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1 README
This document is intended for training and future reference. As a reference docu-
ment, you may find it useful for Biomaths 1 (3BS, Fall semester), for linear algebra
(3BIM Biomaths 2, Winter Semester) and for Advanced ODEs (3BIM Biomaths 3,
Winter Semester).

When important concepts are encountered for the first time, they are highlighted in
bold next to their definition. We tried to provides examples that are as complete as
possible. This means that they are long, you could probably solve them faster. Exer-
cises are important, they can introduce theory or techniques that will be prove useful.
Solutions to the exercises can be found at the end of the documents. Examples and
exercises (and their solutions!) will be added regularly, so feel free download the
most recent version (here). This is version V2023.09.20.

2 Functions, maps
A function is a relation, often denoted f , that associates an element x of a domain
I, and at most one element y of the image J . The domain I and image J are sets.
Usually I, J ∈ R.

Amap is a relation that associate each element of its domain to exactly one element of
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Figure 1: Functions. (A) Function f . (B) Not a function.

its image. Maps and functions are related but slightly different concepts. A function f
is a map if it is defined for all elements of its domain I. A map is always a function.
The term map can also be used when the domain or the image are not numbers
(Figure 1).

The graph of a function f , denoted G(f) is the set of all pairs (x, f(x)) in the I × J

plane. For real-valued functions, the graph is represented as a curve in the Cartesian
plane.

Functions are not numbers. Do not confuse

• f the function

• f(x) the evaluation of f at element x; f(x) is an element of the image (usually
a number)

• G(f) the graph of f

Consequently, do not write

• f(x) is increasing... Instead write f is increasing...

• f(x) is decreasing... Instead write f is decreasing...

• f(x) is continuous... Instead write f continuous...

2.1 Some usual maps

• f : R → R, with x → k, k ∈ R constant; x → x, identity map.
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domain x

image y

constant map

domain x

image y

identity map

• f : R\{0} → R, with x → 1
x , inverse.

domain x

image y

• f : R → R, with x → x2, parabola; x → x3, cubic map.

domain x

image y

parabola

domain x

image y

cubic map

• f : R+ → R, with x →
√
x = x

1
2 , square root; more generally with x → x

p
q =

q
√
xp, fractional power.
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domain x

image y

square root

domain x

image y

fractional root (p = 2, q = 3)

• f : R\{−d/c} → R, with x → ax+b
cx+d .

domain x

image y

• f : R → R, with x → exp(x), exponential.

domain x

image y

• f : R+\{0} → R, with x → ln(x), natural logarithm.

domain x

image y

On logarithms: For a, b > 0, n positive integer, ln(ab) = ln(a) + ln(b), ln(an) =
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n ln(a), ln(a/b) = ln(a)− ln(b).

• f : R → R, with x → cos(x), cosine; x → sin(x), sine x → tan(x), tangent.

domain x

image y

cosine

domain x

image y

sine

domain x

image y

tangent

A bit more on trigonometric functions. The diagram below shows the relation-
ship between the sine, cosine and tangent, of an angle θ ∈ [0, 2π].

x

y

θsin
(θ
)

cos(θ)

tan
(θ
)

• f : R → R, with x → cosh(x) = 1
2

(
ex + e−x

), hyperbolic cosine; x →
sinh(x) = 1

2

(
ex − e−x

), hyperbolic sine; x → tanh(x) = sinh(x)
cosh(x) , hyperbolic

tangent.

domain x

image y

hyperbolic cosine

domain x

image y

hyperbolic sine

domain x

image y

hyperbolic tangent

2.2 Exercises on functions

More to come...
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Figure 2: Extrema, inflection points of the polynomial f(x) = (x+0.8)(x− 0.5)(x−
0.8).

3 Derivatives
We call the derivative of the function f : I → J (I, J ⊂ R),, at point a ∈ I the limit,
if it exists,

lim
x→a

f(x)− f(a)

x− a
.

The derivative is denoted f ′(a). An alternative representation of the limit is obtained
by setting h = x− a,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

If the derivative exists for all elements a ∈ I, we say that differentiable on I.

• If f is differentiable on I, and f ′(x) > 0, then f is strictly increasing on I.

• If f is differentiable on I, and f ′(x) < 0, then f is strictly decreasing on I.

However, if f is strictly increasing, it does not mean that f ′(x) > 0. For example
the function f with f(x) = x3 is strictly increasing on R, but f ′(0) = 0. Where the
derivative exists, we can define the derivative function f ′ : I → R of f .

The second derivative of a function f , denoted f ′′ is the derivative of f ′, where
defined. If f ′′(x) exists and f ′′(x) > 0 for all x ∈ I, we say that f is convex (U-
shaped). If f ′(x) = 0 and f ′′(x) > 0, the point x is aminimum. If f ′(x) and f ′′(x) <

0, the point x is a maximum. Maxima and minima are extrema. If f ′′(0) = 0, the
point x is an inflection point (Figure 2).

3.1 List of common derivatives

The derivative has linear properties. If f and g are differentiable on I, and a ∈
R,
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• (f + g)′ = f ′ + g′.

• (af)′ = a(f ′).

• (af + g)′ = a(f ′) + g′.

Let g : I → J and f : J → K be two functions. The composition of f and g,
denoted f ◦ g, is the function x → f(g(x)), i.e. f ◦ g(x) = f(g(x)). If f and g are
differentiable, the composition f ◦ g is also differentiable, and its derivative follows
the rule of composed functions:

(
f ◦ g

)′
(x) = f ′(g(x))g′(x).

Example 1 Let f : x → x2 and g : x → 3x + 1 be two differentiable functions, with
f ′(x) = 2x and g′(x) = 3. The derivative of the composed function f ◦g at x is

f ′(g(x))g′(x) = f ′(3x+ 1)g′(x) = 2(3x+ 1) · 3 = 6(3x+ 1) = 18x+ 6.

The derivative could have been obtained by first computing the composed function
f(g(x)) = (3x+ 1)2 = 9x2 + 6x+ 1, and then taking the derivative.

Example 2 Compute the derivative of f : x → sin(1/x). The function f is composed
of a sine and an inverse function. To compute the derivative, we decomposed the
function f as f(x) = g(h(x)) with g(x) = sin(x) and h(x) = 1/x. The derivatives are
g′(x) = cos(x) and h′(x) = −1/x2. Finally the derivative of f is

f ′(x) = g′(h(x))h′(x) = cos(1/x)
(−1

x2

)
= −cos(1/x)

x2
.

Example 3A function f : I → I is bijective (invertible) on I if there exists a function,
denoted f−1 and called inverse of f , such that the compositions are equal f ◦ f−1 =

f−1 ◦ f , and are equal to the identity map. That is, f−1 ◦ f(x) = f ◦ f−1(x) = x for
all x ∈ I. If f is differentiable and invertible, what is the derivative of f−1?

We apply the derivative to f(f−1). Given that f(f−1(x)) = x by definition, we have(
f(f−1)

)′
= 1, and (

f(f−1)
)′
(x) = f ′(f−1(x))(f−1)′(x),

= 1,

(f−1)′(x) =
1

f ′(f−1(x))
.
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Take for instance f(x) = x2 on x ∈ (0, 1]. The inverse of f is f−1(x) =
√
x. The

derivative of f is f ′(x) = 2x and the derivative(
f−1

)′
(x) =

1

f ′(f−1(x))
=

1

2(
√
x)

.

Example 4 Compute a derivative when the independent variable is in the exponent.
To compute the derivative of f : x → 2x, we need to re-express the function in terms
of the natural base e. To do that, we use to properties of the natural logarithm

• For any positive expression y, y = eln(y) (ln is the inverse of the exponential
function).

• ln(ab) = b ln(a).

Then 2x = eln(2
x) = ex ln(2). The derivative is ln(2)ex ln(2). Re-writing in term of base

2, we obtain f ′(x) = ln(2)2x.

Function Derivative Note
xa axa−1 a ∈ R
1
x

−1
x2

x
1
2

1

2x
1
2

ln(x) 1
x

ex ex

cosh(x) sinh(x)
sinh(x) cosh(x)
cos(x) − sin(x)
sin(x) cos(x)
tan(x) 1 + tan2(x) = 1

cos2(x)
u(x)

v(x)

v(x)u′(x)− u(x)v′(x)

v2(x)

u(x)v(x) u′(x)v(x) + u(x)v′(x)

3.2 Exercises on derivatives

Exercise 1 Compute the derivatives of the following functions

• f1 : x →
√cosx.

• f2 : x → sin(3x+ 2).

• f3 : x → ecosx.

• f4 : x → ln(√x
)
.
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• f5 : x → 2lnx.

Correction f ′
1(x) = − sinx

2
√cosx . f

′
2(x) = 3 cos(3x+ 2). f ′

3(x) = − sin(x)ecosx. f ′
4(x) =

1
2x . f

′
5(x) =

ln 2
x 2lnx.

4 Taylor series and truncated expansions
If a function f is infinitely differentiable (i.e. the k-th derivative function f (k) is
continuous for any integer k ≥ 0), the Taylor series of f at point a is the series

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + ...

A function is analytic on an open interval I if and only if its Taylor series converges
pointwise to the value of the function. Polynomials, exponential and trigonomet-
ric function are analytic over all real points. The square root function is not ana-
lytic.

