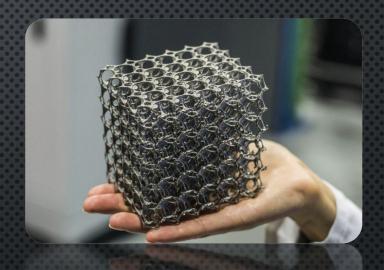
LA FABRICATION ADDITIVE

GÉNÉRALITÉS, ET APPLICATION AUX MATÉRIAUX POUR LA SANTÉ

INTRODUCTION

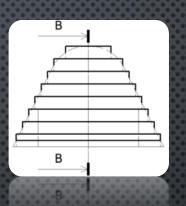
- Ingénieure de recherche (2018-)
 - SGM PROMO 51 (2012)
 - PHD 2016: NOUVELLES PROTHÈSES INTERVERTÉBRALES EN COMPOSITE CÉRAMIQUE : ÉTUDE DES MATÉRIAUX,
 MISE EN PLACE D'UN TEST MULTIPHYSIQUE IN VITRO ET ANALYSE DE PERFORMANCES

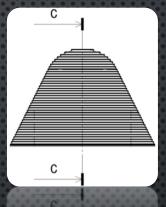

ÉTUDE ET DÉVELOPPEMENT DE MATÉRIAUX INNOVANTS POUR L'IMPLANTOLOGIE DENTAIRE

GÉNÉRALITÉS SUR LA FABRICATION ADDITIVE

- DÉFINITION WIKIPEDIA: « LA FABRICATION ADDITIVE DÉSIGNE LES PROCÉDÉS DE FABRICATION PAR AJOUT DE MATIÈRE »
- FABRICATION ADDITIVE OU IMPRESSION 3D?

Pourquoi?

