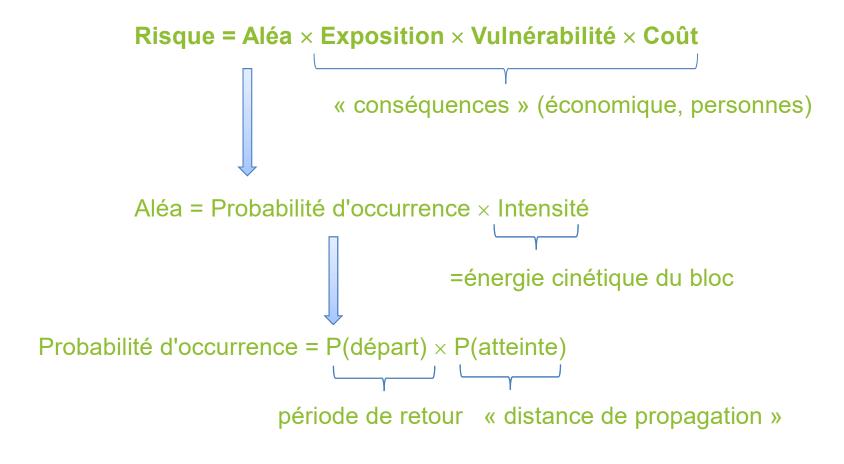
Mécanique des Roches - GEO 3

Stabilité des massifs rocheux Les parades

Différents types d'instabilités rocheuses


- Classification usuelle:
 - V< 0.1 m³: chute de pierres
 - 0.1 < V< 100 m³ : chute de bloc
 - Définition (chute de pierres et blocs): type de mouvement de terrain lors duquel un volume de roche se met en mouvement depuis un versant (en particulier à partir de discontinuités, de joints stratigraphiques..), et se déplace vers l'aval par une succession de chutes libres, rebonds, et phases de roulemen
 - Vitesse : jusqu'à 30 m/s sur pente, voir plus si chute libre !
 - $V > 100 \text{ m}^3$:
 - éboulement en masse et éboulement en grande masse
 - avalanche rocheuse
- Concernent : falaises (montagne et littoral), affleurements rocheux, carrières...

Mouvement de bloc isolé

Aléas et risques

APPLICATION A L'ALÉA ROCHEUX

Risque....

PAS DE PANIQUE

Nature	Taux		
(a) risque naturel :			
– foudre	0,2		
– crue	$0,5 \\ 0,5-4$		
– avalanche			
(b) risque domestique :			
– noyade	10-16		
– overdose (drogue)	50-60		
– suicide	100		
– accident de la circulation	130-150		
- accident domestique	110-330		
– grippe	300-400		
- tabac	3 000-5 000		
(c) risque sportif:			
– football	60		
– ski	410		
– alpinisme	600		
– plongée	1 260		
– nautisme	8 000		

Taux de mortalité :

Coût pour les assurances
(Suisse 1993-2002):

Nature	Montant total (M€)	Part relative (%) 41,5 25,6	
tempête	588		
grêle	362		
inondation	373	26,4	
avalanche	65	4,6	
chute de pierre	28	2,0	

France métropolitaine : 2 décès / an

Risque : l'enjeu économique

UN EXEMPLE DANS UN CONTEXTE DE RÉSEAU

Evénement: Mars 2006, éboulement de quelques blocs sur la voie ferrée de Moûtiers (qq m³)

Conséquences : 25 000 personnes bloquées en gares 70 trains bloqués (TER, TGV, Thalys, Eurostar)

Coûts: Direct 1,34 m€, Indirects 5,4M€

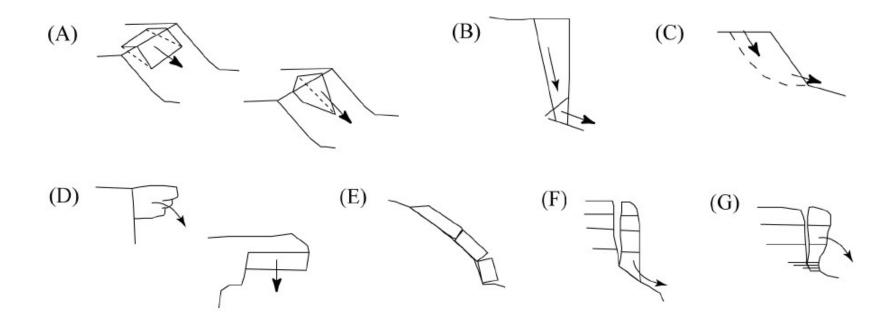
Exemples routiers: Gorges de la Bourne et de l'Arly

Chute de bloc atteignent des réseaux desservant des territoires enclavés!

Les 3 grandes phases

Initiation

- Dépendant de nombreux paramètres (Géologie,..)
- Différents mécanismes de départ (glissement plan, dièdre..)

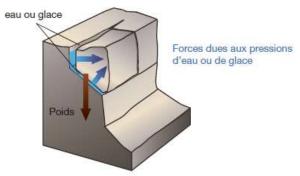

Propagation

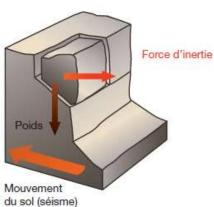
- Simulation des trajectoires : cinématique + points d'arrêt
- Interaction avec le milieu environnant (forte dépendance à celui-ci)

Arrêt

Atteinte des enjeux

Initiation : facteurs de prédisposition

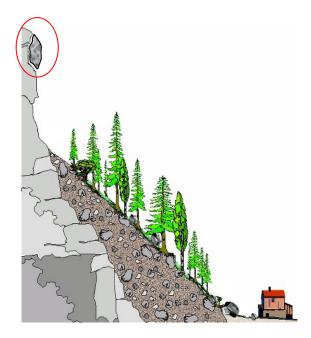



Mécanismes de rupture d'éboulements rocheux : (A) glissements plan et dièdre, (B) glissement composé, (C) glissement rotationnel, (D) rupture de surplomb ou de dalle de toit, (E) rupture de banc, (F) rupture de colonne en pied, (G) basculement de colonne.

Initiation : Facteurs dégradants/aggravants/declenchants

Causes possibles

- Pluie, eaux souterraines
- Cycles gel-dégel
- Accumulation neigeuse
- Dilatation thermique
- Séisme
- Vibrations/explosions
- Racines
- Animaux
- Feux de forêt
- Erosion en pied (vent, eau)



Evaluation du risque

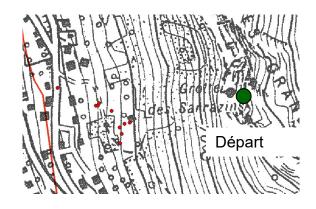
APPROCHE DE L'INGENIERIE

- 1 Estimation du volume mobilisable
 - Volume total
 - Taille et forme à l'arrivée
- 2 Terme probable d'occurrence
 - Désigne l'urgence à traiter le risque
 - 6 Qualificatifs : 'Imminent' à 'échelle géologique'
- 3 Propagation (trajectographie)
- 4 Vulnérabilité de l'enjeu
 - Phénomène soudain et propagation très rapide : Nombre et temps de séjour dans les zones exposées

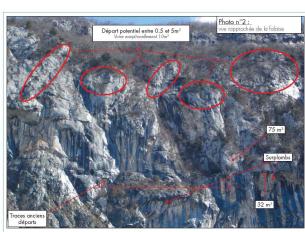
Aléa de départ

Estimation du volume mobilisable

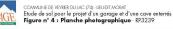
- Volume total
- ■Taille et forme à l'arrivée

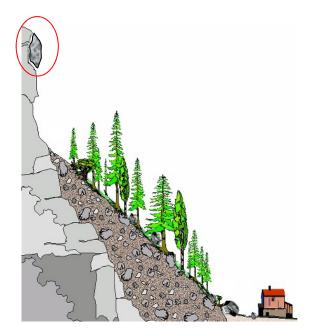

Probabilité d'occurrence (Terme probable d'occurrence)