The partial sums of the series (or truncated expansion) can be used to approximate
a function, and to evaluate it numerically. The kth-order expansion of a function f

is the polynomial

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + ...+

f (k)(a)

k!
(x− a)k.

Truncated expansions are used in implementations of common mathematical func-
tions in computer programs.

Example 5 The Taylor series of the sine function at point a = 0 is
∞∑
n=0

1

n!

dn sin(x)
dxn

xn = x− x3

3!
+

x5

5!
− x7

7!
+ ...

The 3rd-order expansion is the cubic polynomial

x− x3

3!
.

How good this cubic polynomial approximation to the original sine function? The
error is the remainder of the terms of the Taylor series∣∣∣−x7

7!
+

x9

9!
− ...

∣∣∣.
For |x| < 1, the error is bounded by |x|7/7!. Given that 7! = 5040, the error is less
than 1/5040 ≈ 0.0002. Truncated expansions are never good approximations when
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Figure 3: First, third and fifth order expansion of f(x) = sin(x).

|x| becomes large, because polynomials are not bounded, but the approximation can
be quite good over small intervals around the point at which the Taylor series is
computed.

It is important to note that even if a function has a Taylor series, the series may not
converge to the function.

Example 6 Let the function

f(x) =

0 x ≤ 0

e−
1
x x > 0.

.

Around 0, all the derivatives exist and are equal to 0. The Taylor series of f at point
x = 0 is 0, but the function itself is different from the identically zero function.

4.1 Expansion of a function of two variables

For functions of two variables f : R2 → R, the Taylor expansion at point (x0, y0)t ∈
R2 is

f(x, y) = f(x0, y0) +
∂f(x0, y0)

∂x
(x− x0) +

∂f(x0, y0)

∂y
(y − y0)

+
1

2!

∂2f(x0, y0)

∂x2
(x− x0)

2

+
1

2!

∂2f(x0, y0)

∂y2
(y − y0)

2

+
2

2!

∂2f(x0, y0)

∂x∂y
(x− x0)(y − y0) + ...

Example 7 The second-order truncated expansion of the function f(x, y) = ye−x at
(0, 0)t is

y − xy.
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4.2 Expansion of a function from R2 → R2

Functions f : R2 → R2 have the form

f(x, y) =

(
f1(x, y)

f2(x, y)

)
.

To compute the Taylor series, we need to compute the Taylor series of each function
f1 and f2. For a first-order expansion at (x0, y0)t, we obtain the expansion(

f1(x0, y0)

f2(x0, y0)

)
+

(
∂f1(x0,y0)

∂x (x− x0) +
∂f1(x0,y0)

∂y (y − y0)
∂f2(x0,y0)

∂x (x− x0) +
∂f2(x0,y0)

∂y (y − y0)

)
Using vector notation

f(x) =

(
f1(x, y)

f2(x, y)

)
,

Df =

(
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)
,

we can write a first-order (or linear) approximation of a function f more compactly
with

f(x) ≈ f(a) +Df(a)(x− a).

The approximation is valid only in a neighbourhood of the point a.

5 Integrals and primitives
5.1 Primitives

Let f : I → R, (I ⊂ R). A primitive F of f on I is a differentiable map such that
F ′(x) = f(x), x ∈ I.

Example 8 If f(x) = x2, we look for F (x) such that F ′(x) = x2. Take F (x) = x3/3,
then F ′(x) = 3x2/3 = x2. It also work for F (x) = x3/3 + C, for any constant
C ∈ R.

We denote the primitive as F (x) =
∫
f(x)dx. Primitives are unique up to a constant:

if F1 and F2 are primitives of f , then F ′
1(x) = f(x) and F ′

2(x) = f(x), which implies
that F ′

1(x) − F ′
2(x) = 0. Therefore the difference between F1 and F2, G : x →

F1(x)− F2(x) has a zero derivative: G′(x) = F ′
1(x)− F ′

2(x) = 0. This means that G
is a constant.

Primitives have linear properties. Let F be a primitive of f , G be a primitive of g and
a, b ∈ R. Then
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• F +G is a primitive of f + g, or∫ (
f(x) + g(x)

)
dx =

∫
f(x)dx+

∫
g(x)dx.

• aF is a primitive of af , or∫
af(x)dx = a

∫
f(x)dx.

Function Primitive Note
0 C C ∈ R
a ax+ C a ∈ R
xa xa+1

a+1 a ̸= −1

x−1 = 1
x ln |x|+ C (a = −1), x ̸= 0

ex ex + C

cos(x) sin(x) + C

sin(x) − cos(x) + C

f ′(g(x))g′(x) f(g(x)) + C

Exercise 2 Compute ∫
1√

3x+ 5
dx

5.2 Integrals

Let f : [a, b] → R, and F a primitive of f on [a, b]. Then the definite integral is the
value F (b)− F (a), and is denoted∫ b

a
f(x)dx =

[
F (x)

]b
a
.

Themost important interpretation of the integral is the area under the curve (AUC).
If f(x) ≥ 0, x ∈ [a, b], then ∫ b

a
f(x)dx

is the area under delimited by f(x), x-axis and the axes x = a and x = b. Negative
values integrate as negative areas.
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x

y

f(x)

AUC =
∫ b
a f(x)dx

a b

x

y

f(x)

a

b

If f is a rate (unit in something per time), and x is time, then the integral of f
has unit something. This applies to speed (integral: displacement), production or
degradation (integral: concentration), etc.

The integral has the following properties

• Linearity. The integral of a sum is the sum of the integrals.∫ b

a
(f(x) + g(x))dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx.

• Negative intervals. ∫ b

a
f(x)dx = −

∫ a

b
f(x)dx.

• Midpoint rule. ∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx.

Notice that this works even if c is not between a and b.

• The expression ∫ x

a
f(t)dt = F (x)− F (a) = Fa(x)

is a function of x. Therefore, for any integrable function f , we have(∫ x

a
f(x)dx

)′
= f(x).

This is the fundamental theorem of calculus.

• Integration by parts∫ b

a
f ′(x)g(x)dx = f(x)g(x)|ba −

∫ b

a
f(x)g′(x)dx.

Integration by part is excessively useful for computing integral beyond simple
functions.
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Exercise 3 Compute the integral ∫ 1

0
xexdx.

Correction The integrand is the product of two functions, so let us try integration
by parts. Let g(x) = x and f ′(x) = ex. Then g′(x) = 1 and f(x) = ex. The integral
becomes ∫ 1

0
xexdx = exx

∣∣∣1
0
−
∫ 1

0
exdx,

= e1 − 0− ex
∣∣∣1
0
,

= e− (e1 − e0),

= 0 + 1,

= 1.

Exercise 4 Compute the integral ∫ π

0
cosxexdx.

Correction The integrand is the product of two functions, we try integration by parts.
Let g(x) = cosx and f ′(x) = ex. Then g′(x) = − sinx and f(x) = ex. The integral
becomes ∫ π

0
cosxexdx = ex(cosx)

∣∣∣π
0
−
∫ π

0
ex(− sinx)dx,

= −eπ − e0 −
∫ π

0
ex(− sinx)dx,

= −eπ − 1−
∫ π

0
ex(− sinx)dx,

We still have a integral of a product to compute. We apply the integral by part once
more,

= −eπ − 1−
(
ex(− sinx)

∣∣∣π
0
+

∫ π

0
ex(cosx)dx).

= −eπ − 1−
∫ π

0
ex(cosx)dx.

With this new integration, we just came back to our initial integral. We are looping,
and further integrations by part will not help us. To break the loop, we use the fact
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that the initial integral term is present on both side of the equation and solve for it.
If

I =

∫ π

0
cosxexdx,

then

I = −eπ − 1− I,

2I = −eπ − 1,

I =
−eπ − 1

2
.

Et voilà!

Exercise 5 Compute the integral ∫ 1

0
sinhxexdx.

6 Differential equations in 1D
An ordinary differential equation (ODE) of order n is a relation (i.e. an equation)
between a real variable t ∈ I ⊂ R, an unknown function x : t → x(t) and its
derivatives x′, x′′, x′′′, ..., x(n) at point t defined by

F
(
t, x, x′, x′′, ..., x(n)

)
= 0,

where F depends on x(n). In general, x(t) takes values in RN , i.e. it is a vector. We
say that the equation is a scalar differential equation if N = 1. (The expression
x(i) stands for the i-th derivative, not the i-th power.)

The normal form of a differential equation of order n is

x(n) = f
(
t, x, x′, x′′, ..., x(n−1)

)
.

A differential equation is autonomous if it does not depend on t, i.e. F has the
form

F
(
x, x′, x′′, ..., x(n)

)
= 0,

A linear differential equation is a differential equation for which F is a linear func-
tion in x, x′, ...x(n). It can be expressed as

an(t)x
(n) + an−1(t)x

(n−1) + ...a1(t)x
′ + a0(t)x = g(t),

16



where the coefficients aj(t) may depend on t, and x and its derivatives x(i) appear
only as monomials of degree 1 (that is, linearly). If all coefficients are constants,
including g, the linear differential equation is autonomous.