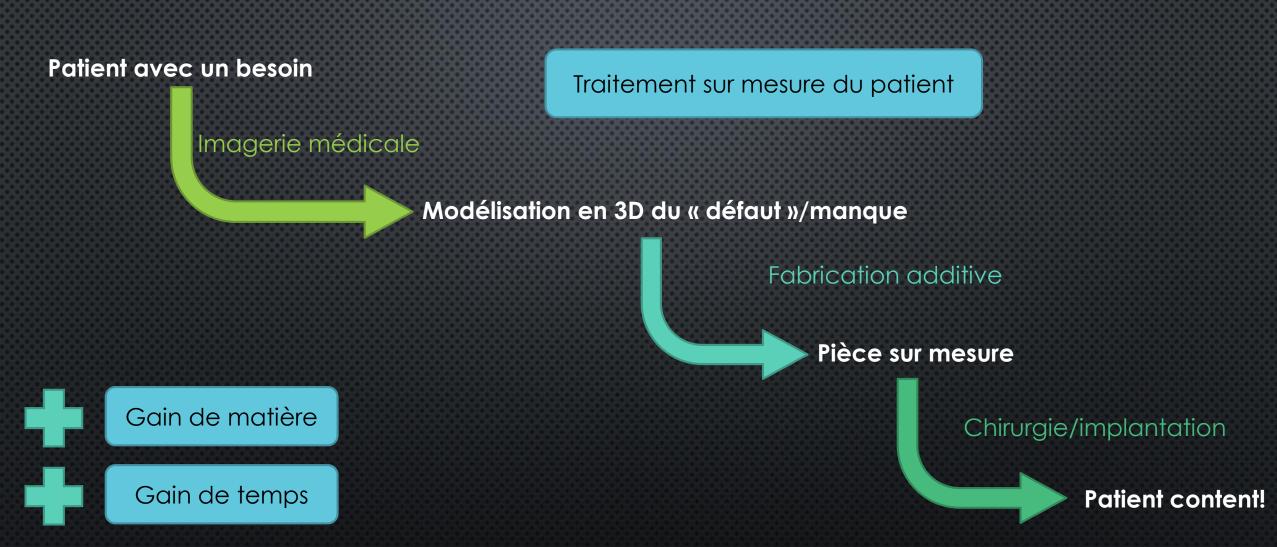

GÉNÉRALITÉS SUR LA FABRICATION ADDITIVE


- AVANTAGES
- Inconvénients / Challenges
- Matière

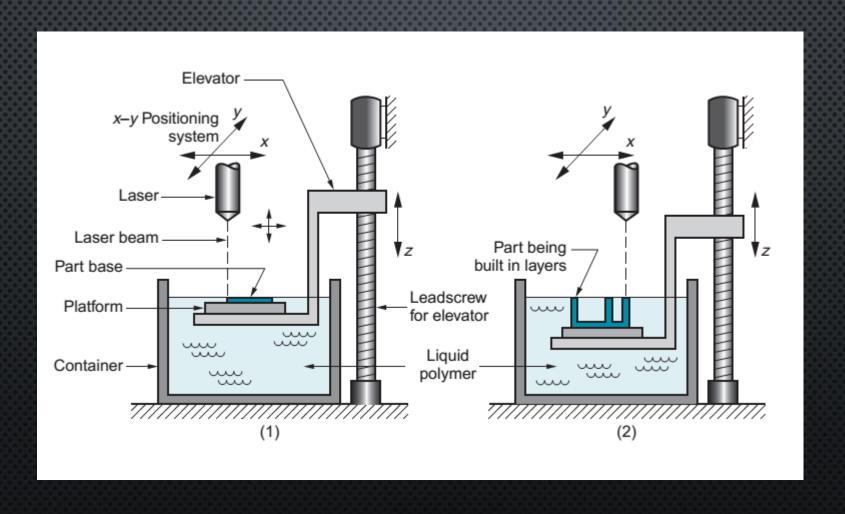
- Matière/Technique
- GÉOMÉTRIE
- GÉOMÉTRIE

TEMPS

- Précision/finition
- Défauts (Céramiques)


1 Procédés et matériaux en fabrication additive

PROCESSUS	TECHNOLOGIE	MATÉRIAUX
Jet de liant	Lit de poudres et tête d'impression à jet d'encre	Poudres de céramique, stratifiés en métal, acrylique, sable, composites, polymères, mélanges de polymères
	Impression 3D en plåtre	Plåtre, composites de plåtre
Dépôt d'énergie dirigée	Dépôt métallique par laser	Métaux et alliages métalliques, métaux hybrides
Extrusion de matériau	Modélisation par dépôt de matière fondue	Thermoplastiques, polymères, mélanges de polymères
Jet de matériau	Modélisation à jets multiples	Photopolymères, cire, composites
Fusion de lit de poudres	Fusion par faisceaux d'électrons	Poudre de titane, cobalt-chrome
	Frittage thermique sélectif	Poudre thermoplastique
	Frittage sélectif par laser	Plastique, métal, papier, verre, céramique, composites
	Frittage laser direct du métal	Acier inoxydable, cobalt-chrome, Alliage de nickel
Laminage de feuilles	Fabrication d'objets laminés	Plastique, métal, papiers stratifiés, céramiques, composites
	Consolidation par ultrasons	Métaux et alliages métalliques
Polymérisation en cuve	Stéréolithographie	Liquide photopolymère, composites
	Traitement numérique de la lumière	Photopolymère liquide


1 Procédés et matériaux en fabrication additive

PROCESSUS	TECHNOLOGIE	MATÉRIAUX
Jet de liant	Lit de poudres et tête d'impression à jet d'encre	Poudres de céramique, stratifiés en métal, acrylique, sable, composites, polymères, mélanges de polymères
	Impression 3D en plåtre	Plåtre, composites de plåtre
Dépôt d'énergie dirigée	Dépôt métallique par laser	Métaux et alliages métalliques, métaux hybrides
Extrusion de matériau	Modélisation par dépôt de matière	Thermoplastiques, polymères, mélanges de polymères, etc.
Jet de matériau	Modélisation à jets multiples	Photopolymères, cire, composites
Fusion de lit de poudres	Fusion par faisceaux d'électrons	Poudre de titane, cobalt-chrome
	Frittage thermique sélectif	Poudre thermoplastique
	Frittage sélectif par laser	Plastique, métal, papier, verre, céramique, composites
	Frittage laser direct du métal	Acier inoxydable, cobalt-chrome, Alliage de nickel
Laminage de feuilles	Fabrication d'objets laminés	Plastique, métal, papiers stratifiés, céramiques, composites
	Consolidation par ultrasons	Métaux et alliages métalliques
Polymérisation en cuve	Stéréolithographie	Liquide photopolymère, composites
	Traitement numérique de la lumière	Photopolymère liquide