- ■Désigne l'urgence à traiter le risque
- ■6 Qualificatifs : 'Imminent' à 'échelle géologique'

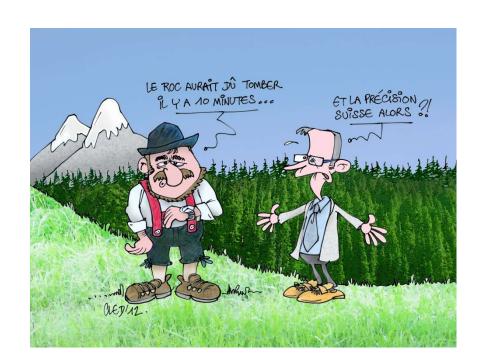

Estimation du volume mobilisable

Volumes déterminés par :


- Observation de la paroi (compartiments rocheux, cicatrices)
- Observation des blocs éboulés
- Analyse structurale
- Relevés Lidar



Evaluation du risque


APPROCHE SIMPLE DE L'INGENIERIE

- 1 Estimation du volume mobilisable
 - Volume total
 - Taille et forme à l'arrivée
- 2 Terme probable d'occurrence
 - Désigne l'urgence à traiter le risque
 - 6 Qualificatifs : 'Imminent' à 'échelle géologique'
- 3 Propagation (trajectographie)
- 4 Vulnérabilité de l'enjeu
 - Phénomène soudain et propagation très rapide : Nombre et temps de séjour dans les zones exposées

PROBABILITÉ D'OCCURRENCE

- Détermine l'urgence à traiter le problème
- Avec instrumentation/mesures sur site avec mvt: assez à très précis
- Sans instrumentation:
- Très peu précis
- Approche pragmatique à dire d'expert
- 6 Qualificatifs : 'Imminent' à 'échelle géologique

Aléa de départ

COMPARATIF DES TECHNIQUES DE CARACTÉRISATION

	Spatial data type	Range	Accuracy	Spatial resolution or point density	Time resolution
Airborne or satellite optical imaging	Continuous raster	n.a.	n.a.	~5 x pixel size	Days-years
Airborne laser scanning	XYZ point cloud	Tens of m to kilometers Tens of cm in xyz (~30 cm at 1 km range)		1 - 100 point.m-2	Days - years
Advanced InSAR	Uneven, discontinuous point distribution	n.a. ~1 mm (line of sight displacement)		pixel size of 1 - 30 m	Months
Terrestrial photogrammetry	Continuous raster	m to km	n to km ½ x pixel size (~5 cm at 500m)		Minutes - years
Distancemeters	Point	5 km max on reflectors	mm (1mm at 1 km range)	Max 1.m-2	Seconds - years
Terrestrial laser scanning	XYZ point cloud	1.5 km max on rock	cm in xyz (~1 cm at 100m)	10 - 10000 point.m- 2	Hours - years
GBInSAR	Continuous raster	4 km max on rock	~0.1 mm (line of sight displacement)	pixel size of dm - m	Minutes - years
GNSS	Point	n.a.	~10cm in kinematics / 1 mm horizontal and 1 cm vertical in static mode	Max 1.m-2	Minutes - years
Tiltmeter, crackmeter, extensometer	Point	mm to hundreds of m	0.1 mm - cm	Max 1.m-2	Seconds - years

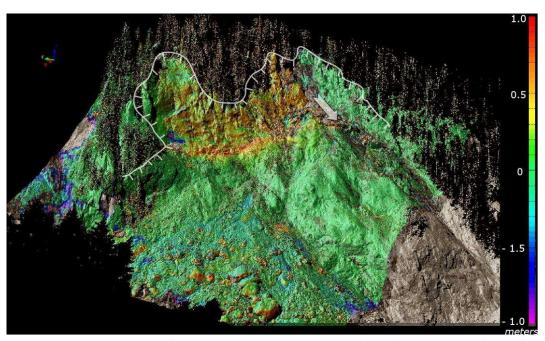
OCCURRENCE: COMPARTIMENT BIEN IDENTIFIÉ

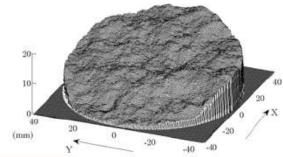
Pratiques courantes:

- Instrumentation d'un site
- Suivi en temps réel des mouvements
- Déclenchement d'alerte

Suivi de falaise par scan laser terrestre

Utilisé quand un mouvement ou une déformation est suspecté. Met en évidence les suivants..




Figure 2.5. Terrestrial laser scanning imaging of displacement of the Val Canaria rockslide. The moving rock face (in yellow) is 40 m high. The displacement was measured between July 2007 and October 2009. The rock face collapsed the day after the second scan

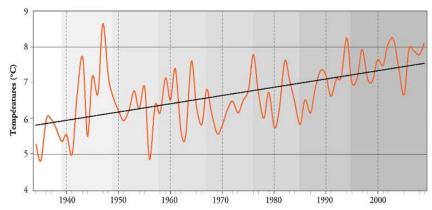
MODÉLISATION DE LA STABILITÉ DES MASSES ROCHEUSES

Deux points essentiels:

- Modèle mécanique de joint
- Réseau de fissures

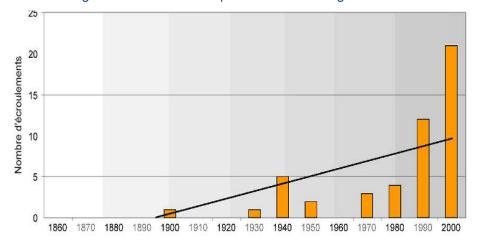
contact dynamics method)

(Merrien-Soukatchoff et al.)


discontinuities). RESOBLOCK software

Aléa de départ

INFLUENCE DU CHANGEMENT CLIMATIQUE


Evolutions attendues:

- Elévation de l'isotherme zéro
- Augmentation de la fréquence et de l'intensité des évènements pluvieux 'extrêmes'

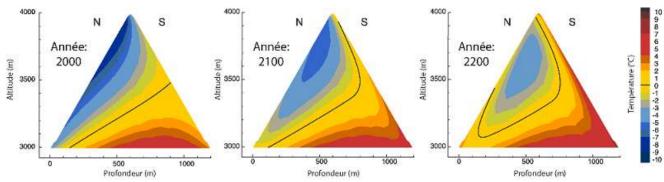
Température moyenne annuelle de l'air à Chamonix depuis 1934 : +1,7°!

Nombre d'éboulements, de plus de 500m³ et par décennie, aux Drus et dans les Aiguilles de Chamonix depuis la fin du Petit Âge Glaciaire

(Ravanel, L. & Deline, P.; Université de Savoie)

Aléa de départ

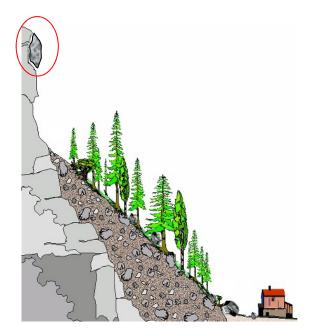
INFLUENCE DU CHANGEMENT CLIMATIQUE


glace encore présente deux semaines après l'éboulement

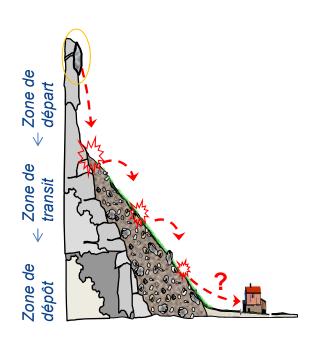
ion de Eboulement de la Tour des Grandes Jorasses

(massif du Mont Blanc), septembre 2007

Températures dans une arête rocheuse présentant des faces nord et sud, dans les conditions actuelles, après un siècle puis deux siècles de réchauffement par siècle de +3,5°C en face nord et +2,5°C en face sud (J. Noetzli,).