Exercise 6 For the following differential equations, give the order n, and determine
whether they are autonomous, linear, and whether they are expressed under their
normal form.

1. x− t+ 4tx′ = 0.

2. (x′′)2 − 2x′tx = 0.

3. x(3) + sin(x′) = −5x.

4. x(4) − xx′ = 0.

5. 3x′′ − 4x′ + 6x = 2.

6. lnx′ + 3tx =
√
x.

Correction

1. linear, non-autonomous, not in normal form

2. non-linear, non-automous, not in normal form

3. non-linear, autonomous, not in normal form

4. non-linear, autonomous, not in normal form

5. non-linear, non-autonomous, not in normal form

A solution or integral of a differential equation of order n for t in an interval
I ⊂ R, is a map x : I− > R that is n times differentiable for all t ∈ I and satisfies
the differential equation.

A integral curve (or chronic) is the set of points (t, x(t)) for t ∈ I. If x(t) ∈ RN ,
the integral curve is in RN+1. A trajectory or orbit is the set of points x(t) for t ∈ I.
This is a set in RN . The space that contains the trajectories is called the phase space.
The set of all trajectories is called the phase portrait.

It is always possible to write an differential equation of order n as a differential equa-
tion of order 1, by defining extra variables for the higher-order derivatives.

Example 9We consider the differential equation a(t)x′′ + b(t)x′ + c(t)x = d(t). This
is a equation of order 2. To reduce it to order 1, let z1 = x and z2 = x′. Then x′′ = z′2
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and z′1 = z2. The second-order differential equation can be re-expressed as two first
order equations:

z′1 = z2, a(t)z′2 + b(t)z2 + c(t)z1 = d(t).

Often, the system of first order equations can be re-expressed in normal form, by
isolating the variables z′1 and z′2,

z′1 = z2, and z′2 =
d(t)− b(t)z2 − c(t)z

a(t)
.

(We assume that a(t) ̸= 0.) In general, for the differential equation of order n

F (t, x, x′, ..., x(n)) = 0, with x : I → Rm, we make a change of variables: z1 =

x, z2 = x′, ..., zi = x(i−1) until zn = x(n−1). Each variable zi(t) ∈ Rm, so the new
vector z =

(
z1, z2, ..., zn

)t is in Rmn. With the change of variables, the differential
equation now reads

z′1 = z2,

z′2 = z3,

...,

z′i = zi+1,

...,

F (t,z1, z2, ..., zn, z
′
n) = 0.

Tips on Ordinary differential equations

• The most frequently used differential equations are order 1, and they usually
are represented in their normal form: x′ = f(x) for autonomous equations,
and x′ = f(t, x) for non-autonomous equations

• For a scalar, autonomous differential equation x′ = f(x) with x(t) ∈ R, the
trajectories are monotonous: if x is a solution, then x is either increasing,
decreasing, or constant.

6.1 Finding solutions of differential equations

We consider a first order scalar differential equation,

a(t)x′ + b(t)x = d(t),
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t ∈ I and a(t) ̸= 0 on I, a(t) and b(t) continuous on I. If d(t) = 0, we call the
equation homogeneous, and

a(t)x′ + b(t)x = 0.

First order scalar ODE. Homogeneous case, first method. Write the equation in normal
form,

x′ = − b(t)

a(t)
x.

The solution x is either the constant x = 0, or x(t) ̸= 0 for all t ∈ I. We know that
because of uniqueness of solutions, which implies that trajectories cannot cross. If
x = 0we are done, so we can assume that x(t) ̸= 0. Dividing the equation by x

x′

x
= − b(t)

a(t)
.

The terms on both sides are functions of t. We can compute their primitives∫
x′

x
dt = −

∫
b(t)

a(t)
dt.

The integrand of the left-hand side is x′/x. This is a very common form called log-
derivative and admits the primitive ln |x|. The right-hand side does not necessarily
have a close form, and we leave it as it is. With the integration constant, we obtain
implicit solution for x

ln |x| = −
∫

b(t)

a(t)
dt+K.

We would like an explicit solution x,

|x| = e
−

∫ b(t)
a(t)

dt+K
.

Therefore,

x = ±eKe
−

∫ b(t)
a(t)

dt
.

Notice that t is a variable of integration, and does not exist outside the integral,
and can be replaced by any other variable. To have x as as function of t, we must
define the bounds of the integral. When the domain of definition of t is the interval
I = [t0, t1], t0 < t1, the solution x(t) is obtained by integrating from t0 to t,

x = ±eKe
−

∫ t
t0

b(u)
a(u)

du
,

where we have replaced the variable of integration by u. Then the definite integral
is a function of t. The constant K is determined by the initial condition on x at t0,
x(t0) = x0 ∈ R,

x(t0) = ±eKe
−

∫ t0
t0

b(u)
a(u)

du
= ±eK = x0.
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The constant K = signx0 lnx0. The fixed bound at t0 is arbitrary, we could have
chosen any other time of reference. However, it is very common to consider differ-
ential equations for which we know the value of the solution at the initial time t0.
The problem of solving a differential equation with a given initial condition is called
an initial value problem (IVP) or a Cauchy problem.

First order scalar ODE. Homogeneous case, second method. Assume that a(t) ̸= 0, and
write the equation as

x′ +
b(t)

a(t)
x = 0.

Multiply the equation by the term e
∫ b(t)

a(t)
dt,

x′e
∫ b(t)

a(t)
dt
+

b(t)

a(t)
xe

∫ b(t)
a(t)

dt
= 0.

Notice that the first term has the form x′f and the second term the form xf ′, where
the term f is

f = e
∫ b(t)

a(t)
dt
.

The left-hand-side of the resulting equation, x′f+xf ′, is the derivative of the product
xf , so the differential equation can be integrated,

xe
∫ b(t)

a(t)
dt

= K,

x = Ke
−

∫ b(t)
a(t)

dt
.

The constant K is determined by a condition set on the solution, as in the first
method.

Exercise 7 Solve the equation

2x′ + 6x = 0, x(0) = 1.

Correction The initial condition x(0) = 1 tells us to start the integration at t = 0.
Using the second method with a(t) = 2 and b(t) = 6, we have

x(t) = Ke−
∫ t
0 − 6

2
du = Ke−

6
2
t.

The constant K is determined by the initial condition,

x(0) = Ke0 = K = 1.

The complete solution is
x(t) = e−

6
2
t.
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Exercise 8 Solve the equation

x′ +
1

t
x = 0, x(1) = 1.

Correction The initial condition x(1) = 1 tells us to start the integration at t = 1.
Using the second method with a(t) = 1 and b(t) = 1/t, we have

x(t) = Ke−
∫ t
1 − 1

t
du = Ke− lnu|t1 = Ke− ln t.

The term e− ln t = eln t
−1

= t−1. The solution simplifies to

x(t) =
K

t
.

The constant K is found with the initial condition x(1) = K = 1, for a complete
solution x(t) = 1

t .

First order scalar ODE. Heterogeneous case. We now consider the more general dif-
ferential equation

a(t)x′ + b(t)x = d(t).

Using the strategy from the second method for the homogeneous case above, we
divide the equation by a(t), again assuming that a(t) ̸= 0, and then multiply by
e
∫ b(t)

a(t)
dt
. The resulting equation now has a non-zero right-hand-side,

x′e
∫ b(t)

a(t)
dt
+

b(t)

a(t)
xe

∫ b(t)
a(t)

dt
=

d(t)

a(t)
e
∫ b(t)

a(t)
dt
.

Nevertheless, the left-hand-side is still of the form x′f +xf ′, and the right-hand-side
only depends on t. By integrating both sides, we obtain

xe
∫ b(t)

a(t)
dt

=

∫
d(t)

a(t)
e
∫ b(t)

a(t)
dt
dt+K.

The solution for x is then

x =
(∫ d(t)

a(t)
e
∫ b(t)

a(t)
dt
dt+K

)
e
−

∫ b(t)
a(t)

dt
.

Example 10 We consider the differential equation

x′ + 3x = 1 + sin(t), x(0) = x0 > 0.

The coefficients a(t) = 1, b(t) = 3, d(t) = 1 + sin(t). The term e
∫ b(t)

a(t)
dt

= e
∫
3dt = e3t.

The general solution is

x(t) =
(∫

(1 + sin(t))e3tdt+K
)
e−3t,

=
1

3
+

1

10

(sin(t)− cos(t))+Ke−3t.
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Figure 4: Solution of the initial value problem for the heterogeneous differential
equation x′ + 3x = 1 + sin(x).

At t = 0, the equation x(0) = 1
3 + 1

10(0 − 1) + K = x0 solve in K as K = x0 − 7
30 .

The solution x(t) is

x(t) =
1

3
+

1

10

(
3 sin(t)− cos(t))+ (x0 − 7

30

)
e−3t.

We now consider a nonlinear differential equation of Bernoulli type. Bernoulli
equations are of the form

x′ + P (t)x+Q(t)xr = 0, t ∈ I ⊂ R,

with continuous functions P,Q, and r ∈ R. There is no general method to solve
nonlinear differential equations, but is can be done is particular cases. If r = 0

or r = 1, the equation is linear, and we already know how to solve it. Suppose r

different from 0 or 1. We will look for positive solutions x(t) > 0 on t ∈ I. Dividing
by xr, we get

x′x−r + P (t)xx−r +Q(t)xrx−r = 0,

x′x−r + P (t)xx−r +Q(t) = 0.

