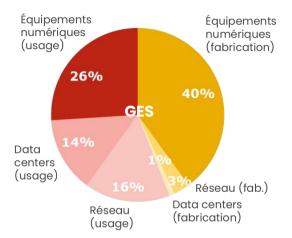
- 88% des Français connecté.e.s
- Taux d'équipement : téléphones 95%, dont smartphones 77%, ordinateurs 76%
- Dispositifs utilisés pour se connecter majoritairement à internet:
 - smartphone 51%, ordinateur 31%, tablette 6%

En résumé : une population française ultra-équipée, ultra connectée, et avec un usage surtout mobile des réseaux (NB : attention aux disparités que ces chiffres cachent).

⁷Crédoc, 2019.


Numérique et environnement

Quelques ordres de grandeurs. à l'échelle mondiale, le numérique (tout compris) c'est ...

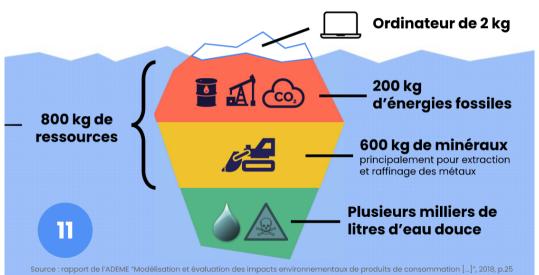

- 4.2% de Consommation d'énergie primaire (EP)
- 3.8% des émissions de GES
 (1.6 × GES aviation (hors forçage radiatif))
- 0.2% de la consommation d'eau
- 5.5% de la consommation d'électricité
- ▶ à peu près 2-3 fois la France

Note: Chiffres et tendances des prochains slides sont issus de l'étude GreenIT (Bordage, 2019)

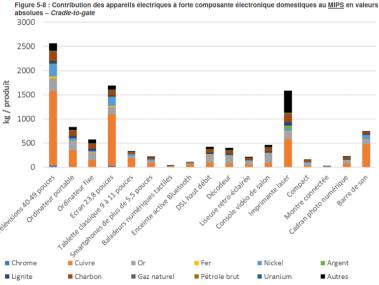
Énergie primaire consommée pour le secteur du numérique

Émissions de GES du numérique

Répartition des émissions de GES du secteur du numérique


Matérialité du numérique

kg/unité	Ordinateur portable	smartphone
Chrome	6,7	1,8
Cuivre	340,8	84,6
Or	199,6	61,1
Fer	7,5	1,8
Nickel	48,7	13,4
Uranium	3,7	1,0
Argent	3,7	1,0
Lignite	38,8	10,6
Charbon	109,3	29,2
Gaz Naturel	6,8	1,6
Pétrole	6,4	1,7
Autres	63,8	12,9
Total	835,7	220,6
Masse finale	2,4	0,3


D'après Modélisation et Évaluation des Impacts Environnementaux de Produits de Consommation et Biens d'Équipement, ADEME, 2018.

Le "sac à dos" écologique

Sac à dos écologique

Exemple - Les matériaux d'un smartphone - Fabrication

- Un grand nombre d'éléments en très petite quantité.
- Ces éléments sont parfois en concentration infime dans l'environnement
- Les processus d'extraction sont énergivores, gourmands en eau, polluant.

Source : Quand le numérique détruit la planète, G. Pitron, in Le Monde Diplomatique, octobre 2021.

Mine de cuivre de Chino (Nouveau Mexique), diamètre 2.8km, profondeur 400m

Sur les ressources, voir les analyses de Aurore Stéphant : https://www.voutube.com/watch?v=FkiMqLD3 YQ

Exemple - Déchets et retraitement d'un smartphone

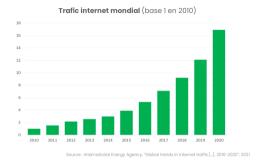
- Une part infime des matériaux utilisés est effectivement recyclée
- Pour beaucoup de matériaux (terres rares en particulier) le coût de recyclage est de plusieurs ordres de grandeur supérieur au coût d'extraction.

Taux de recyclage des métaux dans le monde (en%) Alternatives Économiques.

https://www.alternatives-economiques.fr/taux-de-recyclagemetaux-monde-0110201662952.html

À Retenir

C'est le renouvellement du matériel (en particulier coté usager) qui est le plus gourmand actuellement.