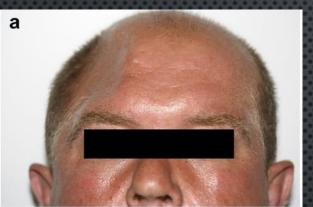
LA FABRICATION ADDITIVE DES BIOMATÉRIAUX

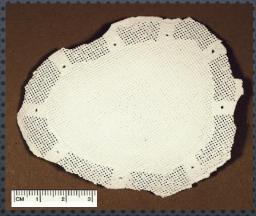
Stéréolithographie: Principalement zircone, hydroxyhapatite et alumine

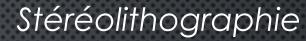
Stéréolithographie

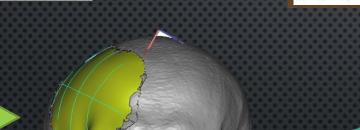
Numerical model • 3D numerical model of the component you need (stl file)

Fabrication

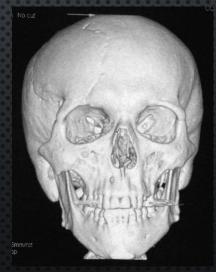

- Successive layers by stereolithography :
- ceramic powder + photo-sensitive resin
- A laser polymerizes the resin where you wish to consolidate the object
- The non-polymerized resin is eliminated (washed out)

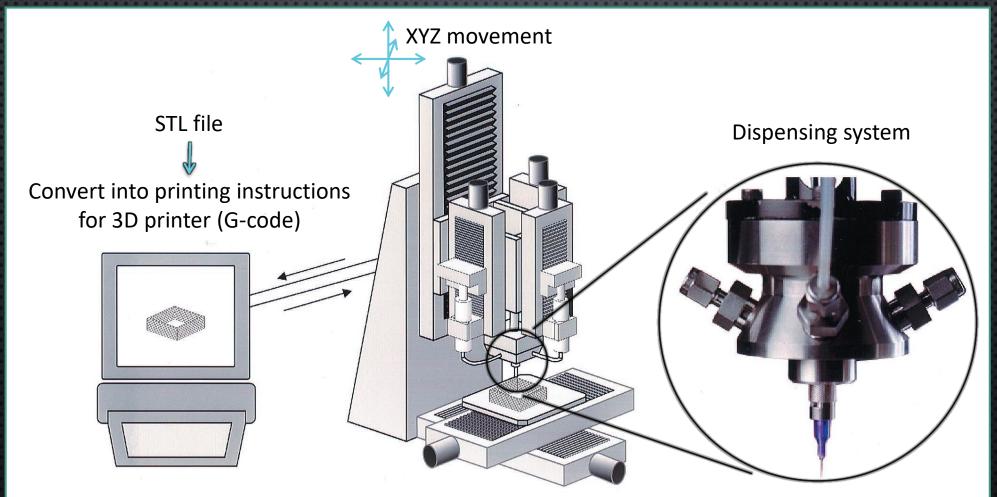

Thermal tratments


- Debinding to remove the organics
- Sintering


Results

- Ceramic piece with the geometry of the numerical model
- Spatial resolution > 50µm (depends on optical properties of the ceramic powder and resolution of the laser)





https://www.youtube.com/watch?v=2JCs9_2HOJo&ab_channel=MEF

• ROBOCASTING / MICROEXTRUSION / DIRECT INK WRITTING: ALUMINES, PHOSPHATES DE CALCIUM, ZIRCONE, NACRE, ETC.