We now set an auxiliary variable u = x1−r, (x = u1/(1−r)). Then

u′ = (1− r)x1−r−1x′ = (1− r)x−rx′,

and, substituting in the differential equation,
1

1− r
u′ + P (t)u+Q(t) = 0,

u′ + (1− r)P (t)u+ (1− r)Q(t) = 0.

We know how to solve this equation; this is a linear equation of the form

a(t)u′ + b(t)u = d(t),
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with a(t) = 1, b(t) = (1− r)P (t), d(t) = −(1− r)Q(t).

Example 11 Verhulst equation (logistic equation)

x′ = µx
(
1− x

K

)
.

We first rewrite the equation in Bernoulli form,

x′ − µx+ µ
x2

K
= 0,

with P (t) = −1, Q(t) = µ/K, r = 2. The auxiliary equation reads

u′ + (1− 2)(−1)µu+ (1− 2)
µ

K
= 0.u′ + u− µ

K
= 0.

This is a scalar linear equation with a(t) = 1, b(t) = µ, d(t) = µ/K.. The general
solution is

u(t) =
(∫ d(t)

a(t)
e
∫
b(t)/a(t)dtdt+ C

)
e−

∫
b(t)/a(t)dt,∫

b(t)/a(t)dt =

∫
µdt = µt,

u(t) =
(∫ µ

K
eµtdt+ C

)
e−µt,

=
( µ

K

eµt

µ
+ C

)
e−µt,

=
1

K
+ Ce−µt.

The initial condition u(0) = x1−r
0 = x−1

0 ,

u(0) =
1

K
+ C =

1

x0
,

C =
1

x0
− 1

K
.

The solution to the original Verhulst equation is x = u−1,

x(t) =
1

1
K +

(
1
x0

− 1
K

)
e−µt

=
x0K

x0 + (K − x0)e−µt
.

7 Complex numbers
A complex number is a number that can be expressed in the form a + ib, where a

and b are real numbers, and the symbol i is called imaginary unit. The imaginary
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Figure 5: Solution of the initial value problem for the Verhulst equation x′ =

µx(1− x/K), for x(0) = 0.1 and x(0) = 1.5. Verhulst equation is a type of Bernoulli
equation, and can be solved analytically.

unit satisfies the equation i2 = −1. Because no real number satisfies this equation,
this number is called imaginary.

For the complex number z = a + ib, a is called the real part and b is called the
imaginary part. The real part of z is denoted ℜ(z) (\Re in LaTeX) or just Re(z). The
imaginary part of z denoted ℑ(z) (\Im in LaTeX) or just Im(z). The set of all complex
numbers is denoted C (\mathbb{C} in LaTeX).

We need complex numbers for solving polynomial equations. The fundamental theo-
rem of algebra asserts that a polynomial equation of with real or complex coefficients
has complex solutions. These polynomial equations arise when trying to compute the
eigenvalues of matrices, something we need to do to solve linear differential equa-
tions for instance.

Arithmetic rules that apply on real numbers also apply on complex numbers, by using
the rule i2 = −1: addition, subtraction, multiplication and division are associative,
commutative and distributive.

Let u = a + ib and v = c + id two complex numbers, with real coefficients a, b, c, d.
Then

• u+ v = a+ ib+ c+ id = (a+ c) + i(b+ d).

• uv = (a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = ac− bd+ i(ad+ bc).

• 1
v = 1

c+id = c−id
(c−id)(c+id) =

c−id
c2+d2

= c
c2+d2

− i d
c2+d2

.

• u = v if and only if a = c and b = d.

It follows from the rule on i that
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real axis

imaginary axis
z = 0.3 + 0.4i

iz = −0.4 + 0.3i

Figure 6: Rotation in the complex plane. Multiplication by i is a 90 degree counter-
clockwise rotation.

• 1
i = −i. (Proof: 1

i =
i
i2

= i
−1 = −i.)

Multiplying by the imaginary unit i is equivalent to a counterclockwise rotation by
π/2 (Figure 6)

ui = (a+ ib)i = ia+ i2b = −b+ ia.

Let z = a+ ib a complex number with real a and b. The conjugate of z, denoted z̄, is
a− ib. The conjugate of the conjugate of z is z (reflection, Figure 6). Themodulus of
z, denoted |z| is√zz̄. The product zz̄ = (a+ib)(a−ib) = a2+b2+i(−ab+ab) = a2+b2.
The modulus is the complex version of the absolute value, for if z (i.e. b = 0),
|z| =

√
a2 = |a|. It is always a real, positive number, and |z| = 0 if and only if z = 0.

The modulus also has the property of being the length of the complex number z, if a
and b are the sides of a rectangular triangle, then |z| is the hypotenuse.

When simplifying a ratio involving a complex v at the denominator, it is important
to convert it to a real number by multiplying the ratio by v̄/v̄. For instance, if v ̸=
0,

u

v
=

uv̄

uv̄
=

uv̄

|v|2
.

The denominator |v|2 is always a positive real number.

By allowing complex values, nonlinear functions of real numbers like exponentials,
logarithms and trigonometric functions can have their domain extended to all real
and complex numbers. The most useful extension is the exponential function. Recall
that the exponential function ex, where e ≈ 2.71828 is Euler’s constant, satisfies the
relation ex+y = exey. This remains true for complex numbers. The Euler’s formula
relates the exponential of a imaginary number with trigonometric functions. For a
real number y,

eiy = cos(y) + i sin(y).
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Figure 7: Complex plane

Therefore, for any complex number z = a+ ib, the exponential

ez = ea+ib = eaeib = ea
(cos(b) + i sin(b)).

Tips on complex numbers

• If x is real, ix is pure imaginary. If y is imaginary, iy is real.

• |i| = 1. For any real θ, |eiθ| = 1.

• |z1z2| = |z1||z2|.

• In particular, |iz| = |i||z| = |z|. (Multiplying by i is a rotation in the complex
plane, it does not change the modulus.)

7.1 Roots of a complex number

For complex numbers, the equation zn = 1 has n solutions. They are called the root
of unity. For n = 2, we have the well-known roots z = ±1, which are real. What
are the roots of z3 = 1? To find them, we express z in polar coordinates: z = reiθ.
Then

z3 = (reiθ)3 = r3ei3θ = 1.

The equation implies that z has modulus 1, so r = 1. The remaining term ei3θ = 1

implies that 3θ is a multiple of 2π because eiω = 1 if and only if ω = 2kπ, for some
integer k. Therefore θ = 2

3kπ, for k = 0, 1, 2, .... How many distinct points do we
have? Clearly, k = 3 is equivalent to k = 0: ei

2
3
3π = ei2π = ei0. In the same way

k = 4 is equivalent to k = 1, and so on. Therefore, there are exactly three distinct
solutions for θ: 0, 23π, 43π (Figure 8).
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Figure 8: The roots of z3 − 1.

7.2 Exercises on complex numbers

Exercise 9 Let the complex number z = 2 + 3i. Compute z̄, |z|, |z̄| (compare with
|z|), z2, ℜ(z̄) , ℑ(z̄), z+z̄

2 , z−z̄
2 , −z, iz.

Correction z̄ = 2 − 3i, |z| = √
22 + 32 =

√
13, |z̄| =

√
22 + (−3)2 =

√
13, we see

that |z| = |z̄|, ℜ(z̄) = 2, ℑ(z̄) = −3, z+z̄
2 = (2 + 3i + (2 − 3i))/2 = 2, z−z̄

2 =

((2 + 3i− (2− 3i))/2 = 3i, −z = −2− 3i, iz = 2i+ 3i2 = −3 + 2i.

Exercise 10 Any complex number can be represented in polar form: z = r(cos(θ)+
i sin(θ)).

• Show that |z| = r

• Show that z = reiθ

• Conclude that for any complex number z, |z| = 1 if and only if z can be ex-
pressed as z = eiθ for a real θ.

Correction The modulus of z is |z| =
√

r2 cos2(θ) + r2 sin2(θ) =
√
r2 = r. From

Euler’s formula, we have cos(θ) + i sin(θ) = eiθ, so z = reiθ. Therefore, for any
complex number z = reiθ, |z| = 1 if and only if r = 1.

Exercise 11Using Euler’s formula, show that cos(a) cos(b)−sin(a) sin(b) = cos(a+b).
(Use the property that eia+ib = eiaeib and apply Euler’s Formula).

Correction All trigonometric identities can be obtained by applying Euler’s formula.
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Here we start from eia+ib = cos(a+b)+i sin(a+b). We only want the real part,

cos(a+ b) =
eia+ib + e−ia−ib

2

=
eiaeib + e−iae−ib

2

=
(cos(a) + i sin(a))(cos(b) + i sin(b))

2

= +
(cos(a)− i sin(a))(cos(b)− i sin(b))

2

=
cos(a) cos(b) + i2 sin(a) sin(b) + i cos(a) sin(b) + i cos(b) sin(a)

2

+
cos(a) cos(b) + i2 sin(a) sin(b)− i cos(a) sin(b)− i cos(b) sin(a)

2
.