Projections

Progression entre 2010 et 2025 (projection 2019)

	2010	2015	2020	2025	Unité
Utilisateurs	2 023	3 185	4 700	5 500	Millions d'utilisateurs
Équip. classiques	13 531	18 405	19 04 1	20 278	Millions d'équipements
Taux d'équipement	7	6	4	4	Equipement /utilisateur
Objets connectés	1 000	9 605	20 315	48 272	Millions d'équipements
Equip. classiques + objets connectés	14 531	28 010	39 356	68 550	Millions d'équipements
Masse	128	164	236	317	Millions de tonnes

L'univers numérique

Objets connectés

La Grande Accélération

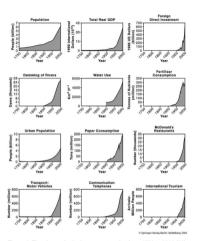


Figure 2. The change in the human enterprise from 1750 to 2000 (28). The Great Acceleration is clearly shown in every component of the human enterprise included in the figure. Either the component was not present before 1950 (e.g., foreign direct investment) or its rate of change increased sharply after 1950 (e.g., population).

21/40

Au delà du climat et de l'environnement

Exemple: inégalité d'accès au numérique

« Si la hausse du nombre de personnes utilisant Internet dans le monde est encourageante, nous ne pouvons simplement assurer que la forte croissance constatée ces dernières années va se poursuivre ainsi », Doreen Bogdan-Martin, directrice chargée du développement à l'Union Internationale des Telecommunications.

- Que veut dire "Intéressante"? Pour qui? Pour faire quoi?
- Grandes disparités de part de la population connectée

• Europe, Amériques : 89%

Pavs Arabes : 70%

Asie Pacifique : 64%

Afrique: 40%

Effets directs et indirects

Effet rebond (1)

<u>Définition</u>: "Augmentation de consommation liée à la réduction des limites à l'utilisation d'une technologie, ces limites pouvant être monétaires, temporelles, sociales, physiques, liées à l'effort, ..."

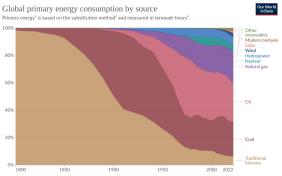
https://fr.wikipedia.org/wiki/Effet_rebond_(%C3%A9conomie)

$$rebond(\%) = 1 - \frac{\text{économies réalisées}}{\text{économie prévues}}$$

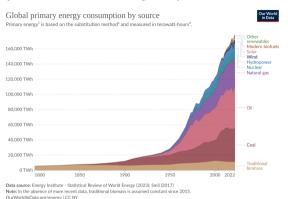
Effet rebond (2)

Amplitude	Effet	Remarques
		les économies d'énergie (ou de
< 0%	économies supplé-	ressources) réalisées sont en-
< 0 /8	mentaires	core plus importantes que celles
		prévues
		les économies réalisées corre-
= 0%	Ø	spondent à celles prévues par
		l'amélioration technique
		une partie du potentiel
< 100%	rebond partiel	d'économie est perdue à cause
		d'une demande accrue Le potentiel d'économie est en-
		-
= 100%	rebond complet	tièrement perdu (eg demande
		accrue du produit)
> 100%	Paradoxe de Jevons	Potentiel d'économie est "surcompensé"

Paradoxe de Jevons


- William S. Jevons: Économiste du XIXè siècle
- Observe que "la consommation anglaise de charbon a fortement augmenté après que James Watt a introduit sa machine à vapeur [...] Les innovations de Watt ont fait du charbon une source d'énergie plus rentable, ce qui conduit à généraliser l'utilisation de sa machine à vapeur [et donc] à accroître la consommation totale de charbon a.
- Généralisé dans les années 1980 sous le terme de postulat de Khazzoom-Brookes ^b

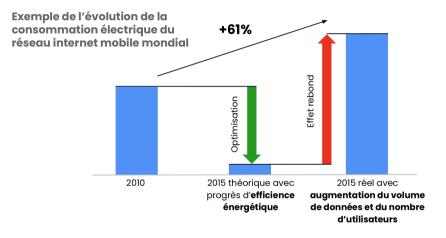
^ahttps://fr.wikipedia.org/wiki/Paradoxe_de_Jevons


bhttps://fr.wikipedia.org/wiki/Postulat_de_Khazzoom-Brookes

Apparté: Un point sur les énergies utilisées

Data source: Energy Institute - Statistical Review of World Energy (2023); Smil (2017)
Note: In the absence of more recent data, traditional biomass is assumed constant since 2015.
Out/WorldInData.orx/energy I CC BY

Il n'y a pas de remplacement énergétique



"La transition énergétique n'aura pas lieu", voir les travaux de l'historien Jean-Baptiste Fressoz⁸.