Robocasting

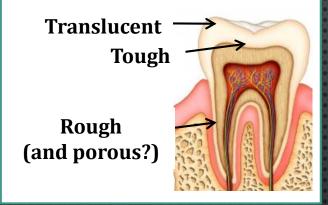
Numerical model •3D numerical model of the component you need (stl file)

Impression

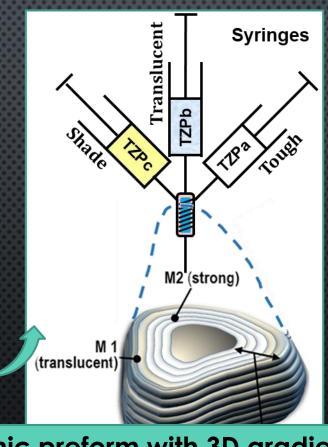
- Extrusion of a paste (ceramic suspension) through a needle: filaments whose position is controlled in 3D
- Adequate rheologie: the paste must flow through the needle then solidify when printed (shear sthinning paste)

Thermal treatment

- Drying
- Debinding
- Sintering


Results

- Part identical to the 3D model
- •resolution: >50 µm
- Porosity < 70%, Dimensions → 10 cm



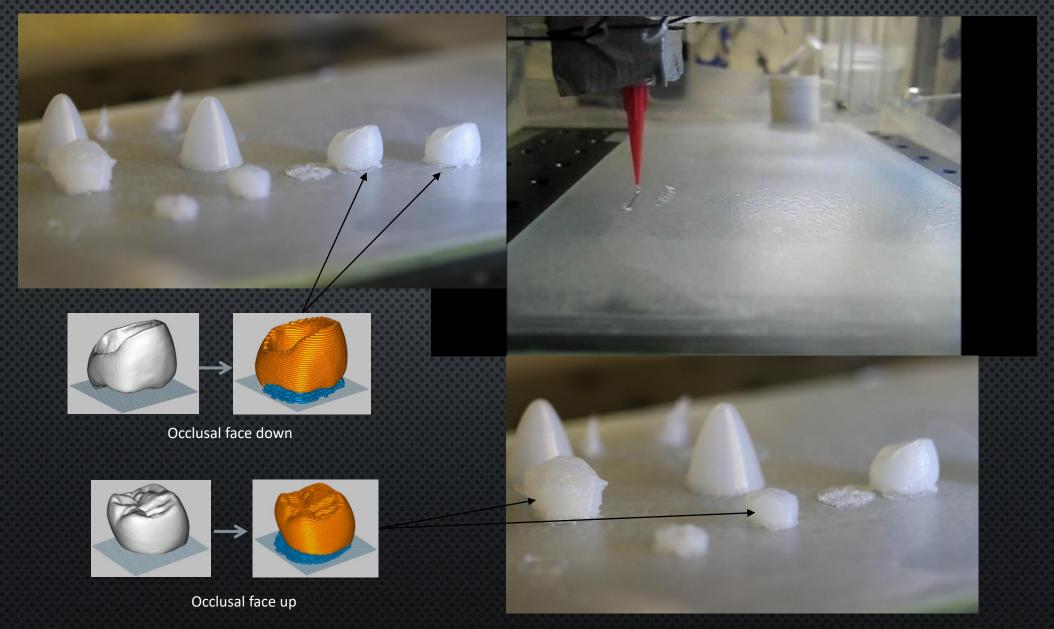
• Exemple d'impression d'un pièce complexe: la couronne dentaire

Robocasting

Custom design

High strength

Translucent


Color match

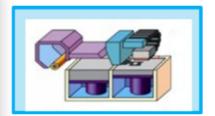
High added value

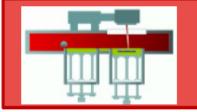
- → One firing step
 - No veneering process
 - → No interface

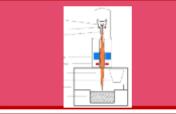
Minimal material waste

Sans Fusion

Lit de poudre

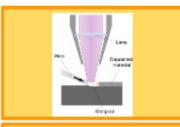

Apport direct


Impression 3D et Stéréolithographie **Fusion laser**


Fusion faisceau d'électrons

Projection laser

Dépôt fil



Avec fusion

Précision 5/100 - 1/10

Pas de supports

Taille chambre :