The mixed cosine-sine terms cancel each other while the other ones add up, resulting
in

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b).

Exercise 12 Show Euler’s identity: eiπ = −1.

Correction This is a direct application of Euler’s formula: eiπ = cos(π) + i sin(π) =
−1.

Exercise 13 What are the roots of the equation z6 = 1?

Correction The roots must satisfy ei6θ = 1. This means that θ = 2
6kπ, for k =

0, 1, ..., 5. There are six distinct roots.

Exercise 14 For a complex z, find necessary and sufficient conditions for ezt, t > 0,
to converge to 0.

Correction The exponential converges to zero if and only if ℜ(z) < 0. A complex
number is close to zero if and only if its modulus is close to zero. Therefore, to
show that a quantity converges to zero, it is necessary and sufficient to show that its
modulus converges to zero. If z = a+ ib, the exponential ezt = e(a+ib)t = eateibt. The
modulus |eibt| = 1, so |ezt| = eat (no need for absolute values, the exponential of a
real number is always positive). The condition for convergence to zero is therefore
a condition on the real part of z: eat → 0 when t → ∞ if and only if a < 0.

Exercise 15 Let the complex number z = a+ ib with real a and b. Compute√z (that
is, express s = √

z as s = α+ iβ, with real α and β)

28



x

y

z = −1
2 + i

√
3
2 √

z

θ = 2π
3

1
2θ = 2π

6

Correction The square root of a complex number always exists. Express z in polar
form z = reiθ, r ≥ 0, θ ∈ [0, 2π]. The square root √z =

√
r
√
eiθ =

√
re

1
2
iθ. Using

Euler’s formula, √z =
√
r cos(θ/2) + i

√
r
√
θ/2. That is, the square root is obtained

by taking the square root of the modulus r, and dividing the angle (the argument)
by 2. There is a problem with this solution, because z can also be represented by
reiθ+2π, giving √

z =
√
re

1
2
iθ+π, which is equivalent to dividing the angle by two in

the other direction. We define the principal square root as the solution that makes
the smallest change in angle: √

z =
√
re

1
2
iθ if θ ∈ [0, π], and √

z =
√
re

1
2
iθ+π if

θ ∈ (π, 2π] To express the solution in terms of the original form of z = a + ib, we
express the square root s = α + iβ. Then s2 = α2 − β2 + 2iαβ = z = a + ib.

By identifying the real and imaginary parts, we get two equations: α2 − β2 = a

and 2iαβ = b. Denoting the modulus of z by r =
√
a2 + b2, we can obtain the

solutions
α =

1√
2

√
a+ r, β = sign(b) 1√

2

√
−a+ r.

8 Matrices in dimension 2
8.1 Eigenvalues of a 2× 2 matrix

A 2× 2 matrix A is an array with 2 rows and 2 columns:

A =

(
a b

c d

)
.

Usually, the coefficients a, b, c, d are real numbers. The identity matrix is the ma-
trix

I =

(
1 0

0 1

)
.

The determinant of A, denoted detA or |A| is the number ad− bc. The trace of A,
denoted trA, is the sum of the main diagonal of A: a+ d.
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Figure 9: Graph of the characteristic polynomial. (a, green) polynomial with two
negative roots, p(λ) = 0.08 + 0.8λ + λ2. (b, gray) polynomial with two complex
roots, p(λ) = 0.1 − 0.3λ + λ2. (c, red) polynomial with two positive roots, p(λ) =

0.05 + 0.5λ+ λ2. (d, purple) polynomial with a negative and a positive root, p(λ) =
−0.1− 0.3λ+ λ2.

The characteristic polynomial of A is the second order polynomial in λ obtained
by computing the determinant of the matrix A− λI (Figure 9),

det(A− λI) = (a− λ)(d− λ)− bc = ad− bc− λ(a+ d) + λ2.

The characteristic polynomial pA(λ) ofA can be expressed in terms of its determinant
and trace:

pA(λ) = detA− trAλ+ λ2.

The eigenvalues of A are the roots of the characteristic polynomial. By the funda-
mental theorem of algebra, we know that the characteristic polynomial has exactly
two roots, counting multiple roots. These roots can be real, or complex. The eigen-
values of A are calculated using the quadratic formula:

λ1,2 =
1

2

(
trA±

√
(trA)2 − 4detA

)
.

From this formula, we can classify the eigenvalues of A. Let

∆ = (trA)2 − 4detA

the discriminant of the quadratic formula. The two eigenvalues of A are real if and
only if ∆ ≥ 0, i.e. trA)2 ≥ 4detA Then we have the following properties (Figure
10):

1. ∆ < 0, complex eigenvalues

• The two eigenvalues are complex conjugate: λ1 = λ̄2

• Their real part ℜ(λ) = 1
2 trA.
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trA

detA

detA = 1
4 tr 2A

∆ < 0, complex eigenvalues
∆ = 0,
λ1,2 =
1
2 trA

detA < 0, real eigenvalues of opposite signs

∆ > 0,detA > 0, trA > 0
real, positive eigenvalues

∆ > 0,detA > 0, trA < 0
real, negative eigenvalues

Figure 10: Properties of the eigenvalues of a 2 × 2 matrix A with respect to detA
and trA.

2. ∆ = 0, there is a single root of multiplicity 2: λ = 1
2 trA.

3. ∆ > 0,detA > 0, real, distinct eigenvalues of the same sign.

• trA > 0 and detA > 0. Then λ1,2 are distinct and positive.

• trA < 0 and detA > 0. Then λ1,2 are distinct and negative.

4. detA < 0, real distinct eigenvalues of opposite sign.

• λ1 < 0 < λ2.

5. detA = 0 one of the eigenvalue is zero, the other eigenvalue is trA.

8.1.1 Exercises on eigenvalues

Exercise 16 Properties of the eigenvalues of 2 × 2 matrices. For each 2 × 2 matrix,
compute the determinant, the trace, and the discriminant, and determine whether
the eigenvalues are real, complex, distinct, and the sign (negative, positive, or zero)
of the real parts.

A1 =

(
0 −1

1 0

)
, A2 =

(
−2 1

1 −2

)
, A3 =

(
1 −2

0 1

)
, A4 =

(
−1 2

1/2 2

)
.
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8.2 Matrix-vector operations

A matrix defines a linear transformation between vector spaces. Given a vector x,
the product Ax is vector composed of linear combinations of the coefficients of x.
For a matrix 2 × 2, the vector x must be a vector of size 2, and the product Ax is a
vector of size two. If x = (x1, x2)

t (the t stands for the transpose, because x must be
a column vector), and A = [aij ]i=1,2, j=1,2, then

Ax =

(
a11 a12

a21 a22

)(
x1

x2

)
=

(
a11x1 + a12x2

a21x1 + a22x2

)
.

Successive linear transformations can be accomplished by applying several matrices.
Given two matrices A,B, the matrix product C = AB is also a matrix. The matrix
C is the linear transformation that first applies B, then A. Matrix product is not
commutative is general: AB ̸= BA. (If B means ’put on socks’ and A means ’put
on shoes’, then BA does not have the expected result.) The product of two matrices
A = [aij ]i=1,2, j=1,2 and B = [bij ]i=1,2, j=1,2 is

AB =

(
a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
.

The sum of two matrices A + B is performed element-wise: A + B = [aij +

bij ]i=1,2, j=1,2. The sum of two vectors is defined similarly. Addition is commu-
tative. Matrix operations are associative and distributive.

A+B = B +A,

A(B + C) = AB +BC,

A(BC) = (AB)C.

Matrices and vectors can be multiplied by a scalar value (real or complex). Multi-
plication by a scalar is associative, distributive, and commutative. The result of the
multiplication by a scalar is to multiply each coefficient of the matrix or vector by
the scalar. For example, if λ, µ are scalars,

λA = A(λI) = Aλ,

λ(A+B) = λA+ λB,

(λA)B = λ(AB) = A(λB),

(µ+ λ)A = µA+ λA,

µ(λA) = (µλ)A, ...
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The product between two column vectors is not defined, because the sizes do not
match. However, we can define the scalar product between two column vectors
x, y in the same way matrix product is defined:

xty ≡ x1y1 + x2y2.

If the vectors are complex-valued, we need also to conjugate the transposed vector
xt. The conjugate-transpose is called the adjoint and is denoted ∗. Thus, if x is
complex-valued, the adjoint x∗ is the row vector (x̄1, x̄2). The scalar product for
complex-valued vectors is denoted x∗y. Since this notation also works for real-valued
vector, we will used most of the time.

Two vectors are orthogonal if their scalar product is 0. In the plane, this means
that they are oriented at 90 degree apart. Orthogonal vectors are super important
because they can be used to build orthogonal bases that are necessary for solving all
sorts of linear problems.

8.2.1 Exercises on Matrix-vector and matrix-matrix operations

Exercise 17 Compute matrix-vector product(
0 −1

1 0

)(
x1

x2

)
.

What is the transformation given by this matrix.

Correction (
0 −1

1 0

)(
x1

x2

)
=

(
−x2

x1

)
.

The transformation is a 90 degree counterclockwise rotation.

Exercise 18 Compute the matrix-matrix product(
0 −1

1 0

)(
1 0

0 −1

)
.