(Ravanel, L. & Deline, P.; Université de Savoie)


Evaluation du risque

APPROCHE SIMPLE DE L'INGENIERIE

- 1 Estimation du volume mobilisable
 - Volume total
 - Taille et forme à l'arrivée
- 2 Terme probable d'occurrence
 - Désigne l'urgence à traiter le risque
 - 6 Qualificatifs : 'Imminent' à 'échelle géologique'
- 3 Propagation (trajectographie)
- 4 Vulnérabilité de l'enjeu
 - Phénomène soudain et propagation très rapide : Nombre et temps de séjour dans les zones exposées

Aléa de propagation / Trajectoire d'un bloc

Principales questions

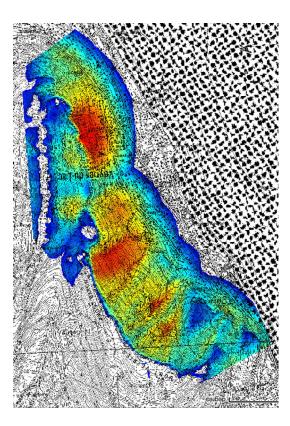
- Point d'arrêt
- Energie cinétique

Finalités:

- Zonage de l'aléa
- Définition de la stratégie de protection (ouvrages)

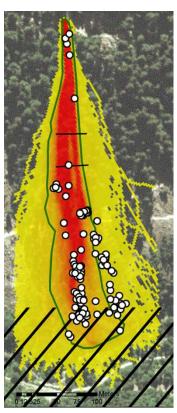
Modèles de propagation:

- Ligne d'énergie
- Simulations numériques des trajectoires

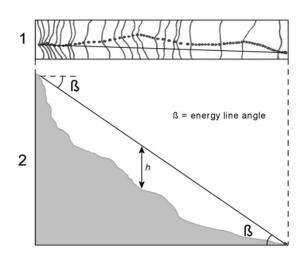

Modélisation des éboulements en masse : non abordé

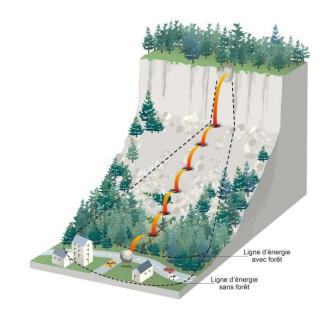
Aléa de propagation

LIGNE D'ÉNERGIE / SIMULATION DES TRAJECTOIRES


Ligne d'énergie

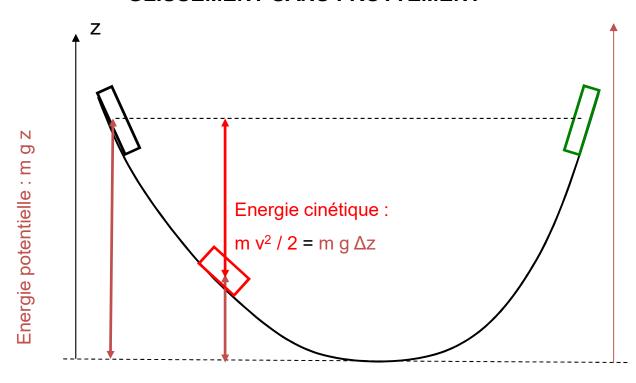
identification des zones sensibles à l'échelle 'régionale' l'échelle du site


Simulation:


calcul de l'aléa à

Aléa de propagation - Ligne d'énergie

PRINCIPE



Postulat : la distance et le dénivelé parcourus par un bloc depuis son point de chute initiale sont liés.

Ligne d'énergie : ligne fictive qui relie le point de départ d'un projectile à son point d'arrêt. (incliné de β par rapport à l'horizontale)

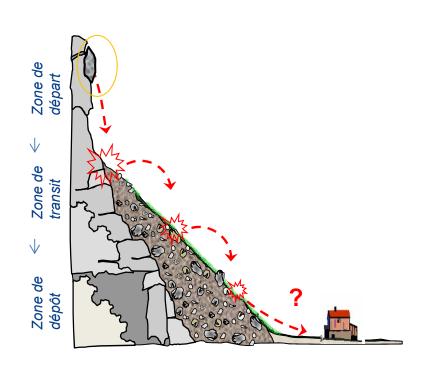
Aléa de propagation - Ligne d'énergie PRINCIPE

GLISSEMENT SANS FROTTEMENT

(source : D. Hantz)

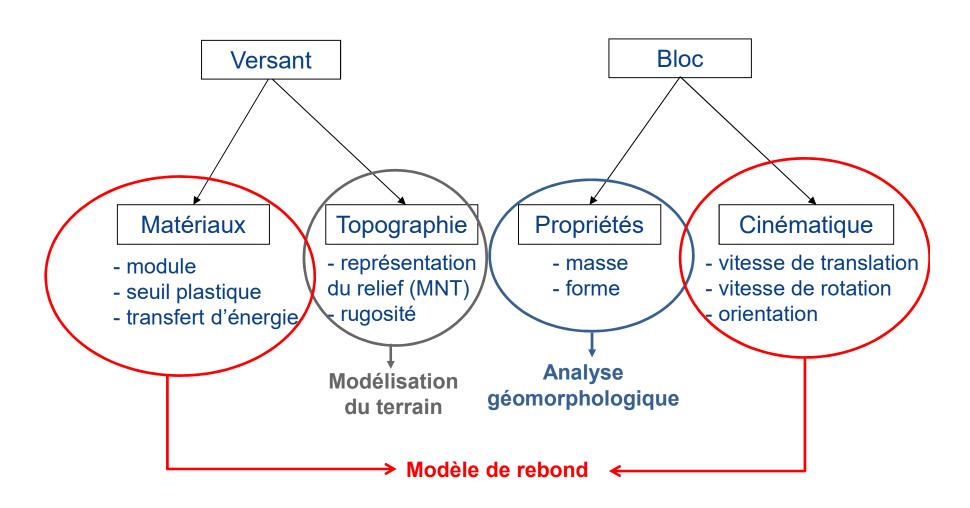
Aléa de propagation - Ligne d'énergie

PRINCIPE

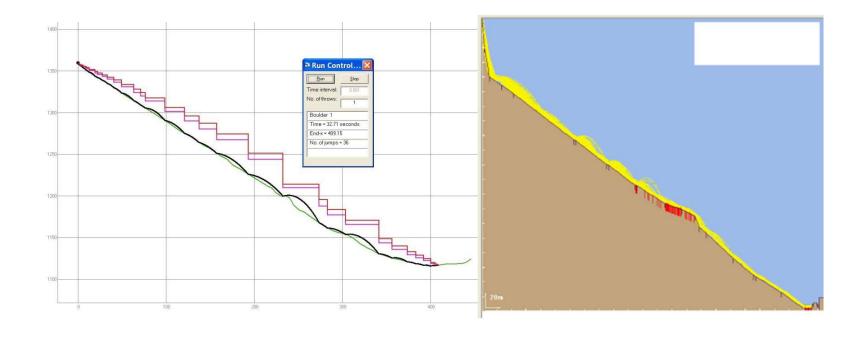

Valeurs typiques de β: 32° à 38°.

Détermination empirique.