450 × 250 × 250 →

800 × 500 × 400

Temps de fabrication

=f(hauteur de fabrication).

env. 1cm/h pour des aciers

Possibilité ajout de fonction sur embase plane Précision 5/100 - 2/10 Supports Taille Chambre : 250 × 250 × 325

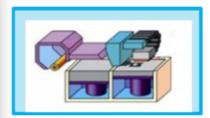
Précision 2/10 Supports limités Taille Chambre : Ø 350-380 Productivité 25-50cm3/h → 100cm3/h Ajout de fonction sur embase de forme gauche Précision 3-5/10 voir + Taille Chambre : 650 × 700 × 500 → 1500 × 800 × 800 Productivité 100-200cm3/h.

Ajouts de fonction sur grandes pièces massives
Précision 5 à 10/10
Taille Chambre:
203 × 102 × 152 →
6299 × 1372 × 1473
Productivité 200-500cm3/h.

Sans Fusion

Impression 3D et Fusion laser

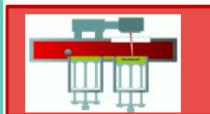
Avec fusion


Lit de poudre

Fusion faisceau d'électrons

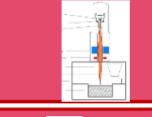
Apport direct

Projection laser


Dépôt fil

Stéréolithographie

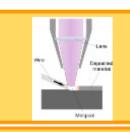
Précision 5/100 - 1/10
Pas de supports
Taille chambre :
450 × 250 × 250 →
800 × 500 × 400
Temps de fabrication
=f(hauteur de fabrication).
env. 1cm/h pour des aciers



Possibilité ajout de fonction sur embase plane
Précision 5/100 - 2/10
Supports
Taille Chambre : 250 × 250 × 325
→ 600 × 400 × 500

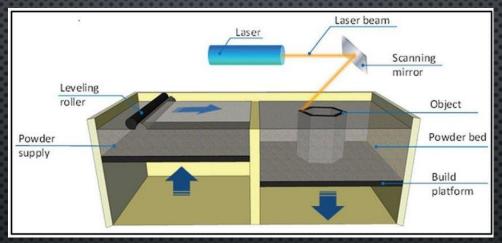
Productivité 1-10cm3/h → 70

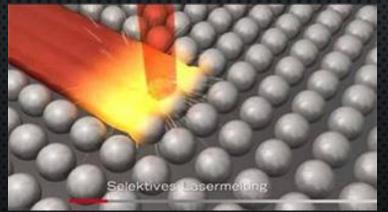
cm3/h

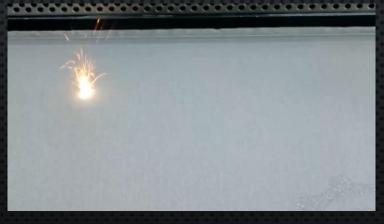


Précision 2/10 Supports limités Taille Chambre : Ø 350-380 Productivité 25-50cm3/h → 100cm3/h

Ajout de fonction sur embase de forme gauche Précision 3-5/10 voir + Taille Chambre : 650 × 700 × 500 → 1500 × 800 × 800 Productivité 100-200cm3/h.






Ajouts de fonction sur grandes pièces massives
Précision 5 à 10/10
Taille Chambre:
203 × 102 × 152 →
6299 × 1372 × 1473
Productivité 200-500cm3/h.

Biomatériaux

- TITANE (OU ALLIAGES) ET CRCO
- Fusion sur lit de poudre (Laser: SLM ou faisceau d'électrons: EBM) sous flux Ar

Biomatériaux

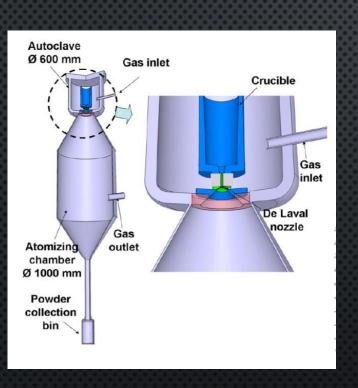
Numerica model • 3D numerical model of the component you need (stl file)