Can you tell what transformation this is?

Correction (
0 −1

1 0

)(
1 0

0 −1

)
=

(
0 1

1 0

)
.

This matrix exchanges the coordinates of a vector, this is a reflection through the axis
x = y.
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Exercise 19 Now compute the product of the same matrices, but in the inverse or-
der (

1 0

0 −1

)(
0 −1

1 0

)
.

Compare with the solution found in the previous exercise. What is this transforma-
tion?

Correction (
1 0

0 −1

)(
0 −1

1 0

)
=

(
0 −1

−1 0

)
.

The pruduct is not the same, the matrices do not commute. The transformation is
now a reflection through y = −x.

Exercise 20 Find the matrix that takes a vector x = (x1, x2)
t and returns the vector

(ax1, bx2)
t.

Correction The matrix is (
a 0

0 b

)
.

Exercise 21 Find the matrix that takes a vector x = (x1, x2)
t and returns the vector

(x2, x1)
t.

Correction The matrix is (
0 1

1 0

)
.

Exercise 22 Find the matrix that takes a vector x = (x1, x2)
t and returns the vector

(x2, 0)
t.

Correction The matrix is (
0 1

0 0

)
.

Exercise 23 Compute the successive powers A,A2, A3, ..., for a diagonal matrix
A:

A =

(
a 0

0 b

)
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Correction The power of a diagonal matrix is a diagonal matrix

Ak =

(
ak 0

0 bk

)
.

Exercise 24 Compute the scalar product x∗y between x = (1 + 2i, 1 − i)t and y =

(0.5− i,−0.5)t.

Correction The scalar product is

x∗y = (1− 2i, 1 + i)(0.5− i,−0.5)t

= (1− 2i)(0.5− i) + (1 + i)(−0.5)

= 0.5 + 2i2 − 2(0.5)i− i− 0.5− 0.5i

= (0.5− 0.5 + 2i2) + (−2(0.5)− 1− 0.5)i

= −2− 2.5i.

Exercise 25 Now compute the scalar product y∗x and compare with the result with
the previous exercise.

Correction The scalar product is

y∗x = (0.5 + i,−0.5)(1 + 2i, 1− i)t

= (0.5 + i)(1 + 2i) + (−0.5)(1− i)

= 0.5 + 2i2 + i+ 2(0.5)i− 0.5 + 0.5i

= −2 + 2.5i

This is the conjugate: x∗y = (y∗x)∗.

Exercise 26 Compute the scalar product between z = (z1, z2)
t and itself, if z is a

complex-valued vector. What can you say about the result?

Correction The scalar product z∗z = (z̄1, z̄2)(z1, z2)
t = z̄1z1 + z̄2z2 = |z1|2 + |z2|2.

The scalar product is the square of the norm of the vector z.

Tips on eigenvalues Some matrices have special shapes that make it easier to com-
pute the determinant, and the eigenvalues. These are called eigenvalue-revealing
shapes.

• Diagonal matrices have their eigenvalues on the diagonal.
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• Triangular matrices, i.e. matrices that have zeros above (lower-triangular
matrix) or below (upper-triangular matrix) the main diagonal have also their
eigenvalues on the diagonal.

• A matrix with a row or a column of zeros has its determinant equal to zero.
This implies that one of its eigenvalues is 0.

9 Eigenvalue decomposition
In many applications, it is useful to decompose a matrix into a form that makes it
easier to operate complex operations on. For instance, we might want to compute
the powers of a matrix A: A2, A3, A4. Multiplying matrices are computationally
intensive, especially when the size of the matrix becomes large. The power of a
matrix is Ak = AA...A, k times. The zeroth power is the identity matrix: A0 =

I.

The inverse of a matrix A, denoted by A−1 is the unique matrix such that AA−1 =

A−1A = I. The notation is self-consistent with the positive powers of A. The
inverse of a matrix does not always exist. A matrix is invertible if and only if
its determinant is not 0. If A and B are invertible, then AB is invertible, and
(AB)−1 = B−1A−1.

The eigenvalue decomposition is a decomposition of the formA = XDX−1, where
D is a diagonal matrix, and X is an invertible matrix. If there exists such a decom-
position for A, then computing powers of A becomes easy:

Ak = (XDX−1)k = XDX−1XDX−1 ...XDX−1,

= XD(X−1X)D(X−1X)D...(X−1X)DX−1,

= XDkX−1.

The eigenvalue decomposition does not always exists, because it is not always possi-
ble to find an invertible matrixX. When it exists, though, the columns of the matrix
X is composed of the eigenvectors of A. When A is a 2 × 2 matrix, it is enough to
find 2 linearly independent eigenvectors x and y for the matrix

X =

(
x1 y1

x2 y2

)

to be invertible.
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9.1 Eigenvectors

The eigenvectors of a matrix A are the nonzero vectors x such that for an eigenvalue
λ of A,

Ax = λx.

If x is an eigenvector, so is any αx for any scalar value α. If there are two linearly
independent eigenvectors x and y associated to an eigenvalue, αx + βy is also an
eigenvector. There is at least one eigenvector for each distinct eigenvalue, but there
may be more than one when the eigenvalue is repeated.

Example 12 Distinct, real eigenvalues The matrix

A =

(
−1 −2

0 1

)

is upper-triangular; this is one of the eigenvalue-relealing shapes. The eigenvalues
are −1 and 1. These are distinct eigenvalues, so each eigenvalue possesses a sin-
gle eigenvector. The eigenvector x associated to λ1 = −1 is found by solving the
eigensystem

Ax = (−1)x.

The unknown quantity x appears on both sides of the equation. We can find a simpler
form by noting that multiplying a vector by the identity matrix is neutral: (−1)x =

(−1)Ix. The eigenproblem becomes

Ax = (−1)Ix,

Ax− (−1)Ix = 0,(
A− (−1)I

)
x = 0,

that is, the eigenvector is a nonzero solution of the linear system (A− λI
)
x = 0. In

general, if a matrix B is invertible, the only solution to Bx = 0 is x = 0 (the vector
of zeroes). But, by construction, A−λI cannot be invertible if λ is an eigenvalue: its
determinant is exactly the characteristic polynomial evaluated at one of its roots, so
it is zero. This is why the eigensystem has nonzero solutions. Now, because A− λI

is not invertible, this means that a least one of its rows is a linear combination of the
others. For 2× 2 matrices, this implies that the two rows are colinear, or redundant.
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For our example, the eigensystem reads(
−1− (−1) −2

0 1− (−1)

)(
x1

x2

)
=

(
0

0

)
,

(
0 −2

0 2

)(
x1

x2

)
=

(
0

0

)
.

we immediately see that the two rows (0,−2) and (0, 2) are colinear, with a factor
−1. This leads to an underdetermined system: 0x1 + −2x2 = 0. The solution is
x2 = 0 and we can take x1 to be any value, save 0. We choose x = (1, 0)t.

For the eigenvalue λ2 = +1, the eigensystem reads:(
−1− (+1) −2

0 1− (+1)

)(
y1

y2

)
=

(
0

0

)
,

(
−2 −2

0 0

)(
y1

y2

)
=

(
0

0

)
.

Again, the second row (0, 0) can be neglected, and the solution is −2y1 − 2y2 = 0,
or y1 = −y2. It is customary to choose an eigenvector with norm 1. The norm of a
complex-valued vector y = (y1, y2)

t is

||y|| =
√

y∗y =
√
ȳ1y1 + ȳ2y2 =

√
|y1|2 + |y2|2.

Here, the eigenvector is y = (y1,−y1)
t, so ||y|| =

√
|y1|2 + | − y1|2 =

√
2
√
|y1|2 =

√
2|y1|. Taking ||y|| = 1 solves |y1| = 1/

√
2. This means that we could take a negative

or a complex value for y1, as long as the |y1| = 1/
√
2. Going for simplicity, we take

y1 = 1/
√
2.

Example 13 Complex eigenvalues

The matrix
A =

(
0 −1

1 0

)
is not diagonal, so we have to compute the eigenvalues by hand. The trace of A is
zero, the determinant is 0 − (1)(−1) = 1, and the discriminant is −4. A negative
discriminant implies complex eigenvalues,

λ1,2 =
1

2

(
0±

√
−4
)
= ±i.
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For the eigenvalue λ1 = +i, the eigensystem reads:(
−(+i) −1

1 −(+i)

)(
x1

x2

)
=

(
0

0

)
,

(
−i −1

1 −i

)(
x1

x2

)
=

(
0

0

)
.

The two rows (−i, 1) and (1,−i) should be colinear, but this is not obvious with the
complex coefficients. Multiplying the first row by i gives i(−i,−1) = (−i2,−i) =

(−(−1),−i) = (1,−i), the second row, ok. Having confirmed that the system is
indeed underdetermined, we can week a solution to −ix1−x2 = 0. Solving for x2 =
−ix1, we obtain the eigenvector x = (x1,−ix1)

t. Normalization of x imposes

||x|| =
√

|x1|2 + | − ix1|2 =
√
|x1|2 + |x1|2 =

√
2|x1| = 1.

As in the previous example, we can choose x1 = 1/
√
2.