Auteurs	Valeur de l'angle de la ligne d'énergie				
Hsü, 1975	31°				
Moser, 1986	33°- 42°				
Meissl, 1986	33° - 35°				
Grunder, 1984	32.6°- 33.4°				
Onofri et Candian, 1979	28.34°- 40.73°				
Domaas, 1985	32°				
Gerber, 1994	33°- 37°				

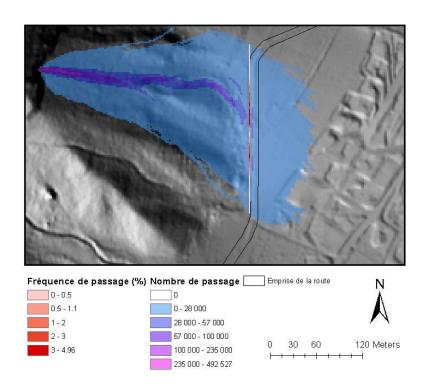

Aléa de propagation - Etude trajectographique

- Zone de départ et volume concerné connus
- ☐ Trajectoire = composition de chute libre + rebond + roulement + glissement
- Fonction de la topographie, des caractéristiques du 'sol', du couvert végétal, de la forme du bloc...
- ☐ Peut s'accompagner de fracturation⇒ Extrêmement aléatoire !
- ☐ Outils de simulation numérique:
 - 2D ou 3D
 - Déterministes ou probabilistes
 - 'point matériel' ou forme réelle
 - Grande variété de lois de rebond



Aléa de propagation - Etude trajectographique

PARAMÈTRES INFLUENTS

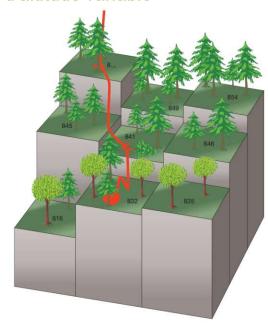

Aléa de propagation - Etude trajectographique MODÈLES 2D

Mais:

- propagation du bloc suivant un axe prédéfini (ligne de plus grande pente ou à dire d'expert)
- Interpolation entre profils

Aléa de propagation - Etude trajectographique MODÈLES 3D

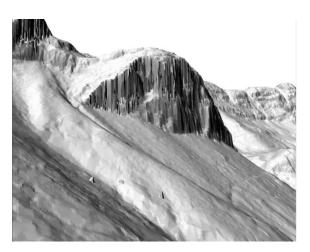
Mais:

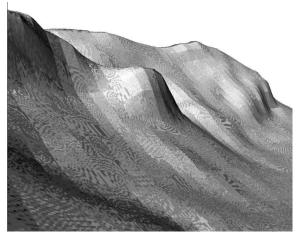

- Résolution du MNT!

MNT: Modèle Numérique de Terrain (représentation spatiale de l'altitude).

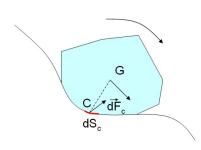
Aléa de propagation - Etude trajectographique MODÈLES 3D

Représentation du terrain (MNT)


- TIN: représentation du terrain par des triangles
- Raster : représentation du terrain par 'pixels', d'altitude variable

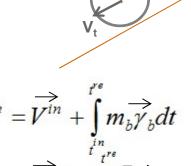


Compromis entre précision de la ∠ représentation et temps de calcul!



Mécanique du rebond

Approche analytique



$$\int_{S_{c}} d\overrightarrow{F}_{c} = m_{b} \overrightarrow{\gamma}_{b}$$

$$\int_{S_{c}} \overrightarrow{CG} \wedge d\overrightarrow{F}_{c} = \overline{I} \overrightarrow{\xi}_{b}$$

$$\overrightarrow{V}^{re} = \overrightarrow{V}^{in} + \int_{t^{in}}^{t^{re}} m_{b} \overrightarrow{\gamma}_{b} dt$$

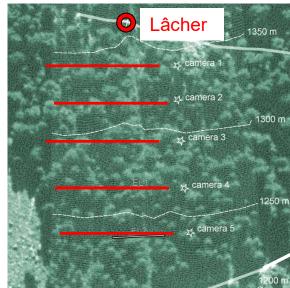
$$\overrightarrow{\Omega}^{re} = \overrightarrow{\Omega}^{in} + \int_{t^{in}}^{t^{re}} \overline{I} \overrightarrow{\xi}_{b} dt$$

$$v_t^{re} = \underline{R}_t \times v_t^{in}$$
 $v_n^{re} = -\underline{R}_n \times v_n^{in}$

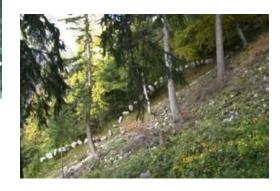
$$\begin{array}{lll} & \text{Mod\`eles courants (point mat\'eriel)} \\ & v_{t}^{re} = \underline{R}_{t} \times v_{t}^{in} & v_{n}^{re} = -\underline{R}_{n} \times v_{n}^{in} & \begin{bmatrix} V_{t}^{re} \\ V_{n}^{re} \\ \omega^{re} \end{bmatrix} = \begin{bmatrix} R_{t} & 0 & 0 \\ 0 & R_{n} & 0 \\ / & / & / \end{bmatrix} \begin{bmatrix} V_{t}^{in} \\ V_{n}^{in} \\ \omega^{in} \end{bmatrix}$$

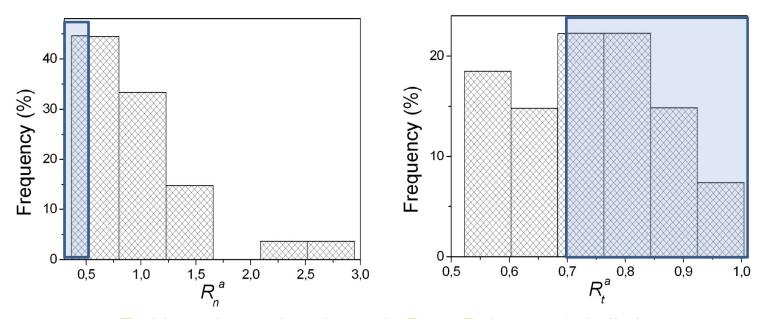
Valeurs usuelles de Rn et Rt

Reference	Value for R _n	Value for R _t	Value for R _E	Value for R _{TE}	Value for R _I	Remarks
W. L. T. 1022	0.75-0.80					Based on experience in Italy
Habib 1977	0.5-0.6	iš -				Based on experience in Norway
Piteau & Clayton 1977	0.8-0.9	0.65-0.75				Solid rock
	0.5-0.8	0.45-0.65				Detrital material mixed with large rock boulders
	0.4-0.5	0.35-0.45				Compact detrital material mixed with small boulders
	0.2-0.4	0.2-0.3				Grass covered slopes
Wu 1985	0.2-0.8	0.5-0.75				Rock on rock or wood platform
Heierli 1985	0.95		0.9	3		Rock
	0.55		0.3			Gravel layer (35 cm)
Helelli 1983	0.45		0.2			Gravel layer (70 cm)
	0.45		0.2			debris
Bozzolo & Pamini,		9		0.7		Rock at a slope angle of 44°
1986				0.55		Debris at a slope angle of 57°
Descoeudres &					0.4	Vineyard slopes
Zimmermann 1987					0.85	Rock slopes
Hoek 1987	0.53	0.99	*			Clean hard bedrock
	0.4	0.9	3			Asphalt roadway
	0.35	0.85				Bedrock outcrops with hard surface, large boulders
	0.32	0.82				Talus cover
	0.32	0.8				Talus cover with vegetation
	0.3	0.8				Soft soil, some vegetation
Urciuoli 1988**	0.05-0.35	0.5-1	0.02-1	9		Rock block impacting limestone
Olchon 1988**	~0	0.24				Debris fan


Aléa de propagation - Etude trajectographique

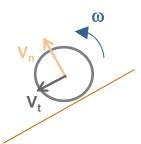
DÉTERMINATION EXPÉRIMENTALE DES COEFFICIENTS


Site expérimental: Vaujany. Pente boisée avec couloir d'avalanche (38°), 100 blocs lachés, 5 caméras, 30 rebonds

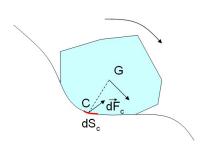


Aléa de propagation - Etude trajectographique

VALIDITÉ DES COEFFICIENTS DE RESTITUTION APPARENTS



En bleu: plages de valeurs de Rn et Rt issues de la littérature


Fort désaccord!

