
Parallel-Step Slider Bearing (Lord Rayleigh's Slider Bearing)

Lord Rayleigh, as long ago as 1918, demonstrated that a parallel-step geometry produced the optimum load-carrying capacity when side leakage was neglected. This bearing has not, however, enjoyed the same development and applications as the pivoted-pad slider bearing. Past neglect of this mathematically preferable configuration has been due to doubts about the relative merits of this bearing when side leakage is considered.

Hypotheses :

- continuous flow
 Newtonian fluid → Reynolds equation
 Thin film
- $\rho = cte$, $\eta = cte$, permanent regime, infinite length

h_e : input film thickness h_s : output film thickness

Results will be expressed as a function of parameters a and s defined as : $a = \frac{h_e}{h_s}$ et $s = \frac{c}{b}$.

- 1. The simplified form of the Reynolds equation and subsequent pressure distribution
- 2. The fluid flux
- 3. The load-carrying capacity per unit length and the optimum value of a.
- 4. The friction force at y = 0 and at y = h