The second eigenvectors, associated λ2 = −i, solves the eigensystem(
−(−i) −1

1 −(−i)

)(
y1

y2

)
=

(
0

0

)
,

(
i −1

1 i

)(
y1

y2

)
=

(
0

0

)
.

The first row yields iy1 − y2 = 0, so y = (y1, iy2)
t. A normalized eigenvector can be

y = (1/
√
2, i/

√
2)t. We could also have chosen y = (i/

√
2,−1/

√
2)t.

Example 14 Repeated eigenvalues 1

The matrix (
−1 0

2 −1

)

is lower-trianglar, with repeated eigenvalues on the diagonal, λ1,2 = −1. The eigen-
vectors associated with −1 satisfy the eigenproblem(

−1− (−1) 0

2 −1− (−1)

)(
x1

x2

)
=

(
0

0

)
,

(
0 0

2 0

)(
x1

x2

)
=

(
0

0

)
.
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The first row vanishes, and the second row means that x1 = 0, leaving for instance
x2 = 1, and x = (0, 1)t. There are no other linearly independent eigenvectors. This
is not always the case, repeated eigenvalues can have more than one independent
eigenvector, as in the next example.

Example 15 Repeated eigenvalues 2

The matrix (
−1 0

0 −1

)
is diagonal, with repeated eigenvalues on the diagonal, λ1,2 = −1. The eigenvectors
associated with −1 satisfy the eigenproblem(

−1− (−1) 0

0 −1− (−1)

)(
x1

x2

)
=

(
0

0

)
,

(
0 0

0 0

)(
x1

x2

)
=

(
0

0

)
.

Now, the two rows vanished, leaving no condition at all on x1 and x2. This means
that all the vectors are eigenvectors! How many linearly independent eigenvectors
can we find? Vectors of size 2 live in a vector space of dimension 2; we can find at
most 2 linearly independent vectors. We can choose for instance the canonical basis:
x = (1, 0)t and y = (0, 1)t.

Tips on eigenvalue decomposition

• A 2 × 2 matrix (or any square matrix) admits an eigenvalue decomposition if
all the eigenvalues are distinct. For 2 × 2 matrices, eigenvalues are distinct if
and only if the discriminant ∆ ̸= 0.

• If the matrix has a repeated eigenvalue, it will admit an eigenvalue decom-
position if the number of (linearly independent) eigenvectors is equal to the
number of times the eigenvalue is repeated. The number of eigenvectors is
called geometric multiplicity, and the number of repeats is called algebraic
multiplicity.

• The eigenproblem should be underdetermined; you should always be able to
eliminate at least one row by linear combination. If you cannot, this means
that there is a error, possibly an incorrect eigenvalue, or a arithmetic mistake
in computing A− λI.
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• Because eigenvalues are in general complex, the eigenvectors will also be com-
plex.

• The eigenvector matrix X needs to be inverted. When the eigenvectors can
be chosen so that they are orthogonal and normalized, the inverse X−1 =

X∗ (i.e. the conjugate transpose of X). Symmetric matrices have orthogonal
eigenvalues, so this class of matrices are especially easy to diagonalise.

• Eigenvalue decomposition and invertibility are two different concepts. A ma-
trix can be invertible without admitting an eigenvalue decomposition, and vice
versa.

• When a matrix does not admit an eigenvalue decomposition, it still can be
triangularised. One such triangularisation is the Jordan decomposition: A =

P (D + S)P−1, where P is invertible, D is the diagonal matrix of eigenvalues,
and S is a nilpotent matrix, i.e. a nonzero matrix such that Sk = 0 for k ≥
k0 > 1.

9.2 Exercises on eigenvalues decomposition

Exercise 27 Find, if there is any, an eigenvalue decomposition of

A =

(
−1 2

2 −1

)

To compute X−1, you can use the fact that because A is real and symmetrical, the
eigenvectors are orthogonal, meaning that X−1 = Xt, if the eignevectors are nor-
malized.

CorrectionWehave detA = (−1)(−1)−(2)(2) = 1−4 = −3 < 0, trA = −1−1 = −2,

and ∆ = (−2)2 − 4(−3) = 4 + 12 = 16. The eigenvalues are

λ1,2 =
1

2

(
−2±

√
16
)
= −1± 2 = 1,−3.

The two eigenvalues are distinct, so the matrix A is diagonalisable. The eigenvector
associated with the eigenvalue λ1 = 1 is solution to the eigenproblem (A−λ1I)x = 0.

We look for a solution (
−1− (1) 2

2 −1− (1)

)(
x1

x2

)
= 0,

(
−2 2

2 −2

)(
x1

x2

)
= 0.
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(We check that the two rows are colinear.) The first row gives−2x1+2x2 = 0, or x1 =
x2. The norm of the eigenvector x = (x1, x2)

t =
√

x21 + x22 =
√
2|x1|.We choosex1 =

1/
√
2 to have a normalized eigenvector. We know that the second eigenvector is

orthogonal to x, so we can take y = (1/
√
2,−1/

√
2)t for the eigenvector associated to

λ2 = −3. To check that this is indeed an eigenvector, we solve to eigenproblem(
−1− (−3) 2

2 −1− (−3)

)(
y1

y2

)
= 0,

(
2 2

2 2

)(
y1

y2

)
= 0.

The solutions are vectors that satisfy y1 = −y2; this is the case for y. The matrix X

is composed of the column vectors x and y: X =
(
x|y
) and its inverse is

X−1 = Xt =

(
xt1

xt2

)
=

1√
2

(
1 1

1 −1

)
.

10 Linearisation of functions R2 → R2

Nonlinear systems of ordinary differential equations are used to describe the dynam-
ics (evolution in time) of concentration of biochemical species, population densities
in ecological systems, of the electrophyiology of neurons.

Two-dimensional systems are described by a set of two ordinary differential equa-
tions, or ODEs,

dx1
dt

= f1(x1, x2),

dx2
dt

= f2(x1, x2).

The variables x1, x2 are functions of time: x1(t), x2(t), and f1, f2 are the derivatives.
We define the two-dimensional vectors x = (x1, x2)

t (here we will use bold for vec-
tors), and f = (f1, f2)

t. The ODEs can now be represented in vector format,
dx

dt
= f(x).

Here we assume that there exists a point in the 2D plane x̄ such that the derivative
f(x̄) = 0. This point is called a steady state because the derivatives are all zeros;
the steady state is therefore a solution to the system of ODE.
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We are interested in how f is behaving around the steady state. To do that we
linearize the function f at the steady state. Linearisation is a first-order expansion.
For a function from R2 → R2, a first-order expansion around a point x0 is

f(x) ≈ f(x0) +Df(x0)(x− x0)

When expanding around a steady state, the constant term f(x̄) = 0. In the second
term, Df is a 2 × 2 matrix, called the Jacobian matrix, and often denoted J . The
Jacobian matrix for the function f is defined as

J = Df =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
.

When evaluated at a steady state, the Jacobian matrix can provide information on
the dynamics of the nonlinear ODE system. More precisely, the eigenvalues of the Ja-
cobian matrix can determine whether the steady state is stable (attracts solutions) or
is unstable. Linearisation around a steady state means computing the Jacobian
matrix at the steady state.

Example 16 Linearisation around a steady state

The Lotka-Volterra equations is a classical ODE system mathematical biology. The
equations reads

dx

dt
= ax− xy,

dy

dt
= xy − by,

for a, b positive constants. The solution vector is x = (x, y)t and the derivatives are
f1(x, y) = ax− xy and f2 = xy − by. We first look for steady states

f1 = ax− xy = 0, f2 = xy − by.

If x and y are not zero, we have x = b and y = a. If x = 0, the second equation
implies y = 0. If y = 0, the first equation implies x = 0. Therefore there are two
steady states, x̄ = (b, a)t and x̂ = (0, 0)t.
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We have the following derivatives
∂f1
∂x

(x, y) = a− y,

∂f1
∂y

(x, y) = −x,

∂f2
∂x

(x, y) = y,

∂f2
∂y

(x, y) = x− b,

The Jacobian matrix is

J =

(
a− y −x

y x− b

)
.

Evaluated at the steady state x̄ = (b, a)t and x̂ = (0, 0)t, the Jacobian matrices
are

J(x̄) =

(
0 −b

a 0

)
, J(x̂) =

(
a 0

0 −b

)
.

10.1 Exercises on linearisation

Exercise 28 Let the function f = (f1, f2)
t, with

f1(x, y) = −dx+ x exp(−axy), f2(x, y) = x− y,

d < 1, a, d positive. Find the steady states (by solving the equations f1 = 0, f2 =

0). Compute the Jacobian matrix, and evaluate the Jacobian matrix at each steady
state.

Correction The steady states are found by solving

f1(x, y) = −dx+ x exp(−axy) = 0,

f2(x, y) = x− y = 0.

From the second equation, we have x = y. The first equation is equivalent to dx =

x exp(−axy). We need to distinguish two cases: (i) x = 0, and (ii) x ̸= 0. Case (i)
leads to the solution x∗ = (0, 0)t, our first steady state. Case (ii) means that we can
simplify x in the first equation: d = exp(−axy). Replacing y = x, and solving for
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x:

d = exp(−axy),

d = exp(−ax2),

ln d = −ax2,

− ln d
a

= x2, (a > 0)

The hypothesis d < 1 ensures that ln d < 0 and − ln d > 0. There are therefore two
real solutions for x:

x = ±
√
− ln d

a
.