R_n et R_t ne sont pas intrinsèques au matériau (plasticité) et dépendent fortement des paramètres cinématiques du bloc (vitesse, vitesse de rotation, angle d'incidence!), de sa forme..

Mécanique du rebond

Approche analytique

$$\int_{S_{c}} d\vec{F}_{c} = m_{b} \vec{\gamma}_{b}$$

$$\int_{S_{c}} \vec{CG} \wedge d\vec{F}_{c} = \vec{I} \vec{\xi}_{b}$$

$$\overrightarrow{V}^{re} = \vec{V}^{in} + \int_{t_{i}}^{t_{i}} m_{b} \vec{\gamma}_{b} dt$$

$$\overrightarrow{\Omega}^{re} = \overrightarrow{\Omega}^{in} + \int_{t_{i}}^{t_{i}} \vec{I} \vec{\xi}_{b} dt$$

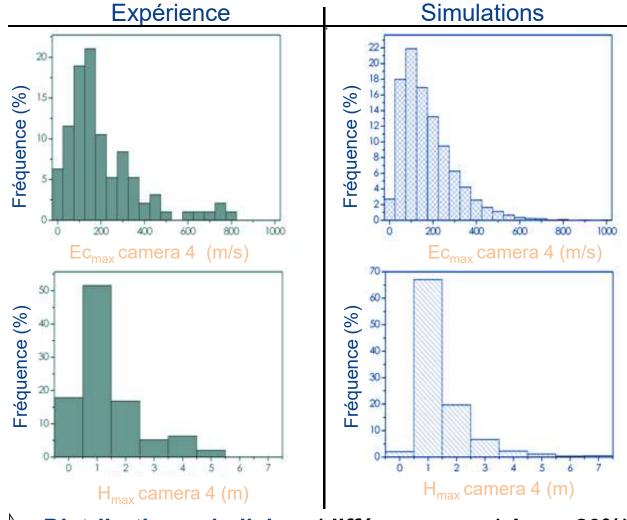
$$\overrightarrow{V}^{re} = \overrightarrow{V}^{in} + \int_{t^{in}}^{t^{re}} m_b \overrightarrow{\gamma}_b dt$$

$$\overrightarrow{\Omega}^{re} = \overrightarrow{\Omega}^{in} + \int_{t^{in}}^{t^{re}} \overline{\overline{I}} \overrightarrow{\xi}_b dt$$

Modèles courants (point matériel)

$$V_{n}^{re} = -R_{n} \times V_{n}^{in} \quad V_{t}^{re} = R_{t} \times V_{t}^{in}$$

$$\begin{bmatrix} V^{re} \\ t \\ V^{re} \\ \omega^{re} \end{bmatrix} = \begin{bmatrix} R_t & 0 & 0 \\ 0 & R_n & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V^{in} \\ V^{in} \\ 0 & 0 \end{bmatrix}$$


Modèles stochastiques (point matériel)

$$\begin{bmatrix} V_{x,r} \\ V_{y,r} \\ R_b \omega_r \end{bmatrix} = \begin{bmatrix} a_{11}(p) & a_{12}(p) & a_{13}(p) \\ a_{21}(p) & a_{22}(p) & a_{23}(p) \\ a_{31}(p) & a_{32}(p) & a_{33}(p) \end{bmatrix} \begin{bmatrix} V_{x,i} \\ V_{y,i} \\ R_b \omega_i \end{bmatrix} + \begin{bmatrix} e_x \\ e_y \\ e_\omega \end{bmatrix} \longrightarrow$$

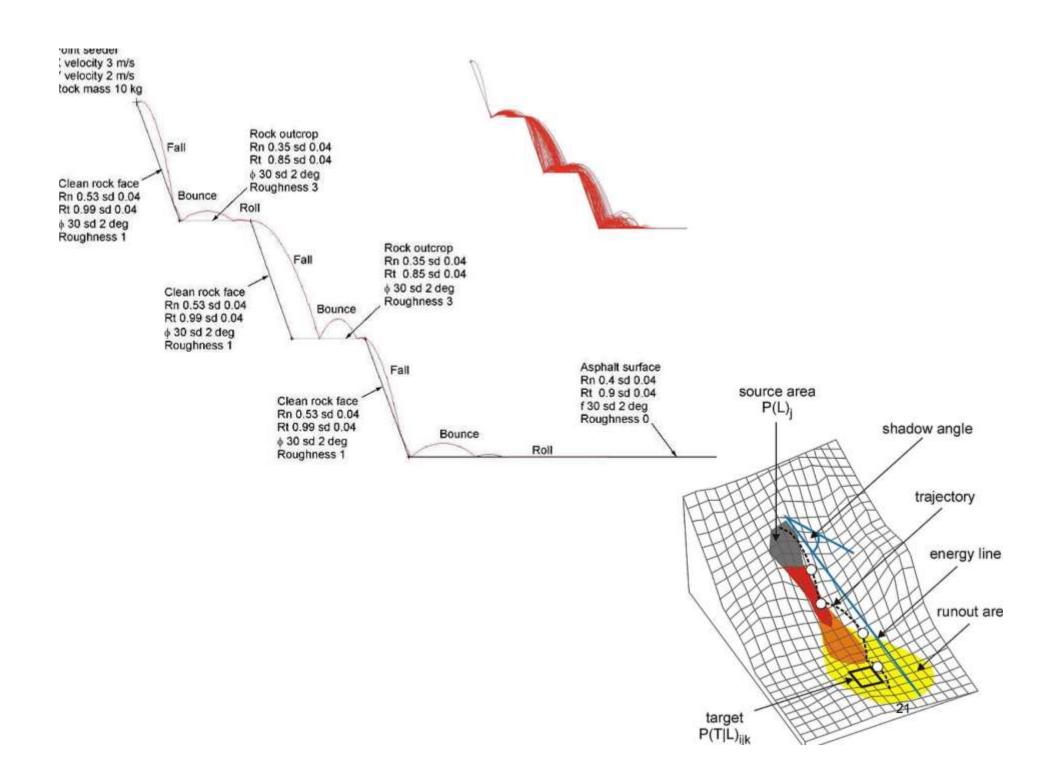
Prise en compte des couplages cinématiques!

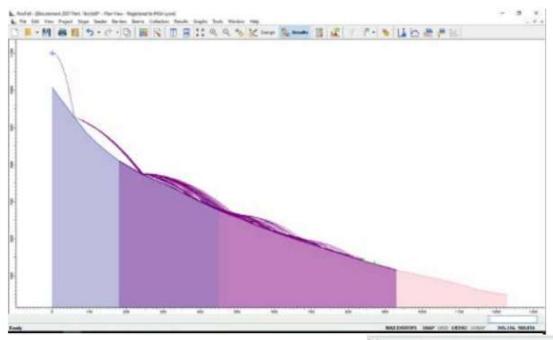
Aléa de propagation - Etude trajectographique

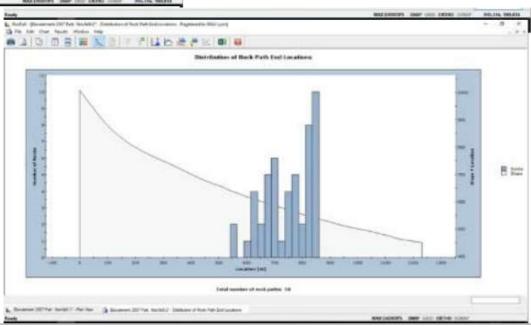
VALIDATION DU MODÈLE STOCHASTIQUE

Distributions similaires (différence exp./sim. < 20%)

Simulation trajectographique : TD


Estimation du volume d'un bloc, avec le logiciel SWedge de Rocscience


Utilisation des logiciels Rocfall de Rocscience et Propag du CEREMA


Un écran virtuel peut être dressé à différents endroits clés du site. Il permet de collecter les informations nécessaires à la qualification des aléas de propagation et aux pré dimensionnement des éventuelles protections :

- Nombre de blocs franchissant le mur,
- Énergies moyennes et maximales des blocs,
- Hauteurs de passage moyennes et maximales des blocs,
- Vitesses de passage moyennes et maximales des blocs.