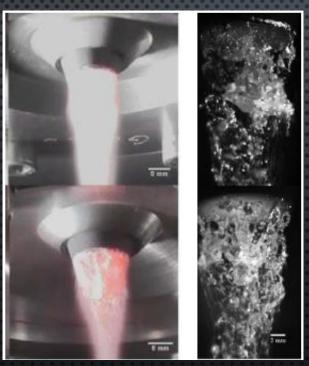
Fabrication

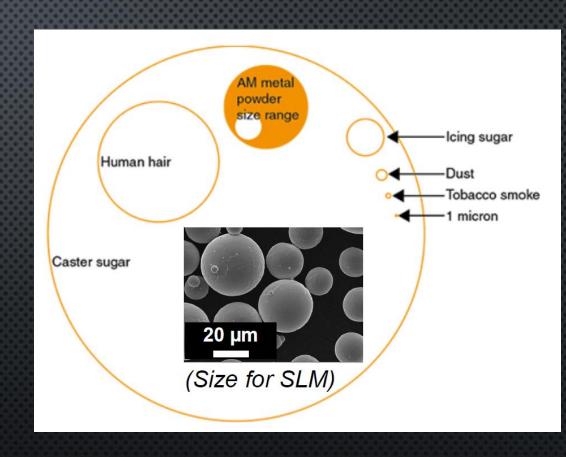
- Successive layers by selective melting (plate going down)
- · A laser melts the powder where you wish to consolidate the object
- The non-melted powder is eliminated and recycled
- Argon flow to avoid oxidation

Thermal tratments

- Thermal treatment to remove internal stresses due to temperature gradients
- Oven under vacuum (to avoid oxidation)

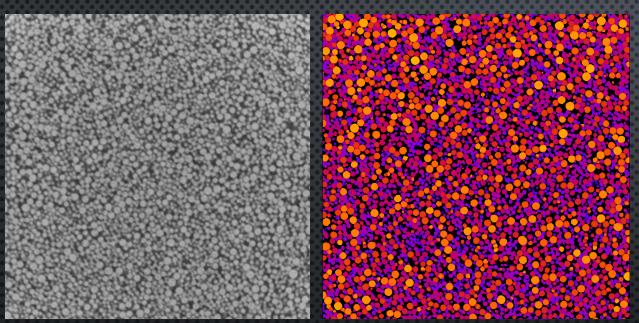

Results

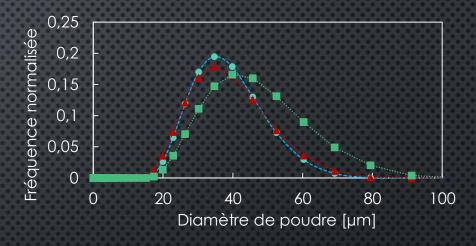

- Metallic piece with the geometry of the numerical model
- Spatial resolution around 20 µm
- Some defects

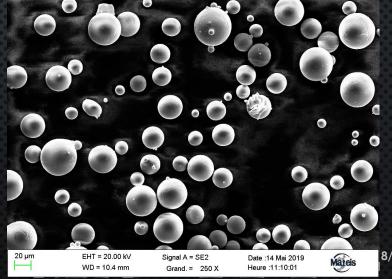

https://www.youtube.com/watch?v=X89yz2htEvw&ab_channel=3Shape

IT ALL STARTS WITH POWDERS...

Biomatériaux




Atomisation


CARACTÉRISATION COMPLÈTE

Tomographie RX

Biomatériaux

UNE DENT MANQUANTE:

Une Dent Manquante:

Sur mesure

UNE DENT MANQUANTE:

Sur mesure

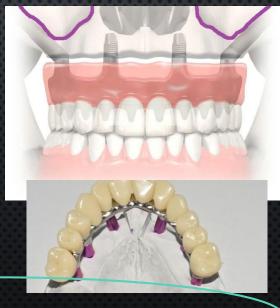
Plusieurs dents manquantes (ou édentation complète):

Implants

UNE DENT MANQUANTE:

Sur mesure

Plusieurs dents manquantes (ou édentation complète):