The two additional steady states are

x̄1,2 =

±
√

− ln d
a

±
√
− ln d

a

 .

The Jacobian matrix of f is computed from the partial derivatives
∂f1
∂x

(x, y) = −d+ (−ay) exp(−axy),

∂f1
∂y

(x, y) = (−ax) exp(−axy),

∂f2
∂x

(x, y) = 1,

∂f2
∂y

(x, y) = −1.

J =

(
−d− ay exp(−axy) −ax exp(−axy)

1 −1

)
.

The function f2 is linear. This is reflected in the Jacobian matrix, which as constant
coefficients on the second row. The evaluation of the Jacobian matrix at steady state
x∗ = (0, 0)t is

J(x∗) =

(
−d 0

1 −1

)
.

The evaluation of Jacobian matrix at steady state x̄1 =
(√

− ln d
a ,
√
− ln d

a

)t is
J(x̄1) =

(
−d− aȳ1 exp(−ax̄1ȳ1) −ax̄1 exp(−ax̄1ȳ1)

1 −1

)
.

Here, we use the fact that steady states satisfy the equation exp(−axy) = d to simplify
the exponential terms

J(x̄1) =

(
−d− aȳ1d −ax̄1d

1 −1

)
.
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Replacing y1 and x1 by
√
− ln d

a , we obtain

J(x̄1) =

(
−d− ay1d −ax̄1d

1 −1

)
,

=

−d− a
√
− ln d

a d −a
√

− ln d
a d

1 −1

 ,

=

−d
(
1 + a

√
− ln d

a

)
−d
√
−a2 ln da

1 −1

 ,

=

−d
(
1 +

√
−a ln d

)
−d

√
−a ln d

1 −1

 .

The same lines of calculations for the steady state x̄2 leads to

J(x̄2) =

−d
(
1−

√
−a ln d

)
d
√
−a ln d

1 −1

 .

Exercise 29 Compute the Jacobian matrices of each of the following functions of
(x, y). All parameters are constants. You do not need to compute the steady states
just the matrices.

• van der Pol oscillator

f1(x, y) = µ
(
(1− x2)y − x

)
, f2(x, y) = y.

• Two-compartment pharmacokinetics

f1(x, y) = a− k12x+ k21y − k1x, f2(x, y) = k12x− k21y.

• SI epidemiological model

f1(x, y) = −βxy, f2(x, y) = βxy − γy.

11 Solution of systems of linear differential equations in
dimension 2

Linear differential equations have linear derivative parts, which can be represented
in matrix-vector format

dx(t)

dt
= Ax(t),
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for a vector x square matrix A. For initial conditions x(t) = x0, the solution of the
linear system of ODEs is

x(t) = eAtx0.

If we have at our disposal an eigenvalue decomposition ofA = XDX−1, the expo-
nential of the matrix is

eAt = XeDtX−1,

= X

(
eλ1t 0

0 eλ2t

)
X−1.

Therefore, the long-time behavior of the exponential is controlled by the eigenvalues
λ1,2.

Example 17 Solution of a linear system of ODEs

Consider the linear system of ODEs given by the Lotka-Volterra model linearised at
its nonzero steady state x̄ = (b, a)t is(

dx
dt
dy
dt

)
=

(
0 −b

a 0

)(
x

y

)
,

(
x(0)

y(0)

)
=

(
x0

y0

)
. (1)

This system approximates the nonlinear version near the steady state. In this linear
system, variables (x, y) are deviations from the steady state; their solutions are ”cen-
tered” around 0. To solve this linear system, we will diagonalise the matrix

A =

(
0 −b

a 0

)
.

The goal is to go slowly through every step once for this system. In general it is not
necessary to solve the system completely by hand; knowledge of the eigenvalues is
often sufficient in many applications.

We have detA = 0 − a(−b) = ab > 0, trA = 0 and ∆ = 0 − 4ab = −4ab < 0. The
eigenvalues are therefore complex conjugates: λ1,2 = ±i

√
ab. Distinct eigenvalues

means that A is diagonalisable. The eigenvector associated to λ1 = i
√
ab is given by

the system (
−i

√
ab −b 0

a −i
√
ab 0

)
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We have from the first row −i
√
abx = by. Letting x = b and y = −i

√
ab, we obtain

the non-normalized eigenvector x̃1 = (b,−i
√
ab)t. Normalization is done by dividing

by
||x̃|| =

√
b2 + (−i

√
ab)2 =

√
b2 + ab,

to obtain the first eigenvector

x =

 b√
b2+ab

−i
√
ab√

b2+ab

 =

 b√
b
√
b+a

−i
√
a
√
b√

b
√
b+a

 =

 √
b√

b+a
−i

√
a√

b+a

 .

The second eigenvector is computed the same way (watch out for the slightly differ-
ent signs!). The eigenproblem for the eigenvalue λ = −i

√
ab is(

+i
√
ab −b 0

a +i
√
ab 0

)

Given that the only change is −i → +i, the second eigenvector is

x2 =

 √
b√

b+a
i
√
a√

b+a

 .

The solution to the linear ODE is(
x(t)

y(t)

)
= XeDtX−1

(
x0

y0

)
,

with

X =
1√
b+ a

( √
b

√
b

−i
√
a i

√
a

)
, D =

(
+i

√
ab 0

0 −i
√
ab

)

The inverse of a 2× 2 matrix with coefficients a, b, c, d is(
a b

c d

)−1

=
1

ad− bc

(
d −b

−c a

)
.

This is conditional to det = ad− bc ̸= 0, of course. With this formula, the inverse of
X is

X−1 =
1√
b+ a

1

detX

(
i
√
a −

√
b

i
√
a

√
b

)
.

The determinant detX = i
√
b
√
a

b+a + i
√
a
√
b

b+a = 2i
√
ab

b+a . The inverse reduces to

1√
b+ a

a+ b

2i
√
ab

(
i
√
a −

√
b

i
√
a

√
b

)
=

−i
√
b+ a

2
√
ab

(
i
√
a −

√
b

i
√
a

√
b

)
=

√
b+ a

2
√
ab

(√
a i

√
b

√
a −i

√
b

)
.
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We have now obtained the eigenvalue decompostion of A = XDX−1. To solve the
linear ODE, we need to compute the product(

x(t)

y(t)

)
= XeDtX−1

(
x0

y0

)
,

=
1√
b+ a

( √
b

√
b

−i
√
a i

√
a

)(
ei
√
abt 0

0 e−i
√
abt

) √
b+ a

2
√
ab

(√
a i

√
b

√
a −i

√
b

)(
x0

y0

)
,

=
1

2
√
ab

( √
b

√
b

−i
√
a i

√
a

)(
ei
√
abt 0

0 e−i
√
abt

)(√
a i

√
b

√
a −i

√
b

)(
x0

y0

)
,

=
1

2
√
ab

( √
bei

√
abt

√
be−i

√
abt

−i
√
aei

√
abt i

√
ae−i

√
abt

)(√
ax0 + i

√
by0

√
ax0 − i

√
by0

)
.

To simplify the last steps of the calculation, we will introduce the following notation.
Using Euler’s formula, we have e±i

√
abt = cos(

√
abt)±i sin(

√
abt). Let the parameters

c, s, C1 and C2 be c = cos(
√
abt), s = sin(

√
abt), and C1 =

√
ax0 + i

√
by0, C2 =

√
ax0 − i

√
by0. The solution now reads in a more compact manner:(

x(t)

y(t)

)
=

1

2
√
ab

( √
bei

√
abtC1 +

√
be−i

√
abtC2

−i
√
aei

√
abtC1 + i

√
ae−i

√
abtC2

)
,

=
1

2
√
ab

( √
b(c+ is)C1 +

√
b(c− is)C2

−i
√
a(c+ is)C1 + i

√
a(c− is)C2

)
,

=
1

2
√
ab

( √
bc(C1 + C2) + i

√
bs(C1 − C2)

√
as(C1 + C2) + i

√
ac(−C1 + C2)

)
,

=
1

2
√
ab

(
2
√
ab cos(

√
abt)x0 − 2b sin(

√
abt)y0

2a sin(
√
abt)x0 + 2

√
ab cos(

√
abt)y0

)
,

=

(
cos(

√
abt)x0 −

√
b/a sin(

√
abt)y0√

a/b sin(
√
abt)x0 + cos(

√
abt)y0

)
.

And that’s it! We have obtained a solution to the linear ODE (Figure 11).
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x

y

x0 = 0.6, y0 = 0.1
x0 = 0.2, y0 = 0.2

(x(t), y(t))

x̄

Figure 11: Solution of the linear system of ODEs (1), with a = 0.1, b = 0.4.

12 Glossary
French English Note
dérivable differentiable
matrice jacobienne Jacobian matrix
ensemble set
espace vectoriel vector space
sous-espace vectoriel linear subspace
valeur propre eigenvalue
vecteur propre eigenvector
sous-espace propre eigenspace
décomposition en valeurs propres eigenvalue decomposition
trace trace tr
déterminant determinant det
application linéaire linear map
application map
dimension dimension
produit scalaire scalar product
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