A partir de ces résultats, on peut projeter des parades mises en place de façon optimisées et réduire ainsi l'aléa. La nature de ces parades dépend notamment de l'énergie à stopper ou à dissiper.

Etude trajectographique

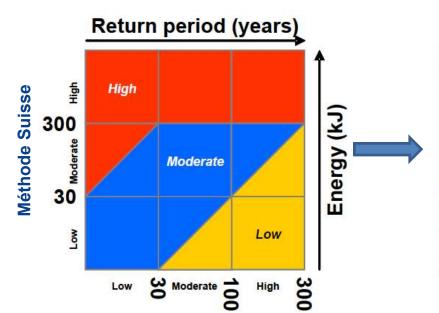
EN VUE DU DIMENSIONNEMENT DES OUVRAGES

Données nécessaires au dimensionnement des ouvrages

- √ Hauteur
- ✓ Energie

Mais... (quelques limitations)

- ✓ Percentile à 95 ou 99%, voir maximum : pertinence suppose un nombre plus important de simulations
- ✓ Simulations 2D : valeurs extrapolées à un linéaire d'ouvrage
- ✓ Simulations 3D : réalisme de la représentation du terrain


Zonage de l'aléa

Tracer une limite sur une carte...

Zonage de l'aléa

- Limite l'exposition au risque,
- zonage
- Aménagement du territoire

(Labiouse, V. and Abbruzzese, J., in Ref #2)

Zonage de l'aléa, en France

PLAN DE PRÉVENTION DES RISQUES

Principes de délimitation et de constructibilité

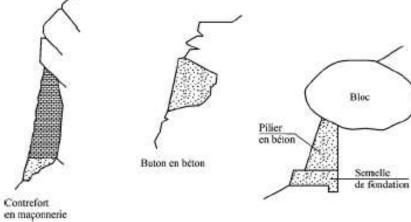
Aléa		Espaces non urbanisés	Espaces urbanisés		
	Mesures de prévention	Espaces non urbanises	Non protégés	Protégés	
Majeur	Impossibles techniquement	Inconstructible	Inconstructible	Inconstructible	
Fort	Difficiles techniquement ou très coûteuses, dépassant largement le cadre de la parcelle	Inconstructible	Inconstructible	Inconstructible (exceptionnellement constructible sous conditions strictes)	
Moyen	Dépassant le cadre de la parcelle cadastrale (généralement à maîtrise d'ouvrage collective) ou coûteuse	Inconstructible	Inconstructible (exceptionnellement constructible sous condition de prise en compte des mesures ou après mise en œuvre de protection et révision du PPR)	Constructible sous conditions d'entretien des ouvrages de protection	
Faible	Ne dépassant pas le cadre de la parcelle cadastrale (généralement maîtrise d'ouvrage individuelle) ou d'un coût modéré	Constructible sous condition de prise en compte des mesures de prévention. Inconstructible en cas de danger humain	Constructible sous condition de prise en compte des mesures de prévention	Constructible sous condition sous conditions d'entretien des ouvrages de protection	

⇒ Zones : rouge, orange, bleue

Différentes parades - Critères de choix

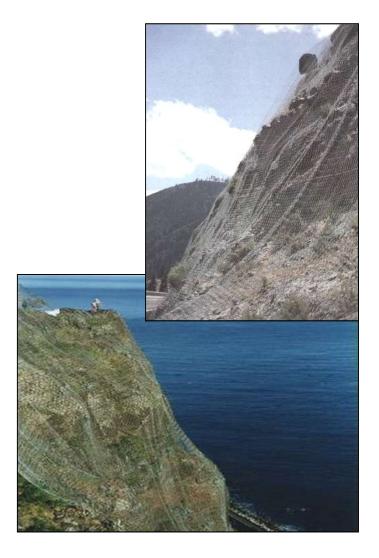
- Parades possibles
 - Purge
 - Maintient en place (ouvrages actifs)
 - Maitrise des conséquences (ouvrages passifs)
 - Evitement (pour les routes; changer de versant, passer en tunnel)
 - Surveillance et évacuation au besoin
- Critères de choix pour l'aménagement du site (quelques uns)
 - Volumes et énergies en jeu
 - Topographie
 - Accessibilité (tx de construction, entretien)
 - Coût/bénéfice

La mise en œuvre de parades se fait dans le cadre d'une stratégie globale de mitigation, incluant également des actions non structurelles (information, évacuation, contournement...)


Parades actives

EXEMPLES

Câblage


Soutènement

Parades actives

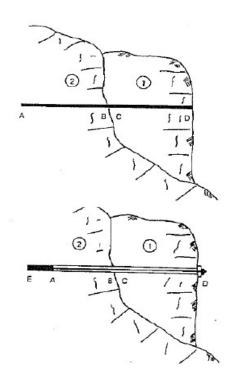
EXEMPLES

Béton projeté

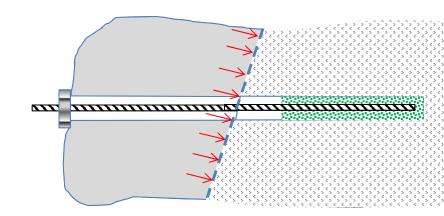
Grillage et filet plaqué

Parades actives

EXEMPLES

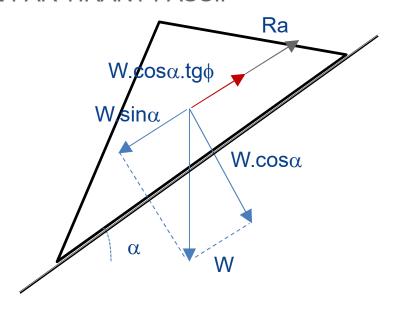

Purge, abattage

Ancrage/clouage


Boulons et tirants

Principe de fonctionnement

- Extrémité de la barre ancrée au rocher,
- Passif ou actif (= pré-tension dans la barre)
- Amélioration de la résistance au cisaillement des discontinuités par
 - Mobilisation d'efforts de cisaillement et de traction dans les armatures
 - Augmentation de l'effort normal au plan de cisaillement (si actif)



Stabilisation par ancrage

GLISSEMENT PLAN TRAITÉ PAR TIRANT PASSIF

Hypothèses: sec, sans cohésion

Condition de stabilité : $W^* \sin \alpha > W^* \cos \alpha^* \tan \phi$ (soit, $\tan \phi / \tan \alpha > 1$)

(α: inclinaison du plan, φ: angle de frottement)

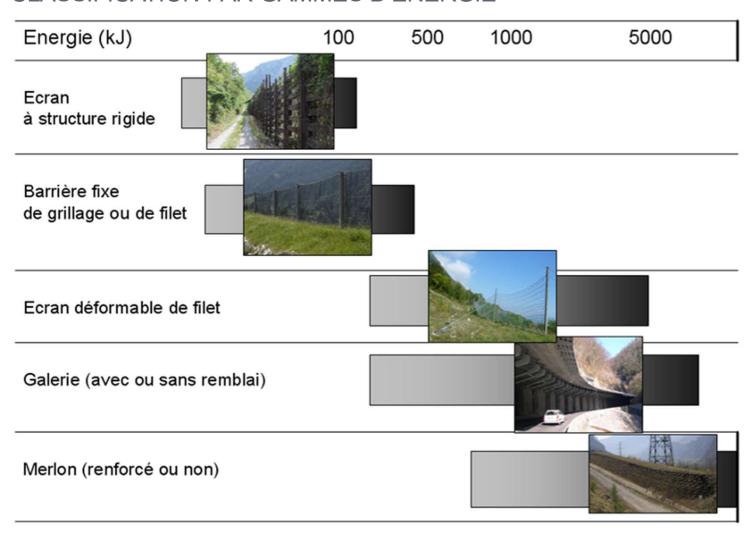
Contribution de l'ancrage: Ra= $Cs*W*sin\alpha$ - $W*cos\alpha*tan\phi$

(Cs: coeff. de sécurité)

! Cas très simple / réalité!