8https://www.lemonde.fr/idees/article/2024/01/22/

jean-baptiste-fressoz-le-discours-sur-la-transition-energetique-contribue-a-depolitiser-1 6212243 3232.html

L'effet rebond numérique

Source données: étude "Moore's Law and ICT Innovation in the Anthropocene", D. Bol, T. Pirson & R. Dekimpe, 2021

Effets directs et indirects

Effets directs

- = empreinte environnementale liée à
 - extraction de ressources, transport, usage, fin de vie
 - Objectif de l'Analyse de Cycle de Vie

Effets indirects

- = effets (positifs ou négatifs) produits par l'usage
- Beaucoup plus durs à mesurer, estimer.

type	périmètre	effet
1er ordre	impact fabrication	impact fabrication
	Direct	impact utilisation
		impact fin de vie

- Impact de fabrication d'un système GPS
- Impact d'utilisation d'un système GPS
- Impact de traitement d'un système GPS à la fin de sa vie

type	périmètre	effet
		impact fabrication
1er ordre	Direct	impact utilisation
		impact fin de vie
2ème ordre	Indirect : service unique	optimisation

• Fluidité du trafic accrue grâce au système de navigation

type	périmètre	effet
		impact fabrication
1er ordre	Direct	impact utilisation
		impact fin de vie
2òmo ordro	Indirect : service unique	optimisation
Zeme ordre	mairect : service unique	substitution

Remplacement des cartes papier

type	périmètre	effet
	Direct	impact fabrication
1er ordre		impact utilisation
		impact fin de vie
2ème ordre		optimisation
Zeme ordre	Indirect : service unique	substitution
3ème ordre	1	rebond direct

 Davantage de déplacements à cause d'un coût unitaire de déplacement diminué (trafic plus fluide)

type	périmètre	effet
	Direct	impact fabrication
1er ordre		impact utilisation
		impact fin de vie
2ème ordre	Indirect : service unique	optimisation
Zeme ordre		substitution
3ème ordre		rebond direct
Seine Oldie	Indirect : service complémentaire	rebond indirect

• Le temps et le coût économisés avec des services plus efficaces sont réinvestis dans des trajets en avion par exemple

type	périmètre	effet
		impact fabrication
1er ordre	Direct	impact utilisation
		impact fin de vie
2ème ordre	Indirect : service unique	optimisation
Zeme ordre		substitution
		rebond direct
3ème ordre	Indirect : service complémentaire	rebond indirect
	Indirect: économie	changement structurel

 Le GPS permet le déploiement de véhicules autonomes, ce qui induit une production accrue de ces nouveaux systèmes

type	périmètre	effet
		impact fabrication
1er ordre	Direct	impact utilisation
		impact fin de vie
2ème ordre		optimisation
Zeme ordre	Indirect : service unique	substitution
		rebond direct
3ème ordre	Indirect : service complémentaire	rebond indirect
Seme ordre	Indirect: économie	changement structurel
	Indirect: société	transformation systémique

 L'arrivée des véhicules autonomes modifie en profondeur le comportement des individus, qui vont choisir par exemple d'habiter plus loin de leur lieu de travail, accentuant ainsi l'étalement urbain, la déprise agricole, les besoins logistique "du dernier kilomètre".

Pour aller plus loin ...

- lire: https://learninglab.gitlabpages.inria.fr/mooc-impacts-num/mooc-impacts-num-ressources/Partie2/FichesConcept/FC2.4.
 2-EffetsRebonds-MoocImpactNum.html
- lire: https://theconversation.com/ linquietante-trajectoire-de-la-consommation-energetique-du-numerique-13
- visionner l'exposé de David Bol: https://www.lip6.fr/colloquium/?guest=Bol

Et pendant ce temps

⁹Rodhain, F. (2019). La nouvelle religion du numérique. Le numérique est-il écologique ? . Editions EMS et Libre & Solidaire, Paris, 2019, 130 p. .

EESN L. Morel - 2024 40/40