Sur mesure

+ Couronne

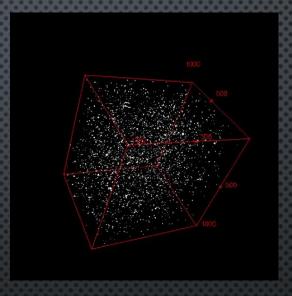
- PROTHÈSE DENTAIRE MULTI-PORTÉE:
 - Précision (axes des implants)
 - Propriétés mécaniques du matériau
 - Surface d'accroche prothèse esthétique Usinage (5 axes)

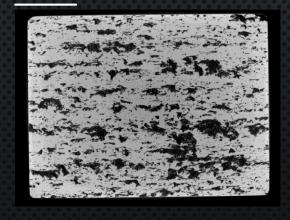
- Environ 8 heures/arche
- Matière perdue: 80%
- Texturation de surface limitée
- Précision parfaite

Fabrication additive

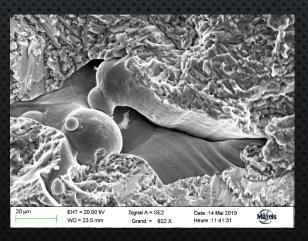
- Environ 8 heures/plateau (5-10 arches)
- Matière perdue: 1-5%
- Texturation de surface limitée par l'imagination de l'ingénieur
- Précision parfaite (après reprise)

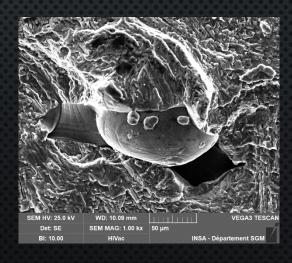
- PROTHÈSE DENTAIRE MULTI-PORTÉE:
 - Précision (axes des implants)
 - PROPRIÉTÉS MÉCANIQUES DU MATÉRIAU
 - Surface d'accroche prothèse esthétique Usinage (5 axes)


- Environ 8 heures/arche
- Matière perdue: 80%
- Texturation de surface limitée
- Précision parfaite

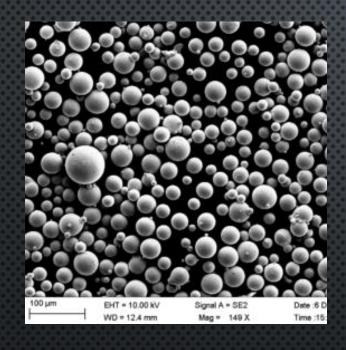

- Environ 8 heures/plateau (5-10 arches)
- Matière perdue: 1-5%
- Texturation de surface limitée par l'imagination de l'ingénieur
- Précision parfaite (après reprise)

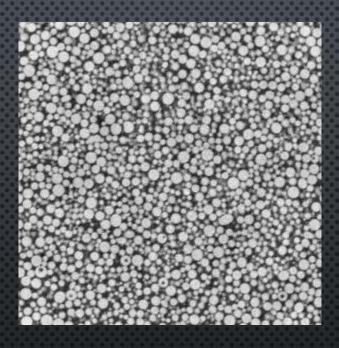
• Défauts dûs à la qualité de la poudre, aux fumées, à la vitesse du laser, etc.

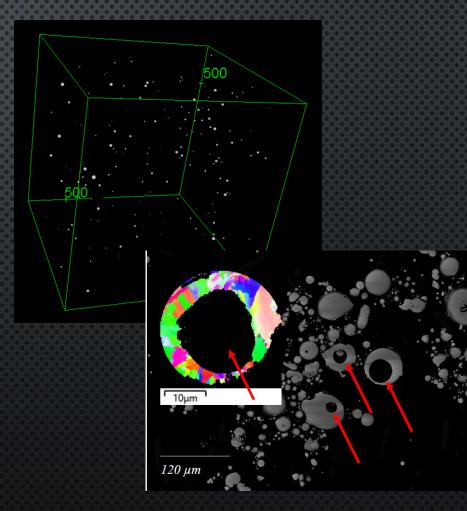




1_{mm}







• DÉFAUTS DÛS À LA QUALITÉ DE LA POUDRE, AUX FUMÉES, À LA VITESSE DU LASER, ETC.