Parades passives

Objectif : limiter les conséquences des évènements une fois initiés
→ placés à proximité (à l'amont) des zones à protéger


Permanent : ouvrages à proximité des enjeux dont:

- Merlons
- Ecrans
- Déviateurs
- Galeries

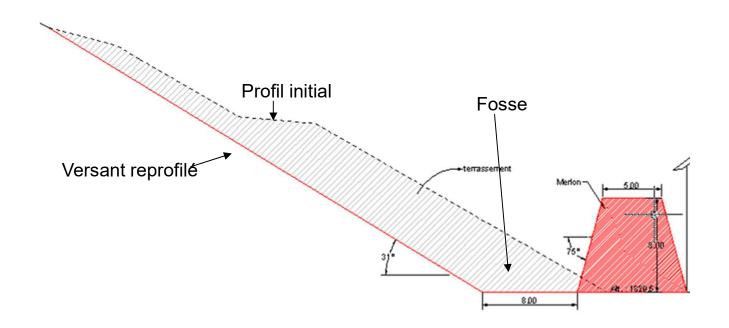
Temporaire: alerter

Les ouvrages passifs

CLASSIFICATION PAR GAMMES D'ÉNERGIE

Dimensionnement des ouvrages de protection passive

Dimensionnement 'fonctionnel'


- ✓ Capacité de l'ouvrage à agir sur la trajectoire du bloc
- ✓ Données : énergie cinétique, hauteur de passage du bloc au point d'implantation de l'ouvrage

Dimensionnement 'structurel'

- ✓ Capacité de l'ouvrage à supporter les sollicitations statiques et dynamiques
- ✓ Dépend du type de structure, des matériaux employés (géotechnique, génie civil, ...)

Merlons

Ouvrages massifs, en élévation, en pied de versant, associés à une fosse, le plus souvent renforcés*

^{*} géotextiles/géogrilles, pneus usagés, gabions suivant procédés pneutex, pneusol, etc..

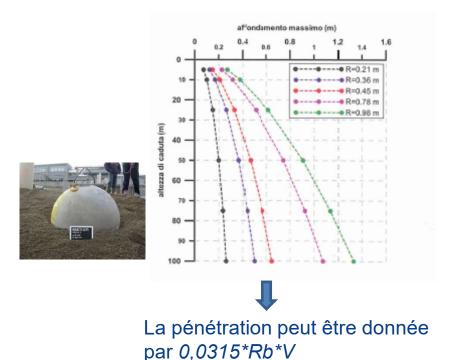
Merlons EXEMPLES

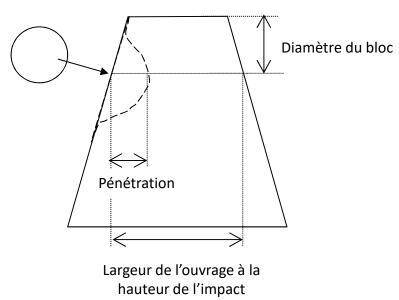
Dimensions typiques: Hauteur:2 à 10 m, Longueur:50 à 800 m, largeur en crête: 1 à 6 m.

Méthodes analytiques de dimensionnement des merlons sous impact

Equivalent pseudo-statique: La stabilité de l'ouvrage est évaluée en considérant un équivalent pseudo-statique au chargement dynamique en combinaison avec la gravité.

Critère de pénétration: consiste à estimer la pénétration du bloc dans le merlon, valeur que l'on multiplie par 2 ou 3 pour obtenir l'épaisseur minimale du merlon.


Balance énergétique: l'ouvrage est réputé stable si l'énergie cinétique de translation du bloc est inférieure à l'énergie dissipée dans le merlon suivant différents mécanismes: frottement le long des plans de glissement, compactage des matériaux.


Méthodes analytiques de dimensionnement

CRITÈRE DE PÉNÉTRATION

Principe:

- pénétration fonction du rayon et de la vitesse du bloc (relation issue d'essais)
- Critère : pénétration < 1/3 de la largeur de l'ouvrage à 1 diamètre de bloc de la crête

Méthodes analytiques de dimensionnement

EQUIVALENT PSEUDO-STATIQUE

Principe:

- La force appliquée sur l'ouvrage est estimée d'après une expression de la littérature.
- Cette force statique est appliquée sur l'ouvrage, en combinaison avec les forces gravitaires.

2 exemples d'expression pour obtenir la force maximale:

$$F = 1,765 * R^{0,2} * M_E^{0,4} * (W * H)^{0,6}$$
 ou
$$F = \sqrt{\frac{32 * G * R * (W * H)}{\pi^2 * (1 - \nu)}}$$

Avec:

- M_E, G et v : le module à la plaque (kN/m2), le module de cisaillement dynamique et le coefficient de poisson du sol,
- R, W et H le rayon, le poids (kN) et la hauteur de chute du bloc (m),

Mais : relations établies pour des contextes très différents !

Méthodes analytiques de dimensionnement BALANCE ÉNERGÉTIQUE

Etapes:

- On défini le tronçon d'ouvrage sollicité lors de l'impact

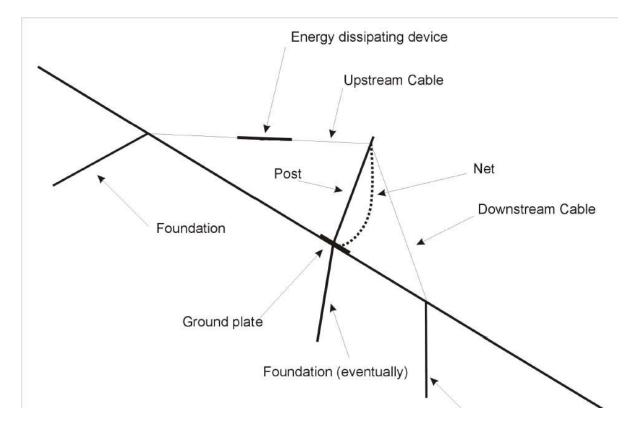
(ex: volume compris entre la base du merlon et deux plans verticaux parallèles, distants du diamètre du bloc)

- On décrit les mécanismes dissipateurs (frottement, compactage)
 - Si frottement seul, considérer que 80% de l'énergie est dissipée par compactage
 - Critère de Mohr-Coulomb pour le frottement
- On vérifie que l'énergie dissipée lors du déplacement du tronçon sur une distance donnée est supérieure à l'énergie du bloc incident.
 - Déplacement du tronçon: 1/3 de la largeur de l'ouvrage
 - Composante verticale de la vitesse du bloc négligée

Les écrans DIFFÉRENTS TYPES

Ecrans à structure rigide (E<100 kJ)

Barrières de grillage ou de filet (E<500 kJ)

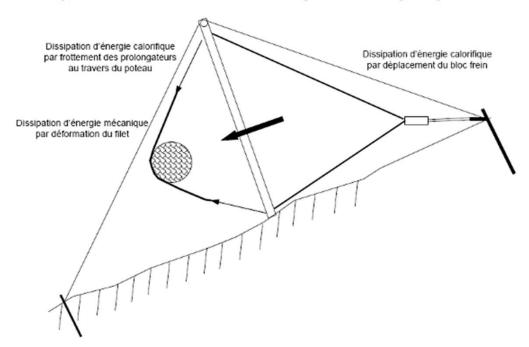


Capacité jusqu'à 5000kJ

Utilisation de freins : dissipent l'énergie

Nécessitent un suivi

VARIANTES



PRINCIPE DE FONCTIONNEMENT (EXEMPLE)

□ Conception Générale – Vue latérale (lors d'un impact)

FREINS

Fonctions:

- Limiter les efforts dans la structure (ancrages)
- o Dissiper de l'énergie

Différents types

- o Freins à câble 'linéaire'
- Freins à câble sinueux
- Freins fendeurs de tube (droit ou circulaire)
- 0 ...

Contraintes

- Entraînent une déformation de l'écran
- Nécessite un contrôle régulier

EXEMPLES DE FREINS



Dimensionnement des filets

Dimensionnement 'fonctionnel'

A partir de la hauteur de passage (+ revanche et réserve de hauteur)

Dimensionnement 'structurel'

- A partir de la hauteur de passage et de l'énergie cinétique
- Pas de réel dimensionnement (par BE)
- Ouvrages respectant des critères de classes, suivant ETAG 27

Classification des écrans de filet

ETAG 27

Marquage CE

Essais grandeur réelle impartiaux, à deux niveaux d'énergie

• SEL : énergie de service

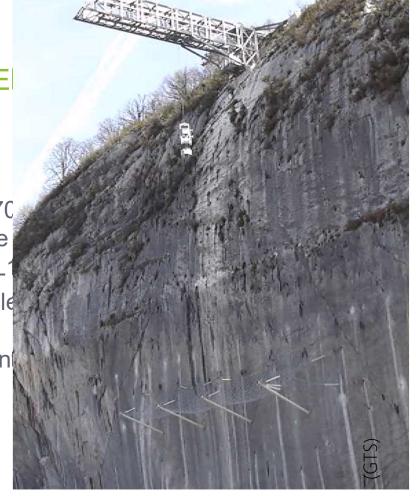
• MEL : énergie maximale

9 classes de filets

Classification selon le niveau d'énergie	0	1	2	3	4	5	6	7	8
SEL	-	85	170	330	500	660	1 000	1 500	> 1 500
MEL	100	250	500	1 000	1 500	2 000	3 000	4 500	> 4 500

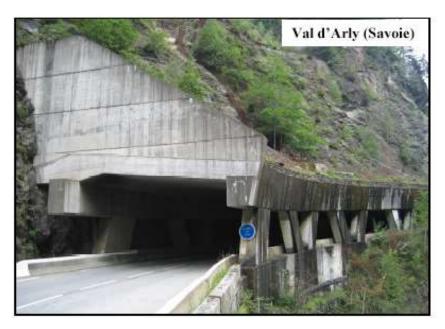
Classes des kits de protection contre les chutes de blocs rocheux

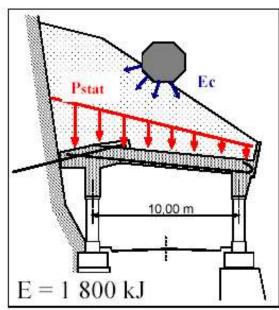
Essais sur écrans de filets


ETAG 27

2 essais SEL + 1 essai ME

Validé si


 Hauteur* résiduelle du filet >70 de la hauteur initiale et pas de rupture d'éléments après SEL1


 Bloc arrêté et n'a pas touché le sol avant que l'allongement maximal du filet n'ait été attein lors du SEL 2 et lors du MEL

^{*} Dimension suivant l'orthogonale à la pente=hauteur « efficace » du filet

Galerie

- Dissipation de l'énergie d'impact du bloc dans le remblai
- Dimensionnement de la dalle basé sur une approche statique
- Poids propre de l'ouvrage ⇒ fondations!
- Remblai difficilement accessible ⇒ maintenance!

Dimensionnement des galeries

METHODE SUISSE/1

- Principe: on estime la force d'impact du bloc sur le remblai en fct des caractéristiques du bloc et du matériau granulaire, pour en déduire l'action à prendre en compte au niveau de la dalle, et l'épaisseur minimale du remblai
- Force sur la couche de matériaux granulaire donnée par:

$$F_k = 2.8 * e^{-0.5} * r^{0.7} * M_{E,k}^{0.4} * \tan \varphi_k * \left(\frac{m_k * v_k^2}{2}\right)^{0.6}$$

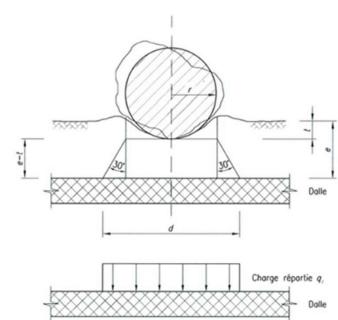
Où:

- Concernant le bloc : m_k, r, v_k respectivement sa masse du bloc (en T), le rayon de la sphère équivalente (en m), sa vitesse lors de l'impact (en m/s)
- Concernant le matériau de couverture : e, M_{E,K} et f_k respectivement, son épaisseur (en m), son module statique de compressibilité (en kN /m²) et son angle de frottement interne (en °).

Dimensionnement des galeries

METHODE SUISSE/2

Epaisseur du remblai, e >max{0,5m; 2*t; t+6*Dmax}


avec D_{max} le rayon max. du matériau de couverture, et t la

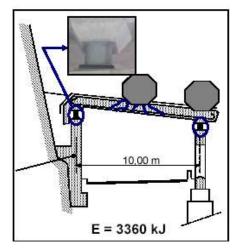
pénétration du bloc donnée par:

 $t = \left(\frac{m_k . v_k^2}{F_K}\right)$

- Charge sur la dalle:
 - équivalente à une force pseudostatique de valeur C*Fk,
 - C= 0,4 si la structure est ductile et
 1,2 si la structure est fragile
 - considérée uniformément répartie, sur une surface donnée par:

$$S = \pi \cdot \left(r + \frac{e - t}{\sqrt{3}} \right)^2$$

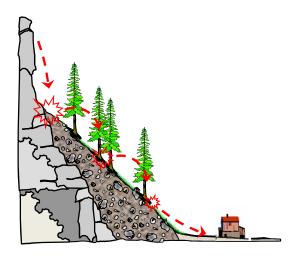
Galeries structurellement dissipantes



- Objectif : Allègement de la structure (descente de charge)
- Principe : dissipation d'énergie par plastification d'éléments de structure (béton, armature, appuis fusibles)
- Caractéristique principale: pas de matériau amortissant

Galeries structurellement dissipantes

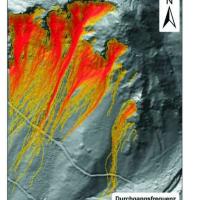
- Réduction de 30% de l'épaisseur de la dalle
- Dalle accessible/entretien
- Dimensionnement de la dalle sous des sollicitations dynamiques



Forêt et aléa rocheux

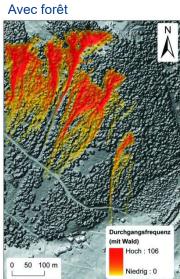
ACTRICE ET TÉMOIN

Forêt et aléa rocheux


FONCTION PROTECTION

Vérification expérimentale	(sans forêt) (n=100)	(avec forêt) (n=102)	
Vitesse de translation moy [m/s]	15.4	11.7 - 24%	
Vitesse de translation max [m/s]	28.9	23.9 - 21%	
Blocs arrétés au niveau de la piste [%]	26	79 - 53%	
Hauteur de passage max. [m]	8	2 - 75%	

Simulations trajectographiques -


raidione irajeotograpinquee

Ligne d'énergie + 4° avec forêt!

(ohne Wald) Hoch : 106

Sans forêt

